1
|
Gu Q, Fan H, Zhang S, Xia S, Tan X, Zhou X. Analysis of the Autophagy-related Gene NLRC4 in spinal cord injury. Neurol Res 2025:1-16. [PMID: 40357725 DOI: 10.1080/01616412.2025.2503462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND/OBJECTIVES To investigate the role of the autophagy-related gene NLR Family CARD Domain Containing 4 (NLRC4) in spinal cord injury via bioinformatics methods, which may provide new targets for the diagnosis and treatment of spinal cord injury. METHODS This analysis is based on the GEO database dataset GSE151371. To identify potential autophagy-related genes involved in SCI, protein‒protein interaction (PPI) networks were analyzed. Immune microenvironment analysis (LM22) was performed via the CIBERSORTx database to determine the makeup of 22 immune cell types. Furthermore, a rat spinal cord injury model was generated, and the expression of selected autophagy-related genes was validated via immunofluorescence labeling and Western blotting. RESULTS Disease enrichment analysis via the Metascape database revealed enrichment for diseases related to the spinal cord, inflammation, infection, and immunity, which aligns with the functional analysis results of previously identified genes. Through the PPI and autophagy-related genes, we identified NLRC4 within the key subnetwork of the PPI network, highlighting its significance as a key signature gene associated with SCI. NLRC4 expression was significantly increased in the three groups, which was correlated with the severity of SCI. In the rat SCI model, NLRC4 protein expression was significantly greater in the SCI group than in the sham group (p < 0.001), confirming the validity of the model. CONCLUSIONS Since NLRC4 is an important gene involved in the autophagy that leads to spinal cord damage, it can be utilized to illuminate the optimal approach to immunotherapy for individuals with SCI and uncover new targets for therapy.
Collapse
Affiliation(s)
- Qie Gu
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hongbo Fan
- Department of Neurocritical Care Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Siqi Zhang
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Shuaishuai Xia
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xuemei Tan
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiang Zhou
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Lv M, Zhao Y, Chang S, Gao Z. Identifying signature genes and their associations with immune cell infiltration in spinal cord injury. IBRO Neurosci Rep 2024; 17:320-328. [PMID: 39430218 PMCID: PMC11490871 DOI: 10.1016/j.ibneur.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
Background Early detection of spinal cord injury (SCI) is conducive to improving patient outcomes. In addition, many studies have revealed the role of immune cells in the progression or treatment of SCI. The objective of this study was to identify the early signature genes and clarify how they are related to immune cell infiltration in SCI. Methods We analysed and identified early signature genes associated with SCI via bioinformatics analysis of the GSE151371 dataset from the GEO database. These genes were subsequently verified in the GSE33886 dataset and qRT-PCR. Finally, the CIBERSORT algorithm was used to examine the immune cell infiltration in SCI and its relationship with signature genes. Results Seven SCI-related signature genes, including ARG1, RETN, BPI, GGH, CCNB1, HIST1H2AC, and HIST1H2BJ, were identified, and their expression was verified via an external validation cohort and qRT-PCR. Moreover, the ROC curves revealed the diagnostic value of these genes. In addition, on the basis of immune cell infiltration analysis, plasma cells, M0 macrophages, activated CD4+ memory T cells, γδ T cells, naive CD4+ T cells, and resting CD4+ memory T cells may participate in the progression of SCI. Conclusion This study identified seven early signature genes of SCI that may serve as biomarkers for the early diagnosis of SCI and contribute to our understanding of immune changes during the pathology of SCI.
Collapse
Affiliation(s)
- Meng Lv
- Department of Orthopaedics, Shaanxi Provincial People's Hospital (Third Affiliated Hospital of Xi’an Jiaotong University), Xi’an, Shaanxi Province 710068, China
| | - Yingjie Zhao
- Department of Orthopaedics, Shaanxi Provincial People's Hospital (Third Affiliated Hospital of Xi’an Jiaotong University), Xi’an, Shaanxi Province 710068, China
| | - Su’e Chang
- Department of Orthoapedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Zhengchao Gao
- Department of Orthoapedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| |
Collapse
|
3
|
Wen X, Ye Y, Yu Z, Shen H, Cui G, Chen G. The role of nitric oxide and hydrogen sulfide in spinal cord injury: an updated review. Med Gas Res 2024; 14:96-101. [PMID: 39073336 PMCID: PMC466995 DOI: 10.4103/2045-9912.385946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/16/2022] [Accepted: 04/04/2023] [Indexed: 07/30/2024] Open
Abstract
Medical gases play an important role in the pathophysiology of human diseases and have received extensive attention for their role in neuroprotection. Common pathological mechanisms of spinal cord injury include excitotoxicity, inflammation, cell death, glial scarring, blood-spinal cord barrier disruption, and ischemia/reperfusion injury. Nitric oxide and hydrogen sulfide are important gaseous signaling molecules in living organisms; their pathological role in spinal cord injury models has received more attention in recent years. This study reviews the possible mechanisms of spinal cord injury and the role of nitric oxide and hydrogen sulfide in spinal cord injury.
Collapse
Affiliation(s)
- Xiaoliang Wen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yang Ye
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhengquan Yu
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haitao Shen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Cui
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Bergersen KV, Kavvathas B, Ford BD, Wilson EH. Toxoplasma infection induces an aged neutrophil population in the CNS that is associated with neuronal protection. J Neuroinflammation 2024; 21:189. [PMID: 39095837 PMCID: PMC11297776 DOI: 10.1186/s12974-024-03176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Infection with the protozoan parasite Toxoplasma gondii leads to the formation of lifelong cysts in neurons that can have devastating consequences in the immunocompromised. In the immunocompetent individual, anti-parasitic effector mechanisms and a balanced immune response characterized by pro- and anti-inflammatory cytokine production establishes an asymptomatic infection that rarely leads to neurological symptoms. Several mechanisms are known to play a role in this successful immune response in the brain including T cell production of IFNγ and IL-10 and the involvement of CNS resident cells. This limitation of clinical neuropathology during chronic infection suggests a balance between immune response and neuroprotective mechanisms that collectively prevent clinical manifestations of disease. However, how these two vital mechanisms of protection interact during chronic Toxoplasma infection remains poorly understood. MAIN TEXT This study demonstrates a previously undescribed connection between innate neutrophils found chronically in the brain, termed "chronic brain neutrophils" (CBNeuts), and neuroprotective mechanisms during Toxoplasma infection. Lack of CBNeuts during chronic infection, accomplished via systemic neutrophil depletion, led to enhanced infection and deleterious effects on neuronal regeneration and repair mechanisms in the brain. Phenotypic and transcriptomic analysis of CBNeuts identified them as distinct from peripheral neutrophils and revealed two main subsets of CBNeuts that display heterogeneity towards both classical effector and neuroprotective functions in an age-dependent manner. Further phenotypic profiling defined expression of the neuroprotective molecules NRG-1 andErbB4 by these cells, and the importance of this signaling pathway during chronic infection was demonstrated via NRG-1 treatment studies. CONCLUSIONS In conclusion, this work identifies CBNeuts as a heterogenous population geared towards both classical immune responses and neuroprotection during chronic Toxoplasma infection and provides the foundation for future mechanistic studies of these cells.
