1
|
Astrelina TA, Brunchukov VA, Kodina GE, Bubenshchikov VB, Larenkov AA, Lunev AS, Petrosova KA, Rastorgueva AA, Kobzeva IV, Usupzhanova DY, Nikitina VA, Malsagova KA, Kulikova LI, Samoilov AS, Pustovoyt VI. Biodistribution of Mesenchymal Stromal Cells Labeled with [ 89Zr]Zr-Oxine in Local Radiation Injuries in Laboratory Animals. Molecules 2023; 28:7169. [PMID: 37894647 PMCID: PMC10609482 DOI: 10.3390/molecules28207169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Tracking the migration pathways of living cells after their introduction into a patient's body is a topical issue in the field of cell therapy. Questions related to studying the possibility of long-term intravital biodistribution of mesenchymal stromal cells in the body currently remain open. METHODS Forty-nine laboratory animals were used in the study. Modeling of local radiation injuries was carried out, and the dynamics of the distribution of mesenchymal stromal cells labeled with [89Zr]Zr-oxine in the rat body were studied. RESULTS the obtained results of the labelled cell distribution allow us to assume that this procedure could be useful for visualization of local radiation injury using positron emission tomography. However, further research is needed to confirm this assumption. CONCLUSIONS intravenous injection leads to the initial accumulation of cells in the lungs and their subsequent redistribution to the liver, spleen, and kidneys. When locally injected into tissues, mesenchymal stromal cells are not distributed systemically in significant quantities.
Collapse
Affiliation(s)
- Tatiana A. Astrelina
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Vitaliy A. Brunchukov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Galina E. Kodina
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Viktor B. Bubenshchikov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Anton A. Larenkov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Aleksandr S. Lunev
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Kristina A. Petrosova
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Anna A. Rastorgueva
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Irina V. Kobzeva
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Daria Y. Usupzhanova
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Victoria A. Nikitina
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | | | - Ludmila I. Kulikova
- Institute of Biomedical Chemistry, Biobanking Group, 119121 Moscow, Russia;
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 119991 Pushchino, Russia
| | - Alexander S. Samoilov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Vasiliy I. Pustovoyt
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| |
Collapse
|
2
|
Wang X, Hu S, Zhu D, Li J, Cheng K, Liu G. Comparison of extruded cell nanovesicles and exosomes in their molecular cargos and regenerative potentials. NANO RESEARCH 2023; 16:7248-7259. [PMID: 37223430 PMCID: PMC9971669 DOI: 10.1007/s12274-023-5374-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 05/25/2023]
Abstract
Extracellular vesicles (EVs) generated from mesenchymal stem cells (MSCs) play an essential role in modulating cell-cell communication and tissue regeneration. The clinical translation of EVs is constrained by the poor yield of EVs. Extrusion has recently become an effective technique for producing a large scale of nanovesicles (NVs). In this study, we systematically compared MSC NVs (from extrusion) and EVs (from natural secretion). Proteomics and RNA sequencing data revealed that NVs resemble MSCs more closely than EVs. Additionally, microRNAs in NVs are related to cardiac repair, fibrosis repression, and angiogenesis. Lastly, intravenous delivery of MSC NVs improved heart repair and cardiac function in a mouse model of myocardial infarction. Electronic Supplementary Material Supplementary material (Figs. S1-S4) is available in the online version of this article at 10.1007/s12274-023-5374-3.
