1
|
Huang P, Yang F, Dong R, Wen L, Zang Q, Song D, Guo J, Wang Y, Zhang R, Ren Z, Qin J, Teng J, Miao W. Cerebrospinal fluid and serum cytokine profiles in severe viral encephalitis with implications for refractory status epilepticus: a retrospective observational study. Front Immunol 2025; 16:1528763. [PMID: 39995678 PMCID: PMC11847810 DOI: 10.3389/fimmu.2025.1528763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Background To identify new intervention targets, we explored the correlation between cytokines and the development of refractory status epilepticus (RSE) in patients with severe viral encephalitis (SVE). Methods We examined the characteristics of 14 cytokines in the cerebrospinal fluid (CSF) and serum, analyzing their correlation with acute symptomatic seizures and prognosis. Furthermore, we conducted a dynamic analysis of differences and correlations in the expression of cytokines among patients with SVE without seizures, those with controlled seizures, and those with RSE. Results We included 161 patients with SVE; the incidence of seizures was 55.2%, and the mortality rate was 5.5%. Notably, 18.9% of these patients developed RSE, with a mortality rate of 20%. During the early stage of SVE, CSF interleukin (IL)-6 and IL-8 levels were significantly higher, declining over time and affecting the prognosis. CSF IL-6 and IL-8 levels were significantly elevated in the RSE group compared to patients without seizures and with controlled seizures, decreasing gradually and independently of serum cytokine levels. CSF IL-8 and age were independent risk factors for RSE, with clinical utility. Conclusions Patients with SVE exhibit intrathecal cytokine storms, primarily characterized by elevated levels of IL-6 and IL-8, which influence prognosis. The strong and persistent hyperinflammation underscored by CSF IL-6 and IL-8 is associated with the occurrence and development of RSE; thus, CSF IL-8 and age are independent risk factors for SVE with RSE, indicating potential anti-inflammatory intervention targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Wang Miao
- Neurological Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Peña-Ortega F. Microglial modulation of neuronal network function and plasticity. J Neurophysiol 2025; 133:661-680. [PMID: 39819084 DOI: 10.1152/jn.00458.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS), which have been classically viewed as involved in CNS responses to damage and tissue repair. However, microglia are constantly sensing neuronal network activity and changes in the CNS milieu, establishing complex state-dependent microglia-neuron interactions that impact their functions. By doing so, microglia perform a wide range of physiological roles, including brain homeostasis maintenance, control of neural connectivity, network function modulation, as well as functional and morphological plasticity regulation in health and disease. Here, the author reviews recent evidence of the modulations induced by microglia, a highly heterogeneous cell type, on synaptic and intrinsic neuronal properties, and on neuronal network patterns during perinatal development and adulthood. The reviewed evidence clearly indicates that microglia are important, if not essential, for brain function and plasticity in both health and disease.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| |
Collapse
|
3
|
Zubareva OE, Kharisova AR, Roginskaya AI, Kovalenko AA, Zakharova MV, Schwarz AP, Sinyak DS, Zaitsev AV. PPARβ/δ Agonist GW0742 Modulates Microglial and Astroglial Gene Expression in a Rat Model of Temporal Lobe Epilepsy. Int J Mol Sci 2024; 25:10015. [PMID: 39337503 PMCID: PMC11432388 DOI: 10.3390/ijms251810015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The role of astroglial and microglial cells in the pathogenesis of epilepsy is currently under active investigation. It has been proposed that the activity of these cells may be regulated by the agonists of peroxisome proliferator-activated nuclear receptors (PPARs). This study investigated the effects of a seven-day treatment with the PPAR β/δ agonist GW0742 (Fitorine, 5 mg/kg/day) on the behavior and gene expression of the astroglial and microglial proteins involved in the regulation of epileptogenesis in the rat brain within a lithium-pilocarpine model of temporal lobe epilepsy (TLE). TLE resulted in decreased social and increased locomotor activity in the rats, increased expression of astro- and microglial activation marker genes (Gfap, Aif1), pro- and anti-inflammatory cytokine genes (Tnfa, Il1b, Il1rn), and altered expression of other microglial (Nlrp3, Arg1) and astroglial (Lcn2, S100a10) genes in the dorsal hippocampus and cerebral cortex. GW0742 attenuated, but did not completely block, some of these impairments. Specifically, the treatment affected Gfap gene expression in the dorsal hippocampus and Aif1 gene expression in the cortex. The GW0742 injections attenuated the TLE-specific enhancement of Nlrp3 and Il1rn gene expression in the cortex. These results suggest that GW0742 may affect the expression of some genes involved in the regulation of epileptogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aleksey V. Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 194223 Saint Petersburg, Russia; (O.E.Z.); (A.R.K.); (A.I.R.); (A.A.K.); (M.V.Z.); (A.P.S.); (D.S.S.)
| |
Collapse
|
4
|
Kovács Z, Rauch E, D’Agostino DP, Ari C. Putative Role of Adenosine A1 Receptors in Exogenous Ketone Supplements-Evoked Anti-Epileptic Effect. Int J Mol Sci 2024; 25:9869. [PMID: 39337356 PMCID: PMC11432942 DOI: 10.3390/ijms25189869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Approximately 30% of patients with epilepsy are drug-refractory. There is an urgent need to elucidate the exact pathophysiology of different types of epilepsies and the mechanisms of action of both antiseizure medication and metabolic therapies to treat patients more effectively and safely. For example, it has been demonstrated that exogenous ketone supplement (EKS)-generated therapeutic ketosis, as a metabolic therapy, may decrease epileptic activity in both animal models and humans, but its exact mechanism of action is unknown. However, it was demonstrated that therapeutic ketosis, among others, can increase adenosine level, which may enhance activity of A1 adenosine receptors (A1Rs) in the brain. It has also been demonstrated previously that adenosine has anti-epileptic effect through A1Rs in different models of epilepsies. Thus, it is possible that (i) therapeutic ketosis generated by the administration of EKSs may exert its anti-epileptic effect through, among other mechanisms, increased adenosine level and A1R activity and that (ii) the enhanced activity of A1Rs may be a necessary anti-epileptic mechanism evoked by EKS administration-generated ketosis. Moreover, EKSs can evoke and maintain ketosis without severe side effects. These results also suggest that the therapeutic application of EKS-generated ketosis may be a promising opportunity to treat different types of epilepsies. In this literature review, we specifically focus on the putative role of A1Rs in the anti-epileptic effect of EKS-induced ketosis.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, BDTTC, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary or (Z.K.); (E.R.)
| | - Enikő Rauch
- Department of Biology, BDTTC, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary or (Z.K.); (E.R.)
- Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Dominic P. D’Agostino
- Ketone Technologies LLC., Tampa, FL 33612, USA;
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Csilla Ari
- Ketone Technologies LLC., Tampa, FL 33612, USA;
- Department of Psychology, Behavioral Neuroscience Research Laboratory, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
5
|
Cakmak-Arslan G, Kaya Y, Mamuk S, Akarsu ES, Severcan F. The investigation of the molecular changes during lipopolysaccharide-induced systemic inflammation on rat hippocampus by using FTIR spectroscopy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300541. [PMID: 38531619 DOI: 10.1002/jbio.202300541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The aim of this study is to reveal the molecular changes accompanying the neuronal hyper-excitability during lipopolysaccharide (LPS)-induced systemic inflammation on rat hippocampus using Fourier transform infrared (FTIR) spectroscopy. For this aim, the body temperature of Wistar albino rats administered LPS or saline was recorded by radiotelemetry. The animals were decapitated when their body temperature began to decrease by 0.5°C after LPS treatment and the hippocampi of them were examined by FTIR spectroscopy. The results indicated that systemic inflammation caused lipid peroxidation, an increase in the amounts of lipids, proteins and nucleic acids, a decrease in membrane order, an increase in membrane dynamics and changes in the secondary structure of proteins. Principal component analysis successfully separated control and LPS-treated groups. In conclusion, significant structural, compositional and functional alterations occur in the hippocampus during systemic inflammation and these changes may have specific characteristics which can lead to neuronal hyper-excitability.
Collapse
Affiliation(s)
- Gulgun Cakmak-Arslan
- Department of Biology, Faculty of Arts and Sciences, Duzce University, Duzce, Turkey
| | - Yildiray Kaya
- Department of Biology, Faculty of Arts and Sciences, Duzce University, Duzce, Turkey
| | - Soner Mamuk
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Eyup Sabri Akarsu
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Feride Severcan
- Department of Biophysics, Faculty of Medicine, Altinbas University, Istanbul, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
6
|
Chen J, Gao Y, Liu N, Hai D, Wei W, Liu Y, Lan X, Jin X, Yu J, Ma L. Mechanism of NLRP3 Inflammasome in Epilepsy and Related Therapeutic Agents. Neuroscience 2024; 546:157-177. [PMID: 38574797 DOI: 10.1016/j.neuroscience.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Epilepsy is one of the most widespread and complex diseases in the central nervous system (CNS), affecting approximately 65 million people globally, an important factor resulting in neurological disability-adjusted life year (DALY) and progressive cognitive dysfunction. Medication is the most essential treatment. The currently used drugs have shown drug resistance in some patients and only control symptoms; the development of novel and more efficacious pharmacotherapy is imminent. Increasing evidence suggests neuroinflammation is involved in the occurrence and development of epilepsy, and high expression of NLRP3 inflammasome has been observed in the temporal lobe epilepsy (TLE) brain tissue of patients and animal models. The inflammasome is a crucial cause of neuroinflammation by activating IL-1β and IL-18. Many preclinical studies have confirmed that regulating NLRP3 inflammasome pathway can prevent the development of epilepsy, reduce the severity of epilepsy, and play a neuroprotective role. Therefore, regulating NLRP3 inflammasome could be a potential target for epilepsy treatment. In summary, this review describes the priming and activation of inflammasome and its biological function in the progression of epilepsy. In addition, we reviewes the current pharmacological researches for epilepsy based on the regulation of NLRP3 inflammasome, aiming to provide a basis and reference for developing novel antiepileptic drugs.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Yuan Gao
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Dongmei Hai
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Wei Wei
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Yue Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaobing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Xueqin Jin
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Jianqiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Lin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
7
|
You Y, An DD, Wan YS, Zheng BX, Dai HB, Zhang SH, Zhang XN, Wang RR, Shi P, Jin M, Wang Y, Jiang L, Chen Z, Hu WW. Cell-specific IL-1R1 regulates the regional heterogeneity of microglial displacement of GABAergic synapses and motor learning ability. Cell Mol Life Sci 2024; 81:116. [PMID: 38438808 PMCID: PMC10912170 DOI: 10.1007/s00018-023-05111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 03/06/2024]
Abstract
Microglia regulate synaptic function in various ways, including the microglial displacement of the surrounding GABAergic synapses, which provides important neuroprotection from certain diseases. However, the physiological role and underlying mechanisms of microglial synaptic displacement remain unclear. In this study, we observed that microglia exhibited heterogeneity during the displacement of GABAergic synapses surrounding neuronal soma in different cortical regions under physiological conditions. Through three-dimensional reconstruction, in vitro co-culture, two-photon calcium imaging, and local field potentials recording, we found that IL-1β negatively modulated microglial synaptic displacement to coordinate regional heterogeneity in the motor cortex, which impacted the homeostasis of the neural network and improved motor learning ability. We used the Cre-Loxp system and found that IL-1R1 on glutamatergic neurons, rather than that on microglia or GABAergic neurons, mediated the negative effect of IL-1β on synaptic displacement. This study demonstrates that IL-1β is critical for the regional heterogeneity of synaptic displacement by coordinating different actions of neurons and microglia via IL-1R1, which impacts both neural network homeostasis and motor learning ability. It provides a theoretical basis for elucidating the physiological role and mechanism of microglial displacement of GABAergic synapses.