Collapse
Affiliation(s)
- Kristina V Bergersen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Bill Kavvathas
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Byron D Ford
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
- College of Medicine, Howard University, Washington, D.C., USA
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
5
|
Shu LZ, Zhang XL, Ding YD, Lin H. From inflammation to bone formation: the intricate role of neutrophils in skeletal muscle injury and traumatic heterotopic ossification. Exp Mol Med 2024; 56:1523-1530. [PMID: 38945957 PMCID: PMC11297321 DOI: 10.1038/s12276-024-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 07/02/2024] Open
Abstract
Neutrophils are emerging as an important player in skeletal muscle injury and repair. Neutrophils accumulate in injured tissue, thus releasing inflammatory factors, proteases and neutrophil extracellular traps (NETs) to clear muscle debris and pathogens when skeletal muscle is damaged. During the process of muscle repair, neutrophils can promote self-renewal and angiogenesis in satellite cells. When neutrophils are abnormally overactivated, neutrophils cause collagen deposition, functional impairment of satellite cells, and damage to the skeletal muscle vascular endothelium. Heterotopic ossification (HO) refers to abnormal bone formation in soft tissue. Skeletal muscle injury is one of the main causes of traumatic HO (tHO). Neutrophils play a pivotal role in activating BMPs and TGF-β signals, thus promoting the differentiation of mesenchymal stem cells and progenitor cells into osteoblasts or osteoclasts to facilitate HO. Furthermore, NETs are specifically localized at the site of HO, thereby accelerating the formation of HO. Additionally, the overactivation of neutrophils contributes to the disruption of immune homeostasis to trigger HO. An understanding of the diverse roles of neutrophils will not only provide more information on the pathogenesis of skeletal muscle injury for repair and HO but also provides a foundation for the development of more efficacious treatment modalities for HO.
Collapse
Affiliation(s)
- Lin-Zhen Shu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Xian-Lei Zhang
- Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Yi-Dan Ding
- Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Hui Lin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China.
| |
Collapse
|
6
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Mongkolpathumrat P, Pikwong F, Phutiyothin C, Srisopar O, Chouyratchakarn W, Unnajak S, Nernpermpisooth N, Kumphune S. The secretory leukocyte protease inhibitor (SLPI) in pathophysiology of non-communicable diseases: Evidence from experimental studies to clinical applications. Heliyon 2024; 10:e24550. [PMID: 38312697 PMCID: PMC10835312 DOI: 10.1016/j.heliyon.2024.e24550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Non-communicable diseases (NCDs) are a worldwide health issue because of their prevalence, negative impacts on human welfare, and economic costs. Protease enzymes play important roles in viral and NCD diseases. Slowing disease progression by inhibiting proteases using small-molecule inhibitors or endogenous inhibitory peptides appears to be crucial. Secretory leukocyte protease inhibitor (SLPI), an inflammatory serine protease inhibitor, maintains protease/antiprotease balance. SLPI is produced by host defense effector cells during inflammation to prevent proteolytic enzyme-induced tissue damage. The etiology of noncommunicable illnesses is linked to SLPI's immunomodulatory and tissue regeneration roles. Disease phases are associated with SLPI levels and activity changes in regional tissue and circulation. SLPI has been extensively evaluated in inflammation, but rarely in NCDs. Unfortunately, the thorough evaluation of SLPI's pathophysiological functions in NCDs in multiple research models has not been published elsewhere. In this review, data from PubMed from 2014 to 2023 was collected, analysed, and categorized into in vitro, in vivo, and clinical studies. According to the review, serine protease inhibitor (SLPI) activity control is linked to non-communicable diseases (NCDs) and other illnesses. Overexpression of the SLPI gene and protein may be a viable diagnostic and therapeutic target for non-communicable diseases (NCDs). SLPI is also cytoprotective, making it a unique treatment. These findings suggest that future research should focus on these pathways using advanced methods, reliable biomarkers, and therapy approaches to assess susceptibility and illness progression. Implications from this review will help pave the way for a new therapeutic target and diagnosis marker for non-communicable diseases.
Collapse
Affiliation(s)
- Podsawee Mongkolpathumrat
- Cardiovascular and Thoracic Technology Program, Chulabhorn International College of Medicine (CICM), Thammasat University (Rangsit Center), Pathumthani 12120, Thailand
| | - Faprathan Pikwong
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chayanisa Phutiyothin
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Onnicha Srisopar
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Wannapat Chouyratchakarn
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Sasimanas Unnajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900 Thailand
| | - Nitirut Nernpermpisooth
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000 Thailand
| | - Sarawut Kumphune
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
8
|
González-Orozco JC, Escobedo-Avila I, Velasco I. Transcriptome Profiling after Early Spinal Cord Injury in the Axolotl and Its Comparison with Rodent Animal Models through RNA-Seq Data Analysis. Genes (Basel) 2023; 14:2189. [PMID: 38137011 PMCID: PMC10742908 DOI: 10.3390/genes14122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is a disabling condition that affects millions of people around the world. Currently, no clinical treatment can restore spinal cord function. Comparison of molecular responses in regenerating to non-regenerating vertebrates can shed light on neural restoration. The axolotl (Ambystoma mexicanum) is an amphibian that regenerates regions of the brain or spinal cord after damage. METHODS In this study, we compared the transcriptomes after SCI at acute (1-2 days after SCI) and sub-acute (6-7 days post-SCI) periods through the analysis of RNA-seq public datasets from axolotl and non-regenerating rodents. RESULTS Genes related to wound healing and immune responses were upregulated in axolotls, rats, and mice after SCI; however, the immune-related processes were more prevalent in rodents. In the acute phase of SCI in the axolotl, the molecular pathways and genes associated with early development were upregulated, while processes related to neuronal function were downregulated. Importantly, the downregulation of processes related to sensorial and motor functions was observed only in rodents. This analysis also revealed that genes related to pluripotency, cytoskeleton rearrangement, and transposable elements (e.g., Sox2, Krt5, and LOC100130764) were among the most upregulated in the axolotl. Finally, gene regulatory networks in axolotls revealed the early activation of genes related to neurogenesis, including Atf3/4 and Foxa2. CONCLUSIONS Immune-related processes are upregulated shortly after SCI in axolotls and rodents; however, a strong immune response is more noticeable in rodents. Genes related to early development and neurogenesis are upregulated beginning in the acute stage of SCI in axolotls, while the loss of motor and sensory functions is detected only in rodents during the sub-acute period of SCI. The approach employed in this study might be useful for designing and establishing regenerative therapies after SCI in mammals, including humans.
Collapse
Affiliation(s)
- Juan Carlos González-Orozco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (J.C.G.-O.); (I.E.-A.)
| | - Itzel Escobedo-Avila
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (J.C.G.-O.); (I.E.-A.)