Collapse
Affiliation(s)
- Xianyun Wang
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000 China
- Scientific Research Data Center, The First Hospital of Hebei Medical University, Shijiazhuang, 050000 China
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050000 China
- Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, 050000 China
- Department of Molecular Biomedical Science, North Carolina State University, Raleigh, North Carolina 27607 USA
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina 27607 USA
| | - Shiqi Hu
- Department of Molecular Biomedical Science, North Carolina State University, Raleigh, North Carolina 27607 USA
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina 27607 USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Science, North Carolina State University, Raleigh, North Carolina 27607 USA
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina 27607 USA
| | - Junlang Li
- Department of Molecular Biomedical Science, North Carolina State University, Raleigh, North Carolina 27607 USA
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina 27607 USA
| | - Ke Cheng
- Department of Molecular Biomedical Science, North Carolina State University, Raleigh, North Carolina 27607 USA
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina 27607 USA
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000 China
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050000 China
- Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, 050000 China
| |
Collapse
|
3
|
Zhuang WZ, Lin YH, Su LJ, Wu MS, Jeng HY, Chang HC, Huang YH, Ling TY. Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. J Biomed Sci 2021; 28:28. [PMID: 33849537 PMCID: PMC8043779 DOI: 10.1186/s12929-021-00725-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a promising resource for cell-based therapy because of their high immunomodulation ability, tropism towards inflamed and injured tissues, and their easy access and isolation. Currently, there are more than 1200 registered MSC clinical trials globally. However, a lack of standardized methods to characterize cell safety, efficacy, and biodistribution dramatically hinders the progress of MSC utility in clinical practice. In this review, we summarize the current state of MSC-based cell therapy, focusing on the systemic safety and biodistribution of MSCs. MSC-associated risks of tumor initiation and promotion and the underlying mechanisms of these risks are discussed. In addition, MSC biodistribution methodology and the pharmacokinetics and pharmacodynamics of cell therapies are addressed. Better understanding of the systemic safety and biodistribution of MSCs will facilitate future clinical applications of precision medicine using stem cells.
Collapse
Affiliation(s)
- Wei-Zhan Zhuang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yi-Heng Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, 10041, Taiwan.,Department of Obstetrics and Gynecology, National Taiwan University Hospital Yunlin Branch, Yunlin, 64041, Taiwan
| | - Long-Jyun Su
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Meng-Shiue Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Han-Yin Jeng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Comprehensive Cancer Center of Taipei Medical University, Taipei, 11031, Taiwan. .,The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
4
|
Ruppert KA, Prabhakara KS, Toledano-Furman NE, Udtha S, Arceneaux AQ, Park H, Dao A, Cox CS, Olson SD. Human adipose-derived mesenchymal stem cells for acute and sub-acute TBI. PLoS One 2020; 15:e0233263. [PMID: 32453741 PMCID: PMC7250455 DOI: 10.1371/journal.pone.0233263] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
In the U.S., approximately 1.7 million people suffer traumatic brain injury each year, with many enduring long-term consequences and significant medical and rehabilitation costs. The primary injury causes physical damage to neurons, glia, fiber tracts and microvasculature, which is then followed by secondary injury, consisting of pathophysiological mechanisms including an immune response, inflammation, edema, excitotoxicity, oxidative damage, and cell death. Most attempts at intervention focus on protection, repair or regeneration, with regenerative medicine becoming an intensively studied area over the past decade. The use of stem cells has been studied in many disease and injury models, using stem cells from a variety of sources and applications. In this study, human adipose-derived mesenchymal stromal cells (MSCs) were administered at early (3 days) and delayed (14 days) time points after controlled cortical impact (CCI) injury in rats. Animals were routinely assessed for neurological and vestibulomotor deficits, and at 32 days post-injury, brain tissue was processed by flow cytometry and immunohistochemistry to analyze neuroinflammation. Treatment with HB-adMSC at either 3d or 14d after injury resulted in significant improvements in neurocognitive outcome and a change in neuroinflammation one month after injury.
