1
|
Mueller D, Giglio E, Chen CS, Holm A, Ebitz RB, Grissom NM. Touchscreen Response Precision Is Sensitive to the Explore/Exploit Trade-off. eNeuro 2025; 12:ENEURO.0538-24.2025. [PMID: 40246556 PMCID: PMC12061356 DOI: 10.1523/eneuro.0538-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025] Open
Abstract
The explore/exploit trade-off is a fundamental property of choice selection during reward-guided decision making, where the "same" choice can reflect either of these internal cognitive states. An unanswered question is whether the execution of a decision provides an underexplored measure of internal cognitive states. Touchscreens are increasingly used across species for cognitive testing and afford the ability to measure the precise location of choice touch responses. We examined how male and female mice in a restless bandit decision making task interacted with a touchscreen to determine if the explore/exploit trade-off, prior reward, and/or sex differences change the variability in the kinetics of touchscreen choices. During exploit states, successive touch responses are closer together than those made in an explore state, suggesting exploit states reflect periods of increased motor stereotypy. Although exploit decisions might be expected to be rewarded more frequently than explore decisions, we find that immediate past reward reduces choice variability independently of explore/exploit state. Male mice are more variable in their interactions with the touchscreen than females, even in low-variability trials such as exploit or following reward. These results suggest that as exploit behavior emerges in reward-guided decision making, all mice become less variable and more automated in both their choice and the actions taken to make that choice, but this occurs on a background of increased male variability. These data uncover the hidden potential for touchscreen decision making tasks to uncover the latent neural states that unite cognition and movement.
Collapse
Affiliation(s)
- Dana Mueller
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Erin Giglio
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Cathy S Chen
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Aspen Holm
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| | - R Becket Ebitz
- Department of Neuroscience, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Nicola M Grissom
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
2
|
Ouyang Z, Jiang H, Zhang F, Wang X, Geng C, Zhao M, Cui D, Zheng Z, Dong L, Jiao Q, Cao W. Enhanced reciprocal connections of the prefrontoparietal-thalamo-hippocampal circuit in older adults. Cereb Cortex 2025; 35:bhaf080. [PMID: 40253694 DOI: 10.1093/cercor/bhaf080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/19/2025] [Accepted: 03/12/2025] [Indexed: 04/22/2025] Open
Abstract
Cognitive functions rely on specific brain circuits involving cortical and subcortical regions. However, how age-related changes in effective connectivity within the prefrontoparietal-thalamo-hippocampal circuit affect cognition remains unclear. This study included 143 healthy older adults (60 to 88 yrs) and 124 young adults (18 to 44 yrs), using regression dynamic causal modeling to analyze resting-state functional magnetic resonance imaging data. Compared to young adults, older adults showed increased reciprocal effective connectivity within the ventromedial prefrontal cortex-lateral thalamic nuclei-right caudal hippocampus circuit. Enhanced bidirectional connectivity was also observed within the frontoparietal network, between the pregenual cingulate gyrus and superior frontal gyrus, and between lateral thalamic nuclei (LTN) and frontal pole. Additionally, heightened connectivity between thalamus and hippocampus negatively correlated with cognitive performance. Our findings reveal significant age-related increases in effective connectivity within the prefrontoparietal-thalamo-hippocampal circuit, linked to cognitive performance levels. Increased connectivity may indicate compensatory mechanisms helping preserve cognitive function in healthy aging. These results advance our understanding of neural dynamics underlying cognitive aging and potential adaptive mechanisms in older adults.
Collapse
Affiliation(s)
- Zhen Ouyang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an, Shandong Province 271000, China
- Department of Radiology, Tai'an City Central Hospital, Qingdao University, No. 29 Longtan Road, Tai'an, Shandong Province 271000, China
| | - Haixia Jiang
- Department of Radiology, Tai'an City Central Hospital, Qingdao University, No. 29 Longtan Road, Tai'an, Shandong Province 271000, China
| | - Feng Zhang
- Department of Radiology, Tai'an City Central Hospital, Qingdao University, No. 29 Longtan Road, Tai'an, Shandong Province 271000, China
| | - Xue Wang
- Department of Radiology, Tai'an City Central Hospital, Qingdao University, No. 29 Longtan Road, Tai'an, Shandong Province 271000, China
| | - Chuqiao Geng
- Department of Radiology, Tai'an City Central Hospital, Qingdao University, No. 29 Longtan Road, Tai'an, Shandong Province 271000, China
| | - Mingjuan Zhao
- Department of Radiology, Tai'an City Central Hospital, Qingdao University, No. 29 Longtan Road, Tai'an, Shandong Province 271000, China
| | - Dong Cui
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an, Shandong Province 271000, China
| | - Zihao Zheng
- Ministry of Education (MOE) Key Laboratory for Neuroinformation, School of Life Sciences and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, High-Tech District, Chengdu, Sichuan Province 611731, China
| | - Li Dong
- Ministry of Education (MOE) Key Laboratory for Neuroinformation, School of Life Sciences and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, High-Tech District, Chengdu, Sichuan Province 611731, China
| | - Qing Jiao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an, Shandong Province 271000, China
| | - Weifang Cao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an, Shandong Province 271000, China
| |
Collapse
|
3
|
Cromwell R, Um T. The "Wearing Off" Phenomenon for Rasagiline, Entacapone, Carbidopa, and Levodopa in the Setting of Parkinson's Disease. HCA HEALTHCARE JOURNAL OF MEDICINE 2025; 6:71-74. [PMID: 40071188 PMCID: PMC11892409 DOI: 10.36518/2689-0216.1718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Background Parkinson's disease is a primary neurological dysfunction syndrome in which the body's natural production of dopamine is reduced. Therapeutic intervention for this disease primarily includes medications that increase the body's natural production of dopamine. These medications can have side effects, requiring constant titration based on the patient's symptoms. Case Presentation We report a case study of a 75-year-old man diagnosed with Parkinson's disease who had a profound acute exacerbation of psychological symptoms following modifications to his dopaminergic treatment regimen. Initially, the patient was prescribed carbidopa/levodopa, rasagiline, and carbidopa/levodopa/entacapone. However, the treatment plan was adjusted due to the worsening of symptoms. The dose of carbidopa/levodopa was reduced, and rasagiline and Stalevo were stopped. Although the patient initially saw a temporary improvement, the patient later had hallucinations, delusions, agitation, dyskinesias, and akathisia. The laboratory testing and CT scan results showed no significant abnormalities. Conclusion This case highlights the importance of accurate dosage and vigilant supervision of Parkinson's disease medications' "wearing off" phenomenon. The patient's varying reaction to changes in medication and the subsequent appearance of psychiatric symptoms highlights the need for an individualized approach to managing Parkinson's disease. Collectively, these symptoms suggest that clinicians should consider the possibility of non-linear connections between dopaminergic therapy and symptom control. To effectively address the intricate relationship between motor symptoms and psychiatric manifestations, it is imperative to implement a multidisciplinary team approach in future management. This approach would involve closely monitoring and adapting treatment strategies.
Collapse
Affiliation(s)
| | - Tevin Um
- HCA Florida Citrus Hospital, Inverness, Florida
| |
Collapse
|
4
|
Béreau M, Garnier-Allain A, Servant M. Clinically established early Parkinson's disease patients do not show impaired use of priors in conditions of perceptual uncertainty. Neuropsychologia 2024; 202:108965. [PMID: 39097186 DOI: 10.1016/j.neuropsychologia.2024.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
The ability to use past learned experiences to guide decisions is an important component of adaptive behavior, especially when decision-making is performed under time pressure or when perceptual information is unreliable. Previous studies using visual discrimination tasks have shown that this prior-informed decision-making ability is impaired in Parkinson's disease (PD), but the mechanisms underlying this deficit and the precise impact of dopaminergic denervation within cortico-basal circuits remain unclear. To shed light on this problem, we evaluated prior-informed decision-making under various conditions of perceptual uncertainty in a sample of 13 clinically established early PD patients, and compared behavioral performance with healthy control (HC) subjects matched in age, sex and education. PD patients and HC subjects performed a random dot motion task in which they had to decide the net direction (leftward vs. rightward) of a field of moving dots and communicate their choices through manual button presses. We manipulated prior knowledge by modulating the probability of occurrence of leftward vs. rightward motion stimuli between blocks of trials, and by explicitly giving these probabilities to subjects at the beginning of each block. We further manipulated stimulus discriminability by varying the proportion of dots moving coherently in the signal direction and speed-accuracy instructions. PD patients used choice probabilities to guide perceptual decisions in both speed and accuracy conditions, and their performance did not significantly differ from that of HC subjects. An additional analysis of the data with the diffusion decision model confirmed this conclusion. These results suggest that the impaired use of priors during visual discrimination observed at more advanced stages of PD is independent of dopaminergic denervation, though additional studies with larger sample sizes are needed to more firmly establish this conclusion.
Collapse
Affiliation(s)
- Matthieu Béreau
- Université de Franche-Comté, UMR INSERM 1322 LINC, 25000 Besançon, France; Département de neurologie, réseau NS-PARK/F-CRIN, CHU de Besançon, 25000 Besançon, France
| | | | - Mathieu Servant
- Université de Franche-Comté, UMR INSERM 1322 LINC, 25000 Besançon, France; Institut Universitaire de France, France.
| |
Collapse
|
5
|
Orlando IF, Hezemans FH, Ye R, Murley AG, Holland N, Regenthal R, Barker RA, Williams-Gray CH, Passamonti L, Robbins TW, Rowe JB, O’Callaghan C. Noradrenergic modulation of saccades in Parkinson's disease. Brain Commun 2024; 6:fcae297. [PMID: 39464213 PMCID: PMC11503952 DOI: 10.1093/braincomms/fcae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 10/29/2024] Open
Abstract
Noradrenaline is a powerful modulator of cognitive processes, including action decisions underlying saccadic control. Changes in saccadic eye movements are common across neurodegenerative diseases of ageing, including Parkinson's disease. With growing interest in noradrenergic treatment potential for non-motor symptoms in Parkinson's disease, the temporal precision of oculomotor function is advantageous to assess the effects of this modulation. Here, we studied the effect of 40 mg atomoxetine, a noradrenaline reuptake inhibitor, in 19 people with idiopathic Parkinson's disease using a single dose, randomized double-blind, crossover, placebo-controlled design. Twenty-five healthy adult participants completed the assessments to provide normative data. Participants performed prosaccade and antisaccade tasks. The latency, velocity and accuracy of saccades, and resting pupil diameter, were measured. Increased pupil diameter on the drug confirmed its expected effect on the locus coeruleus ascending arousal system. Atomoxetine altered key aspects of saccade performance: prosaccade latencies were faster and the saccadic main sequence was normalized. These changes were accompanied by increased antisaccade error rates on the drug. Together, these findings suggest a shift in the speed-accuracy trade-off for visuomotor decisions in response to noradrenergic treatment. Our results provide new evidence to substantiate a role for noradrenergic modulation of saccades, and based on known circuitry, we advance the hypothesis that this reflects modulation at the level of the locus coeruleus-superior colliculus pathway. Given the potential for noradrenergic treatment of non-motor symptoms of Parkinson's disease and related conditions, the oculomotor system can support the assessment of cognitive effects without limb-motor confounds on task performance.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Frank H Hezemans
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Rong Ye
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Alexander G Murley
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Negin Holland
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig 69978, Germany
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Wellcome Trust—Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Caroline H Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Trevor W Robbins
- Department of Psychology, University of CambridgeCB2 3EA, CambridgeUK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EA, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Claire O’Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| |
Collapse
|
6
|
Zhou Z, Yan Y, Gu H, Sun R, Liao Z, Xue K, Tang C. Dopamine in the prefrontal cortex plays multiple roles in the executive function of patients with Parkinson's disease. Neural Regen Res 2024; 19:1759-1767. [PMID: 38103242 PMCID: PMC10960281 DOI: 10.4103/1673-5374.389631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/05/2023] [Accepted: 10/10/2023] [Indexed: 12/18/2023] Open
Abstract
Parkinson's disease can affect not only motor functions but also cognitive abilities, leading to cognitive impairment. One common issue in Parkinson's disease with cognitive dysfunction is the difficulty in executive functioning. Executive functions help us plan, organize, and control our actions based on our goals. The brain area responsible for executive functions is called the prefrontal cortex. It acts as the command center for the brain, especially when it comes to regulating executive functions. The role of the prefrontal cortex in cognitive processes is influenced by a chemical messenger called dopamine. However, little is known about how dopamine affects the cognitive functions of patients with Parkinson's disease. In this article, the authors review the latest research on this topic. They start by looking at how the dopaminergic system, is altered in Parkinson's disease with executive dysfunction. Then, they explore how these changes in dopamine impact the synaptic structure, electrical activity, and connection components of the prefrontal cortex. The authors also summarize the relationship between Parkinson's disease and dopamine-related cognitive issues. This information may offer valuable insights and directions for further research and improvement in the clinical treatment of cognitive impairment in Parkinson's disease.