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (J.C.G.-O.); (I.E.-A.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
9
|
Patil V, Bohara R, Krishna Kanala V, McMahon S, Pandit A. Models and approaches to comprehend and address glial inflammation following spinal cord injury. Drug Discov Today 2023; 28:103722. [PMID: 37482236 DOI: 10.1016/j.drudis.2023.103722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Spinal cord injury (SCI) culminates in chronic inflammation and glial scar formation driven by the activation of microglia and astrocytes. Current anti-inflammatory strategies to treat glial activation associated with SCI have several limitations. Existing in vitro and ex vivo models studying molecular mechanisms associated with inflammation focus only on the acute phase. However, the progression of glial cell-derived inflammation over the acute-to-chronic phases has not been assessed. Understanding this progression will help establish a framework for evaluating therapeutic strategies. Additionally, new models could be useful as high-throughput screening (HTS) platforms. This review aims to highlight currently available models and future methods that could facilitate screening of novel therapeutics for SCI.
Collapse
Affiliation(s)
- Vaibhav Patil
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Vijaya Krishna Kanala
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Siobhan McMahon
- Anatomy, School of Medicine, University of Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
10
|
Zhao Y, Zhang H, Zhang Q, Tao H. Research Progress of Neutrophil-Mediated Drug Delivery Strategies for Inflammation-Related Disease. Pharmaceutics 2023; 15:1881. [PMID: 37514067 PMCID: PMC10384340 DOI: 10.3390/pharmaceutics15071881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
As the most abundant white blood cells in humans, neutrophils play a key role in acute and chronic inflammation, suggesting that these cells are a key component of targeted therapies for various inflammation-related diseases. Specific enzyme-responsive or specific ligand-modified polymer nanoparticles are beneficial for improving drug efficacy, reducing toxicity, and enhancing focal site retention. However, there remain significant challenges in biomedical applications of these synthetic polymer nanoparticles, mainly due to their rapid clearance by the reticuloendothelial system. In recent years, biomimetic drug delivery systems such as neutrophils acting directly as drug carriers or neutrophil-membrane-coated nanoparticles have received increasing attention due to the natural advantages of neutrophils. Thus, neutrophil-targeted, neutrophil-assisted, or neutrophil-coated nanoparticles exhibit a prolonged blood circulation time and improved accumulation at the site of inflammation. Despite recent advancements, further clinical research must be performed to evaluate neutrophil-based delivery systems for future biomedical application in the diagnosis and treatment of related inflammatory diseases. In this review, we have summarized new exciting developments and challenges in neutrophil-mediated drug delivery strategies for treating inflammation-related diseases.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pharmaceutics, 96602 Hospital of Chinese People's Liberation Army, Kunming 650233, China
| | - Haigang Zhang
- Department of Pharmacology, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Innovation Center of Advanced Pharmaceutical & Artificial Intelligence, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hui Tao
- Department of Pharmacology, College of Pharmacy, Army Medical University, Chongqing 400038, China
| |
Collapse
|
11
|
Andries L, Kancheva D, Masin L, Scheyltjens I, Van Hove H, De Vlaminck K, Bergmans S, Claes M, De Groef L, Moons L, Movahedi K. Immune stimulation recruits a subset of pro-regenerative macrophages to the retina that promotes axonal regrowth of injured neurons. Acta Neuropathol Commun 2023; 11:85. [PMID: 37226256 DOI: 10.1186/s40478-023-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
The multifaceted nature of neuroinflammation is highlighted by its ability to both aggravate and promote neuronal health. While in mammals retinal ganglion cells (RGCs) are unable to regenerate following injury, acute inflammation can induce axonal regrowth. However, the nature of the cells, cellular states and signalling pathways that drive this inflammation-induced regeneration have remained elusive. Here, we investigated the functional significance of macrophages during RGC de- and regeneration, by characterizing the inflammatory cascade evoked by optic nerve crush (ONC) injury, with or without local inflammatory stimulation in the vitreous. By combining single-cell RNA sequencing and fate mapping approaches, we elucidated the response of retinal microglia and recruited monocyte-derived macrophages (MDMs) to RGC injury. Importantly, inflammatory stimulation recruited large numbers of MDMs to the retina, which exhibited long-term engraftment and promoted axonal regrowth. Ligand-receptor analysis highlighted a subset of recruited macrophages that exhibited expression of pro-regenerative secreted factors, which were able to promote axon regrowth via paracrine signalling. Our work reveals how inflammation may promote CNS regeneration by modulating innate immune responses, providing a rationale for macrophage-centred strategies for driving neuronal repair following injury and disease.
Collapse
Affiliation(s)
- Lien Andries
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Naamsestraat 61, Box 2464, 3000, Louvain, Belgium
| | - Daliya Kancheva
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Luca Masin
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Naamsestraat 61, Box 2464, 3000, Louvain, Belgium
| | - Isabelle Scheyltjens
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Hannah Van Hove
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Karen De Vlaminck
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Steven Bergmans
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Naamsestraat 61, Box 2464, 3000, Louvain, Belgium
| | - Marie Claes
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Naamsestraat 61, Box 2464, 3000, Louvain, Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Naamsestraat 61, Box 2464, 3000, Louvain, Belgium
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, 3000, Louvain, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Naamsestraat 61, Box 2464, 3000, Louvain, Belgium.
| | - Kiavash Movahedi
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.
| |
Collapse
|
12
|
Shafqat A, Albalkhi I, Magableh HM, Saleh T, Alkattan K, Yaqinuddin A. Tackling the glial scar in spinal cord regeneration: new discoveries and future directions. Front Cell Neurosci 2023; 17:1180825. [PMID: 37293626 PMCID: PMC10244598 DOI: 10.3389/fncel.2023.1180825] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Axonal regeneration and functional recovery are poor after spinal cord injury (SCI), typified by the formation of an injury scar. While this scar was traditionally believed to be primarily responsible for axonal regeneration failure, current knowledge takes a more holistic approach that considers the intrinsic growth capacity of axons. Targeting the SCI scar has also not reproducibly yielded nearly the same efficacy in animal models compared to these neuron-directed approaches. These results suggest that the major reason behind central nervous system (CNS) regeneration failure is not the injury scar but a failure to stimulate axon growth adequately. These findings raise questions about whether targeting neuroinflammation and glial scarring still constitute viable translational avenues. We provide a comprehensive review of the dual role of neuroinflammation and scarring after SCI and how future research can produce therapeutic strategies targeting the hurdles to axonal regeneration posed by these processes without compromising neuroprotection.