Collapse
Affiliation(s)
- Yi You
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Da-Dao An
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yu-Shan Wan
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bai-Xiu Zheng
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hai-Bin Dai
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - She-Hong Zhang
- Department of Rehabilitation Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, 313000, China
| | - Xiang-Nan Zhang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Rong-Rong Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Shi
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mingjuan Jin
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, China
| | - Yi Wang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wei-Wei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Chaudhary A, Mehra P, Keshri AK, Rawat SS, Mishra A, Prasad A. The Emerging Role of Toll-Like Receptor-Mediated Neuroinflammatory Signals in Psychiatric Disorders and Acquired Epilepsy. Mol Neurobiol 2024; 61:1527-1542. [PMID: 37725212 DOI: 10.1007/s12035-023-03639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
The new and evolving paradigms of psychiatric disorders pathogenesis are deeply inclined toward chronic inflammation that leads to disturbances in the neuronal networks of patients. A strong association has been established between the inflammation and neurobiology of depression which is mediated by different toll-like receptors (TLRs). TLRs and associated signalling pathways are identified as key immune regulators to stress and infections in neurobiology. They are a special class of transmembrane proteins, which are one of the broadly studied members of the Pattern Recognition Patterns family. This review focuses on summarizing the important findings on the role of TLRs associated with psychotic disorders and acquired epilepsy. This review also shows the promising potential of TLRs in immune response mediated through antidepressant therapies and TLRs polymorphism associated with various psychotic disorders. Moreover, this also sheds light on future directions to further target TLRs as a therapeutic approach for psychiatric disorders.
Collapse
Affiliation(s)
- Anubha Chaudhary
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Parul Mehra
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Anand K Keshri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Suraj S Rawat
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342011, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
- Indian Knowledge System and Mental Health Application Centre, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
- Human Computer Interface Centre, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
| |
Collapse
|
9
|
Lankhuijzen LM, Ridler T. Opioids, microglia, and temporal lobe epilepsy. Front Neurol 2024; 14:1298489. [PMID: 38249734 PMCID: PMC10796828 DOI: 10.3389/fneur.2023.1298489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
A lack of treatment options for temporal lobe epilepsy (TLE) demands an urgent quest for new therapies to recover neuronal damage and reduce seizures, potentially interrupting the neurotoxic cascades that fuel hyper-excitability. Endogenous opioids, along with their respective receptors, particularly dynorphin and kappa-opioid-receptor, present as attractive candidates for controlling neuronal excitability and therapeutics in epilepsy. We perform a critical review of the literature to evaluate the role of opioids in modulating microglial function and morphology in epilepsy. We find that, in accordance with anticonvulsant effects, acute opioid receptor activation has unique abilities to modulate microglial activation through toll-like 4 receptors, regulating downstream secretion of cytokines. Abnormal activation of microglia is a dominant feature of neuroinflammation, and inflammatory cytokines are found to aggravate TLE, inspiring the challenge to alter microglial activation by opioids to suppress seizures. We further evaluate how opioids can modulate microglial activation in epilepsy to enhance neuroprotection and reduce seizures. With controlled application, opioids may interrupt inflammatory cycles in epilepsy, to protect neuronal function and reduce seizures. Research on opioid-microglia interactions has important implications for epilepsy and healthcare approaches. However, preclinical research on opioid modulation of microglia supports a new therapeutic pathway for TLE.
Collapse
Affiliation(s)
| | - Thomas Ridler
- Hatherly Laboratories, Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
10
|
Dong W, Zhao H, Xiao S, Zheng L, Fan T, Wang L, Zhang H, Hu Y, Yang J, Wang T, Xiao W. Single-cell RNA-seq analyses inform necroptosis-associated myeloid lineages influence the immune landscape of pancreas cancer. Front Immunol 2023; 14:1263633. [PMID: 38149248 PMCID: PMC10749962 DOI: 10.3389/fimmu.2023.1263633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Tumor-infiltrating myeloid cells (TIMs) are key regulators in tumor progression, but the similarity and distinction of their fundamental properties in pancreatic ductal adenocarcinoma (PDAC) remain elusive. Method In this study, we conducted scRNA-seq data analysis of cells from 12 primary tumor (PT) tissues, 4 metastatic (Met) tumor tissues, 3 adjacent normal pancreas tissues (Para), and PBMC samples across 16 PDAC patients, and revealed a heterogeneous TIMs environment in PDAC. Result Systematic comparisons between tumor and non-tumor samples of myeloid lineages identified 10 necroptosis-associated genes upregulated in PDAC tumors compared to 5 upregulated in paratumor or healthy peripheral blood. A novel RTM (resident tissue macrophages), GLUL-SQSTM1- RTM, was found to act as a positive regulator of immunity. Additionally, HSP90AA1+HSP90AB1+ mast cells exhibited pro-immune characteristics, and JAK3+TLR4+ CD16 monocytes were found to be anti-immune. The findings were validated through clinical outcomes and cytokines analyses. Lastly, intercellular network reconstruction supported the associations between the identified novel clusters, cancer cells, and immune cell populations. Conclusion Our analysis comprehensively characterized major myeloid cell lineages and identified three subsets of myeloid-derived cells associated with necroptosis. These findings not only provide a valuable resource for understanding the multi-dimensional characterization of the tumor microenvironment in PDAC but also offer valuable mechanistic insights that can guide the design of effective immuno-oncology treatment strategies.
Collapse
Affiliation(s)
- Weiwei Dong
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huixia Zhao
- Dept of Oncology, The Forth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shanshan Xiao
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Liuqing Zheng
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Tongqiang Fan
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Li Wang
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - He Zhang
- Dept of Oncology, The Forth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yanyan Hu
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jingwen Yang
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Tao Wang
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Wenhua Xiao
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
11
|
Neuroinflammation microenvironment sharpens seizure circuit. Neurobiol Dis 2023; 178:106027. [PMID: 36736598 DOI: 10.1016/j.nbd.2023.106027] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
A large set of inflammatory molecules and their receptors are induced in epileptogenic foci of patients with pharmacoresistant epilepsies of structural etiologies or with refractory status epilepticus. Studies in animal models mimicking these clinical conditions have shown that the activation of specific inflammatory signallings in forebrain neurons or glial cells may modify seizure thresholds, thus contributing to both ictogenesis and epileptogenesis. The search for mechanisms underlying these effects has highlighted that inflammatory mediators have CNS-specific neuromodulatory functions, in addition to their canonical activation of immune responses for pathogen recognition and clearance. This review reports the neuromodulatory effects of inflammatory mediators and how they contribute to alter the inhibitory/excitatory balance in neural networks that underlie seizures. In particular, we describe key findings related to the ictogenic role of prototypical inflammatory cytokines (IL-1β and TNF) and danger signals (HMGB1), their modulatory effects of neuronal excitability, and the mechanisms underlying these effects. It will be discussed how harnessing these neuromodulatory properties of immune mediators may lead to novel therapies to control drug-resistant seizures.
Collapse
|
12
|
Vezzani A, Di Sapia R, Kebede V, Balosso S, Ravizza T. Neuroimmunology of status epilepticus. Epilepsy Behav 2023; 140:109095. [PMID: 36753859 DOI: 10.1016/j.yebeh.2023.109095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/14/2023] [Indexed: 02/09/2023]
Abstract
Status epilepticus (SE) is a very heterogeneous clinical condition often refractory to available treatment options. Evidence in animal models shows that neuroinflammation arises in the brain during SE due to the activation of innate immune mechanisms in brain parenchyma cells. Intervention studies in animal models support the involvement of neuroinflammation in SE onset, duration, and severity, refractoriness to treatments, and long-term neurological consequences. Clinical evidence shows that neuroinflammation occurs in patients with SE of diverse etiologies likely representing a common phenomenon, thus broadening the involvement of the immune system beyond the infective and autoimmune etiologies. There is urgent need for novel therapies for refractory SE that rely upon a better understanding of the basic mechanisms underlying this clinical condition. Preclinical and clinical evidence encourage consideration of specific anti-inflammatory treatments for controlling SE and its consequences in patients.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy.
| | - Rossella Di Sapia
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Valentina Kebede
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Silvia Balosso
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Teresa Ravizza
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| |
Collapse
|
13
|
Kumar S, Mehan S, Narula AS. Therapeutic modulation of JAK-STAT, mTOR, and PPAR-γ signaling in neurological dysfunctions. J Mol Med (Berl) 2023; 101:9-49. [PMID: 36478124 DOI: 10.1007/s00109-022-02272-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
The cytokine-activated Janus kinase (JAK)-signal transducer and activator of transcription (STAT) cascade is a pleiotropic pathway that involves receptor subunit multimerization. The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine-threonine kinase that perceives and integrates a variety of intracellular and environmental stimuli to regulate essential activities such as cell development and metabolism. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a prototypical metabolic nuclear receptor involved in neural differentiation and axon polarity. The JAK-STAT, mTOR, and PPARγ signaling pathways serve as a highly conserved signaling hub that coordinates neuronal activity and brain development. Additionally, overactivation of JAK/STAT, mTOR, and inhibition of PPARγ signaling have been linked to various neurocomplications, including neuroinflammation, apoptosis, and oxidative stress. Emerging research suggests that even minor disruptions in these cellular and molecular processes can have significant consequences manifested as neurological and neuropsychiatric diseases. Of interest, target modulators have been proven to alleviate neuronal complications associated with acute and chronic neurological deficits. This research-based review explores the therapeutic role of JAK-STAT, mTOR, and PPARγ signaling modulators in preventing neuronal dysfunctions in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India.