Collapse
Affiliation(s)
- Katherine A. Ruppert
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Karthik S. Prabhakara
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Naama E. Toledano-Furman
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Sanjna Udtha
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Austin Q. Arceneaux
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | | | - An Dao
- Hope Biosciences, Sugarland, TX, United States of America
| | - Charles S. Cox
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
5
|
Kota DJ, Prabhakara KS, Toledano-Furman N, Bhattarai D, Chen Q, DiCarlo B, Smith P, Triolo F, Wenzel PL, Cox CS, Olson SD. Prostaglandin E2 Indicates Therapeutic Efficacy of Mesenchymal Stem Cells in Experimental Traumatic Brain Injury. Stem Cells 2017; 35:1416-1430. [DOI: 10.1002/stem.2603] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Daniel J. Kota
- Children-s Health Research Center; Sanford Research; Sioux Falls South Dakota USA
| | - Karthik S. Prabhakara
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Naama Toledano-Furman
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Deepa Bhattarai
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Qingzheng Chen
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Bryan DiCarlo
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Philippa Smith
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Fabio Triolo
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Pamela L. Wenzel
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Charles S. Cox
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Scott D. Olson
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| |
Collapse
|
6
|
Dworkin RH, Turk DC, Katz NP, Rowbotham MC, Peirce-Sandner S, Cerny I, Clingman CS, Eloff BC, Farrar JT, Kamp C, McDermott MP, Rappaport BA, Sanhai WR. Evidence-based clinical trial design for chronic pain pharmacotherapy: a blueprint for ACTION. Pain 2010; 152:S107-S115. [PMID: 21145657 DOI: 10.1016/j.pain.2010.11.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 11/25/2022]
Affiliation(s)
- Robert H Dworkin
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA Center for Human Experimental Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA Analgesic Solutions, Natick, MA, USA Tufts University, Boston, MA, USA California Pacific Medical Center, San Francisco, CA, USA United States Food and Drug Administration, Bethesda, MD, USA Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Walker PA, Shah SK, Jimenez F, Gerber MH, Xue H, Cutrone R, Hamilton JA, Mays RW, Deans R, Pati S, Dash PK, Cox CS. Intravenous multipotent adult progenitor cell therapy for traumatic brain injury: preserving the blood brain barrier via an interaction with splenocytes. Exp Neurol 2010; 225:341-52. [PMID: 20637752 PMCID: PMC3774549 DOI: 10.1016/j.expneurol.2010.07.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/04/2010] [Accepted: 07/09/2010] [Indexed: 12/14/2022]
Abstract
Recent investigation has shown an interaction between transplanted progenitor cells and resident splenocytes leading to the modulation of the immunologic response in neurological injury. We hypothesize that the intravenous injection of multipotent adult progenitor cells (MAPC) confers neurovascular protection after traumatic brain injury through an interaction with resident splenocytes, subsequently leading to preservation of the blood brain barrier. Four groups of rats underwent controlled cortical impact injury (3 groups) or sham injury (1 group). MAPC were injected via the tail vein at two doses (2*10(6) MAPC/kg or 10*10(6) MAPC/kg) 2 and 24h after injury. Blood brain barrier permeability was assessed by measuring Evans blue dye extravasation (n=6/group). Additionally, splenic mass was measured (n=12/group) followed by splenocyte characterization (n=9/group) including: cell cycle analysis (n=6/group), apoptosis index (n=6/group), cell proliferation (n=6/group), and inflammatory cytokine measurements (n=6/group). Vascular architecture was determined by immunohistochemistry (n=3/group). Traumatic brain injury results in a decrease in splenic mass and increased blood brain barrier permeability. Intravenous infusion of MAPC preserved splenic mass and returned blood brain barrier permeability towards control sham injured levels. Splenocyte characterization indicated an increase in the number and proliferative rate of CD4+ T cells as well as an increase in IL-4 and IL-10 production in stimulated splenocytes isolated from the MAPC treatment groups. Immunohistochemistry demonstrated stabilization of the vascular architecture in the peri-lesion area. Traumatic brain injury causes a reduction in splenic mass that correlates with an increase in circulating immune cells leading to increased blood brain barrier permeability. The intravenous injection of MAPC preserves splenic mass and the integrity of the blood brain barrier. Furthermore, the co-localization of transplanted MAPC and resident CD4+ splenocytes is associated with a global increase in IL-4 and IL-10 production and stabilization of the cerebral microvasculature tight junction proteins.