Collapse
|
13
|
Tang H, Gu Y, Jiang L, Zheng G, Pan Z, Jiang X. The role of immune cells and associated immunological factors in the immune response to spinal cord injury. Front Immunol 2023; 13:1070540. [PMID: 36685599 PMCID: PMC9849245 DOI: 10.3389/fimmu.2022.1070540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological condition prevalent worldwide. Where the pathological mechanisms underlying SCI are concerned, we can distinguish between primary injury caused by initial mechanical damage and secondary injury characterized by a series of biological responses, such as vascular dysfunction, oxidative stress, neurotransmitter toxicity, lipid peroxidation, and immune-inflammatory response. Secondary injury causes further tissue loss and dysfunction, and the immune response appears to be the key molecular mechanism affecting injured tissue regeneration and functional recovery from SCI. Immune response after SCI involves the activation of different immune cells and the production of immunity-associated chemicals. With the development of new biological technologies, such as transcriptomics, the heterogeneity of immune cells and chemicals can be classified with greater precision. In this review, we focus on the current understanding of the heterogeneity of these immune components and the roles they play in SCI, including reactive astrogliosis and glial scar formation, neutrophil migration, macrophage transformation, resident microglia activation and proliferation, and the humoral immunity mediated by T and B cells. We also summarize findings from clinical trials of immunomodulatory therapies for SCI and briefly review promising therapeutic drugs currently being researched.
Collapse
Affiliation(s)
- Huaguo Tang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yuanjie Gu
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Lei Jiang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Gang Zheng
- Department of Neurosurgery, The Central Hospital Affiliated to Shaoxing University, Jiaxing, China
| | - Zhuoer Pan
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Xiugui Jiang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
14
|
Li C, Xiong W, Wan B, Kong G, Wang S, Wang Y, Fan J. Role of peripheral immune cells in spinal cord injury. Cell Mol Life Sci 2023; 80:2. [PMID: 36478290 PMCID: PMC9729325 DOI: 10.1007/s00018-022-04644-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Secondary spinal cord injury is caused by an inflammatory response cascade, and the process is irreversible. The immune system, as a mediator of inflammation, plays an important role in spinal cord injury. The spinal cord retains its immune privilege in a physiological state. Hence, elucidating the mechanisms by which peripheral immune cells are recruited to the lesion site and function after spinal cord injury is meaningful for the exploration of clinical therapeutic targets. In this review, we provide an overview of the multifaceted roles of peripheral immune cells in spinal cord injury.
Collapse
Affiliation(s)
- Cong Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wu Xiong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bowen Wan
- Department of Orthopaedics, Subei People's Hospital of Jiangsu, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Guang Kong
- Nanjing Medical University, Nanjing, 210029, China
| | - Siming Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yingying Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
15
|
Feng Y, Peng Y, Jie J, Yang Y, Yang P. The immune microenvironment and tissue engineering strategies for spinal cord regeneration. Front Cell Neurosci 2022; 16:969002. [PMID: 35990891 PMCID: PMC9385973 DOI: 10.3389/fncel.2022.969002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Regeneration of neural tissue is limited following spinal cord injury (SCI). Successful regeneration of injured nerves requires the intrinsic regenerative capability of the neurons and a suitable microenvironment. However, the local microenvironment is damaged, including insufficient intraneural vascularization, prolonged immune responses, overactive immune responses, dysregulated bioenergetic metabolism and terminated bioelectrical conduction. Among them, the immune microenvironment formed by immune cells and cytokines plays a dual role in inflammation and regeneration. Few studies have focused on the role of the immune microenvironment in spinal cord regeneration. Here, we summarize those findings involving various immune cells (neutrophils, monocytes, microglia and T lymphocytes) after SCI. The pathological changes that occur in the local microenvironment and the function of immune cells are described. We also summarize and discuss the current strategies for treating SCI with tissue-engineered biomaterials from the perspective of the immune microenvironment.
Collapse
Affiliation(s)
- Yuan Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yong Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jing Jie
- Department of Clinical Laboratory, The First People’s Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong, China
- Jing Jie,
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Yumin Yang,
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
- *Correspondence: Pengxiang Yang,
| |
Collapse
|
16
|
Colciaghi F, Costanza M. Unveiling Leukocyte Extracellular Traps in Inflammatory Responses of the Central Nervous System. Front Immunol 2022; 13:915392. [PMID: 35844591 PMCID: PMC9283689 DOI: 10.3389/fimmu.2022.915392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past nearly two decades, increasing evidence has uncovered how immune cells can actively extrude genetic material to entrap invading pathogens or convey sterile inflammatory signals that contribute to shaping immune responses. Originally identified in neutrophils, the release of decondensed chromatin fibers decorated with antimicrobial proteins, called extracellular traps (ETs), has been recognized as a specific form of programmed inflammatory cell death, which is now known to occur in several other leukocytes. Subsequent reports have shown that self-DNA can be extruded from immune cells even in the absence of cell death phenomena. More recent data suggest that ETs formation could exacerbate neuroinflammation in several disorders of the central nervous system (CNS). This review article provides an overview of the varied types, sources, and potential functions of extracellular DNA released by immune cells. Key evidence suggesting the involvement of ETs in neurodegenerative, traumatic, autoimmune, and oncological disorders of the CNS will be discussed, outlining ongoing challenges and drawing potentially novel lines of investigation.
Collapse
Affiliation(s)
- Francesca Colciaghi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Costanza
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- *Correspondence: Massimo Costanza,
| |
Collapse
|
17
|
Salvador AFM, Kipnis J. Immune response after central nervous system injury. Semin Immunol 2022; 59:101629. [PMID: 35753867 DOI: 10.1016/j.smim.2022.101629] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Abstract
Traumatic injuries of the central nervous system (CNS) affect millions of people worldwide, and they can lead to severely damaging consequences such as permanent disability and paralysis. Multiple factors can obstruct recovery after CNS injury. One of the most significant is the progressive neuronal death that follows the initial mechanical impact, leading to the loss of undamaged cells via a process termed secondary neurodegeneration. Efforts to define treatments that limit the spread of damage, while important, have been largely ineffectual owing to gaps in the mechanistic understanding that underlies the persisting neuronal cell death. Inflammation, with its influx of immune cells that occurs shortly after injury, has been associated with secondary neurodegeneration. However, the role of the immune system after CNS injury is far more complex. Studies have indicated that the immune response after CNS injury is detrimental, owing to immune cell-produced factors (e.g., pro-inflammatory cytokines, free radicals, neurotoxic glutamate) that worsen tissue damage. Our lab and others have also demonstrated the beneficial immune response that occurs after CNS injury, with the release of growth factors such as brain-derived growth factor (BDNF) and interleukin (IL-10) and the clearance of apoptotic and myelin debris by immune cells1-4. In this review, we first discuss the multifaceted roles of the immune system after CNS injury. We then speculate on how advancements in single-cell RNA technologies can dramatically change our understanding of the immune response, how the spinal cord meninges serve as an important site for hosting immunological processes critical for recovery, and how the origin of peripherally recruited immune cells impacts their function in the injured CNS.