Collapse
Affiliation(s)
- Zihang Zhou
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yalong Yan
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Heng Gu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ruiao Sun
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zihan Liao
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ke Xue
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chuanxi Tang
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
7
|
Tomassini A, Cope TE, Zhang J, Rowe JB. Parkinson's disease impairs cortical sensori-motor decision-making cascades. Brain Commun 2024; 6:fcae065. [PMID: 38505233 PMCID: PMC10950052 DOI: 10.1093/braincomms/fcae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/21/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024] Open
Abstract
The transformation from perception to action requires a set of neuronal decisions about the nature of the percept, identification and selection of response options and execution of the appropriate motor response. The unfolding of such decisions is mediated by distributed representations of the decision variables-evidence and intentions-that are represented through oscillatory activity across the cortex. Here we combine magneto-electroencephalography and linear ballistic accumulator models of decision-making to reveal the impact of Parkinson's disease during the selection and execution of action. We used a visuomotor task in which we independently manipulated uncertainty in sensory and action domains. A generative accumulator model was optimized to single-trial neurophysiological correlates of human behaviour, mapping the cortical oscillatory signatures of decision-making, and relating these to separate processes accumulating sensory evidence and selecting a motor action. We confirmed the role of widespread beta oscillatory activity in shaping the feed-forward cascade of evidence accumulation from resolution of sensory inputs to selection of appropriate responses. By contrasting the spatiotemporal dynamics of evidence accumulation in age-matched healthy controls and people with Parkinson's disease, we identified disruption of the beta-mediated cascade of evidence accumulation as the hallmark of atypical decision-making in Parkinson's disease. In frontal cortical regions, there was inefficient processing and transfer of perceptual information. Our findings emphasize the intimate connection between abnormal visuomotor function and pathological oscillatory activity in neurodegenerative disease. We propose that disruption of the oscillatory mechanisms governing fast and precise information exchanges between the sensory and motor systems contributes to behavioural changes in people with Parkinson's disease.
Collapse
Affiliation(s)
- Alessandro Tomassini
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Thomas E Cope
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Neurology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - Jiaxiang Zhang
- Department of Computer Science, Swansea University, Swansea SA18EN, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Neurology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| |
Collapse
|
8
|
Schneider I, Schönfeld R, Hanert A, Philippen S, Tödt I, Granert O, Mehdorn M, Becktepe J, Deuschl G, Berg D, Paschen S, Bartsch T. Deep brain stimulation of the subthalamic nucleus restores spatial reversal learning in patients with Parkinson's disease. Brain Commun 2024; 6:fcae068. [PMID: 38560516 PMCID: PMC10979721 DOI: 10.1093/braincomms/fcae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Spatial learning and navigation are supported by distinct memory systems in the human brain such as the hippocampus-based navigational system and the striatum-cortex-based system involved in motor sequence, habit and reversal learning. Here, we studied the role of subthalamic circuits in hippocampus-associated spatial memory and striatal-associated spatial reversal learning formation in patients with Parkinson's disease, who underwent a deep brain stimulation of the subthalamic nucleus. Deep brain stimulation patients (Parkinson's disease-subthalamic nucleus: n = 26) and healthy subjects (n = 15) were tested in a novel experimental spatial memory task based on the Morris water maze that assesses both hippocampal place memory as well as spatial reversal learning. All subjects were trained to navigate to a distinct spatial location hidden within the virtual environment during 16 learning trials in a subthalamic nucleus Stim-On condition. Patients were then randomized into two groups with either a deep brain stimulation On or Off condition. Four hours later, subjects were retested in a delayed recall and reversal learning condition. The reversal learning was realized with a new hidden location that should be memorized during six consecutive trials. The performance was measured by means of an index indicating the improvement during the reversal learning. In the delayed recall condition, neither patients, healthy subjects nor the deep brain stimulation On- versus Off groups showed a difference in place memory performance of the former trained location. In the reversal learning condition, healthy subjects (reversal index 2.0) and patients in the deep brain stimulation On condition (reversal index 1.6) showed a significant improvement. However, patients in the deep brain stimulation Off condition (reversal index 1.1) performed significantly worse and did not improve. There were no differences between all groups in a final visual guided navigation task with a visible target. These results suggest that deep brain stimulation of subthalamic nucleus restores spatial reversal learning in a virtual navigation task in patients with Parkinson's disease and gives insight into the neuromodulation effects on cognition of subthalamic circuits in Parkinson's disease.
Collapse
Affiliation(s)
- Isabel Schneider
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Robby Schönfeld
- Institute of Psychology, Martin-Luther-University Halle-Wittenberg, Halle 06108, Germany
| | - Annika Hanert
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Sarah Philippen
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Inken Tödt
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Oliver Granert
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Maximilian Mehdorn
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Jos Becktepe
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Günther Deuschl
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Daniela Berg
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Steffen Paschen
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Thorsten Bartsch
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
9
|
Campagnolo M, Emmi A, Biundo R, Fiorenzato E, Batzu L, Chaudhuri KR, Antonini A. The pharmacological management of the behavioral aspects of Parkinson's disease: an update. Expert Opin Pharmacother 2023; 24:1693-1701. [PMID: 37493445 DOI: 10.1080/14656566.2023.2240228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Behavioural symptoms are common manifestations of Parkinson's disease and include depression, anxiety, impulse control disorders, hallucinations, psychosis, and cognitive dysfunction. They remain inadequately addressed in many patients despite their relevance for quality of life and disability. This applies also to impulse control disorders where the most common approach in recent literature is to refrain from using dopamine agonists without consideration about their potential benefit on motor complications. AREAS COVERED We conducted a narrative review searching for articles on behavioral symptoms in Parkinson disease and selected those which included involved neurotransmitters such as dopamine, noradrenaline, serotonin, acetylcholine. We specifically focused our search on open-label and randomized double-blind studies and biomarkers which could best characterize these clinical manifestations. EXPERT OPINION Management of Parkinson disease behavioural manifestations lacks clear guidelines and standardized protocols beside general suggestions of dose adjustments in dopamine replacement therapy and use of antidepressants or antipsychotic drugs with little consideration of patients' age, sex, comorbidities, and motor status. We suggest a pragmatic approach which includes education of affected patients and caring people, dealing with complex cases by experienced multidisciplinary teams, use of cognitive behavioural therapy, and psychological counselling to complement drug treatment.
Collapse
Affiliation(s)
- Marta Campagnolo
- Parkinson's Disease and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Aron Emmi
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Roberta Biundo
- Parkinson's Disease and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Department of General Psychology, University of Padova, Padova, Italy
| | - Eleonora Fiorenzato
- Parkinson's Disease and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
| | - Lucia Batzu
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Angelo Antonini
- Parkinson's Disease and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| |
Collapse
|
10
|
Fallon SJ, Plant O, Tabi YA, Manohar SG, Husain M. Effects of cholinesterase inhibition on attention and working memory in Lewy body dementias. Brain Commun 2023; 5:fcad207. [PMID: 37545547 PMCID: PMC10404008 DOI: 10.1093/braincomms/fcad207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Cholinesterase inhibitors are frequently used to treat cognitive symptoms in Lewy body dementias (Parkinson's disease dementia and dementia with Lewy bodies). However, the selectivity of their effects remains unclear. In a novel rivastigmine withdrawal design, Parkinson's disease dementia and dementia with Lewy bodies patients were tested twice: once when taking rivastigmine as usual and once when they had missed one dose. In each session, they performed a suite of tasks (sustained attention, simple short-term recall, distractor resistance and manipulating the focus of attention) that allowed us to investigate the cognitive mechanisms through which rivastigmine affects attentional control. Consistent with previous literature, rivastigmine withdrawal significantly impaired attentional efficacy (quicker response latencies without a change in accuracy). However, it had no effects on cognitive control as assessed by the ability to withhold a response (inhibitory control). Worse short-term memory performance was also observed when patients were OFF rivastigmine, but these effects were delay and load independent, likely due to impaired visual attention. In contrast to previous studies that have examined the effects of dopamine withdrawal, cognitively complex tasks requiring control over the contents of working memory (ignoring, updating or shifting the focus of attention) were not significantly impaired by rivastigmine withdrawal. Cumulatively, these data support that the conclusion that cholinesterase inhibition has relatively specific and circumscribed-rather than global-effects on attention that may also affect performance on simple short-term memory tasks, but not when cognitive control over working memory is required. The results also indicate that the withdrawal of a single dose of rivastigmine is sufficient to reveal these impairments, demonstrating that cholinergic withdrawal can be an informative clinical as well as an investigative tool.
Collapse
Affiliation(s)
- Sean James Fallon
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- School of Psychology, University of Plymouth, Plymouth PL4 8AA, UK
| | - Olivia Plant
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Younes A Tabi
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
11
|
Orlando IF, Shine JM, Robbins TW, Rowe JB, O'Callaghan C. Noradrenergic and cholinergic systems take centre stage in neuropsychiatric diseases of ageing. Neurosci Biobehav Rev 2023; 149:105167. [PMID: 37054802 DOI: 10.1016/j.neubiorev.2023.105167] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Noradrenergic and cholinergic systems are among the most vulnerable brain systems in neuropsychiatric diseases of ageing, including Alzheimer's disease, Parkinson's disease, Lewy body dementia, and progressive supranuclear palsy. As these systems fail, they contribute directly to many of the characteristic cognitive and psychiatric symptoms. However, their contribution to symptoms is not sufficiently understood, and pharmacological interventions targeting noradrenergic and cholinergic systems have met with mixed success. Part of the challenge is the complex neurobiology of these systems, operating across multiple timescales, and with non-linear changes across the adult lifespan and disease course. We address these challenges in a detailed review of the noradrenergic and cholinergic systems, outlining their roles in cognition and behaviour, and how they influence neuropsychiatric symptoms in disease. By bridging across levels of analysis, we highlight opportunities for improving drug therapies and for pursuing personalised medicine strategies.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, CB2 3EB, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, CB2 0SZ, United Kingdom
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia.
| |
Collapse
|
12
|
Gan Y, Xie H, Qin G, Wu D, Shan M, Hu T, Yin Z, An Q, Ma R, Wang S, Zhang Q, Zhu G, Zhang J. Association between Cognitive Impairment and Freezing of Gait in Patients with Parkinson's Disease. J Clin Med 2023; 12:2799. [PMID: 37109137 PMCID: PMC10145607 DOI: 10.3390/jcm12082799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Background: Freezing of gait (FOG) is a common disabling symptom in Parkinson's disease (PD). Cognitive impairment may contribute to FOG. Nevertheless, their correlations remain controversial. We aimed to investigate cognitive differences between PD patients with and without FOG (nFOG), explore correlations between FOG severity and cognitive performance and assess cognitive heterogeneity within the FOG patients. Methods: Seventy-four PD patients (41 FOG, 33 nFOG) and 32 healthy controls (HCs) were included. Comprehensive neuropsychological assessments testing cognitive domains of global cognition, executive function/attention, working memory, and visuospatial function were performed. Cognitive performance was compared between groups using independent t-test and ANCOVA adjusting for age, sex, education, disease duration and motor symptoms. The k-means cluster analysis was used to explore cognitive heterogeneity within the FOG group. Correlation between FOG severity and cognition were analyzed using partial correlations. Results: FOG patients showed significantly poorer performance in global cognition (MoCA, p < 0.001), frontal lobe function (FAB, p = 0.015), attention and working memory (SDMT, p < 0.001) and executive function (SIE, p = 0.038) than nFOG patients. The FOG group was divided into two clusters using the cluster analysis, of which cluster 1 exhibited worse cognition, and with older age, lower improvement rate, higher FOGQ3 score, and higher proportion of levodopa-unresponsive FOG than cluster 2. Further, in the FOG group, cognition was significantly correlated with FOG severity in MoCA (r = -0.382, p = 0.021), Stroop-C (r = 0.362, p = 0.030) and SIE (r = 0.369, p = 0.027). Conclusions: This study demonstrated that the cognitive impairments of FOG were mainly reflected by global cognition, frontal lobe function, executive function, attention and working memory. There may be heterogeneity in the cognitive impairment of FOG patients. Additionally, executive function was significantly correlated with FOG severity.