Collapse
Affiliation(s)
- Peter A. Walker
- Department of Surgery, University of Texas Medical School at Houston, Houston, Texas
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas
| | - Shinil K. Shah
- Department of Surgery, University of Texas Medical School at Houston, Houston, Texas
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas
- the Michael E DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Cleveland, Ohio
| | - Fernando Jimenez
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas
| | - Michael H. Gerber
- Department of Surgery, University of Texas Medical School at Houston, Houston, Texas
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, Texas
| | - Hasen Xue
- Department of Surgery, University of Texas Medical School at Houston, Houston, Texas
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas
| | - Rochelle Cutrone
- Texas A & M University, College Station, Texas, and Department of Regenerative Medicine, Athersys Inc., Cleveland, Ohio
| | - Jason A. Hamilton
- Texas A & M University, College Station, Texas, and Department of Regenerative Medicine, Athersys Inc., Cleveland, Ohio
| | - Robert W. Mays
- Texas A & M University, College Station, Texas, and Department of Regenerative Medicine, Athersys Inc., Cleveland, Ohio
| | - Robert Deans
- Texas A & M University, College Station, Texas, and Department of Regenerative Medicine, Athersys Inc., Cleveland, Ohio
| | - Shibani Pati
- Department of Surgery, University of Texas Medical School at Houston, Houston, Texas
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, Texas
| | - Charles S. Cox
- Department of Surgery, University of Texas Medical School at Houston, Houston, Texas
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas
- the Michael E DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Cleveland, Ohio
| |
Collapse
|
8
|
Walker PA, Aroom KR, Jimenez F, Shah SK, Harting MT, Gill BS, Cox CS. Advances in progenitor cell therapy using scaffolding constructs for central nervous system injury. Stem Cell Rev Rep 2009; 5:283-300. [PMID: 19644777 PMCID: PMC2874887 DOI: 10.1007/s12015-009-9081-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 06/18/2009] [Indexed: 01/16/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality in the United States. Current clinical therapy is focused on optimization of the acute/subacute intracerebral milieu, minimizing continued cell death, and subsequent intense rehabilitation to ameliorate the prolonged physical, cognitive, and psychosocial deficits that result from TBI. Adult progenitor (stem) cell therapies have shown promise in pre-clinical studies and remain a focus of intense scientific investigation. One of the fundamental challenges to successful translation of the large body of pre-clinical work is the delivery of progenitor cells to the target location/organ. Classically used vehicles such as intravenous and intra arterial infusion have shown low engraftment rates and risk of distal emboli. Novel delivery methods such as nanofiber scaffold implantation could provide the structural and nutritive support required for progenitor cell proliferation, engraftment, and differentiation. The focus of this review is to explore the current state of the art as it relates to current and novel progenitor cell delivery methods.
Collapse
Affiliation(s)
- Peter A. Walker
- Department of Surgery, University of Texas Medical School at Houston, Houston, TX, USA. Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.236, Houston, TX 77030, USA
| | - Kevin R. Aroom
- Department of Surgery, University of Texas Medical School at Houston, Houston, TX, USA. Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.236, Houston, TX 77030, USA
| | - Fernando Jimenez
- Department of Surgery, University of Texas Medical School at Houston, Houston, TX, USA. Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.236, Houston, TX 77030, USA
| | - Shinil K. Shah
- Department of Surgery, University of Texas Medical School at Houston, Houston, TX, USA. Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.236, Houston, TX 77030, USA
| | - Matthew T. Harting
- Department of Surgery, University of Texas Medical School at Houston, Houston, TX, USA. Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.236, Houston, TX 77030, USA
| | - Brijesh S. Gill
- Department of Surgery, University of Texas Medical School at Houston, Houston, TX, USA
| | - Charles S. Cox
- Department of Surgery, University of Texas Medical School at Houston, Houston, TX, USA. Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.236, Houston, TX 77030, USA
| |
Collapse
|