Collapse
Affiliation(s)
- Andrea Francesca M Salvador
- Department of Pathology & Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA.
| | - Jonathan Kipnis
- Department of Pathology & Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
McCreedy DA, Abram CL, Hu Y, Min SW, Platt ME, Kirchhoff MA, Reid SK, Jalufka FL, Lowell CA. Spleen tyrosine kinase facilitates neutrophil activation and worsens long-term neurologic deficits after spinal cord injury. J Neuroinflammation 2021; 18:302. [PMID: 34952603 PMCID: PMC8705173 DOI: 10.1186/s12974-021-02353-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background Spinal cord injury elicits widespread inflammation that can exacerbate long-term neurologic deficits. Neutrophils are the most abundant immune cell type to invade the spinal cord in the early acute phase after injury, however, their role in secondary pathogenesis and functional recovery remains unclear. We have previously shown that neutrophil functional responses during inflammation are augmented by spleen tyrosine kinase, Syk, a prominent intracellular signaling enzyme. In this study, we evaluated the contribution of Syk towards neutrophil function and long-term neurologic deficits after spinal cord injury. Methods Contusive spinal cord injury was performed at thoracic vertebra level 9 in mice with conditional deletion of Syk in neutrophils (Sykf/fMRP8-Cre). Hindlimb locomotor recovery was evaluated using an open-field test for 35 days following spinal cord injury. Long-term white matter sparing was assessed using eriochrome cyanide staining. Blood-spinal cord barrier disruption was evaluated by immunoblotting. Neutrophil infiltration, activation, effector functions, and cell death were determined by flow cytometry. Cytokine and chemokine expression in neutrophils was assessed using a gene array. Results Syk deficiency in neutrophils improved long-term functional recovery after spinal cord injury, but did not promote long-term white matter sparing. Neutrophil activation, cytokine expression, and cell death in the acutely injured spinal cord were attenuated by the genetic loss of Syk while neutrophil infiltration and effector functions were not affected. Acute blood-spinal cord barrier disruption was also unaffected by Syk deficiency in neutrophils. Conclusions Syk facilitates specific neutrophil functional responses to spinal cord injury including activation, cytokine expression, and cell death. Long-term neurologic deficits are exacerbated by Syk signaling in neutrophils independent of acute blood-spinal cord barrier disruption and long-term white matter sparing. These findings implicate Syk in pathogenic neutrophil activities that worsen long-term functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Dylan A McCreedy
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA. .,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA. .,Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA.
| | - Clare L Abram
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| | - Yongmei Hu
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| | - Sun Won Min
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Madison E Platt
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Megan A Kirchhoff
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Shelby K Reid
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Frank L Jalufka
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
19
|
Douglas TC, Hannila SS. Working from within: how secretory leukocyte protease inhibitor regulates the expression of pro-inflammatory genes. Biochem Cell Biol 2021; 100:1-8. [PMID: 34555292 DOI: 10.1139/bcb-2021-0284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Secretory leukocyte protease inhibitor (SLPI) is a small but powerful member of the serine protease inhibitor family, which includes proteins such as elafin and α1-antitrypsin. These proteins all have similar structures and antiprotease abilities, but SLPI has been found to have an additional role as an anti-inflammatory factor. It can inhibit the production of pro-inflammatory cytokines in cells stimulated with lipopolysaccharide, prevent neutrophil infiltration in murine models of lung and liver injury, and regulate the activity of the transcription factor NF-κB. In this review, we will revisit SLPI's unique biochemistry, and then explore how its anti-inflammatory functions can be linked to more recent findings showing that SLPI can localize to the nuclei of cells, bind DNA, and act as a regulator of gene expression.
Collapse
Affiliation(s)
- Tinsley Claire Douglas
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada.,Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Sari S Hannila
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada.,Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
20
|
Spinal cord injury in mice impacts central and peripheral pathology in a severity-dependent manner. Pain 2021; 163:1172-1185. [PMID: 34490852 DOI: 10.1097/j.pain.0000000000002471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic pain is a common medical complication experienced by those living with spinal cord injury (SCI) and leads to worsened quality of life. The pathophysiology of SCI pain is poorly understood, hampering the development of safe and efficacious therapeutics. We therefore sought to develop a clinically relevant model of SCI with a strong pain phenotype and characterize the central and peripheral pathology after injury. A contusion (50 kdyn) injury, with and without sustained compression (60 seconds) of the spinal cord, was carried out on female C57BL/6J mice. Mice with compression of the spinal cord exhibited significantly greater heat and mechanical hypersensitivity starting at 7 days post-injury, concomitant with reduced locomotor function, compared to those without compression. Immunohistochemical analysis of spinal cord tissue revealed significantly less myelin sparing and increased macrophage activation in mice with compression compared to those without. As measured by flow cytometry, immune cell infiltration and activation were significantly greater in the spinal cord (phagocytic myeloid cells and microglia) and dorsal root ganglia (Ly6C+ monocytes) following compression injury. We also decided to investigate the gastrointestinal microbiome, as it has been shown to be altered in SCI patients and has recently been shown to play a role in immune system maturation and pain. We found increased dysbiosis of the gastrointestinal microbiome in an injury severity-dependent manner. The use of this contusion-compression model of SCI may help advance the preclinical assessment of acute and chronic SCI pain and lead to a better understanding of mechanisms contributing to this pain.
Collapse
|
21
|
Zivkovic S, Ayazi M, Hammel G, Ren Y. For Better or for Worse: A Look Into Neutrophils in Traumatic Spinal Cord Injury. Front Cell Neurosci 2021; 15:648076. [PMID: 33967695 PMCID: PMC8100532 DOI: 10.3389/fncel.2021.648076] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are short-lived cells of the innate immune system and the first line of defense at the site of an infection and tissue injury. Pattern recognition receptors on neutrophils recognize pathogen-associated molecular patterns or danger-associated molecular patterns, which recruit them to the destined site. Neutrophils are professional phagocytes with efficient granular constituents that aid in the neutralization of pathogens. In addition to phagocytosis and degranulation, neutrophils are proficient in creating neutrophil extracellular traps (NETs) that immobilize pathogens to prevent their spread. Because of the cytotoxicity of the associated granular proteins within NETs, the microbes can be directly killed once immobilized by the NETs. The role of neutrophils in infection is well studied; however, there is less emphasis placed on the role of neutrophils in tissue injury, such as traumatic spinal cord injury. Upon the initial mechanical injury, the innate immune system is activated in response to the molecules produced by the resident cells of the injured spinal cord initiating the inflammatory cascade. This review provides an overview of the essential role of neutrophils and explores the contribution of neutrophils to the pathologic changes in the injured spinal cord.
Collapse
Affiliation(s)
- Sandra Zivkovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Maryam Ayazi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Grace Hammel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
22
|
Aschauer-Wallner S, Leis S, Bogdahn U, Johannesen S, Couillard-Despres S, Aigner L. Granulocyte colony-stimulating factor in traumatic spinal cord injury. Drug Discov Today 2021; 26:1642-1655. [PMID: 33781952 DOI: 10.1016/j.drudis.2021.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) is a cytokine used in pharmaceutical preparations for the treatment of chemotherapy-induced neutropenia. Evidence from experimental studies indicates that G-CSF exerts relevant activities in the central nervous system (CNS) in particular after lesions. In acute, subacute, and chronic CNS lesions, G-CSF appears to have strong anti-inflammatory, antiapoptotic, antioxidative, myelin-protective, and axon-regenerative activities. Additional effects result in the stimulation of angiogenesis and neurogenesis as well as in bone marrow stem cell mobilization to the CNS. There are emerging preclinical and clinical data indicating that G-CSF is a safe and effective drug for the treatment of acute and chronic traumatic spinal cord injury (tSCI), which we summarize in this review.