Collapse
Affiliation(s)
- Yifei Gan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Guofan Qin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Delong Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ming Shan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Tianqi Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Quan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
| |
Collapse
|
13
|
Feldmann LK, Lofredi R, Al-Fatly B, Busch JL, Mathiopoulou V, Roediger J, Krause P, Schneider GH, Faust K, Horn A, Kühn AA, Neumann WJ. Christmas-Related Reduction in Beta Activity in Parkinson's Disease. Mov Disord 2023; 38:692-697. [PMID: 36718788 DOI: 10.1002/mds.29334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Subthalamic nucleus (STN) beta (13 - 35 Hz) activity is a biomarker reflecting motor state in Parkinson's disease (PD). Adaptive deep brain stimulation (DBS) aims to use beta activity for therapeutic adjustments, but many aspects of beta activity in real-life situations are unknown. OBJECTIVE The aim was to investigate Christmas-related influences on beta activity in PD. METHODS Differences in Christmas Day to nonfestive daily averages in chronic biomarker recordings in 4 PD patients with a sensing-enabled STN DBS implant were retrospectively analyzed. Sweet-spot and whole-brain network connectomic analyses were performed. RESULTS Beta activity was significantly reduced on Christmas Eve in all patients (4.00-9.00 p.m.: -12.30 ± 10.78%, P = 0.015). A sweet spot in the dorsolateral STN connected recording sites to motor, premotor, and supplementary motor cortices. CONCLUSIONS We demonstrate that festive events can reduce beta biomarker activity. We conclude that circadian and holiday-related changes should be considered when tailoring adaptive DBS algorithms to patient demands. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lucia K Feldmann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Roxanne Lofredi
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Bassam Al-Fatly
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes L Busch
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Varvara Mathiopoulou
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Roediger
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Krause
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Horn
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Charité University Medicine, Berlin, Germany.,NeuroCure Clinical Research Centre, Charité University Medicine, Berlin, Germany.,DZNE, German Center for Degenerative Diseases, Berlin, Germany
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Chang HY, Li YY, Hong CT, Kuan YC. Efficacy of rasagiline monotherapy for early Parkinson disease: A systematic review and meta-analysis of randomized controlled trials. J Psychopharmacol 2022; 36:704-714. [PMID: 35546511 DOI: 10.1177/02698811221093795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Rasagiline monotherapy is approved in early Parkinson's disease (PD) for motor benefit. However, the efficacy and optimal rasagiline dosage in improving Unified Parkinson's Disease Rating Scale (UPDRS) subscale scores between Japanese and Caucasian individuals remain uncertain. AIMS To investigate the efficacy of rasagiline monotherapy and evaluate differences between early PD patients in Eastern and Western countries. METHODS The study design involved the meta-analysis of randomized controlled trials identified using electronic databases. RESULTS The mean difference (MD) in total UPDRS scores indicated no significant difference between the 1 and 2 mg rasagiline (MD = -0.00, 95% confidence interval (CI) = -0.82 to 0.81). Compared with the placebo, the MD of UPDRS part I scores significantly improved in the 1 mg (MD = -0.33, 95% CI = -0.57 to -0.10) but not in the 2 mg. For UPDRS part II scores, the MD significantly improved in the 1 mg (MD = -0.87, 95% CI = -1.48 to -0.27) and 2 mg (MD = -0.98, 95% CI = -1.28 to -0.68). Regarding the UPDRS part III, the MD significantly improved in both (1 mg: MD = -2.41, 95% CI = -3.26 to -1.56; 2 mg: MD = -2.05, 95% CI = -2.64 to -1.46). The most commonly reported adverse events were headaches, back pain, and dizziness, with no statistical difference between the 1 mg rasagiline and placebo groups. Subgroup analysis revealed similar effects between Asian and Western participants. CONCLUSION Rasagiline monotherapy at 1 mg per day is recommended for patients with early PD because of the benefits for motor, nonmotor functions, and safety.
Collapse
Affiliation(s)
- Hao-Yun Chang
- School of Medicine, Taipei Medical University, Taipei
| | - Ying-Yu Li
- School of Medicine, Taipei Medical University, Taipei
| | - Chien-Tai Hong
- Taipei Neuroscience Institute, Taipei Medical University, Taipei.,Department of Neurology, Taipei Medical University-Shuang Ho Hospital, New Taipei City.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei
| | - Yi-Chun Kuan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei.,Department of Neurology, Taipei Medical University-Shuang Ho Hospital, New Taipei City.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei.,Cochrane Taiwan, Taipei Medical University, Taipei.,Center for Evidence-Based Health Care, Taipei Medical University-Shuang Ho Hospital, New Taipei City
| |
Collapse
|
15
|
Cools R, Tichelaar JG, Helmich RCG, Bloem BR, Esselink RAJ, Smulders K, Timmer MHM. Role of dopamine and clinical heterogeneity in cognitive dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:309-343. [PMID: 35248200 DOI: 10.1016/bs.pbr.2022.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is commonly treated with dopaminergic medication, which enhances some, while impairing other cognitive functions. It can even contribute to impulse control disorder and addiction. We describe the history of research supporting the dopamine overdose hypothesis, which accounts for the large within-patient variability in dopaminergic medication effects across different tasks by referring to the spatially non-uniform pattern of dopamine depletion in dorsal versus ventral striatum. However, there is tremendous variability in dopaminergic medication effects not just within patients across distinct tasks, but also across different patients. In the second part of this chapter we review recent studies addressing the large individual variability in the negative side effects of dopaminergic medication on functions that implicate dopamine, such as value-based learning and choice. These studies begin to unravel the mechanisms of dopamine overdosing, thus revising the strict version of the overdose hypothesis. For example, the work shows that the canonical boosting of reward-versus punishment-based choice by medication is greater in patients with depression and a non-tremor phenotype, which both implicate, among other pathology, more rather than less severe dysregulation of the mesolimbic dopamine system. Future longitudinal cohort studies are needed to identify how to optimally combine different clinical, personality, cognitive, neural, genetic and molecular predictors of detrimental medication effects in order to account for as much of the relevant variability as possible. This will provide a useful tool for precision neurology, allowing individual and contextual tailoring of (the dose of) dopaminergic medication in order to maximize its cognitive benefits, yet minimize its side effects.
Collapse
Affiliation(s)
- Roshan Cools
- Radboud university medical center, Department of Psychiatry, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Jorryt G Tichelaar
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Rick C G Helmich
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Rianne A J Esselink
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Katrijn Smulders
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Monique H M Timmer
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Abstract
Cognitive impairment affects up to 80% of patients with Parkinson's disease (PD) and is associated with poor quality of life. PD cognitive dysfunction includes poor working memory, impairments in executive function and difficulty in set-shifting. The pathophysiology underlying cognitive impairment in PD is still poorly understood, but there is evidence to support involvements of the cholinergic, dopaminergic, and noradrenergic systems. Only rivastigmine, an acetyl- and butyrylcholinesterase inhibitor, is efficacious for the treatment of PD dementia, which limits management of cognitive impairment in PD. Whereas the role of the serotonergic system in PD cognition is less understood, through its interactions with other neurotransmitters systems, namely, the cholinergic system, it may be implicated in cognitive processes. In this chapter, we provide an overview of the pharmacological, clinical and pathological evidence that implicates the serotonergic system in mediating cognition in PD.
Collapse
|
17
|
Montaser-Kouhsari L, Young CB, Poston KL. Neuroimaging approaches to cognition in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:257-286. [PMID: 35248197 DOI: 10.1016/bs.pbr.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While direct visualization of Lewy body accumulation within the brain is not yet possible in living Parkinson's disease patients, brain imaging studies offer insights into how the buildup of Lewy body pathology impacts different regions of the brain. Unlike biological biomarkers and purely behavioral research, these brain imaging studies therefore offer a unique opportunity to relate brain localization to cognitive function and dysfunction in living patients. Magnetic resonance imaging studies can reveal physical changes in brain structure as they relate to different cognitive domains and task specific impairments. Functional imaging studies use a combination of task and resting state magnetic resonance imaging, as well as positron emission tomography and single photon emission computed tomography, and can be used to determine changes in blood flow, neuronal activation and neurochemical changes in the brain associated with PD cognition and cognitive impairments. Other unique advantages to brain imaging studies are the ability to monitor changes in brain structure and function longitudinally as patients progress and the ability to study changes in brain function when patients are exposed to different pharmacological manipulations. This is particularly true when assessing the effects of dopaminergic replacement therapy on cognitive function in Parkinson's disease patients. Together, this chapter will describe imaging studies that have helped identify structural and functional brain changes associated with cognition, cognitive impairment, and dementia in Parkinson's disease.
Collapse
Affiliation(s)
- Leila Montaser-Kouhsari
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Christina B Young
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States; Department of Neurosurgery, Stanford University, Stanford, CA, United States.
| |
Collapse
|
18
|
Gender based assessment of gait rhythms during dual-task in Parkinson’s disease and its early detection. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Schneider JS, Kortagere S. Current concepts in treating mild cognitive impairment in Parkinson's disease. Neuropharmacology 2022; 203:108880. [PMID: 34774549 DOI: 10.1016/j.neuropharm.2021.108880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Impairment in various aspects of cognition is recognized as an important non-motor symptom of Parkinson's disease (PD). Mild cognitive impairment in PD (PD-MCI) is common in non-demented PD patients and is often associated with severity of motor symptoms, disease duration and increasing age. Further, PD-MCI can have a significant negative effect on performance of daily life activities and may be a harbinger of development of PD dementia. Thus, there is significant interest in developing therapeutic strategies to ameliorate cognitive deficits in PD and improve cognitive functioning of PD patients. However, due to significant questions that remain regarding the pathophysiology of cognitive dysfunction in PD, remediation of cognitive dysfunction in PD has proven difficult. In this paper, we will focus on PD-MCI and will review some of the current therapeutic approaches being taken to try to improve cognitive functioning in patients with PD-MCI.
Collapse
Affiliation(s)
- Jay S Schneider
- Dept. of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
20
|
Parkinson's disease: Alterations of motor plasticity and motor learning. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:135-151. [PMID: 35034730 DOI: 10.1016/b978-0-12-819410-2.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This chapter reviews the alterations in motor learning and motor cortical plasticity in Parkinson's disease (PD), the most common movement disorder. Impairments in motor learning, which is a hallmark of basal ganglia disorders, influence the performance of motor learning-related behavioral tasks and have clinical implications for the management of disturbance in gait and posture, and for rehabilitative management of PD. Although plasticity is classically induced and assessed in sliced preparation in animal models, in this review we have concentrated on the results from non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS), transcranial alternating current stimulation (tACS) and transcranial direct current stimulation (tDCS) in patients with PD, in addition to a few animal electrophysiologic studies. The chapter summarizes the results from different cortical and subcortical plasticity investigations. Plasticity induction protocols reveal deficient plasticity in PD and these plasticity measures are modulated by medications and deep brain stimulation. There is considerable variability in these measures that are related to inter-individual variations, different disease characteristics and methodological considerations. Nevertheless, these pathophysiologic studies expand our knowledge of cortical excitability, plasticity and the effects of different treatments in PD. These tools of modulating plasticity and motor learning improve our understanding of PD pathophysiology and help to develop new treatments for this disabling condition.