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
14
|
Henning L, Antony H, Breuer A, Müller J, Seifert G, Audinat E, Singh P, Brosseron F, Heneka MT, Steinhäuser C, Bedner P. Reactive microglia are the major source of tumor necrosis factor alpha and contribute to astrocyte dysfunction and acute seizures in experimental temporal lobe epilepsy. Glia 2023; 71:168-186. [PMID: 36373840 DOI: 10.1002/glia.24265] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Extensive microglia reactivity has been well described in human and experimental temporal lobe epilepsy (TLE). To date, however, it is not clear whether and based on which molecular mechanisms microglia contribute to the development and progression of focal epilepsy. Astroglial gap junction coupled networks play an important role in regulating neuronal activity and loss of interastrocytic coupling causally contributes to TLE. Here, we show in the unilateral intracortical kainate (KA) mouse model of TLE that reactive microglia are primary producers of tumor necrosis factor (TNF)α and contribute to astrocyte dysfunction and severity of status epilepticus (SE). Immunohistochemical analyses revealed pronounced and persistent microglia reactivity, which already started 4 h after KA-induced SE. Partial depletion of microglia using a colony stimulating factor 1 receptor inhibitor prevented early astrocyte uncoupling and attenuated the severity of SE, but increased the mortality of epileptic mice following surgery. Using microglia-specific inducible TNFα knockout mice we identified microglia as the major source of TNFα during early epileptogenesis. Importantly, microglia-specific TNFα knockout prevented SE-induced gap junction uncoupling in astrocytes. Continuous telemetric EEG recordings revealed that during the first 4 weeks after SE induction, microglial TNFα did not significantly contribute to spontaneous generalized seizure activity. Moreover, the absence of microglial TNFα did not affect the development of hippocampal sclerosis but attenuated gliosis. Taken together, these data implicate reactive microglia in astrocyte dysfunction and network hyperexcitability after an epileptogenic insult.
Collapse
Affiliation(s)
- Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Henrike Antony
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annika Breuer
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Etienne Audinat
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | | | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Shrestha A, Wood EL, Berrios-Siervo G, Stredny CM, Boyer K, Vega C, Nangia S, Muscal E, Eschbach K. Long-term neuropsychological outcomes in children with febrile infection-related epilepsy syndrome (FIRES) treated with anakinra. Front Neurol 2023; 14:1100551. [PMID: 36970506 PMCID: PMC10030614 DOI: 10.3389/fneur.2023.1100551] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Background Febrile-infection related epilepsy syndrome (FIRES) is a rare epilepsy syndrome in which a previously healthy individual develops refractory status epilepticus in the setting of a preceding febrile illness. There are limited data regarding detailed long-term outcomes. This study aims to describe the long-term neuropsychological outcomes in a series of pediatric patients with FIRES. Methods This is a retrospective multi-center case series of pediatric patients with a diagnosis of FIRES treated acutely with anakinra who had neuropsychological testing at least 12 months after status epilepticus onset. Each patient underwent comprehensive neuropsychological evaluation as part of routine clinical care. Additional data collection included the acute seizure presentation, medication exposures, and outcomes. Results There were six patients identified with a median age of 11.08 years (IQR: 8.19-11.23) at status epilepticus onset. Anakinra initiation was a median of 11 days (IQR: 9.25-13.50) after hospital admission. All patients had ongoing seizures and none of the patients returned to baseline cognitive function with a median follow-up of 40 months (IQR 35-51). Of the five patients with serial full-scale IQ testing, three demonstrated a decline in scores over time. Testing results revealed a diffuse pattern of deficits across domains and all patients required special education and/or accommodations for academic learning. Conclusions Despite treatment with anakinra, neuropsychological outcomes in this series of pediatric patients with FIRES demonstrated ongoing diffuse neurocognitive impairment. Future research will need to explore the predictors of long-term neurocognitive outcomes in patients with FIRES and to evaluate if acute treatment interventions improve these outcomes.
Collapse
Affiliation(s)
- Anima Shrestha
- University of Colorado School of Medicine, Aurora, CO, United States
| | - E. Lynne Wood
- Department of Pediatrics, Section of Neurology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Gretchen Berrios-Siervo
- Department of Pediatrics, Section of Neurology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Coral M. Stredny
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, United States
- Program in Neuroimmunology, Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Katrina Boyer
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Clemente Vega
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Srishti Nangia
- Department of Child Neurology, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, United States
| | - Eyal Muscal
- Department of Pediatrics and Child Neurology (Co-appointment), Baylor College of Medicine, Houston, TX, United States
| | - Krista Eschbach
- Department of Pediatrics, Section of Neurology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
- *Correspondence: Krista Eschbach
| |
Collapse
|
16
|
An J, Li H, Xia D, Xu B, Wang J, Qiu H, He J. The role of interleukin-17 in epilepsy. Epilepsy Res 2022; 186:107001. [PMID: 35994860 DOI: 10.1016/j.eplepsyres.2022.107001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
Epilepsy is a common neurological disorder that seriously affects human health. It is a chronic central nervous system dysfunction caused by abnormal discharges of neurons. About 50 million patients worldwide are affected by epilepsy. Although epileptic symptoms of most patients are controllable, some patients with refractory epilepsy have no response to antiseizure medications. It is necessary to investigate the pathogenesis of epilepsy and identify new therapeutic targets for refractory epilepsy. Epileptic disorders often accompany cerebral inflammatory reactions. Recently, the role of inflammation in the onset of epilepsy has increasingly attracted attention. The activation of both innate and adaptive immunity plays a significant role in refractory epilepsy. According to several clinical studies, interleukin-17, an essential inflammatory mediator linking innate and adaptive immunity, increased significantly in the body liquid and epileptic focus of patients with epilepsy. Experimental studies also indicated that interleukin-17 participated in epileptogenesis through various mechanisms. This review summarized the current studies about interleukin-17 in epilepsy and aimed at finding new therapeutic targets for refractory epilepsy.
Collapse
Affiliation(s)
- Jiayin An
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China.
| | - He Li
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China.
| | - Demeng Xia
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China; Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, China.
| | - Bin Xu
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China.
| | - Jiayan Wang
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China.
| | - Huahui Qiu
- Zhoushan Hospital, Zhejiang University, Zhoushan, Zhejiang, China.
| | - Jiaojiang He
- Department of Neurosurgery, West China Hospital of Sichuan University, Sichuan, China.
| |
Collapse
|
17
|
Somkhit J, Yanicostas C, Soussi-Yanicostas N. Microglia Remodelling and Neuroinflammation Parallel Neuronal Hyperactivation Following Acute Organophosphate Poisoning. Int J Mol Sci 2022; 23:ijms23158240. [PMID: 35897817 PMCID: PMC9332153 DOI: 10.3390/ijms23158240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Organophosphate (OP) compounds include highly toxic chemicals widely used both as pesticides and as warfare nerve agents. Existing countermeasures are lifesaving, but do not alleviate all long-term neurological sequelae, making OP poisoning a public health concern worldwide and the search for fully efficient antidotes an urgent need. OPs cause irreversible acetylcholinesterase (AChE) inhibition, inducing the so-called cholinergic syndrome characterized by peripheral manifestations and seizures associated with permanent psychomotor deficits. Besides immediate neurotoxicity, recent data have also identified neuroinflammation and microglia activation as two processes that likely play an important, albeit poorly understood, role in the physiopathology of OP intoxication and its long-term consequences. To gain insight into the response of microglia to OP poisoning, we used a previously described model of diisopropylfluorophosphate (DFP) intoxication of zebrafish larvae. This model reproduces almost all the defects seen in poisoned humans and preclinical models, including AChE inhibition, neuronal epileptiform hyperexcitation, and increased neuronal death. Here, we investigated in vivo the consequences of acute DFP exposure on microglia morphology and behaviour, and on the expression of a set of pro- and anti-inflammatory cytokines. We also used a genetic method of microglial ablation to evaluate the role in the OP-induced neuropathology. We first showed that DFP intoxication rapidly induced deep microglial phenotypic remodelling resembling that seen in M1-type activated macrophages and characterized by an amoeboid morphology, reduced branching, and increased mobility. DFP intoxication also caused massive expression of genes encoding pro-inflammatory cytokines Il1β, Tnfα, Il8, and to a lesser extent, immuno-modulatory cytokine Il4, suggesting complex microglial reprogramming that included neuroinflammatory activities. Finally, microglia-depleted larvae were instrumental in showing that microglia were major actors in DFP-induced neuroinflammation and, more importantly, that OP-induced neuronal hyperactivation was markedly reduced in larvae fully devoid of microglia. DFP poisoning rapidly triggered massive microglia-mediated neuroinflammation, probably as a result of DFP-induced neuronal hyperexcitation, which in turn further exacerbated neuronal activation. Microglia are thus a relevant therapeutic target, and identifying substances reducing microglial activation could add efficacy to existing OP antidote cocktails.
Collapse
|
18
|
Ferlini L, Nonclercq A, Su F, Creteur J, Taccone FS, Gaspard N. Sepsis modulates cortical excitability and alters the local and systemic hemodynamic response to seizures. Sci Rep 2022; 12:11336. [PMID: 35790848 PMCID: PMC9256588 DOI: 10.1038/s41598-022-15426-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Non-convulsive seizures and status epilepticus are frequent and associated with increased mortality in septic patients. However, the mechanism through which seizures impact outcome in these patients is unclear. As previous studies yielded an alteration of neurovascular coupling (NVC) during sepsis, we hypothesized that non-convulsive seizures, might further impair NVC, leading to brain tissue hypoxia. We used a previously developed ovine model of sepsis. Animals were allocated to sham procedure or sepsis; septic animals were studied either during the hyperdynamic phase (sepsis group) or after septic shock occurrence (septic shock group). After allocation, seizures were induced by cortical application of penicillin. We recorded a greater seizure-induced increase in the EEG gamma power in the sepsis group than in sham. Using a neural mass model, we also found that the theoretical activity of the modeled inhibitory interneurons, thought to be important to reproduce gamma oscillations, were relatively greater in the sepsis group. However, the NVC was impaired in sepsis animals, despite a normal brain tissue oxygenation. In septic shock animals, it was not possible to induce seizures. Cortical activity declined in case of septic shock, but it did not differ between sham or sepsis animals. As the alteration in NVC preceded cortical activity reduction, we suggest that, during sepsis progression, the NVC inefficiency could be partially responsible for the alteration of brain function, which might prevent seizure occurrence during septic shock. Moreover, we showed that cardiac output decreased during seizures in sepsis animals instead of increasing as in shams. The alteration of the seizure-induced systemic hemodynamic variations in sepsis might further affect cerebrovascular response to neuronal activation. Our findings support the hypothesis that anomalies in the cerebral blood flow regulation may contribute to the sepsis-associated encephalopathy and that seizures might be dangerous in such a vulnerable setting.