Collapse
Affiliation(s)
- Stephanie Aschauer-Wallner
- Department of Orthopedics and Traumatology, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria; Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria.
| | - Stefan Leis
- Department of Neurology, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Ulrich Bogdahn
- Velvio GmbH, Regensburg, Germany; Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Siw Johannesen
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany; Department of Neurology, BG Trauma Center Murnau, Murnau, Germany
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
23
|
Chio JCT, Xu KJ, Popovich P, David S, Fehlings MG. Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Exp Neurol 2021; 341:113704. [PMID: 33745920 DOI: 10.1016/j.expneurol.2021.113704] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) has a complex pathophysiology. Following the initial physical trauma to the spinal cord, which may cause vascular disruption, hemorrhage, mechanical injury to neural structures and necrosis, a series of biomolecular cascades is triggered to evoke secondary injury. Neuroinflammation plays a major role in the secondary injury after traumatic SCI. To date, the administration of systemic immunosuppressive medications, in particular methylprednisolone sodium succinate, has been the primary pharmacological treatment. This medication is given as a complement to surgical decompression of the spinal cord and maintenance of spinal cord perfusion through hemodynamic augmentation. However, the impact of neuroinflammation is complex with harmful and beneficial effects. The use of systemic immunosuppressants is further complicated by the natural onset of post-injury immunosuppression, which many patients with SCI develop. It has been hypothesized that immunomodulation to attenuate detrimental aspects of neuroinflammation after SCI, while avoiding systemic immunosuppression, may be a superior approach. To accomplish this, a detailed understanding of neuroinflammation and the systemic immune responses after SCI is required. Our review will strive to achieve this goal by first giving an overview of SCI from a clinical and basic science context. The role that neuroinflammation plays in the pathophysiology of SCI will be discussed. Next, the positive and negative attributes of the innate and adaptive immune systems in neuroinflammation after SCI will be described. With this background established, the currently existing immunosuppressive and immunomodulatory therapies for treating SCI will be explored. We will conclude with a summary of topics that can be explored by neuroimmunology research. These concepts will be complemented by points to be considered by neuroscientists developing therapies for SCI and other injuries to the central nervous system.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | - Katherine Jiaxi Xu
- Human Biology Program, University of Toronto, Wetmore Hall, 300 Huron St., Room 105, Toronto, Ontario M5S 3J6, Canada.
| | - Phillip Popovich
- Department of Neuroscience, Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Neurological Institute, The Ohio State University, Wexner Medical Center, 410 W. 10(th) Ave., Columbus 43210, USA.
| | - Samuel David
- Centre for Research in Neuroscience and BRaIN Program, The Research Institute of the McGill University Health Centre, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada.
| | - Michael G Fehlings
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
24
|
Ji Z, Jiang X, Li Y, Song J, Chai C, Lu X. Neural stem cells induce M2 polarization of macrophages through the upregulation of interleukin-4. Exp Ther Med 2020; 20:148. [PMID: 33093886 PMCID: PMC7571360 DOI: 10.3892/etm.2020.9277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages are divided into two types: M1- and M2-type macrophages. Both types of macrophages serve important roles during the process of inflammation. M1-type macrophages release various pro-inflammatory cytokines, such as IL-1, IFN-γ and other inflammatory mediators, such as nitric oxide, glutamate and reactive oxygen species to generate inflammation. In contrast, M2-type macrophages counteract the pro-inflammatory M1 conditions and promote tissue repair by secreting anti-inflammatory cytokines, such as IL-10. In spinal cord injury (SCI), an imbalance in M1/M2 macrophages leads to irreversible tissue destruction. Thus, it is crucial to increase the number of M2-type macrophages and promote M2 polarization of macrophages in SCI. Accordingly, in this study an in vitro co-culture system was established to investigate the effect of neural stem cells (NSCs) on macrophages. The results of the present study demonstrated that NSCs induced M2 polarization and suppressed M1 polarization of macrophages in an interleukin (IL)-4-dependent manner. Furthermore, the nuclear factor (NF)-κB/p65 signaling pathway was involved in the M1 polarization of macrophages and NSCs suppressed the activation of the NF-κB/p65 pathway in an IL-4-dependent manner to induce M2 macrophage polarization. These findings provide more insight into SCI and help to identify novel treatment strategies.
Collapse
Affiliation(s)
- Zhuangqi Ji
- Department of Gastrointestinal-Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, P.R. China
| | - Xianming Jiang
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Yubin Li
- The Reproductive Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jian Song
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Cuicui Chai
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Xiaofang Lu
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| |
Collapse
|
25
|
Tang R, Botchway BOA, Meng Y, Zhang Y, Zhou C, Jiang J, Liu X. The Inhibition of Inflammatory Signaling Pathway by Secretory Leukocyte Protease Inhibitor can Improve Spinal Cord Injury. Cell Mol Neurobiol 2020; 40:1067-1073. [PMID: 31993863 PMCID: PMC11448923 DOI: 10.1007/s10571-020-00799-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury leads to loss of sensory motor functions below the damaged area, and can significantly affects physical and mental health. An effective spinal cord injury treatment is currently unavailable, in part, because of the intricacy of the brain, as well as the complex pathophysiological mechanism of the injury. Inflammation is an important biological process in multitudinous diseases, with no exception for spinal cord injury. Nuclear factor kappa beta (NF-κB) signaling pathway is a key inflammatory element, as it is involved in cell survival, apoptosis, proliferation, differentiation, and immune response. Activation of the NF-κB signaling pathway leads to the release of a large number of inflammatory factors that can affect tissue repair. Hence, the inhibition of inflammatory responses could improve the repair of injured spinal cord tissues. Secretory leukocyte protease inhibitor (SLPI) has anti-inflammatory and anti-bacterial properties, and promotes wound healing. SLPI can bind to the promoter region of tumor necrosis factor-αand interleukin-8 (IL-8) to inhibit the NF-κB signaling pathway. Additionally, SLPI can reduce secondary damages after spinal cord injury, and prevent further complications. In this report, we analyze the pathophysiological mechanism of spinal cord injury, the role of NF-κB signaling pathway following spinal cord injury, and how SLPI regulates the NF-κB signaling pathway to curtail inflammatory reaction.