Collapse
|
21
|
Kamble N, Bhattacharya A, Hegde S, Vidya N, Gothwal M, Yadav R, Pal PK. Cortical excitability changes as a marker of cognitive impairment in Parkinson's disease. Behav Brain Res 2022; 422:113733. [PMID: 34998797 DOI: 10.1016/j.bbr.2022.113733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022]
Abstract
Cognitive impairment of different severity with eventual progression to dementia in Parkinson's disease (PD) appears during the course of the disease. In this study, transcranial magnetic stimulation (TMS) was used to assess cortical excitability changes in PD patients with varying cognitive impairment. We aimed to identify the TMS parameters that could serve as a non-invasive marker of cognitive impairment in patients with PD. Consecutive PD patients were recruited in the study. Detailed neuropsychological assessment was carried out to identify PD without cognitive impairment (PD-nC), PD with mild cognitive impairment (PD-MCI) and PD with dementia (PDD). Twenty patients of PDD (2 females and 18 males), 20 PD-MCI (4 females and 16 males), 18 PD-nC (5 females, 13 males) and 18 healthy controls (4 females, and 14 males) were included in the study. All the participants underwent TMS with recording of resting motor threshold, central motor conduction time, silent period, short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). All the groups were age matched. The SICI was present in all; however, significantly greater inhibition was noted in PDD (Mean±SD; 0.11±0.08) followed by PD-MCI (0.31±0.17), PD-nC (0.49±0.26) and controls (0.61±0.23; p<0.001). The ICF was significantly reduced in PDD (Mean±SD; 0.15±0.18), PD-MCI (0.55±0.31), PD-nC (0.96±0.59), when compared to healthy controls (1.81±0.83; p<0.001). Patients with PD-nC, PD-MCI and PDD had graded reduction in ICF and increasing intracortical inhibition as the disease progressed from PD-nC through PD-MCI to PDD. This suggests progressive overactivity of GABAergic transmission, glutaminergic deficiency with consequent reduction of cholinergic transmission leading to dementia.
Collapse
Affiliation(s)
- Nitish Kamble
- Departments of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Amitabh Bhattacharya
- Departments of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Shantala Hegde
- Clinical Psychology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - N Vidya
- Clinical Psychology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Mohit Gothwal
- Clinical Psychology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Ravi Yadav
- Departments of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Pramod Kumar Pal
- Departments of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India.
| |
Collapse
|
22
|
O’Callaghan C, Hezemans FH, Ye R, Rua C, Jones PS, Murley AG, Holland N, Regenthal R, Tsvetanov KA, Wolpe N, Barker RA, Williams-Gray CH, Robbins TW, Passamonti L, Rowe JB. Locus coeruleus integrity and the effect of atomoxetine on response inhibition in Parkinson's disease. Brain 2021; 144:2513-2526. [PMID: 33783470 PMCID: PMC7611672 DOI: 10.1093/brain/awab142] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
Cognitive decline is a common feature of Parkinson's disease, and many of these cognitive deficits fail to respond to dopaminergic therapy. Therefore, targeting other neuromodulatory systems represents an important therapeutic strategy. Among these, the locus coeruleus-noradrenaline system has been extensively implicated in response inhibition deficits. Restoring noradrenaline levels using the noradrenergic reuptake inhibitor atomoxetine can improve response inhibition in some patients with Parkinson's disease, but there is considerable heterogeneity in treatment response. Accurately predicting the patients who would benefit from therapies targeting this neurotransmitter system remains a critical goal, in order to design the necessary clinical trials with stratified patient selection to establish the therapeutic potential of atomoxetine. Here, we test the hypothesis that integrity of the noradrenergic locus coeruleus explains the variation in improvement of response inhibition following atomoxetine. In a double-blind placebo-controlled randomized crossover design, 19 patients with Parkinson's disease completed an acute psychopharmacological challenge with 40 mg of oral atomoxetine or placebo. A stop-signal task was used to measure response inhibition, with stop-signal reaction times obtained through hierarchical Bayesian estimation of an ex-Gaussian race model. Twenty-six control subjects completed the same task without undergoing the drug manipulation. In a separate session, patients and controls underwent ultra-high field 7 T imaging of the locus coeruleus using a neuromelanin-sensitive magnetization transfer sequence. The principal result was that atomoxetine improved stop-signal reaction times in those patients with lower locus coeruleus integrity. This was in the context of a general impairment in response inhibition, as patients on placebo had longer stop-signal reaction times compared to controls. We also found that the caudal portion of the locus coeruleus showed the largest neuromelanin signal decrease in the patients compared to controls. Our results highlight a link between the integrity of the noradrenergic locus coeruleus and response inhibition in patients with Parkinson's disease. Furthermore, they demonstrate the importance of baseline noradrenergic state in determining the response to atomoxetine. We suggest that locus coeruleus neuromelanin imaging offers a marker of noradrenergic capacity that could be used to stratify patients in trials of noradrenergic therapy and to ultimately inform personalized treatment approaches.
Collapse
Affiliation(s)
- Claire O’Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Frank H Hezemans
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Rong Ye
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Catarina Rua
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge 04107, UK
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Alexander G Murley
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig 69978, Germany
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Noham Wolpe
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Physical Therapy, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Wellcome Trust—Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Caroline H Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge CB2 3EA, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EA, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK
| |
Collapse
|
23
|
Luis-Martínez R, Di Marco R, Weis L, Cianci V, Pistonesi F, Baba A, Carecchio M, Biundo R, Tedesco C, Masiero S, Antonini A. Impact of social and mobility restrictions in Parkinson's disease during COVID-19 lockdown. BMC Neurol 2021; 21:332. [PMID: 34461838 PMCID: PMC8404403 DOI: 10.1186/s12883-021-02364-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 08/18/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The consequences of strict COVID-19 mobility restrictions on motor/non-motor features in Parkinson's disease (PD) have not been systematically studied but worse mobility and quality of life have been reported. To elucidate this question, 12 mild to moderate PD patients were assessed in March 2020 before and after two months of isolation as part of a clinical study that had to be interrupted due to the pandemic and the implementation of COVID19 mobility restrictions. METHODS Twelve patients were systematically evaluated before and after the lockdown period as part of a larger cohort that previously underwent thermal water rehabilitation. Clinical outcomes were the Body Mass index, the Mini-Balance Evaluation Systems Test, the MDS-Unified Parkinson's Disease Rating Scale part III, the 6 Minute Walking Test and the New Freezing of Gait Questionnaire. Global cognition was evaluated with the Montreal Cognitive Assessment scale. The impact of COVID-19 restrictions on quality of life and functional independence was evaluated with The Parkinson's disease Quality of life (PDQ-39), the Activities of Daily Living (ADL) and Instrumental Activities of Daily Living questionnaires (IADL) and the Parkinson's disease cognitive functional rating scales (PD-CFRS). RESULTS After two months of isolation the Mini-BESTest score worsened (p=0.005), and four patients reported one or more falls during the lockdown. BMI increased (p=0.031) while the remaining clinical variables including quality of life did not change. CONCLUSION We observed moderate worsening at Mini-BESTest, greater risk of falls and increased body weight as consequence of prolonged immobility. We believe negative effects were partially softened since patients were in contact with our multidisciplinary team during the lockdown and had previously received training to respond to the needs of this emergency isolation. These findings highligh the importnace of patient-centered interventions in PD management.
Collapse
Affiliation(s)
- Raquel Luis-Martínez
- Department of Neurosciences, University of the Basque Country, (UPV/EHU), Leioa, Spain
- Parkinson and Movement Disorders Unit, Department of Neurosciences, University of Padova, Via Giustiniani 5, 35138, Padua, Italy
| | - Roberto Di Marco
- Parkinson and Movement Disorders Unit, Department of Neurosciences, University of Padova, Via Giustiniani 5, 35138, Padua, Italy
| | - Luca Weis
- Parkinson and Movement Disorders Unit, Department of Neurosciences, University of Padova, Via Giustiniani 5, 35138, Padua, Italy
| | - Valeria Cianci
- Parkinson and Movement Disorders Unit, Department of Neurosciences, University of Padova, Via Giustiniani 5, 35138, Padua, Italy
| | - Francesca Pistonesi
- Parkinson and Movement Disorders Unit, Department of Neurosciences, University of Padova, Via Giustiniani 5, 35138, Padua, Italy
| | - Alfonc Baba
- Rehabilitation Unit, Azienda Ospedaliera Universitaria di Padova, Padova, Italy
| | - Miryam Carecchio
- Parkinson and Movement Disorders Unit, Department of Neurosciences, University of Padova, Via Giustiniani 5, 35138, Padua, Italy
| | - Roberta Biundo
- Department of General Psychology, University of Padova, Padova, Italy
| | - Chiara Tedesco
- Parkinson and Movement Disorders Unit, Department of Neurosciences, University of Padova, Via Giustiniani 5, 35138, Padua, Italy
| | - Stefano Masiero
- Physical Medicine and Rehabilitation School, University of Padova, Padova, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neurosciences, University of Padova, Via Giustiniani 5, 35138, Padua, Italy.
| |
Collapse
|
24
|
Ruitenberg MFL, van Wouwe NC, Wylie SA, Abrahamse EL. The role of dopamine in action control: Insights from medication effects in Parkinson's disease. Neurosci Biobehav Rev 2021; 127:158-170. [PMID: 33905788 DOI: 10.1016/j.neubiorev.2021.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/26/2021] [Accepted: 04/18/2021] [Indexed: 01/14/2023]
Abstract
Parkinson's disease (PD) is a neurological disorder associated primarily with overt motor symptoms. Several studies show that PD is additionally accompanied by impairments in covert cognitive processes underlying goal-directed motor functioning (e.g., action planning, conflict adaptation, inhibition), and that dopaminergic medication may modulate these action control components. In this review we aim to leverage findings from studies in this domain to elucidate the role of dopamine (DA) in action control. A qualitative review of studies that investigated the effects of medication status (on vs. off) on action control in PD suggests a component-specific role for DA in action control, although the expression of medication effects depends on characteristics of both the patients and experimental tasks used to measure action control. We discuss these results in the light of findings from other research lines examining the role of DA in action control (e.g., animal research, pharmacology), and recommend that future studies use multi-method, within-subject approaches to model DA effects on action control across different components as well as underlying striatal pathways (ventral vs. dorsal).
Collapse
Affiliation(s)
- M F L Ruitenberg
- Department of Health, Medical and Neuropsychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Department of Experimental Psychology, Ghent University, Ghent, Belgium.
| | - N C van Wouwe
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - S A Wylie
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - E L Abrahamse
- Department of Communication and Cognition, Tilburg University, Tilburg, the Netherlands
| |
Collapse
|
25
|
Hirano S. Clinical implications for dopaminergic and functional neuroimage research in cognitive symptoms of Parkinson's disease. Mol Med 2021; 27:40. [PMID: 33858320 PMCID: PMC8048076 DOI: 10.1186/s10020-021-00301-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Evidence from dopaminergic image and cerebral blood flow/metabolism images have shed light on symptomatology of cognitive aspects in brain physiology of healthy human as well as patients with Parkinson's disease. Cognitive impairment in Parkinson's disease is characterized by executive, visuospatial, attentional disturbances. Dopaminergic system includes triadic parallel pathways. The mesostriatal pathway consist of posterolateral putamen and motor areas, the mesocortical pathway of dorsal caudate nucleus and dorsolateral prefrontal cortex, and the mesolimbic pathway of ventral striatum, anterior cingulate cortex. The mesocortical pathway is responsible for the executive function which may change by administration of dopaminergic medication. The mesolimbic pathway is associated with motivation and reward prediction which may result in depression or apathy when dopamine level was suboptimal, impulse control disorder and punding when dopamine was over the optimal level. Abnormal brain metabolism/perfusion related to cognitive impairment in Parkinson's disease are relatively reduced activity located in frontal and parietal association areas and relatively increased activity in the cerebellum. In the anterior brain, the mesocortical pathway, is responsible for verbal memory and executive function, which originates with caudate dopaminergic system and account for mild cognitive impairment of Parkinson's disease. The posterior brain system which includes the parietal, temporal, and occipital cortices, is responsible for the memory and visuospatial function, and related to cholinergic dysfunction and possibly glucocerebrosidase gene variants, relating to dementia in Parkinson's disease. The role of cerebellum in Parkinson's disease remains unclear but emerging evidence suggests that it may relate to the sequencing detection and affective symptoms. The dual syndrome hypothesis is helpful for understanding the mechanism of cognitive impairment in Parkinson's disease and optimal symptom management.
Collapse
Affiliation(s)
- Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
26
|
Crispino P, Gino M, Barbagelata E, Ciarambino T, Politi C, Ambrosino I, Ragusa R, Marranzano M, Biondi A, Vacante M. Gender Differences and Quality of Life in Parkinson's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:E198. [PMID: 33383855 PMCID: PMC7795924 DOI: 10.3390/ijerph18010198] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022]
Abstract
Parkinson's disease has been found to significantly affect health-related quality of life. The gender differences of the health-related quality of life of subjects with Parkinson's disease have been observed in a number of studies. These differences have been reported in terms of the age at onset, clinical manifestations, and response to therapy. In general, women with Parkinson's disease showed more positive disease outcomes with regard to emotion processing, non-motor symptoms, and cognitive functions, although women report more Parkinson's disease-related clinical manifestations. Female gender predicted poor physical functioning and socioemotional health-related quality of life, while male gender predicted the cognitive domain of health-related quality of life. Some studies reported gender differences in the association between health-related quality of life and non-motor symptoms. Depression and fatigue were the main causes of poorer health-related quality of life in women, even in the early stages of Parkinson's disease. The aim of this review was to collect the best available evidence on gender differences in the development of Parkinson's disease symptoms and health-related quality of life.