Collapse
Affiliation(s)
- Lorenzo Ferlini
- Department of Neurology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Antoine Nonclercq
- Bio-, Electro- And Mechanical Systems (BEAMS), Université Libre de Bruxelles, Avenue F.D. Roosevelt 50 CP165/56, 1050, Brussels, Belgium
| | - Fuhong Su
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Nicolas Gaspard
- Department of Neurology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium.
| |
Collapse
|
19
|
Targa Dias Anastacio H, Matosin N, Ooi L. Neuronal hyperexcitability in Alzheimer's disease: what are the drivers behind this aberrant phenotype? Transl Psychiatry 2022; 12:257. [PMID: 35732622 PMCID: PMC9217953 DOI: 10.1038/s41398-022-02024-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to loss of cognitive abilities and ultimately, death. With no cure available, limited treatments mostly focus on symptom management. Identifying early changes in the disease course may provide new therapeutic targets to halt or reverse disease progression. Clinical studies have shown that cortical and hippocampal hyperactivity are a feature shared by patients in the early stages of disease, progressing to hypoactivity during later stages of neurodegeneration. The exact mechanisms causing neuronal excitability changes are not fully characterized; however, animal and cell models have provided insights into some of the factors involved in this phenotype. In this review, we summarize the evidence for neuronal excitability changes over the course of AD onset and progression and the molecular mechanisms underpinning these differences. Specifically, we discuss contributors to aberrant neuronal excitability, including abnormal levels of intracellular Ca2+ and glutamate, pathological amyloid β (Aβ) and tau, genetic risk factors, including APOE, and impaired inhibitory interneuron and glial function. In light of recent research indicating hyperexcitability could be a predictive marker of cognitive dysfunction, we further argue that the hyperexcitability phenotype could be leveraged to improve the diagnosis and treatment of AD, and present potential targets for future AD treatment development.
Collapse
Affiliation(s)
- Helena Targa Dias Anastacio
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Natalie Matosin
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia. .,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
20
|
Chen TS, Lai MC, Huang HYI, Wu SN, Huang CW. Immunity, Ion Channels and Epilepsy. Int J Mol Sci 2022; 23:6446. [PMID: 35742889 PMCID: PMC9224225 DOI: 10.3390/ijms23126446] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
Epilepsy is a common chronic neurological disorder in modern society. One of the major unmet challenges is that current antiseizure medications are basically not disease-modifying. Among the multifaceted etiologies of epilepsy, the role of the immune system has attracted considerable attention in recent years. It is known that both innate and adaptive immunity can be activated in response to insults to the central nervous system, leading to seizures. Moreover, the interaction between ion channels, which have a well-established role in epileptogenesis and epilepsy, and the immune system is complex and is being actively investigated. Some examples, including the interaction between ion channels and mTOR pathways, will be discussed in this paper. Furthermore, there has been substantial progress in our understanding of the pathophysiology of epilepsy associated with autoimmune encephalitis, and numerous neural-specific autoantibodies have been found and documented. Early recognition of immune-mediated epilepsy is important, especially in cases of pharmacoresistant epilepsy and in the presence of signs of autoimmune encephalitis, as early intervention with immunotherapy shows promise.
Collapse
Affiliation(s)
- Tsang-Shan Chen
- Department of Neurology, Tainan Sin-Lau Hospital, Tainan 701002, Taiwan;
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan 71004, Taiwan;
| | | | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
21
|
Kaneko KI, Irie S, Mawatari A, Igesaka A, Hu D, Nakaoka T, Hayashinaka E, Wada Y, Doi H, Watanabe Y, Cui Y. [ 18F]DPA-714 PET imaging for the quantitative evaluation of early spatiotemporal changes of neuroinflammation in rat brain following status epilepticus. Eur J Nucl Med Mol Imaging 2022; 49:2265-2275. [PMID: 35157105 DOI: 10.1007/s00259-022-05719-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/06/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Most antiepileptic drug therapies are symptomatic and adversely suppress normal brain function by nonspecific inhibition of neuronal activity. In recent times, growing evidence has suggested that neuroinflammation triggered by epileptic seizures might be involved in the pathogenesis of epilepsy. Although the potential effectiveness of anti-inflammatory treatment for curing epilepsy has been extensively discussed, the limited quantitative data regarding spatiotemporal characteristics of neuroinflammation after epileptic seizures makes it difficult to be realized. We quantitatively analyzed the spatiotemporal changes in neuroinflammation in the early phase after status epilepticus in rats, using translocator protein (TSPO) positron emission tomography (PET) imaging, which has been widely used for the quantitative evaluation of neuroinflammation in several animal models of CNS disease. METHODS The second-generation TSPO PET probe, [18F]DPA-714, was used for brain-wide quantitative analysis of neuroinflammation in the brains of rats, when the status epilepticus was induced by subcutaneous injection of kainic acid (KA, 15 mg/kg) into those rats. A series of [18F]DPA-714 PET scans were performed at 1, 3, 7, and 15 days after status epilepticus, and the corresponding histological changes, including activation of microglia and astrocytes, were confirmed by immunohistochemistry. RESULTS Apparent accumulation of [18F]DPA-714 was observed in several KA-induced epileptogenic regions, such as the amygdala, piriform cortex, ventral hippocampus, mediodorsal thalamus, and cortical regions 3 days after status epilepticus, and was reversibly displaced by unlabeled PK11195 (1 mg/kg). Consecutive [18F]DPA-714 PET scans revealed that accumulation of [18F]DPA-714 was focused in the KA-induced epileptogenic regions from 3 days after status epilepticus and was further maintained in the amygdala and piriform cortex until 7 days after status epilepticus. Immunohistochemical analysis revealed that activated microglia but not reactive astrocytes were correlated with [18F]DPA-714 accumulation in the KA-induced epileptogenic regions for at least 1 week after status epilepticus. CONCLUSIONS These results indicate that the early spatiotemporal characteristics of neuroinflammation quantitatively evaluated by [18F]DPA-714 PET imaging provide valuable evidence for developing new anti-inflammatory therapies for epilepsy. The predominant activation of microglia around epileptogenic regions in the early phase after status epilepticus could be a crucial therapeutic target for curing epilepsy.
Collapse
Affiliation(s)
- Ken-Ichi Kaneko
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Satsuki Irie
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Aya Mawatari
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Ami Igesaka
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Di Hu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Takayoshi Nakaoka
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Emi Hayashinaka
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Wada
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hisashi Doi
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yilong Cui
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
22
|
Systemic Administration of Lipopolysaccharide Induces Hyperexcitability of Prelimbic Neurons via modulation of Sodium and Potassium Currents. Neurotoxicology 2022; 91:128-139. [DOI: 10.1016/j.neuro.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
|
23
|
Aygun H, Akin AT, Kızılaslan N, Sumbul O, Karabulut D. Probiotic supplementation alleviates absence seizures and anxiety- and depression-like behavior in WAG/Rij rat by increasing neurotrophic factors and decreasing proinflammatory cytokines. Epilepsy Behav 2022; 128:108588. [PMID: 35152169 DOI: 10.1016/j.yebeh.2022.108588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 01/15/2023]
Abstract
AIM Epilepsy is one of the most common chronic brain disorders that affect millions of people worldwide. In the present study, we investigated the effects of probiotic supplementation on absence epilepsy and anxiety-and depression-like behavior in WAG/Rij rats. MATERIAL AND METHOD Fourteen male WAG/Rij rats (absence-epileptic) and seven male Wistar rats (nonepileptic) were used. The effects of probiotic VSL#3 (12.86 bn living bacteria/kg/day for 30 day/gavage) on absence seizures, and related psychiatric comorbidities were evaluated in WAG/Rij rats. Anxiety-like behavior was evaluated by the open-field test and depression-like behavior by the forced swimming test. In addition, the brain tissues of rats were evaluated histopathologically for nerve growth factor [NGF], brain-derived neurotrophic factor [BDNF], SRY sex-determining region Y-box 2 [SOX2] and biochemically for nitric oxide [NO], tumor necrosis factor-alpha [TNF-α] ,and Interleukin-6 [IL-6]. RESULTS Compared to Wistar rats, WAG/Rij rats exhibited anxiety- and depression-like behavior, and had lower BDNF, NGF and SOX2 immunoreactivity, and higher TNF-α, IL-6 levels in brain tissue. VSL#3 supplementation reduced the duration and number of spike-wave discharges (SWDs) and exhibited anxiolytic or anti-depressive effect. VSL#3 supplement also increased the NGF immunoreactivity while decreasing IL-6, TNF-α and NO levels in WAG/Rij rat brain. CONCLUSION The findings of the present study showed that neurotrophins, SOX2 deficiency, and pro-inflammatory cytokines may play a role in the pathogenesis of absence epilepsy. Our data support the hypothesis that the probiotics have anti-inflammatory effect. The present study is the first to show the positive effects of probiotic bacteria on absence seizures and anxiety- and depression-like behavior.
Collapse
Affiliation(s)
- Hatice Aygun
- Department of Physiology, Faculty of Medicine, University of Tokat Gaziosmanpasa, Tokat, Turkey.
| | - Ali Tugrul Akin
- Department of Biology, Faculty of Science and Literature, University of Erciyes, Kayseri, Turkey
| | - Nildem Kızılaslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Tokat Gaziosmanpasa Tokat, Turkey
| | - Orhan Sumbul
- Department of Neurology Faculty of Medicine University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Derya Karabulut
- Department of Histology-Embryology, Faculty of Medicine, University of Erciyes, Kayseri, Turkey
| |
Collapse
|
24
|
Soltani Khaboushan A, Yazdanpanah N, Rezaei N. Neuroinflammation and Proinflammatory Cytokines in Epileptogenesis. Mol Neurobiol 2022; 59:1724-1743. [PMID: 35015252 DOI: 10.1007/s12035-022-02725-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence corroborates the fundamental role of neuroinflammation in the development of epilepsy. Proinflammatory cytokines (PICs) are crucial contributors to the inflammatory reactions in the brain. It is evidenced that epileptic seizures are associated with elevated levels of PICs, particularly interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), which underscores the impact of neuroinflammation and PICs on hyperexcitability of the brain and epileptogenesis. Since the pathophysiology of epilepsy is unknown, determining the possible roles of PICs in epileptogenesis could facilitate unraveling the pathophysiology of epilepsy. About one-third of epileptic patients are drug-resistant, and existing treatments only resolve symptoms and do not inhibit epileptogenesis; thus, treatment of epilepsy is still challenging. Accordingly, understanding the function of PICs in epilepsy could provide us with promising targets for the treatment of epilepsy, especially drug-resistant type. In this review, we outline the role of neuroinflammation and its primary mediators, including IL-1β, IL-1α, IL-6, IL-17, IL-18, TNF-α, and interferon-γ (IFN-γ) in the pathophysiology of epilepsy. Furthermore, we discuss the potential therapeutic targeting of PICs and cytokine receptors in the treatment of epilepsy.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
| |
Collapse
|
25
|
Orlandi N, Giovannini G, Mirandola L, Monti G, Marudi A, Mosca F, Lalla A, d'Orsi G, Francavilla M, Meletti S. An ultra-long new onset refractory status epilepticus: Winning the battle but losing the war? Epilepsy Behav Rep 2022; 18:100537. [PMID: 35445189 PMCID: PMC9014360 DOI: 10.1016/j.ebr.2022.100537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Enduring epileptic seizures can lead to a wide array of neuroradiological and EEG alterations. Even in case of resolution, ultra-long NORSE has severe and disabling consequences. NORSE of unknown etiology is a therapeutic challenge. This case points out the need for disease modifying treatments in NORSE.