Collapse
Affiliation(s)
- Renzhe Tang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanfeng Meng
- Department of Orthopedics, Affiliated Hospital, Shaoxing University, Shaoxing, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Conghui Zhou
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Junsong Jiang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China.
| |
Collapse
|
26
|
Gillespie ER, Ruitenberg MJ. Neuroinflammation after SCI: Current Insights and Therapeutic Potential of Intravenous Immunoglobulin. J Neurotrauma 2020; 39:320-332. [PMID: 32689880 DOI: 10.1089/neu.2019.6952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic spinal cord injury (SCI) elicits a complex cascade of cellular and molecular inflammatory events. Although certain aspects of the inflammatory response are essential to wound healing and repair, post-SCI inflammation is, on balance, thought to be detrimental to recovery by causing "bystander damage" and the spread of pathology into spared but vulnerable regions of the spinal cord. Much of the research to date has therefore focused on understanding the inflammatory drivers of secondary tissue loss after SCI, to define therapeutic targets and positively modulate this response. Numerous experimental studies have demonstrated that modulation of the inflammatory response to SCI can indeed lead to significant neuroprotection and improved recovery. However, it is now also recognized that broadscale immunosuppression is not necessarily beneficial and may even carry the risk of contributing to the development of serious adverse events. Immune modulation rather than suppression is therefore now considered a more promising approach to target harmful post-traumatic inflammation following a major neurotraumatic event such as SCI. One promising immunomodulatory agent is intravenous immunoglobulin (IVIG), a plasma product that contains mostly immunoglobulin G (IgG) from thousands of healthy donors. IVIG is currently already widely used to treat a range of autoimmune diseases, but recent studies have found that it also holds great promise for treating acute neurological conditions, including SCI. This review provides an overview of the inflammatory response to SCI, immunomodulatory approaches that are currently in clinical trials, proposed mechanisms of action for IVIG therapy, and the putative relevance of these in the context of neurotraumatic events.
Collapse
Affiliation(s)
- Ellen R Gillespie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Trauma, Critical Care, and Recovery, Brisbane Diamantina Health Partners, Brisbane, Australia
| |
Collapse
|
27
|
Stefanello ST, de Carvalho NR, Reis SB, Soares FAA, Barcelos RP. Acetaminophen Oxidation and Inflammatory Markers - A Review of Hepatic Molecular Mechanisms and Preclinical Studies. Curr Drug Targets 2020; 21:1225-1236. [PMID: 32386489 DOI: 10.2174/1389450121666200510014418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/06/2020] [Accepted: 02/21/2020] [Indexed: 11/22/2022]
Abstract
Acetaminophen is a widely used analgesic for pain management, especially useful in chronic diseases, such as rheumatoid arthritis. However, easy access to this medicine has increased the occurrence of episodes of poisoning. Patients often develop severe liver damage, which may quickly lead to death. Consequently, numerous studies have been conducted to identify new biomarkers that allow the prediction of the degree of acetaminophen intoxication and thus intervene in a timely manner to save patients' lives. This review highlights the main mechanisms of the induction and progression of liver damage arising from acetaminophen poisoning. In addition, we have discussed the possibility of using new clinical biomarkers for detecting acetaminophen poisoning.
Collapse
Affiliation(s)
- Silvio Terra Stefanello
- Programa de Pos-Graduacao em Bioquimica Toxicologica, Centro de Ciencias Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Brazil
| | | | - Simone Beder Reis
- Institudo de Ciencias Biologicas (ICB), Programa de Posgraduacao em Bioexperimentacao, Universidade de Passo Fundo, Passo Fundo, Brazil
| | - Felix Alexandre Antunes Soares
- Programa de Pos-Graduacao em Bioquimica Toxicologica, Centro de Ciencias Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Brazil
| | - Rômulo Pillon Barcelos
- Programa de Pos-Graduacao em Bioquimica Toxicologica, Centro de Ciencias Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Brazil
| |
Collapse
|
28
|
Protein Degradome of Spinal Cord Injury: Biomarkers and Potential Therapeutic Targets. Mol Neurobiol 2020; 57:2702-2726. [PMID: 32328876 DOI: 10.1007/s12035-020-01916-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
Degradomics is a proteomics sub-discipline whose goal is to identify and characterize protease-substrate repertoires. With the aim of deciphering and characterizing key signature breakdown products, degradomics emerged to define encryptic biomarker neoproteins specific to certain disease processes. Remarkable improvements in structural and analytical experimental methodologies as evident in research investigating cellular behavior in neuroscience and cancer have allowed the identification of specific degradomes, increasing our knowledge about proteases and their regulators and substrates along with their implications in health and disease. A physiologic balance between protein synthesis and degradation is sought with the activation of proteolytic enzymes such as calpains, caspases, cathepsins, and matrix metalloproteinases. Proteolysis is essential for development, growth, and regeneration; however, inappropriate and uncontrolled activation of the proteolytic system renders the diseased tissue susceptible to further neurotoxic processes. In this article, we aim to review the protease-substrate repertoires as well as emerging therapeutic interventions in spinal cord injury at the degradomic level. Several protease substrates and their breakdown products, essential for the neuronal structural integrity and functional capacity, have been characterized in neurotrauma including cytoskeletal proteins, neuronal extracellular matrix glycoproteins, cell junction proteins, and ion channels. Therefore, targeting exaggerated protease activity provides a potentially effective therapeutic approach in the management of protease-mediated neurotoxicity in reducing the extent of damage secondary to spinal cord injury.
Collapse
|
29
|
SLPI - a Biomarker of Acute Kidney Injury after Open and Endovascular Thoracoabdominal Aortic Aneurysm (TAAA) Repair. Sci Rep 2020; 10:3453. [PMID: 32103084 PMCID: PMC7044192 DOI: 10.1038/s41598-020-60482-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/13/2020] [Indexed: 11/08/2022] Open
Abstract
Acute kidney injury (AKI) is a relevant complication following thoracoabdominal aortic aneurysm repair (TAAA). Biomarkers, such as secretory leucocyte peptidase inhibitor (SLPI), may enable a more accurate diagnosis. In this study, we tested if SLPI measured in serum is an appropriate biomarker of AKI after TAAA repair. In a prospective observational single-center study including 33 patients (51.5% women, mean age 63.0 ± 16.2 years) undergoing open and endovascular aortic aneurysm repair in 2017, SLPI was measured peri-operatively (until 72 h after surgery). After surgery, the postoperative complications AKI, as defined according to the KDIGO diagnostic criteria, sepsis, death, MACE (major cardiovascular events) and, pneumonia were assessed. In a subgroup analysis, patients with preexisting kidney disease were excluded. Of 33 patients, 51.5% (n = 17) of patients developed AKI. Twelve hours after admission to the intensive care unit (ICU), SLPI serum levels were significantly increased in patients who developed AKI. Multivariable logistic regression revealed a significant association between SLPI 12 hours after admission to ICU and AKI (P = 0.0181, OR = 1.055, 95% CI = 1.009-1.103). The sensitivity of SLPI for AKI prediction was 76.47% (95% CI = 50.1-93.2) and the specificity was 87.5% (95% CI = 61.7-98.4) with an AUC = 0.838 (95% CI = 0.7-0.976) for an optimal cut-off 70.03 ng/ml 12 hours after surgery. In patients without pre-existing impaired renal function, an improved diagnostic quality of SLPI for AKI was observed (Sensitivities of 45.45-91.67%, Specificities of 77.7-100%, AUC = 0.716-0.932). There was no association between perioperative SLPI and the incidence of sepsis, death, MACE (major cardiovascular events), pneumonia. This study suggests that SLPI might be a post-operative biomarker of AKI after TAAA repair, with a superior diagnostic accuracy for patients without preexisting impaired renal function.