Collapse
Affiliation(s)
- Pietro Crispino
- Internal Medicine Department, Lagonegro Hospital, 85042 Lagonegro (PZ), Italy;
| | - Miriam Gino
- Department of Internal Medicine, Rivoli Hospital, 10098 Rivoli (TO), Italy;
| | - Elena Barbagelata
- Department of Internal Medicine, ASL 4 Chiavarese, Sestri Levante Hospital, 16039 Sestri Levante (GE), Italy;
| | - Tiziana Ciarambino
- Department of Medical, Surgical, Neurological, Metabolic and Geriatrics Sciences, Marcianise Hospital, ASL Caserta, University of Campania “L. Vanvitelli”, 81025 Naples, Italy;
| | - Cecilia Politi
- Department of Internal Medicine, Veneziale Hospital, 86170 Isernia, Italy;
| | | | - Rosalia Ragusa
- Health Technology Assessment Committee, University Hospital G. Rodolico, 95123 Catania, Italy;
| | - Marina Marranzano
- Department of Medical, Surgical and Advanced Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Biondi
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy;
| | - Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
27
|
Brandão PRP, Munhoz RP, Grippe TC, Cardoso FEC, de Almeida E Castro BM, Titze-de-Almeida R, Tomaz C, Tavares MCH. Cognitive impairment in Parkinson's disease: A clinical and pathophysiological overview. J Neurol Sci 2020; 419:117177. [PMID: 33068906 DOI: 10.1016/j.jns.2020.117177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/16/2020] [Accepted: 10/08/2020] [Indexed: 11/29/2022]
Abstract
Cognitive dysfunction in Parkinson's disease (PD) has received increasing attention, and, together with other non-motor symptoms, exert a significant functional impact in the daily lives of patients. This article aims to compile and briefly summarize selected published data about clinical features, cognitive evaluation, biomarkers, and pathophysiology of PD-related dementia (PDD). The literature search included articles indexed in the MEDLINE/PubMed database, published in English, over the last two decades. Despite significant progress on clinical criteria and cohort studies for PD-mild cognitive impairment (PD-MCI) and PDD, there are still knowledge gaps about its exact molecular and pathological basis. Here we overview the scientific literature on the role of functional circuits, neurotransmitter systems (monoaminergic and cholinergic), basal forebrain, and brainstem nuclei dysfunction in PD-MCI. Correlations between neuroimaging and cerebrospinal fluid (CSF) biomarkers, clinical outcomes, and pathological results are described to aid in uncovering the neurodegeneration pattern in PD-MCI and PDD.
Collapse
Affiliation(s)
- Pedro Renato P Brandão
- Laboratory of Neuroscience and Behavior, Institute of Biological Sciences, Universidade de Brasília (UnB); Neurology Section, Medical Department, Chamber of Deputies of the Federal Republic of Brazil, Brasília, DF, Brazil.
| | - Renato Puppi Munhoz
- Toronto Western Hospital, Movement Disorders Centre, Toronto Western Hospital - UHN, Division of Neurology, University of Toronto, Toronto, Canada.
| | - Talyta Cortez Grippe
- Laboratory of Neuroscience and Behavior, Institute of Biological Sciences, Universidade de Brasília (UnB); Movement Disorders Group, Neurology Unit, Hospital de Base do Distrito Federal; School of Medicine, Centro Universitário de Brasília (UniCEUB), Brasília, DF, Brazil
| | - Francisco Eduardo Costa Cardoso
- Movement Disorders Unit, Internal Medicine Department, Neurology Service, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília/FAV, Brasília, DF, Brazil
| | - Carlos Tomaz
- Laboratory of Neuroscience and Behavior and Graduate Program in Environment, CEUMA University - UniCEUMA, São Luís, MA, Brazil.
| | | |
Collapse
|
28
|
Mueller K, Urgošík D, Ballarini T, Holiga Š, Möller HE, Růžička F, Roth J, Vymazal J, Schroeter ML, Růžička E, Jech R. Differential effects of deep brain stimulation and levodopa on brain activity in Parkinson's disease. Brain Commun 2020; 2:fcaa005. [PMID: 32954278 PMCID: PMC7425344 DOI: 10.1093/braincomms/fcaa005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/21/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Levodopa is the first-line treatment for Parkinson’s disease, although the precise mechanisms mediating its efficacy remain elusive. We aimed to elucidate treatment effects of levodopa on brain activity during the execution of fine movements and to compare them with deep brain stimulation of the subthalamic nuclei. We studied 32 patients with Parkinson’s disease using functional MRI during the execution of finger-tapping task, alternating epochs of movement and rest. The task was performed after withdrawal and administration of a single levodopa dose. A subgroup of patients (n = 18) repeated the experiment after electrode implantation with stimulator on and off. Investigating levodopa treatment, we found a significant interaction between both factors of treatment state (off, on) and experimental task (finger tapping, rest) in bilateral putamen, but not in other motor regions. Specifically, during the off state of levodopa medication, activity in the putamen at rest was higher than during tapping. This represents an aberrant activity pattern probably indicating the derangement of basal ganglia network activity due to the lack of dopaminergic input. Levodopa medication reverted this pattern, so that putaminal activity during finger tapping was higher than during rest, as previously described in healthy controls. Within-group comparison with deep brain stimulation underlines the specificity of our findings with levodopa treatment. Indeed, a significant interaction was observed between treatment approach (levodopa, deep brain stimulation) and treatment state (off, on) in bilateral putamen. Our functional MRI study compared for the first time the differential effects of levodopa treatment and deep brain stimulation on brain motor activity. We showed modulatory effects of levodopa on brain activity of the putamen during finger movement execution, which were not observed with deep brain stimulation.
Collapse
Affiliation(s)
- Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Dušan Urgošík
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Tommaso Ballarini
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Štefan Holiga
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Filip Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Josef Vymazal
- Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Evžen Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| |
Collapse
|
29
|
Conner MR, Jang D, Anderson BJ, Kritzer MF. Biological Sex and Sex Hormone Impacts on Deficits in Episodic-Like Memory in a Rat Model of Early, Pre-motor Stages of Parkinson's Disease. Front Neurol 2020; 11:942. [PMID: 33041964 PMCID: PMC7527538 DOI: 10.3389/fneur.2020.00942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/21/2020] [Indexed: 01/30/2023] Open
Abstract
Episodic memory deficits are among the earliest appearing and most commonly occurring examples of cognitive impairment in Parkinson's disease (PD). These enduring features can also predict a clinical course of rapid motor decline, significant cognitive deterioration, and the development of PD-related dementia. The lack of effective means to treat these deficits underscores the need to better understand their neurobiological bases. The prominent sex differences that characterize episodic memory in health, aging and in schizophrenia and Alzheimer's disease suggest that neuroendocrine factors may also influence episodic memory dysfunction in PD. However, while sex differences have been well-documented for many facets of PD, sex differences in, and sex hormone influences on associated episodic memory impairments have been less extensively studied and have never been examined in preclinical PD models. Accordingly, we paired bilateral neostriatal 6-hydroxydopamine (6-OHDA) lesions with behavioral testing using the What-Where-When Episodic-Like Memory (ELM) Task in adult rats to first determine whether episodic-like memory is impaired in this model. We further compared outcomes in gonadally intact female and male subjects, and in male rats that had undergone gonadectomy—with and without hormone replacement, to determine whether biological sex and/or sex hormones influenced the expression of dopamine lesioned-induced memory deficits. These studies showed that 6-OHDA lesions profoundly impaired recall for all memory domains in male and female rats. They also showed that in males, circulating gonadal hormones powerfully modulated the negative impacts of 6-OHDA lesions on What, Where, and When discriminations in domain-specific ways. Specifically, the absence of androgens was shown to fully attenuate 6-OHDA lesion-induced deficits in ELM for “Where” and to partially protect against lesion-induced deficits in ELM for “What.” In sum, these findings show that 6-OHDA lesions in rats recapitulate the vulnerability of episodic memory seen in early PD. Together with similar evidence recently obtained for spatial working memory, the present findings also showed that diminished androgen levels provide powerful, highly selective protections against the harmful effects that 6-OHDA lesions have on memory functions in male rats.
Collapse
Affiliation(s)
- Meagan R Conner
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, United States.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Doyeon Jang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Brenda J Anderson
- Department of Psychology, Stony Brook University, Stony Brook, NY, United States
| | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
30
|
Dopamine agonist treatment increases sensitivity to gamble outcomes in the hippocampus in de novo Parkinson's disease. NEUROIMAGE-CLINICAL 2020; 28:102362. [PMID: 32798910 PMCID: PMC7453137 DOI: 10.1016/j.nicl.2020.102362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Parkinson's disease is associated with severe nigro-striatal dopamine depletion, leading to motor dysfunction and altered reward processing. We previously showed that drug-naïve patients with Parkinson's disease had a consistent attenuation of reward signalling in the mesolimbic and mesocortical system. Here, we address the neurobiological effects of dopaminergic therapy on reward sensitivity in the mesolimbic circuitry, and how this may contribute to neuropsychiatric symptoms. OBJECTIVES We tested the hypothesis that (1) dopaminergic treatment would restore the attenuated, mesolimbic and mesocortical responses to reward; and (2) restoration of reward responsivity by dopaminergic treatment would predict motor performance and the emergence of impulse control symptoms. METHODS In 11 drug-naïve Parkinson patients, we prospectively assessed treatment-induced changes in reward processing before, and eight weeks after initiation of monotherapy with dopamine agonists. They were compared to 10 non-medicated healthy controls who were also measured longitudinally. We used whole-brain functional magnetic resonance imaging at 3 Tesla to assess the reward responsivity of the brain to monetary gains and losses, while participants performed a simple consequential gambling task. RESULTS In patients, dopaminergic treatment improved clinical motor symptoms without significantly changing task performance. Dopamine agonist therapy induced a stronger reward responsivity in the right hippocampus with higher doses being less effective. None of the patients developed impulse control disorders in the follow-up period of four years. CONCLUSIONS Short-term treatment with first-ever dopaminergic medication partially restores deficient reward-related processing in the hippocampus in de novo Parkinson's disease.
Collapse
|
31
|
Nataraj R, Hollinger D, Liu M, Shah A. Disproportionate positive feedback facilitates sense of agency and performance for a reaching movement task with a virtual hand. PLoS One 2020; 15:e0233175. [PMID: 32433665 PMCID: PMC7239468 DOI: 10.1371/journal.pone.0233175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/29/2020] [Indexed: 01/13/2023] Open
Abstract
This study investigated the generalized effects of positive feedback (PF) versus negative feedback (NF) during training on performance and sense of agency for a reach-to-touch task with a virtual hand. Virtual reality (VR) is increasingly employed for rehabilitation after neuromuscular traumas such as stroke and spinal cord injury. However, VR methods still need to be optimized for greater effectiveness and engagement to increase rates of clinical retention. In this study, we observed that training with disproportionate PF subsequently produced greater reaching performance (minimizing path length) and greater agency (perception of control) than with disproportionate NF. During PF training, there was also progressive increase in agency, but conversely a decrease in performance. Thus, the increase in performance after training may not be due to positively bolstered learning, but rather priming higher confidence reflected in greater agency. Agency was positively measured as compression in perceived time-intervals between the action of touch to a sound consequence, as standard with intentional binding paradigms. Positive feedback desirably increased agency (~180 msec) and reduced path length (1.8 cm) compared to negative feedback, which itself showed insignificant, or neutral, effects. Future investigations into optimizing virtual reality paradigms for neuromotor rehabilitation should consider agency as a driving factor for performance. These studies may serve to optimize how feedback is better presented with performance results for complex motor learning. Investigators should also ponder how personal characteristics, both cognitive and physical, may further affect sensitivity to feedback and the rate of neuromotor rehabilitation.