New onset refractory status epilepticus (NORSE), is a rare and challenging condition occurring in previously healthy people. The etiology often remains undiscovered and is frequently associated with an unfavorable outcome. We report the electroclinical and neuroradiological evolution of an ultra-long case of NORSE of unknown etiology. A 38-year-old woman with a prodrome of fever, vomiting and diarrhea was admitted to our Intensive Care Unit for refractory convulsive status epilepticus (SE). Her past medical history was unremarkable. Extensive examinations were negative for potential viral, autoimmune and metabolic etiologies. Despite multiple therapeutical attempts with antiseizures medications, anesthetics and immunotherapy, seizures persisted. After nearly 6 months of enduring seizures, SE finally ceased and the patient gradually recovered to a minimum state of awareness. She was then able to communicate through one-word utterances and to understand simple tasks. At a three-years follow-up, she developed multifocal drug-resistant epilepsy, subcortical myoclonus and severe spastic quadraparesis, becoming completely dependent for activities of daily living. To our knowledge, this represents one of the longest cases of NORSE with final status resolution at this time. However, ultra-long SE in this case led to severe and disabling neurological sequelae. Future studies focused on disease modifying treatments for refractory SE are needed.
Collapse
Affiliation(s)
- Niccolò Orlandi
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Giada Giovannini
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Mirandola
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, San Giovanni Bosco Hospital, Turin, Italy
| | - Giulia Monti
- Neurology Unit, Ospedale Ramazzini di Carpi, AUSL Modena, Italy
| | - Andrea Marudi
- Intensive Care Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
| | - Francesco Mosca
- Intensive Care Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
| | - Alessandra Lalla
- Epilepsy Centre – S.C. Neurologia Universitaria, Policlinico Riuniti, Foggia, Italy
| | - Giuseppe d'Orsi
- Neurology Unit, IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | | | - Stefano Meletti
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
- Corresponding author at: Department of Biomedical, Metabolic, and Neural Sciences, Center for Neurosciences and Neurotechnology, University of Modena and Reggio Emilia, Via Giardini, 1355 – Ospedale Civile S. Agostino Estense, Modena 41126, Italy.
| |
Collapse
|
26
|
Ping X, Chai Z, Wang W, Ma C, White FA, Jin X. Blocking receptor for advanced glycation end products (RAGE) or toll-like receptor 4 (TLR4) prevents posttraumatic epileptogenesis in mice. Epilepsia 2021; 62:3105-3116. [PMID: 34535891 DOI: 10.1111/epi.17069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Effective treatment for the prevention of posttraumatic epilepsy is still not available. Here, we sought to determine whether blocking receptor for advanced glycation end products (RAGE) or toll-like receptor 4 (TLR4) signaling pathways would prevent posttraumatic epileptogenesis. METHODS In a mouse undercut model of posttraumatic epilepsy, daily injections of saline, RAGE monoclonal antibody (mAb), or TAK242, a TLR4 inhibitor, were made for 1 week. Their effects on seizure susceptibility and spontaneous epileptic seizures were evaluated with a pentylenetetrazol (PTZ) test in 2 weeks and with continuous video and wireless electroencephalography (EEG) monitoring between 2 and 6 weeks after injury, respectively. Seizure susceptibility after undercut in RAGE knockout mice was also evaluated with the PTZ test. The lesioned cortex was analyzed with immunohistology. RESULTS Undercut animals treated with RAGE mAb or TAK242 showed significantly higher seizure threshold than saline-treated undercut mice. Consistently, undercut injury in RAGE knockout mice did not cause a reduction in seizure threshold in the PTZ test. EEG and video recordings revealed a significant decrease in the cumulative spontaneous seizure events in the RAGE mAb- or TAK242-treated group (p < 0.001, when the RAGE mAb or TAK242 group is compared with the saline group). The lesioned cortical tissues of RAGE mAb- or TAK242-treated undercut group showed higher neuronal densities of Nissl staining and higher densities of glutamic acid decarboxylase 67-immunoreactive interneurons than the saline-treated undercut group. Immunostaining to GFAP and Iba-1 revealed lower densities of astrocytes and microglia in the cortex of the treatment groups, suggesting reduced glia activation. SIGNIFICANCE RAGE and TLR4 signaling are critically involved in posttraumatic epileptogenesis. Blocking these pathways early after traumatic brain injury is a promising strategy for preventing posttraumatic epilepsy.
Collapse
Affiliation(s)
- Xingjie Ping
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhi Chai
- Neurobiology Research Center, Shanxi Key Laboratory of Innovative Drugs for Serious Illness, College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Weiping Wang
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cungen Ma
- Neurobiology Research Center, Shanxi Key Laboratory of Innovative Drugs for Serious Illness, College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Fletcher A White
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Research and Development Services, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Xiaoming Jin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
27
|
Odoj K, Brawek B, Asavapanumas N, Mojtahedi N, Heneka MT, Garaschuk O. In vivo mechanisms of cortical network dysfunction induced by systemic inflammation. Brain Behav Immun 2021; 96:113-126. [PMID: 34052361 DOI: 10.1016/j.bbi.2021.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/22/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
Peripheral inflammation is known to impact brain function, resulting in lethargy, loss of appetite and impaired cognitive abilities. However, the channels for information transfer from the periphery to the brain, the corresponding signaling molecules and the inflammation-induced interaction between microglia and neurons remain obscure. Here, we used longitudinal in vivo two-photon Ca2+ imaging to monitor neuronal activity in the mouse cortex throughout the early (initiation) and late (resolution) phases of peripheral inflammation. Single peripheral lipopolysaccharide injection induced a substantial but transient increase in ongoing neuronal activity, restricted to the initiation phase, whereas the impairment of visual processing was selectively observed during the resolution phase of systemic inflammation. In the frontal/motor cortex, the initiation phase-specific cortical hyperactivity was seen in the deep (layer 5) and superficial (layer 2/3) pyramidal neurons but not in the axons coming from the somatosensory cortex, and was accompanied by reduced activity of layer 2/3 cortical interneurons. Moreover, the hyperactivity was preserved after depletion of microglia and in NLRP3-/- mice but absent in TNF-α-/- mice. Together, these data identify microglia-independent and TNF-α-mediated reduction of cortical inhibition as a likely cause of the initiation phase-specific cortical hyperactivity and reveal the resolution phase-specific impairment of sensory processing, presumably caused by activated microglia.
Collapse
Affiliation(s)
- Karin Odoj
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Bianca Brawek
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nithi Asavapanumas
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nima Mojtahedi
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
28
|
Role of Innate Immune Receptor TLR4 and its endogenous ligands in epileptogenesis. Pharmacol Res 2020; 160:105172. [PMID: 32871246 DOI: 10.1016/j.phrs.2020.105172] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
Understanding the interplay between the innate immune system, neuroinflammation, and epilepsy might offer a novel perspective in the quest of exploring new treatment strategies. Due to the complex pathology underlying epileptogenesis, no disease-modifying treatment is currently available that might prevent epilepsy after a plausible epileptogenic insult despite the advances in pre-clinical and clinical research. Neuroinflammation underlies the etiopathogenesis of epilepsy and convulsive disorders with Toll-like receptor (TLR) signal transduction being highly involved. Among TLR family members, TLR4 is an innate immune system receptor and lipopolysaccharide (LPS) sensor that has been reported to contribute to epileptogenesis by regulating neuronal excitability. Herein, we discuss available evidence on the role of TLR4 and its endogenous ligands, the high mobility group box 1 (HMGB1) protein, the heat shock proteins (HSPs) and the myeloid related protein 8 (MRP8), in epileptogenesis and post-traumatic epilepsy (PTE). Moreover, we provide an account of the promising findings of TLR4 modulation/inhibition in experimental animal models with therapeutic impact on seizures.
Collapse
|
29
|
Minocycline prevents neuronal hyperexcitability and neuroinflammation in medial prefrontal cortex, as well as memory impairment caused by repeated toluene inhalation in adolescent rats. Toxicol Appl Pharmacol 2020; 395:114980. [PMID: 32234516 DOI: 10.1016/j.taap.2020.114980] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 02/04/2023]
Abstract
Toluene can be intentionally misused by adolescents to experience psychoactive effects. Toluene has a complex mechanism of action and broad behavioral effects, among which memory impairment is reported consistently. We have previously reported that repeated toluene inhalation (8000 ppm) increases layer 5 prelimbic pyramidal cells' excitability in the medial prefrontal cortex (mPFC) of adolescent rats. Toluene also produces reactive oxygen species (ROS), which activate glial cells. Here, we tested the hypothesis that the anti-inflammatory agent minocycline would decrease toluene's effects because it inhibits NF-κB (nuclear factor enhancer of the kappa light chains of activated B cells) and reduces pro-inflammatory cytokine and ROS production. Our results show that minocycline (50 mg/kg, ip, for 10 days) prevents the hyperexcitability of mPFC neurons observed after repeated 8000 ppm toluene exposure (30 min/day, 2×/day for 10 days). Minocycline prevents toluene-induced hyperexcitability by a mechanism that averts the loss of the slow calcium-dependent potassium current, and normalizes mPFC neurons' firing frequency. These effects are accompanied by significant decreased expression of astrocytes and activated microglia in the mPFC, reduced NLRP3 inflammasome activation and mRNA expression levels of the pro-inflammatory cytokine interleukin 1β (IL-1β), as well as increased mRNA expression of the anti-inflammatory cytokine transforming growth factor β (TGF-β). Minocycline also prevents toluene-induced memory impairment in adolescent rats in the passive avoidance task and the temporal order memory test in which the mPFC plays a central role. These results show that neuroinflammation produces several effects of repeated toluene administration at high concentrations, and minocycline can significantly prevent them.