Collapse
Affiliation(s)
- Raviraj Nataraj
- Movement Control Rehabilitation (MOCORE) Laboratory, Stevens Institute of Technology, Hoboken, NJ, United States of America
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States of America
| | - David Hollinger
- Movement Control Rehabilitation (MOCORE) Laboratory, Stevens Institute of Technology, Hoboken, NJ, United States of America
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States of America
| | - Mingxiao Liu
- Movement Control Rehabilitation (MOCORE) Laboratory, Stevens Institute of Technology, Hoboken, NJ, United States of America
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States of America
| | - Aniket Shah
- Movement Control Rehabilitation (MOCORE) Laboratory, Stevens Institute of Technology, Hoboken, NJ, United States of America
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States of America
| |
Collapse
|
32
|
Stevens A, Stanton R, Rebar AL. Helping People With Parkinson Disease Build Exercise Self-Efficacy. Phys Ther 2020; 100:205-208. [PMID: 31665447 DOI: 10.1093/ptj/pzz160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 08/14/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Amy Stevens
- School of Health, Medical, and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Robert Stanton
- School of Health, Medical, and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Amanda L Rebar
- School of Health, Medical, and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| |
Collapse
|
33
|
The effect of levodopa on saccades – Oxford Quantification in Parkinsonism study. Parkinsonism Relat Disord 2019; 68:49-56. [DOI: 10.1016/j.parkreldis.2019.09.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 11/18/2022]
|
34
|
Fiorenzato E, Biundo R, Cecchin D, Frigo AC, Kim J, Weis L, Strafella AP, Antonini A. Brain Amyloid Contribution to Cognitive Dysfunction in Early-Stage Parkinson's Disease: The PPMI Dataset. J Alzheimers Dis 2019; 66:229-237. [PMID: 30282359 DOI: 10.3233/jad-180390] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The pathological processes underlying cognitive impairment in Parkinson's disease (PD) are heterogeneous and the contribution of cerebral amyloid deposits is poorly defined, particularly in the early stages of the disease. OBJECTIVE To investigate regional [18F]florbetaben binding to amyloid-β (Aβ) and its contribution to cognitive dysfunction in early stage PD. METHODS A multicenter cohort of 48 PD patients from the Parkinson's Progression Marker Initiative (PPMI) underwent [18F]florbetaben positron emission tomography (PET) scanning. Clinical features, including demographic characteristics, motor severity, cerebrospinal fluid (CSF), and cognitive testing were systematically assessed according to the PPMI study protocol. For the purpose of this study, we analyzed various neuropsychological tests assessing all cognitive functions. RESULTS There were 10/48 (21%) amyloid positive PD patients (PDAβ+). Increased [18F]florbetaben uptake in widespread cortical and subcortical regions was associated with poorer performance on global cognition, as assessed by Montreal Cognitive Assessment (MoCA), and impaired performance on Symbol Digit Modality test (SDMT). Further, we found that PDAβ+ patients had higher CSF total-tau/Aβ1 - 42 (p = 0.001) and phosphorylated-tau/Aβ1 - 42 in (p = 0.002) compared to amyloid-negative PD. CONCLUSION These findings suggest that multiple disease processes are associated with PD cognitive impairment and amyloid deposits may be observed already in early stages. However, prevalence of amyloid positivity is in the range of literature age-matched control population. Increased cortical and subcortical amyloid is associated with poor performance in attentive-executive domains while cognitive deficits at MoCA and SDMT may identify amyloid-related dysfunction in early PD.
Collapse
Affiliation(s)
| | | | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine - DIMED, University Hospital of Padua, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Anna Chiara Frigo
- Biostatistics, Epidemiology and Public Health Unit, Department of Cardiac, Thoracic and Vascular Sciences, University Hospital of Padua, Padua, Italy
| | - Jinhee Kim
- Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, UHN, University of Toronto, Toronto, ON, Canada.,Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Luca Weis
- Fondazione Ospedale San Camillo IRCCS, Venezia, Italia
| | - Antonio P Strafella
- Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, UHN, University of Toronto, Toronto, ON, Canada.,Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada
| | - Angelo Antonini
- Department of Neurosciences, University of Padua, Padua, Italy
| |
Collapse
|
35
|
Borchert RJ, Rittman T, Rae CL, Passamonti L, Jones SP, Vatansever D, Vázquez Rodríguez P, Ye Z, Nombela C, Hughes LE, Robbins TW, Rowe JB. Atomoxetine and citalopram alter brain network organization in Parkinson's disease. Brain Commun 2019; 1:fcz013. [PMID: 31886460 PMCID: PMC6924537 DOI: 10.1093/braincomms/fcz013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/23/2019] [Accepted: 08/20/2019] [Indexed: 11/12/2022] Open
Abstract
Parkinson’s disease has multiple detrimental effects on motor and cognitive systems in the brain. In contrast to motor deficits, cognitive impairments in Parkinson’s disease are usually not ameliorated, and can even be worsened, by dopaminergic treatments. Recent evidence has shown potential benefits from restoring other neurotransmitter deficits, including noradrenergic and serotonergic transmission. Here, we study global and regional brain network organization using task-free imaging (also known as resting-state), which minimizes performance confounds and the bias towards predetermined networks. Thirty-three patients with idiopathic Parkinson’s disease were studied three times in a double-blinded, placebo-controlled counter-balanced crossover design, following placebo, 40 mg oral atomoxetine (selective noradrenaline reuptake inhibitor) or 30 mg oral citalopram (selective serotonin reuptake inhibitor). Neuropsychological assessments were performed outside the scanner. Seventy-six controls were scanned without medication to provide normative data for comparison to the patient cohort. Graph theoretical analysis of task-free brain connectivity, with a random 500-node parcellation, was used to measure the effect of disease in placebo-treated state (versus unmedicated controls) and pharmacological intervention (drug versus placebo). Relative to controls, patients on placebo had executive impairments (reduced fluency and inhibitory control), which was reflected in dysfunctional network dynamics in terms of reduced clustering coefficient, hub degree and hub centrality. In patients, atomoxetine improved fluency in proportion to plasma concentration (P = 0.006, r2 = 0.24), and improved response inhibition in proportion to increased hub Eigen centrality (P = 0.044, r2 = 0.14). Citalopram did not improve fluency or inhibitory control, but its influence on network integration and efficiency depended on disease severity: clustering (P = 0.01, r2 = 0.22), modularity (P = 0.043, r2 = 0.14) and path length (P = 0.006, r2 = 0.25) increased in patients with milder forms of Parkinson’s disease, but decreased in patients with more advanced disease (Unified Parkinson’s Disease Rating Scale motor subscale part III > 30). This study supports the use of task-free imaging of brain networks in translational pharmacology of neurodegenerative disorders. We propose that hub connectivity contributes to cognitive performance in Parkinson’s disease, and that noradrenergic treatment strategies can partially restore the neural systems supporting executive function.
Collapse
Affiliation(s)
- Robin J Borchert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Charlotte L Rae
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK.,School of Psychology, University of Sussex, Falmer, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Department of Biomedical Sciences, National Research Council, Institute of Bioimaging and Molecular Physiology, Segrate, Italy
| | - Simon P Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, PR China
| | | | - Zheng Ye
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Cristina Nombela
- Department of Biological and Health Psychology, Universidad Autónoma de Madrid, Madrid, Spain.,Neurosurgery Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Laura E Hughes
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Tang L, Xu W, Li Z, Chen Y, Chen H, Yu R, Zhu X, Gu D. Quantitative gait analysis for laser cue in Parkinson's disease patients with freezing of gait. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:324. [PMID: 31475194 DOI: 10.21037/atm.2019.05.87] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The aim of this study was to investigate the gait spatiotemporal, kinematic, and kinetic changes of Parkinson's disease (PD) patient with freezing of gait (FOG) under the laser cue (LC). Such an approach may provide greater insight into the effects of LC on gait. Methods Thirty-four PD with FOG (PD + FOG) and 32 healthy controls (HC) were tested in gait laboratory. Patients were tested at their usual self-selected speed in no laser cue (NC) first and then under LC condition. Sagittal plane kinematic and kinetic parameters of the lower-limb joints (hip, knee, and ankle joints) as well as spatiotemporal parameters (velocity, cadence, stride length, single and double support time), were measured. Spatiotemporal parameters and kinematic were submitted to one-way analysis of variance (ANOVA) to explore difference among NC, LC, and HC. Covariance analysis was used to compare kinetic parameters. Results For PD + FOG, spatiotemporal parameters (stride length, velocity, and cadence) were significantly improved in LC (1.06±0.18, 1.01±0.19, 120±13.26, respectively) compared with NC (0.93±0.20, 0.87±0.17, 131±14.75) (P=0.027, 0.045, 0.035, respectively), and close to HC (1.1±0.12, 1.12±0.13, 116±9.37) (P=0.594, 0.276, 0.084, respectively). In kinematics, LC could significantly ameliorate the amplitude of maximal dorsiflexion in ankle (35.1±3.8), extension in stance in knee (16.8±4.3) and hip (4.43±5.1), as well as the range of motion (ROM) in ankle (33.15±6.1) and hip joints (38.6±3.3). In kinetics, LC also markedly improved power generation in ankle (2.03±1.52) and hip joints (1.08±0.48) and power absorption in pre-swing phase in knee joint (-1.68±0.29) compared with NC (1.37±1.13, 0.899±0.43, -1.31±0.27, respectively). Conclusions LC significantly improves gait performance in spatiotemporal parameters as well as kinematics and kinetics performance in ankle and hip joints. LC may be promising when applied as an optional technique in the rehabilitation training in PD + FOG.
Collapse
Affiliation(s)
- Liang Tang
- Department of Orthopaedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Wei Xu
- Department of Orthopaedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Zhikun Li
- Department of Orthopaedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yu Chen
- Department of Orthopaedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Haojie Chen
- Department of Orthopaedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Ronghua Yu
- Department of Orthopaedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xiaodong Zhu
- Department of Orthopaedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Dongyun Gu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.,Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education of P. R. China, Shanghai 200030, China
| |
Collapse
|
37
|
Fallon SJ, Gowell M, Maio MR, Husain M. Dopamine affects short-term memory corruption over time in Parkinson's disease. NPJ Parkinsons Dis 2019; 5:16. [PMID: 31396548 PMCID: PMC6683156 DOI: 10.1038/s41531-019-0088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/25/2019] [Indexed: 11/09/2022] Open
Abstract
Cognitive deficits are a recognised component of Parkinson's disease (PD). However, particularly within the domain of short-term memory, it is unclear whether these impairments are masked, or caused, by patients' dopaminergic medication. The effect of medication on pure maintenance in PD patients has rarely been explored, with most assessments examining maintenance intercalated between other executive tasks. Moreover, few studies have utilised methods that can measure the quality of mental representations, which can enable the decomposition of recall errors into their underlying neurocognitive components. Here, we fill this gap by examining pure maintenance in PD patients in high and low dopaminergic states. Participants had to encode the orientation of two stimuli and reproduce these orientations after a short (2 s) or long (8 s) delay. In addition, we also examined the performance of healthy, age-matched older adults to contextualise these effects and determine whether PD represents an exacerbation of the normal ageing process. Patients showed improved recall OFF compared to ON their dopaminergic medication, but only for long-duration trials. Moreover, PD patients OFF their medication actually performed at a level superior to age-matched controls, indicative of a paradoxical enhancement of memory in the low dopaminergic state. The application of a probabilistic model of response selection suggested that PD patients made fewer misbinding errors in the low, compared with high, dopaminergic state for longer-delay trials. Thus, unexpectedly, the mechanisms that prevent memoranda from being corrupted by misbinding over time appear to be enhanced in PD patients OFF dopaminergic medication. Possible explanations for this paradoxical effect are discussed.
Collapse
Affiliation(s)
- Sean James Fallon
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Matthew Gowell
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Maria Raquel Maio
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
38
|
Tang C, Wang W, Shi M, Zhang N, Zhou X, Li X, Ma C, Chen G, Xiang J, Gao D. Meta-Analysis of the Effects of the Catechol-O-Methyltransferase Val158/108Met Polymorphism on Parkinson's Disease Susceptibility and Cognitive Dysfunction. Front Genet 2019; 10:644. [PMID: 31354790 PMCID: PMC6639434 DOI: 10.3389/fgene.2019.00644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/18/2019] [Indexed: 01/11/2023] Open
Abstract
Background: There is a continued debate and inconsistent findings in previous literature about the relationship of catechol-O-methyltransferase (COMT) and Parkinson’s disease (PD) susceptibility as well as cognitive dysfunction. To substantiate this existing gap, we comprehensively examine COMT genotype effects on the development of PD and test the hypothesis that the Met158 allele of the COMT gene is associated with cognitive dysfunction by conducting a meta-analysis review. Methods: PubMed/MEDLINE, Embase, Cochrane databases search (18/30/08) yielded 49 included studies. Data were extracted by two reviewers and included COMT genotype, publication year, diagnostic status, ancestry, the proportion of male participants, and whether genotype frequencies were consistent with Hardy–Weinberg equilibrium. Unadjusted odds ratios (ORs) were used to derive pooled estimates of PD risk overall and in subgroups defined by ethnicity, gender, and onset of disease. Moreover, the association of certain cognitive domains in PD and COMT gene type was explored. Meta-analyses were performed using random-effect models and p value–based methods. All statistical tests were two-sided. The present study was registered with PROSPERO (CRD42018087323). Results: In the current studies, we found no association between COMT Val158/108Met polymorphism and PD susceptibility. However, the gender-stratified analyses revealed marginally significant effects in heterozygote model analyses in women (P = 0.053). In addition, stratification according to onset of PD also shows significant effects of COMT Val158/108Met polymorphism on late-onset population both in recessive (P = 0.017) and allelic (P = 0.017) genetic models. For the intelligence quotient (IQ) score and Unified Parkinson Disease Rating Scale III (UPDRS III), there was no evidence for genetic association, except in subgroup analyses in Asian populations (IQ score, P = 0.016; UPDRS III, P < 0.001). Conclusion: The COMT Val158/108Met polymorphism is associated with the risk for PD in female or late-onset PD. Methionine/methionine carriers of Asian population performed significantly worse than the valine allele carriers in IQ score and UPDRS III.
Collapse
Affiliation(s)
- Chuanxi Tang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Wei Wang
- Medical Technology School, Xuzhou Medical University, Xuzhou, China.,Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingyu Shi
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Na Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoyu Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xue Li
- School of Nursing, Xuzhou Medical University, Xuzhou, China
| | - Chengcheng Ma
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Gang Chen
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Jie Xiang
- Medical Technology School, Xuzhou Medical University, Xuzhou, China.,Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
39
|
Kosutzka Z, Kralova M, Kusnirova A, Papayova M, Valkovic P, Csefalvay Z, Hajduk M. Neurocognitive Predictors of Understanding of Intentions in Parkinson Disease. J Geriatr Psychiatry Neurol 2019; 32:178-185. [PMID: 30961413 DOI: 10.1177/0891988719841727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Theory of Mind (ToM), the ability to understand other people's mental states, is essential in everyday social interactions. The relationship between cognitive domains and ToM impairment in Parkinson disease (PD) has been receiving growing attention with ambiguous findings. The objective of the current study was to ascertain which cognitive domain predicts understanding of intentions and the impact of PD-specific clinical measures on ToM performance. A secondary aim was to evaluate whether cognitive impairment mediates the relationship between severity of illness and ToM impairment. METHODS Fifty-one nondemented patients with idiopathic PD, ranging from early to advanced stages, were enrolled. A comprehensive neurocognitive battery and 2 ToM tasks (Hinting Task and Comic Strip Task) were administered during the patients' best "on" medication state. RESULTS Only the task of measuring working memory capacity was significantly associated with both ToM tasks (Hinting Task Spearman rank correlation [ rs] = 0.309, P ≤ .05; Comic Strip Task rs = 0.595, P ≤ .01). Patients with more progressed disease and higher doses of dopaminergic medication performed significantly worse in the Comic Strip Task. Based on the mediation analysis, relationship between the severity of the illness and understanding of intentions was mediated by cognitive flexibility. CONCLUSION In PD, understanding of intentions is related to neurocognition, with working memory and cognitive flexibility playing a crucial role. The severity of PD predicts ToM performance.
Collapse
Affiliation(s)
- Zuzana Kosutzka
- 1 Second Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Maria Kralova
- 2 Department of Psychiatry, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Alice Kusnirova
- 1 Second Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Mariana Papayova
- 1 Second Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Valkovic
- 1 Second Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,3 Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zsolt Csefalvay
- 4 Department of Communication Disorders, Faculty of Education, Comenius University, Bratislava, Slovakia
| | - Michal Hajduk
- 2 Department of Psychiatry, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,5 Department of Psychology, Faculty of Arts, Comenius University, Bratislava, Slovakia
| |
Collapse
|
40
|
Martinez-Horta S, Horta-Barba A, Kulisevsky J. Cognitive and behavioral assessment in Parkinson's disease. Expert Rev Neurother 2019; 19:613-622. [PMID: 31180250 DOI: 10.1080/14737175.2019.1629290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Cognitive impairment and behavioral disturbances are common findings in Parkinson's disease (PD). Despite initially being considered late complications of the disease, it is currently accepted that almost all PD patients will exhibit cognitive and behavioral abnormalities from the early and even the premotor stages of the disease. Areas covered: The present review focuses on the cognitive profile of PD, the clinical picture of PD-MCI and dementia in PD (PDD) and the recommended methods for cognitive assessment in this population. The authors also describe the more representative neuropsychiatric alterations and provide an overview of the recommended methods of assessment. Expert opinion: Cognitive and behavioral symptoms are inherent to PD, appear in a vast majority of patients at some point during disease progression and have an enormous impact on health-related quality of life of patients and caregivers. Validated methods of cognitive and behavioral assessment are currently developed and must be used in research and clinical settings.
Collapse
Affiliation(s)
- Saul Martinez-Horta
- a Movement Disorders Unit, Neurology Department , Hospital de la Santa Creu i Sant Pau , Barcelona , Spain.,b Biomedical Research Institute (IIB-Sant Pau) , Barcelona , Spain.,c Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED) , Madrid , Spain.,d Autonomous University of Barcelona , Barcelona , Spain
| | - Andrea Horta-Barba
- a Movement Disorders Unit, Neurology Department , Hospital de la Santa Creu i Sant Pau , Barcelona , Spain.,b Biomedical Research Institute (IIB-Sant Pau) , Barcelona , Spain.,c Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED) , Madrid , Spain
| | - Jaime Kulisevsky
- a Movement Disorders Unit, Neurology Department , Hospital de la Santa Creu i Sant Pau , Barcelona , Spain.,b Biomedical Research Institute (IIB-Sant Pau) , Barcelona , Spain.,c Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED) , Madrid , Spain.,d Autonomous University of Barcelona , Barcelona , Spain
| |
Collapse
|
41
|
Meder D, Herz DM, Rowe JB, Lehéricy S, Siebner HR. The role of dopamine in the brain - lessons learned from Parkinson's disease. Neuroimage 2019; 190:79-93. [DOI: 10.1016/j.neuroimage.2018.11.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/25/2018] [Accepted: 11/16/2018] [Indexed: 11/30/2022] Open
|
42
|
Hodgson TL, Hermens F, Pennington K, Pickering JS, Ezard G, Clarke R, Sharma J, Owen AM. Eye Movements in the "Morris Maze" Spatial Working Memory Task Reveal Deficits in Strategic Planning. J Cogn Neurosci 2018; 31:497-509. [PMID: 30513043 DOI: 10.1162/jocn_a_01362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Analysis of eye movements can provide insights into processes underlying performance of cognitive tasks. We recorded eye movements in healthy participants and people with idiopathic Parkinson disease during a token foraging task based on the spatial working memory component of the widely used Cambridge Neuropsychological Test Automated Battery. Participants selected boxes (using a mouse click) to reveal hidden tokens. Tokens were never hidden under a box where one had been found before, such that memory had to be used to guide box selections. A key measure of performance in the task is between search errors (BSEs) in which a box where a token has been found is selected again. Eye movements were found to be most commonly directed toward the next box to be clicked on, but fixations also occurred at rates higher than expected by chance on boxes farther ahead or back along the search path. Looking ahead and looking back in this way was found to correlate negatively with BSEs and was significantly reduced in patients with Parkinson disease. Refixating boxes where tokens had already been found correlated with BSEs and the severity of Parkinson disease symptoms. It is concluded that eye movements can provide an index of cognitive planning in the task. Refixations on locations where a token has been found may also provide a sensitive indicator of visuospatial memory integrity. Eye movement measures derived from the spatial working memory task may prove useful in the assessment of executive functions as well as neurological and psychiatric diseases in the future.
Collapse
|
43
|
Lanskey JH, McColgan P, Schrag AE, Acosta-Cabronero J, Rees G, Morris HR, Weil RS. Can neuroimaging predict dementia in Parkinson's disease? Brain 2018; 141:2545-2560. [PMID: 30137209 PMCID: PMC6113860 DOI: 10.1093/brain/awy211] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022] Open
Abstract
Dementia in Parkinson's disease affects 50% of patients within 10 years of diagnosis but there is wide variation in severity and timing. Thus, robust neuroimaging prediction of cognitive involvement in Parkinson's disease is important: (i) to identify at-risk individuals for clinical trials of potential new treatments; (ii) to provide reliable prognostic information for individuals and populations; and (iii) to shed light on the pathophysiological processes underpinning Parkinson's disease dementia. To date, neuroimaging has not made major contributions to predicting cognitive involvement in Parkinson's disease. This is perhaps unsurprising considering conventional methods rely on macroscopic measures of topographically distributed neurodegeneration, a relatively late event in Parkinson's dementia. However, new technologies are now emerging that could provide important insights through detection of other potentially relevant processes. For example, novel MRI approaches can quantify magnetic susceptibility as a surrogate for tissue iron content, and increasingly powerful mathematical approaches can characterize the topology of brain networks at the systems level. Here, we present an up-to-date overview of the growing role of neuroimaging in predicting dementia in Parkinson's disease. We discuss the most relevant findings to date, and consider the potential of emerging technologies to detect the earliest signs of cognitive involvement in Parkinson's disease.
Collapse
Affiliation(s)
- Juliette H Lanskey
- Institute of Neurology, UCL, Queen Square, London, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter McColgan
- Huntington’s Disease Centre, UCL, Queen Square, London, UK
| | - Anette E Schrag
- Department of Clinical Neurosciences, Royal Free Campus UCL Institute of Neurology, UK
| | | | - Geraint Rees
- Wellcome Centre for Human Neuroimaging, UCL, Queen Square, London, UK
- Institute of Cognitive Neuroscience, UCL, Queen Square, London, UK
| | - Huw R Morris
- Department of Clinical Neurosciences, Royal Free Campus UCL Institute of Neurology, UK
- Department of Movement Disorders, UCL, Queen Square, London, UK
| | - Rimona S Weil
- Wellcome Centre for Human Neuroimaging, UCL, Queen Square, London, UK
- UCL Dementia Research Centre, Queen Square, London, UK
| |
Collapse
|
44
|
Martini A, Dal Lago D, Edelstyn NMJ, Grange JA, Tamburin S. Impulse Control Disorder in Parkinson's Disease: A Meta-Analysis of Cognitive, Affective, and Motivational Correlates. Front Neurol 2018; 9:654. [PMID: 30233478 PMCID: PMC6127647 DOI: 10.3389/fneur.2018.00654] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023] Open
Abstract
Background: In Parkinson's disease (PD), impulse control disorders (ICDs) develop as side-effect of dopaminergic replacement therapy (DRT). Cognitive, affective, and motivational correlates of ICD in medicated PD patients are debated. Here, we systematically reviewed and meta-analyzed the evidence for an association between ICD in PD and cognitive, affective, and motivational abnormalities. Methods: A systematic review and meta-analysis was performed on PubMed, Science Direct, ISI Web of Science, Cochrane, EBSCO for studies published between 1-1-2000 and 8-3-2017 comparing cognitive, affective, and motivational measures in PD patients with ICD (ICD+) vs. those without ICD (ICD-). Exclusion criteria were conditions other than PD, substance and/or alcohol abuse, dementia, drug naïve patients, cognition assessed by self-report tools. Standardized mean difference (SMD) was used, and random-effect model applied. Results: 10,200 studies were screened (title, abstract), 79 full-texts were assessed, and 25 were included (ICD+: 625 patients; ICD-: 938). Compared to ICD-, ICD+ showed worse performance reward-related decision-making (0.42 [0.02, 0.82], p = 0.04) and set-shifting tasks (SMD = -0.49 [95% CI -0.78, -0.21], p = 0.0008). ICD in PD was also related to higher self-reported rate of depression (0.35 [0.16, 0.54], p = 0.0004), anxiety (0.43 [0.18, 0.68], p = 0.0007), anhedonia (0.26 [0.01, 0.50], p = 0.04), and impulsivity (0.79 [0.50, 1.09], p < 0.00001). Heterogeneity was low to moderate, except for depression (I2 = 61%) and anxiety (I2 = 58%). Conclusions: ICD in PD is associated with worse set-shifting and reward-related decision-making, and increased depression, anxiety, anhedonia, and impulsivity. This is an important area for further studies as ICDs have negative impact on the quality of life of patients and their caregivers.