Collapse
|
30
|
Hodges SL, Lugo JN. Therapeutic role of targeting mTOR signaling and neuroinflammation in epilepsy. Epilepsy Res 2020; 161:106282. [PMID: 32036255 PMCID: PMC9205332 DOI: 10.1016/j.eplepsyres.2020.106282] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
Abstract
Existing therapies for epilepsy are primarily symptomatic and target mechanisms of neuronal transmission in order to restore the excitatory/inhibitory imbalance in the brain after seizures. However, approximately one third of individuals with epilepsy have medically refractory epilepsy and do not respond to available treatments. There is a critical need for the development of therapeutics that extend beyond manipulation of excitatory neurotransmission and target pathological changes underlying the cause of the disease. Epilepsy is a multifaceted condition, and it could be that effective treatment involves the targeting of several mechanisms. There is evidence for both dysregulated PI3K/Akt/mTOR (mTOR) signaling and heightened neuroinflammatory processes following seizures in the brain. Signaling via mTOR has been implicated in several epileptogenic processes, including synaptic plasticity mechanisms and changes in ion channel expression following seizures. Inflammatory signaling, such as increased synthesis of cytokines and other immune molecules, has also shown to play a significant role in the development of chronic epilepsy. mTOR pathway activation and immune signaling are known to interact in normal physiological states, as well as influence one another following seizures. Simultaneous inhibition of both processes could be a promising therapeutic avenue to prevent the development of chronic epilepsy by targeting two key pathological mechanisms implicated in epileptogenesis.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
31
|
Korgaonkar AA, Li Y, Sekhar D, Subramanian D, Guevarra J, Swietek B, Pallottie A, Singh S, Kella K, Elkabes S, Santhakumar V. Toll-like Receptor 4 Signaling in Neurons Enhances Calcium-Permeable α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor Currents and Drives Post-Traumatic Epileptogenesis. Ann Neurol 2020; 87:497-515. [PMID: 32031699 DOI: 10.1002/ana.25698] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Traumatic brain injury is a major risk factor for acquired epilepsies, and understanding the mechanisms underlying the early pathophysiology could yield viable therapeutic targets. Growing evidence indicates a role for inflammatory signaling in modifying neuronal excitability and promoting epileptogenesis. Here we examined the effect of innate immune receptor Toll-like receptor 4 (TLR4) on excitability of the hippocampal dentate gyrus and epileptogenesis after brain injury. METHODS Slice and in vivo electrophysiology and Western blots were conducted in rats subject to fluid percussion brain injury or sham injury. RESULTS The studies identify that TLR4 signaling in neurons augments dentate granule cell calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (CP-AMPAR) currents after brain injury. Blocking TLR4 signaling in vivo shortly after brain injury reduced dentate network excitability and seizure susceptibility. When blocking of TLR4 signaling after injury was delayed, however, this treatment failed to reduce postinjury seizure susceptibility. Furthermore, TLR4 signal blocking was less efficacious in limiting seizure susceptibility when AMPAR currents, downstream targets of TLR4 signaling, were transiently enhanced. Paradoxically, blocking TLR4 signaling augmented both network excitability and seizure susceptibility in uninjured controls. Despite the differential effect on seizure susceptibility, TLR4 antagonism suppressed cellular inflammatory responses after injury without impacting sham controls. INTERPRETATION These findings demonstrate that independently of glia, the immune receptor TLR4 directly regulates post-traumatic neuronal excitability. Moreover, the TLR4-dependent early increase in dentate excitability is causally associated with epileptogenesis. Identification and selective targeting of the mechanisms underlying the aberrant TLR4-mediated increase in CP-AMPAR signaling after injury may prevent epileptogenesis after brain trauma. ANN NEUROL 2020;87:497-515.
Collapse
Affiliation(s)
- Akshata A Korgaonkar
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Ying Li
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Dipika Sekhar
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ.,Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA
| | - Deepak Subramanian
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ.,Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA
| | - Jenieve Guevarra
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Bogumila Swietek
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Alexandra Pallottie
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, NJ
| | - Sukwinder Singh
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Kruthi Kella
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Stella Elkabes
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, NJ
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ.,Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA
| |
Collapse
|
32
|
Hashemiaghdam A, Mroczek M. Microglia heterogeneity and neurodegeneration: The emerging paradigm of the role of immunity in Alzheimer's disease. J Neuroimmunol 2020; 341:577185. [PMID: 32045774 DOI: 10.1016/j.jneuroim.2020.577185] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia type affecting nearly 44 million people worldwide. Recent findings point to microglia as a significant contributor to neural development, neuroinflammation, and degeneration. Dysregulated immunoactivity in AD has been broadly studied, and current research on animal models enabled us to identify a new cluster of microglia (disease-associated microglia) alongside previously detected glial populations (e.g., plaque-associated microglia, dark microglia, Human Alzheimer's microglia) associated with neuroinflammation and with macrophagic activity. These distinct populations of glia show a spatial distribution within plaques with unique imaging features and distinct gene expression profile. Novel genetic approaches using single-nuclei RNA sequencing (sn-RNA seq) allowed researchers to identify gene expression profiles from fixed human samples. Recent studies, exposing transcriptomic clusters of disease-related cells and analyzing sequenced RNA from sorted myeloid cells, seem to confirm the hypothesis of the central role of glia in the pathogenesis of Alzheimer's disease. These discoveries may shed light on the effects of microglial activation and differences in gene expression profiles, furthering research towards the development of a cell-specific therapy. In this review, we examine recent studies that guide us towards recognizing the role of diverse populations of glial cells and their possible heterogeneous functional states in the pathogenesis of AD in humans.
Collapse
Affiliation(s)
| | - Magdalena Mroczek
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
33
|
Cho KHT, Fraser M, Wassink G, Dhillon SJ, Davidson JO, Dean JM, Gunn AJ, Bennet L. TLR7 agonist modulation of postasphyxial neurophysiological and cardiovascular adaptations in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2020; 318:R369-R378. [PMID: 31913689 DOI: 10.1152/ajpregu.00295.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of Toll-like receptors (TLRs) after hypoxic-ischemic brain injury can exacerbate injury but also alleviate cell loss, as recently demonstrated with the TLR7 agonist Gardiquimod (GDQ). However, TLR agonists also modulate vascular function and neuronal excitability. Thus, we examined the effects of TLR7 activation with GDQ on cardiovascular function and seizures after asphyxia in preterm fetal sheep at 0.7 gestation (104 days, term ∼147 days). Fetuses received sham asphyxia or asphyxia induced by umbilical cord occlusion for 25 min or asphyxia followed by a continuous intracerebroventricular infusion of 3.34 mg of GDQ from 1 to 4 h after asphyxia. Fetuses were monitored continuously for 72 h postasphyxia. GDQ treatment was associated with sustained, moderate hypertension for 72 h (P < 0.05), with a transient increase in heart rate. Electroencephalographic (EEG) power was suppressed for the entire postasphyxial period in both groups, whereas EEG spectral edge transiently increased during the GDQ infusion compared with asphyxia alone (P < 0.05), with higher β- and lower δ-EEG frequencies (P < 0.05). This increase in EEG frequency was not related to epileptiform activity. After the GDQ infusion, there was earlier onset of high-amplitude stereotypic evolving seizures, with increased numbers of seizures and seizure burden (P < 0.05). Hemodynamic function and seizure activity are important indices of preterm wellbeing. These data highlight the importance of physiological monitoring during preclinical testing of potential neuroprotective strategies.
Collapse
Affiliation(s)
- Kenta H T Cho
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Mhoyra Fraser
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | - Joanne O Davidson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
34
|
Vargas-Caraveo A, Sayd A, Robledo-Montaña J, Caso JR, Madrigal JLM, García-Bueno B, Leza JC. Toll-like receptor 4 agonist and antagonist lipopolysaccharides modify innate immune response in rat brain circumventricular organs. J Neuroinflammation 2020; 17:6. [PMID: 31906991 PMCID: PMC6945636 DOI: 10.1186/s12974-019-1690-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/23/2019] [Indexed: 01/02/2023] Open
Abstract
Background The circumventricular organs (CVOs) are blood-brain-barrier missing structures whose activation through lipopolysaccharide (LPS) is a starting point for TLR-driven (Toll-like receptors) neuroinflammation. The aim of this study was to evaluate in the CVO area postrema (AP), subfornical organ (SFO), and median eminence (ME), the inflammatory response to two TLR4 agonists: LPS from Escherichia coli (EC-LPS), the strongest endotoxin molecule described, and LPS from Porphyromonas gingivalis (PG-LPS), a pathogenic bacteria present in the periodontium related to neuroinflammation in neurodegenerative/psychiatric diseases. The response to LPS from the cyanobacteria Rhodobacter sphaeroides (RS-LPS), a TLR4 antagonist with an interesting anti-inflammatory potential, was also assessed. Methods LPSs were intraperitoneally administered to Wistar rats and, as indicatives of neuroinflammation in CVOs, the cellular localization of the nuclear factor NF-κB was studied by immunofluorescence, and microglia morphology was quantified by fractal and skeleton analysis. Results Data showed that EC-LPS increased NF-κB nuclear translocation in the three CVOs studied and PG-LPS only induced NF-κB nuclear translocation in the ME. RS-LPS showed no difference in NF-κB nuclear translocation compared to control. Microglia in the three CVOs showed an ameboid-shape after EC-LPS exposure, whereas PG-LPS only elicited a mild tendency to induce an ameboid shape. On the other hand, RS-LPS produced a markedly elongated morphology described as “rod” microglia in the three CVOs. Conclusions In conclusion, at the doses tested, EC-LPS induces a stronger neuroinflammatory response than PG-LPS in CVOs, which might be related to their different potency as TLR4 agonists. The non-reduction of basal NF-κB activation and induction of rod microglia by RS-LPS, a cell morphology only present in severe brain injury and infections, suggests that this molecule must be carefully studied before being proposed as an anti-inflammatory treatment for neuroinflammation related to neurodegenerative/psychiatric diseases.
Collapse
Affiliation(s)
- Alejandra Vargas-Caraveo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain. .,Biological and Health Sciences Division, Metropolitan Autonomous University (UAM), Campus Lerma, 52005, Lerma, Mexico.
| | - Aline Sayd
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Javier Robledo-Montaña
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Javier R Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain
| | - José L M Madrigal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain.
| | - Juan C Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain
| |
Collapse
|
35
|
Peña-Ortega F. Brain Arrhythmias Induced by Amyloid Beta and Inflammation: Involvement in Alzheimer’s Disease and Other Inflammation-related Pathologies. Curr Alzheimer Res 2020; 16:1108-1131. [DOI: 10.2174/1567205017666191213162233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022]
Abstract
A variety of neurological diseases, including Alzheimer’s disease (AD), involve amyloid beta (Aβ) accumulation and/or neuroinflammation, which can alter synaptic and neural circuit functions. Consequently, these pathological conditions induce changes in neural network rhythmic activity (brain arrhythmias), which affects many brain functions. Neural network rhythms are involved in information processing, storage and retrieval, which are essential for memory consolidation, executive functioning and sensory processing. Therefore, brain arrhythmias could have catastrophic effects on circuit function, underlying the symptoms of various neurological diseases. Moreover, brain arrhythmias can serve as biomarkers for a variety of brain diseases. The aim of this review is to provide evidence linking Aβ and inflammation to neural network dysfunction, focusing on alterations in brain rhythms and their impact on cognition and sensory processing. I reviewed the most common brain arrhythmias characterized in AD, in AD transgenic models and those induced by Aβ. In addition, I reviewed the modulations of brain rhythms in neuroinflammatory diseases and those induced by immunogens, interleukins and microglia. This review reveals that Aβ and inflammation produce a complex set of effects on neural network function, which are related to the induction of brain arrhythmias and hyperexcitability, both closely related to behavioral alterations. Understanding these brain arrhythmias can help to develop therapeutic strategies to halt or prevent these neural network alterations and treat not only the arrhythmias but also the symptoms of AD and other inflammation-related pathologies.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiologia del Desarrollo y Neurofisiologia, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Queretaro, Qro., 76230, Mexico
| |
Collapse
|
36
|
Abstract
A rapidly growing body of evidence supports the premise that neuroinflammation plays an important role in initiating and sustaining seizures in a range of pediatric epilepsies. Clinical and experimental evidence indicate that neuroinflammation is both an outcome and a contributor to seizures. In this manner, seizures that arise from an initial insult (e.g. infection, trauma, genetic mutation) contribute to an inflammatory response that subsequently promotes recurrent seizures. This cyclical relationship between seizures and neuroinflammation has been described as a 'vicious cycle.' Studies of human tissue resected for surgical treatment of refractory epilepsy have reported activated inflammatory and immune signaling pathways, while animal models have been used to demonstrate that key inflammatory mediators lead to increased seizure susceptibility. Further characterization of the molecular mechanisms involved in this cycle may ultimately enable the development of new therapeutic approaches for the treatment of epilepsy. In this brief review we focus on key inflammatory mediators that have become prominent in recent literature of epilepsy, including newly characterized microRNAs and their potential role in neuroinflammatory signaling.
Collapse
Affiliation(s)
- Shruti Bagla
- Division of Hematology/Oncology, Department of Pediatrics, Room 3L22, Children's Hospital of Michigan, 3901 Beaubien Blvd, Detroit, MI 48201, USA
| | - Alan A Dombkowski
- Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Room 3L22, Children's Hospital of Michigan, 3901 Beaubien Blvd, Detroit, MI 48201, USA
| |
Collapse
|
37
|
Frigerio F, Flynn C, Han Y, Lyman K, Lugo JN, Ravizza T, Ghestem A, Pitsch J, Becker A, Anderson AE, Vezzani A, Chetkovich D, Bernard C. Neuroinflammation Alters Integrative Properties of Rat Hippocampal Pyramidal Cells. Mol Neurobiol 2018; 55:7500-7511. [PMID: 29427087 PMCID: PMC6070409 DOI: 10.1007/s12035-018-0915-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
Neuroinflammation is consistently found in many neurological disorders, but whether or not the inflammatory response independently affects neuronal network properties is poorly understood. Here, we report that intracerebroventricular injection of the prototypical inflammatory molecule lipopolysaccharide (LPS) in rats triggered a strong and long-lasting inflammatory response in hippocampal microglia associated with a concomitant upregulation of Toll-like receptor (TLR4) in pyramidal and hilar neurons. This, in turn, was associated with a significant reduction of the dendritic hyperpolarization-activated cyclic AMP-gated channel type 1 (HCN1) protein level while Kv4.2 channels were unaltered as assessed by western blot. Immunohistochemistry confirmed the HCN1 decrease in CA1 pyramidal neurons and showed that these changes were associated with a reduction of TRIP8b, an auxiliary subunit for HCN channels implicated in channel subcellular localization and trafficking. At the physiological level, this effect translated into a 50% decrease in HCN1-mediated currents (Ih) measured in the distal dendrites of hippocampal CA1 pyramidal cells. At the functional level, the band-pass-filtering properties of dendrites in the theta frequency range (4-12 Hz) and their temporal summation properties were compromised. We conclude that neuroinflammation can independently trigger an acquired channelopathy in CA1 pyramidal cell dendrites that alters their integrative properties. By directly changing cellular function, this phenomenon may participate in the phenotypic expression of various brain diseases.
Collapse
Affiliation(s)
- Federica Frigerio
- Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Corey Flynn
- INSERM U1106, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| | - Ye Han
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kyle Lyman
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Teresa Ravizza
- Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Antoine Ghestem
- INSERM U1106, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| | - Julika Pitsch
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Albert Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Anne E Anderson
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy.
| | - Dane Chetkovich
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christophe Bernard
- INSERM U1106, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
38
|
Atmaca MM, Gurses C. Status Epilepticus and Multiple Sclerosis: A Case Presentation and Literature Review. Clin EEG Neurosci 2018; 49:328-334. [PMID: 29161897 DOI: 10.1177/1550059417693732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE To search the literature for the frequency, pathogenesis, prognosis, and treatment of seizures and status epilepticus (SE) in patients with multiple sclerosis (MS). METHODS We report 2 patients with MS who presented with SE and review the literature. RESULTS Seizures and SE episodes worsened during MS relapses in the first patient. SE episodes and MS relapses significantly decreased after initiation of natalizumab treatment but she still had seizures and was taking 4 antiepileptic drugs (AEDs). The second patient had super refractory SE and was treated with AEDs and coma induction; SE was controlled in 1 week. Antibodies against glycine receptors were reported in her serum after her death. CONCLUSION SE has been reported to remain refractory to conventional AEDs, and improve with treatment of MS relapse. Seizures often occur during MS relapses, and might be the presenting symptom of MS or the only symptom of a relapse. Patients with MS and epilepsy have been reported to have more severe MS disease courses. Seizures are refractory to treatment in patients with MS with chronic epilepsy; however, prognosis is quite good in patients experiencing provoked seizures during an MS relapse. Since some EEG findings may have prognostic value, their evaluation is invaluable for the determination of outcome. No treatment guidelines have been specified for patients with MS and SE. However, treatment with AEDs, ideally new-generation AEDs, and an MS treatment review with a new protocol will ensure a fast response to the improvement of SE.
Collapse
Affiliation(s)
- Murat Mert Atmaca
- 1 Department of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Candan Gurses
- 1 Department of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
39
|
The Flavone Luteolin Improves Central Nervous System Disorders by Different Mechanisms: A Review. J Mol Neurosci 2018; 65:491-506. [DOI: 10.1007/s12031-018-1094-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/21/2018] [Indexed: 01/17/2023]
|
40
|
Huang WY, Lin S, Chen HY, Chen YP, Chen TY, Hsu KS, Wu HM. NADPH oxidases as potential pharmacological targets against increased seizure susceptibility after systemic inflammation. J Neuroinflammation 2018; 15:140. [PMID: 29753328 PMCID: PMC5948699 DOI: 10.1186/s12974-018-1186-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/02/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Systemic inflammation associated with sepsis can induce neuronal hyperexcitability, leading to enhanced seizure predisposition and occurrence. Brain microglia are rapidly activated in response to systemic inflammation and, in this activated state, release multiple cytokines and signaling factors that amplify the inflammatory response and increase neuronal excitability. NADPH oxidase (NOX) enzymes promote microglial activation through the generation of reactive oxygen species (ROS), such as superoxide anion. We hypothesized that NOX isoforms, particularly NOX2, are potential targets for prevention of sepsis-associated seizures. METHODS To reduce NADPH oxidase 2-derived ROS production, mice with deficits of NOX regulatory subunit/NOX2 organizer p47phox (p47phox-/-) or NOX2 major subunit gp91phox (gp91phox-/-) were used or the NOX2-selective inhibitor diphenyleneiodonium (DPI) was used to treat wild-type (WT) mice. Systemic inflammation was induced by intraperitoneal injection of lipopolysaccharide (LPS). Seizure susceptibility was compared among mouse groups in response to intraperitoneal injection of pentylenetetrazole (PTZ). Brain tissues were assayed for proinflammatory gene and protein expression, and immunofluorescence staining was used to estimate the proportion of activated microglia. RESULTS Increased susceptibility to PTZ-induced seizures following sepsis was significantly attenuated in gp91phox-/- and p47phox-/- mice compared with WT mice. Both gp91phox-/- and p47phox-/- mice exhibited reduced microglia activation and lower brain induction of multiple proconvulsive cytokines, including TNFα, IL-1β, IL-6, and CCL2, compared with WT mice. Administration of DPI following LPS injection significantly attenuated the increased susceptibility to PTZ-induced seizures and reduced both microglia activation and brain proconvulsive cytokine concentrations compared with vehicle-treated controls. DPI also inhibited the upregulation of gp91phox transcripts following LPS injection. CONCLUSIONS Our results indicate that NADPH oxidases contribute to the development of increased seizure susceptibility in mice after sepsis. Pharmacologic inhibition of NOX may be a promising therapeutic approach to reducing sepsis-associated neuroinflammation, neuronal hyperexcitability, and seizures.
Collapse
Affiliation(s)
- Wan-Yu Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Pediatrics of Kung-Ten General Hospital, Taichung City, Taiwan
| | - Shankung Lin
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsuan-Ying Chen
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ya-Ping Chen
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ting-Yu Chen
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Hung-Ming Wu
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan.
- Department of Neurology, Changhua Christian Hospital, Changhua City, Taiwan.
- Institute of Acupuncture, School of Chinese Medicine, China Medical University, Taichung City, Taiwan.
| |
Collapse
|
41
|
Intracellular Ca 2+ stores control in vivo neuronal hyperactivity in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2018; 115:E1279-E1288. [PMID: 29358403 DOI: 10.1073/pnas.1714409115] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuronal hyperactivity is the emerging functional hallmark of Alzheimer's disease (AD) in both humans and different mouse models, mediating an impairment of memory and cognition. The mechanisms underlying neuronal hyperactivity remain, however, elusive. In vivo Ca2+ imaging of somatic, dendritic, and axonal activity patterns of cortical neurons revealed that both healthy aging and AD-related mutations augment neuronal hyperactivity. The AD-related enhancement occurred even without amyloid deposition and neuroinflammation, mainly due to presenilin-mediated dysfunction of intracellular Ca2+ stores in presynaptic boutons, likely causing more frequent activation of synaptic NMDA receptors. In mutant but not wild-type mice, store emptying reduced both the frequency and amplitude of presynaptic Ca2+ transients and, most importantly, normalized neuronal network activity. Postsynaptically, the store dysfunction was minor and largely restricted to hyperactive cells. These findings identify presynaptic Ca2+ stores as a key element controlling AD-related neuronal hyperactivity and as a target for disease-modifying treatments.
Collapse
|
42
|
Chi B, Wang S, Bi S, Qin W, Wu D, Luo Z, Gui S, Wang D, Yin X, Wang F. Effects of ganoderic acid A on lipopolysaccharide-induced proinflammatory cytokine release from primary mouse microglia cultures. Exp Ther Med 2017; 15:847-853. [PMID: 29399089 PMCID: PMC5772755 DOI: 10.3892/etm.2017.5472] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 08/24/2017] [Indexed: 01/13/2023] Open
Abstract
For several thousand years, Ganoderma lucidum (Ling-Zhi in Chinese and Reishi in Japanese) has been widely used as a traditional medication for the prevention and treatment of various diseases in Asia. Its major biologically active components, ganoderic acids (GAs), exhibit significant medicinal value due to their anti-inflammatory effects. Dysregulation of microglial function may cause seizures or promote epileptogenesis through release of proinflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α. At present, only little information is available on the effects of GAs on microglia-mediated inflammation in vitro and/or in vivo. The present study aimed to investigate the role of GA-A on microglia-mediated inflammation in vitro. In addition, the effect of GA-A on lipopolysaccharide (LPS)-evoked alterations in mitochondrial metabolic activity of microglia was evaluated. The results of the present study demonstrated that GA-A significantly decreased LPS-induced IL-1β, IL-6 and TNF-α release from mouse-derived primary cortical microglial cells in a concentration-dependent manner. GA-A treatment reduced LPS-induced expression of nuclear factor (NF)-κB (p65) and its inhibitor, demonstrating that non-toxic suppression of IL-1β, IL-6 and TNF-α production by GA-A is, at least in part, due to suppression of the NF-κB signaling pathway. In addition, the LPS-induced stimulation of mitochondrial activity of microglial cells was abolished by co-treatment with GA-A. Thus, GA-A treatment may be a potential therapeutic strategy for epilepsy prevention by suppressing microglia-derived proinflammatory mediators.