Collapse
Affiliation(s)
- Alice Martini
- School of Psychology, Keele University, Newcastle-under-Lyme, United Kingdom
| | - Denise Dal Lago
- School of Psychology, Keele University, Newcastle-under-Lyme, United Kingdom
| | - Nicola M J Edelstyn
- School of Psychology, Keele University, Newcastle-under-Lyme, United Kingdom
| | - James A Grange
- School of Psychology, Keele University, Newcastle-under-Lyme, United Kingdom
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
45
|
Perugini A, Ditterich J, Shaikh AG, Knowlton BJ, Basso MA. Paradoxical Decision-Making: A Framework for Understanding Cognition in Parkinson's Disease. Trends Neurosci 2018; 41:512-525. [PMID: 29747856 PMCID: PMC6124671 DOI: 10.1016/j.tins.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
Abstract
People with Parkinson's disease (PD) show impaired decision-making when sensory and memory information must be combined. This recently identified impairment results from an inability to accumulate the proper amount of information needed to make a decision and appears to be independent of dopamine tone and reinforcement learning mechanisms. Although considerable work focuses on PD and decisions involving risk and reward, in this Opinion article we propose that the emerging findings in perceptual decision-making highlight the multisystem nature of PD, and that unraveling the neuronal circuits underlying perceptual decision-making impairment may help in understanding other cognitive impairments in people with PD. We also discuss how a decision-making framework may be extended to gain insights into mechanisms of motor impairments in PD.
Collapse
Affiliation(s)
- Alessandra Perugini
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, Department of Neurobiology, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, The David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jochen Ditterich
- Center for Neuroscience and Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| | - Aasef G Shaikh
- Department of Neurology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Barbara J Knowlton
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, Department of Neurobiology, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, The David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
46
|
The neuroanatomical and neurochemical basis of apathy and impulsivity in frontotemporal lobar degeneration. Curr Opin Behav Sci 2018; 22:14-20. [PMID: 31032387 DOI: 10.1016/j.cobeha.2017.12.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apathy and impulsivity are common and often coexistent consequences of frontotemporal lobar degeneration (FTLD). They increase patient morbidity and carer distress, but remain under-estimated and poorly treated. Recent trans-diagnostic approaches that span the spectrum of clinical presentations of FTLD and parkinsonism, indicate that apathy and impulsivity can be fractionated into multiple neuroanatomical and pharmacological systems. These include ventral/dorsal fronto-striatal circuits for reward-sensitivity, response-inhibition, and decision-making; moderated by noradrenaline, dopamine, and serotonin. Improved assessment tools, formal models of cognition and behavior, combined with brain imaging and psycho-pharmacology, are creating new therapeutic targets and establishing principles for stratification in future clinical trials.
Collapse
|
47
|
Kim J, Zhang K, Cai W, YorkWilliams S, Ua Cruadhlaoich MAI, Llanes S, Menon V, Poston KL. Dopamine-related dissociation of cortical and subcortical brain activations in cognitively unimpaired Parkinson's disease patients OFF and ON medications. Neuropsychologia 2018; 119:24-33. [PMID: 30040957 PMCID: PMC6191343 DOI: 10.1016/j.neuropsychologia.2018.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 12/03/2022]
Abstract
Background: Despite dopaminergic depletion that is severe enough to cause the motor symptoms of Parkinson’s disease (PD), m any patients remain cognitively unimpaired. Little is known about brain mechanism s underlying such preserved cognitive abilities and their alteration by dopaminergic medications. Objectives: We investigated brain activations underlying dopamine-related differences in cognitive function using a unique experimental design with PD patients off and on dopaminergic medications. We tested the dopamine overdose hypothesis, which posits that the excess of exogenous dopamine in the frontal cortical regions can impair cognition. Methods: We used a two-choice forced response Choice Reaction Time (CRT) task to probe cognitive processes underlying response selection and execution. Functional magnetic resonance imaging data Were acquired from 16 cognitively unimpaired (Level-II) PD participants and 15 Well-matched healthy controls (HC). We compared task performance (i.e. reaction time and accuracy) and brain activation of PD participants off dopaminergic medications (PD_OFF) in comparison with HC, and PD_OFF participants with those on dopaminergic medications (PD_ON). Results: PD_OFF and PD_ON groups did not differ from each other, or from the HC group, in reaction time or accuracy. Compared to HC, PD_OFF activated the bilateral putamen less, and this w as compensated by higher activation of the anterior insula. No such differences Were observed in the PD_ON group, Compared to HC. Compared to both HC and PD_OFF, PD_ON participants showed dopamine-related hyperactivation in the frontal cortical regions and hypoactivation in the amygdala. Conclusion: Our data provide further evidence that PD_OFF and PD_ON participants engage different cortical and subcortical systems to achieve similar levels of cognitive performance as HC. Crucially, our findings demonstrate dopamine-related dissociation in brain activation between cortical and subcortical regions, and provide novel support for the dopamine overdose hypothesis.
Collapse
Affiliation(s)
- Jeehyun Kim
- Stanford University Medical Center, Department of Neurology & Neurological Sciences, Stanford, CA 94305, USA
| | - Kai Zhang
- Stanford University Medical Center, Department of Neurology & Neurological Sciences, Stanford, CA 94305, USA
| | - Weidong Cai
- Stanford University Medical Center, Department of Psychiatry & Behavioral Sciences, Stanford, CA 94305, USA
| | - Sophie YorkWilliams
- Stanford University Medical Center, Department of Neurology & Neurological Sciences, Stanford, CA 94305, USA; University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO 80309, USA
| | - Matthew A I Ua Cruadhlaoich
- Stanford University Medical Center, Department of Neurology & Neurological Sciences, Stanford, CA 94305, USA
| | - Seoni Llanes
- Stanford University Medical Center, Department of Neurology & Neurological Sciences, Stanford, CA 94305, USA
| | - Vinod Menon
- Stanford University Medical Center, Department of Neurology & Neurological Sciences, Stanford, CA 94305, USA; Stanford University Medical Center, Department of Psychiatry & Behavioral Sciences, Stanford, CA 94305, USA
| | - Kathleen L Poston
- Stanford University Medical Center, Department of Neurology & Neurological Sciences, Stanford, CA 94305, USA; Stanford University Medical Center, Department of Neurosurgery, Stanford, CA 94305, USA.
| |
Collapse
|
48
|
Abstract
Clinical neuroscience struggles with poor scientific validity of neuropsychiatric diagnosis and its negative impact on management. Sydenham's ancient conformity of type approach to nosology with its assumption that the symptom cluster and course of a disorder are due to a common etiology, has proven no match for the complicated comorbidities faced in neuropsychiatry. In the absence of accurate pathological biomarkers there is a challenge in finding a solid foundation for modern neuropsychiatry. We find standard psychiatric nosology to be of limited benefit at the general hospital bedside in evaluating and treating neuropsychiatric disorders. Consequently, we have developed over the years a neuro-circuitry-based training for our psychosomatic medicine fellows. In this commentary, we will introduce a strategy for understanding patients with neuropsychiatric disorders that may advance our ability to diagnose and treat them in accordance with neuroscientific evidence anchored in evolutionary neurocircuitry and attachment neurobehavior.
Collapse
|
49
|
Martinez-Horta S, Sampedro F, Pagonabarraga J, Fernandez-Bobadilla R, Marin-Lahoz J, Riba J, Kulisevsky J. Non-demented Parkinson's disease patients with apathy show decreased grey matter volume in key executive and reward-related nodes. Brain Imaging Behav 2018; 11:1334-1342. [PMID: 27730477 DOI: 10.1007/s11682-016-9607-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Apathy is a common but poorly understood neuropsychiatric disturbance in Parkinson's disease (PD). In a recent study using event-related brain potentials we demonstrated impaired reward processing and compromised mesocortico-limbic pathways in PD patients with clinical symptoms of apathy. Here we aimed to further investigate the involvement of reward circuits in apathetic PD patients by assessing potential differences in brain structure. Using structural magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) we quantified grey matter volume (GMV) in a sample of 18 non-demented and non-depressed PD patients with apathy, and 18 matched non-apathetic patients. Both groups were equivalent in terms of sociodemographic characteristics, disease stage, cognitive performance and L-Dopa equivalent daily dose. Apathetic patients showed significant GMV loss in cortical and subcortical brain structures. Various clusters of cortical GMV decrease were found in the parietal, lateral prefrontal cortex, and orbitofrontal cortex (OFC). The second largest cluster of GMV loss was located in the left nucleus accumbens (NAcc), a subcortical structure that is a key node of the human reward circuit. Isolated apathy in our sample is explained by the combined GMV loss in regions involved in executive functions, and cortical and subcortical structures of the mesolimbic reward pathway. The correlations observed between apathy and cognition suggests apathy as a marker of more widespread brain degeneration even in a sample of non-demented PD patients.
Collapse
Affiliation(s)
- Saul Martinez-Horta
- Department of Neurology, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau Sant Antoni M. Claret 167, Universitat Autònoma de Barcelona, 08025, Barcelona, Spain.,Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain.,Centro Investigación Biomedica en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Frederic Sampedro
- Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Javier Pagonabarraga
- Department of Neurology, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau Sant Antoni M. Claret 167, Universitat Autònoma de Barcelona, 08025, Barcelona, Spain.,Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain.,Centro Investigación Biomedica en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Ramón Fernandez-Bobadilla
- Department of Neurology, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau Sant Antoni M. Claret 167, Universitat Autònoma de Barcelona, 08025, Barcelona, Spain.,Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain.,Centro Investigación Biomedica en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.,Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Juan Marin-Lahoz
- Department of Neurology, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau Sant Antoni M. Claret 167, Universitat Autònoma de Barcelona, 08025, Barcelona, Spain.,Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain.,Centro Investigación Biomedica en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Jordi Riba
- Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain.,Human Neuropsychopharmacology Group IIB-Sant Pau, Barcelona, Spain
| | - Jaime Kulisevsky
- Department of Neurology, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau Sant Antoni M. Claret 167, Universitat Autònoma de Barcelona, 08025, Barcelona, Spain. .,Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain. .,Centro Investigación Biomedica en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain. .,Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain. .,Universitat Oberta de Catalunya (UOC), Barcelona, Spain.
| |
Collapse
|
50
|
Cigdem O, Beheshti I, Demirel H. Effects of different covariates and contrasts on classification of Parkinson's disease using structural MRI. Comput Biol Med 2018; 99:173-181. [PMID: 29935389 DOI: 10.1016/j.compbiomed.2018.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 11/26/2022]
Abstract
Three-dimensional magnetic resonance imaging (3D-MRI) has been effectively used in the diagnosis of progressive neurodegenerative diseases including Parkinson's disease (PD). Pre-processing of 3D-MRI scans plays an important role for post-processing. In this paper, voxel-based morphometry (VBM) technique is used to compare morphological dierences of PDs versus healthy controls (HCs) in gray matter (GM) and white matter (WM). The effects of using different covariates (i.e. total intracranial volume (TIV), age, sex and combination of them) as well as two different hypotheses, t-contrast and f-contrast, on classification of PD from HCs have been studied. 3D masks for GM as well as WM tissues are obtained separately by utilizing local differences between PD and HC and using the two sample t-test method. PCA is used to perform dimensionality reduction and SVM is used for classification. The proposed method is evaluated on 40 PDs and 40 HCs obtained from the ppmi dataset. The classification results using f-contrast show a superior performance for GM, WM, and the combination of GM as well as WM compared to t-contrast. Furthermore, the experimental results indicate that using TIV as a covariate provides more robust results for PD classification compared to other covariate settings. The highest accuracies of distinguishing between PDs and HCs are obtained when TIV is used as a covariate and f-contrast is used for model building: 73.75%, 72.50%, and 93.7% for GM, WM, and the combination of them, respectively.
Collapse
Affiliation(s)
- Ozkan Cigdem
- Department of Electrical and Electronics Engineering, Eastern Mediterranean University, Gazimagusa, Mersin 10, Turkey.
| | - Iman Beheshti
- Centre de recherche CERVO, 2601, de la Canardire, Qubec, Canada; Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Hasan Demirel
- Department of Electrical and Electronics Engineering, Eastern Mediterranean University, Gazimagusa, Mersin 10, Turkey
| |
Collapse
|