Collapse
Affiliation(s)
- Baojin Chi
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China.,Department of Urology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Shuqiu Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Sheng Bi
- Department of Urology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Wenbo Qin
- Department of Urology, The Second Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Dongmei Wu
- Material College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Zhenguo Luo
- Department of Urology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Shiliang Gui
- Department of Urology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Dongwei Wang
- Department of Urology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Xingzhong Yin
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Fangfang Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| |
Collapse
|
43
|
Kim JE, Kang TC. TRPC3- and ET B receptor-mediated PI3K/AKT activation induces vasogenic edema formation following status epilepticus. Brain Res 2017; 1672:58-64. [PMID: 28764936 DOI: 10.1016/j.brainres.2017.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 01/17/2023]
Abstract
Status epilepticus (SE, a prolonged seizure activity) is a high risk factor of developing vasogenic edema, which leads to secondary complications following SE. In the present study, we investigated whether transient receptor potential canonical channel-3 (TRPC3) may link vascular endothelial growth factor (VEGF) pathway to NFκB/ETB receptor axis in the rat piriform cortex during vasogenic edema formation. Following SE, TRPC3 and ETB receptor independently activated phosphatidylinositol 3 kinase (PI3K)/AKT/eNOS signaling pathway. SN50 (a NFκB inhibitor) attenuated the up-regulations of eNOS, TRPC3 and ETB receptor expressions following SE, accompanied by reductions in PI3K/AKT phosphorylations. Inhibition of SE-induced VEGF over-expression by leptomycin B also abrogated PI3K and AKT phosphorylations, but not TRPC3 expression. Wortmannin (a PI3K inhibitor) and 3CAI (an AKT inhibitor) effectively inhibited up-regulation of eNOS expressions and vasogenic edema lesion following SE. These findings indicate that PI3K/AKT may be common down-stream molecules for TRPC3- and ETB receptor signaling pathways during vasogenic edema formation. In addition, the present data demonstrate for the first time that TRPC3 may integrate VEGF- and NFκB-mediated vasogenic edema formation following SE. Thus, we suggest that PI3K/AKT signaling pathway may be one of considerable therapeutic targets for vasogenic edema.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea.
| |
Collapse
|
44
|
Allette YM, Kim Y, Randolph AL, Smith JA, Ripsch MS, White FA. Decoy peptide targeted to Toll-IL-1R domain inhibits LPS and TLR4-active metabolite morphine-3 glucuronide sensitization of sensory neurons. Sci Rep 2017. [PMID: 28623271 PMCID: PMC5473853 DOI: 10.1038/s41598-017-03447-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence indicates that Toll-like receptor (TLR) signaling adapter protein interactions with Toll/Interleukin-1 Receptor (TIR) domains present in sensory neurons may modulate neuropathic pain states. Following ligand interaction with TLRs, TIR serves to both initiate intracellular signaling and facilitate recruitment of signaling adapter proteins to the intracytoplasmic domain. Although TLR TIR is central to a number of TLR signaling cascades, its role in sensory neurons is poorly understood. In this study we investigated the degree to which TLR TIR decoy peptide modified to include a TAT sequence (Trans-Activator of Transcription gene in HIV; TAT-4BB) affected LPS-induced intracellular calcium flux and excitation in sensory neurons, and behavioral changes due to TLR4 active metabolite, morphine-3-glucuronide (M3G) exposure in vivo. TAT-4BB inhibited LPS-induced calcium changes in a majority of sensory neurons and decreased LPS-dependent neuronal excitability in small diameter neurons. Acute systemic administration of the TAT-4BB reversed M3G-induced tactile allodynia in a dose-dependent manner but did not affect motor activity, anxiety or responses to noxious thermal stimulus. These data suggest that targeting TLR TIR domains may provide novel pharmacological targets to reduce or reverse TLR4-dependent pain behavior in the rodent.
Collapse
Affiliation(s)
- Yohance M Allette
- Medical Science Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Youngsook Kim
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Aaron L Randolph
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Research and Development Services, Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
| | - Jared A Smith
- Medical Science Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew S Ripsch
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Research and Development Services, Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Research and Development Services, Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
45
|
Khaspekov LG, Frumkina LE. Molecular mechanisms mediating involvement of glial cells in brain plastic remodeling in epilepsy. BIOCHEMISTRY (MOSCOW) 2017; 82:380-391. [DOI: 10.1134/s0006297917030178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Hippocampal infusion of lipopolysaccharide induces immune responses and results in seizures in rats. Neuroreport 2017; 28:200-207. [DOI: 10.1097/wnr.0000000000000744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Kwok CH, Trang T. Pain: From genes and proteins to cells in the living organism. J Neurosci Res 2017; 95:1239-1241. [DOI: 10.1002/jnr.24046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Charlie H.T. Kwok
- Hotchkiss Brain Institute; University of Calgary; Calgary Alberta Canada
| | - Tuan Trang
- Hotchkiss Brain Institute; University of Calgary; Calgary Alberta Canada
| |
Collapse
|
48
|
Peña-Ortega F. Pharmacological Tools to Activate Microglia and their Possible use to Study Neural Network Patho-physiology. Curr Neuropharmacol 2017; 15:595-619. [PMID: 27697040 PMCID: PMC5543677 DOI: 10.2174/1570159x14666160928151546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Microglia are the resident immunocompetent cells of the CNS and also constitute a unique cell type that contributes to neural network homeostasis and function. Understanding microglia cell-signaling not only will reveal their diverse functions but also will help to identify pharmacological and non-pharmacological tools to modulate the activity of these cells. METHODS We undertook a search of bibliographic databases for peer-reviewed research literature to identify microglial activators and their cell-specificity. We also looked for their effects on neural network function and dysfunction. RESULTS We identified several pharmacological targets to modulate microglial function, which are more or less specific (with the proper control experiments). We also identified pharmacological targets that would require the development of new potent and specific modulators. We identified a wealth of evidence about the participation of microglia in neural network function and their alterations in pathological conditions. CONCLUSION The identification of specific microglia-activating signals provides experimental tools to modulate the activity of this heterogeneous cell type in order to evaluate its impact on other components of the nervous system, and it also helps to identify therapeutic approaches to ease some pathological conditions related to microglial dysfunction.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
49
|
Shen Y, Qin H, Chen J, Mou L, He Y, Yan Y, Zhou H, Lv Y, Chen Z, Wang J, Zhou YD. Postnatal activation of TLR4 in astrocytes promotes excitatory synaptogenesis in hippocampal neurons. J Cell Biol 2016; 215:719-734. [PMID: 27920126 PMCID: PMC5147000 DOI: 10.1083/jcb.201605046] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/30/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022] Open
Abstract
Shen et al. demonstrate a developmental role of astrocytes in shaping a predisposition to seizure generation. Activation of TLR4–MyD88–ERK1/2 signaling pathway in astrocytes during a critical postnatal period promotes excitatory synapse generation, leading to enhanced seizure susceptibility. Astrocytes are critical in synapse development, and their dysfunction in crucial developmental stages leads to serious neurodevelopmental diseases, including seizures and epilepsy. Immune challenges not only affect brain development, but also promote seizure generation and epileptogenesis, implying immune activation is one of the key factors linking seizures and epilepsy to abnormal brain development. In this study, we report that activating astrocytes by systemic lipopolysaccharide (LPS) challenges in the second postnatal week promotes excitatory synapse development, leading to enhanced seizure susceptibility in mice. Toll-like receptor 4 (TLR4) activation in astrocytes increased astrocytic extracellular signal–related kinase 1/2 (Erk1/2) and phospho-Erk1/2 levels in a myeloid differentiation primary response protein 88 (MyD88)–dependent manner. Constitutively activating Erk1/2 in astrocytes was sufficient to enhance excitatory synaptogenesis without activating TLR4. Deleting MyD88 or suppressing Erk1/2 in astrocytes rescued LPS-induced developmental abnormalities of excitatory synapses and restored the enhanced seizure sensitivity. Thus, we provide direct evidence for a developmental role of astrocytes in shaping a predisposition to seizure generation.
Collapse
Affiliation(s)
- Yi Shen
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Huaping Qin
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Juan Chen
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lingyan Mou
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yang He
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yixiu Yan
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hang Zhou
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ya Lv
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhong Chen
- Department of Pharmacology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yu-Dong Zhou
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China .,Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
50
|
Tzour A, Leibovich H, Barkai O, Biala Y, Lev S, Yaari Y, Binshtok AM. K V 7/M channels as targets for lipopolysaccharide-induced inflammatory neuronal hyperexcitability. J Physiol 2016; 595:713-738. [PMID: 27506492 DOI: 10.1113/jp272547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Neuroinflammation associated with CNS insults leads to neuronal hyperexcitability, which may culminate in epileptiform discharges. Application of the endotoxin lipopolysaccharide (LPS) to brain tissue initiates a neuroinflammatory cascade, providing an experimental model to study the mechanisms of neuroinflammatory neuronal hyperexcitability. Here we show that LPS application to hippocampal slices markedly enhances the excitability of CA1 pyramidal cells by inhibiting a specific potassium current, the M-current, generated by KV 7/M channels, which controls the excitability of almost every neuron in the CNS. The LPS-induced M-current inhibition is triggered by sequential activation of microglia, astrocytes and pyramidal cells, mediated by metabotropic purinergic and glutamatergic transmission, leading to blockade of KV 7/M channels by calcium released from intracellular stores. The identification of the downstream molecular target of neuroinflammation, namely the KV 7/M channel, potentially has far reaching implications for the understanding and treatment of many acute and chronic brain disorders. ABSTRACT Acute brain insults and many chronic brain diseases manifest an innate inflammatory response. The hallmark of this response is glia activation, which promotes repair of damaged tissue, but also induces structural and functional changes that may lead to an increase in neuronal excitability. We have investigated the mechanisms involved in the modulation of neuronal activity by acute inflammation. Initiating inflammatory responses in hippocampal tissue rapidly led to neuronal depolarization and repetitive firing even in the absence of active synaptic transmission. This action was mediated by a complex metabotropic purinergic and glutamatergic glia-to-neuron signalling cascade, leading to the blockade of neuronal KV 7/M channels by Ca2+ released from internal stores. These channels generate the low voltage-activating, non-inactivating M-type K+ current (M-current) that controls intrinsic neuronal excitability, and its inhibition was the predominant cause of the inflammation-induced hyperexcitability. Our discovery that the ubiquitous KV 7/M channels are the downstream target of the inflammation-induced cascade, has far reaching implications for the understanding and treatment of many acute and chronic brain disorders.
Collapse
Affiliation(s)
- Arik Tzour
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel.,The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Israel
| | - Hodaya Leibovich
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel.,The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Israel
| | - Omer Barkai
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel.,The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Israel
| | - Yoav Biala
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel.,The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Israel
| | - Yoel Yaari
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel.,The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Israel
| |
Collapse
|