Collapse
|
30
|
Voigt AP, Binkley E, Flamme-Wiese MJ, Zeng S, DeLuca AP, Scheetz TE, Tucker BA, Mullins RF, Stone EM. Single-Cell RNA Sequencing in Human Retinal Degeneration Reveals Distinct Glial Cell Populations. Cells 2020; 9:cells9020438. [PMID: 32069977 PMCID: PMC7072666 DOI: 10.3390/cells9020438] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Degenerative diseases affecting retinal photoreceptor cells have numerous etiologies and clinical presentations. We clinically and molecularly studied the retina of a 70-year-old patient with retinal degeneration attributed to autoimmune retinopathy. The patient was followed for 19 years for progressive peripheral visual field loss and pigmentary changes. Single-cell RNA sequencing was performed on foveal and peripheral retina from this patient and four control patients, and cell-specific gene expression differences were identified between healthy and degenerating retina. Distinct populations of glial cells, including astrocytes and Müller cells, were identified in the tissue from the retinal degeneration patient. The glial cell populations demonstrated an expression profile consistent with reactive gliosis. This report provides evidence that glial cells have a distinct transcriptome in the setting of human retinal degeneration and represents a complementary clinical and molecular investigation of a case of progressive retinal disease.
Collapse
Affiliation(s)
- Andrew P. Voigt
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Elaine Binkley
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Miles J. Flamme-Wiese
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Shemin Zeng
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Adam P. DeLuca
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Todd E. Scheetz
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Budd A. Tucker
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Robert F. Mullins
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Edwin M. Stone
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
31
|
Wang S, Smith GM, Selzer ME, Li S. Emerging molecular therapeutic targets for spinal cord injury. Expert Opin Ther Targets 2019; 23:787-803. [PMID: 31460807 DOI: 10.1080/14728222.2019.1661381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Spinal cord injury (SCI) is a complicated and devastating neurological disorder. Patients with SCI usually have dramatically reduced quality of life. In recent years, numerous studies have reported advances in understanding the pathophysiology of SCI and developing preclinical therapeutic strategies for SCI, including various molecular therapies, and yet there is still no cure. Areas covered: After SCI, tissue damage, responses and repair involve interactions among many cellular components, including neurons, axons, glia, leukocytes, and other cells. Accordingly, numerous cellular genes and molecules have become therapeutic targets for neural tissue repair, circuit reconstruction, and behavioral restoration. Here, we review the major recent advances in biological and molecular strategies to enhance neuroprotection, axon regeneration, remyelination, neuroplasticity and functional recovery in preclinical studies of SCI. Expert opinion: Researchers have made tremendous progress in identifying individual and combined molecular therapies in animal studies. It is very important to identify additional highly effective treatments for early neuroprotective intervention and for functionally meaningful axon regeneration and neuronal reconnections. Because multiple mechanisms contribute to the functional loss after SCI, combining the most promising approaches that target different pathophysiological and molecular mechanisms should exhibit synergistic actions for maximal functional restoration. [Databases searched: PubMed; inclusive dates: 6/27/2019].
Collapse
Affiliation(s)
- Shuo Wang
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine , Philadelphia , PA , USA.,Department of Anatomy and Cell Biology, Temple University School of Medicine , Philadelphia , PA , USA
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine , Philadelphia , PA , USA.,Department of Neuroscience, Temple University School of Medicine , Philadelphia , PA , USA
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine , Philadelphia , PA , USA.,Department of Neurology, Temple University School of Medicine , Philadelphia , PA , USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine , Philadelphia , PA , USA.,Department of Anatomy and Cell Biology, Temple University School of Medicine , Philadelphia , PA , USA
| |
Collapse
|
32
|
Epac2 Elevation Reverses Inhibition by Chondroitin Sulfate Proteoglycans In Vitro and Transforms Postlesion Inhibitory Environment to Promote Axonal Outgrowth in an Ex Vivo Model of Spinal Cord Injury. J Neurosci 2019; 39:8330-8346. [PMID: 31409666 DOI: 10.1523/jneurosci.0374-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Millions of patients suffer from debilitating spinal cord injury (SCI) without effective treatments. Elevating cAMP promotes CNS neuron growth in the presence of growth-inhibiting molecules. cAMP's effects on neuron growth are partly mediated by Epac, comprising Epac1 and Epac2; the latter predominantly expresses in postnatal neural tissue. Here, we hypothesized that Epac2 activation would enhance axonal outgrowth after SCI. Using in vitro assays, we demonstrated, for the first time, that Epac2 activation using a specific soluble agonist (S-220) significantly enhanced neurite outgrowth of postnatal rat cortical neurons and markedly overcame the inhibition by chondroitin sulfate proteoglycans and mature astrocytes on neuron growth. We further investigated the novel potential of Epac2 activation in promoting axonal outgrowth by an ex vivo rat model of SCI mimicking post-SCI environment in vivo and by delivering S-220 via a self-assembling Fmoc-based hydrogel that has suitable properties for SCI repair. We demonstrated that S-220 significantly enhanced axonal outgrowth across the lesion gaps in the organotypic spinal cord slices, compared with controls. Furthermore, we elucidated, for the first time, that Epac2 activation profoundly modulated the lesion environment by reducing astrocyte/microglial activation and transforming astrocytes into elongated morphology that guided outgrowing axons. Finally, we showed that S-220, when delivered by the gel at 3 weeks after contusion SCI in male adult rats, resulted in significantly better locomotor performance for up to 4 weeks after treatment. Our data demonstrate a promising therapeutic potential of S-220 in SCI, via beneficial effects on neurons and glia after injury to facilitate axonal outgrowth.SIGNIFICANCE STATEMENT During development, neuronal cAMP levels decrease significantly compared with the embryonic stage when the nervous system is established. This has important consequences following spinal cord injury, as neurons fail to regrow. Elevating cAMP levels encourages injured CNS neurons to sprout and extend neurites. We have demonstrated that activating its downstream effector, Epac2, enhances neurite outgrowth in vitro, even in the presence of an inhibitory environment. Using a novel biomaterial-based drug delivery system in the form of a hydrogel to achieve local delivery of an Epac2 agonist, we further demonstrated that specific activation of Epac2 enhances axonal outgrowth and minimizes glial activation in an ex vivo model of spinal cord injury, suggesting a new strategy for spinal cord repair.
Collapse
|
33
|
Peiseler M, Kubes P. More friend than foe: the emerging role of neutrophils in tissue repair. J Clin Invest 2019; 129:2629-2639. [PMID: 31205028 DOI: 10.1172/jci124616] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are the most abundant immune cells in humans and serve as first responders to a myriad of host perturbations. Equipped with a plethora of antimicrobial molecules, neutrophils invade sites of inflammation to eradicate pathogens and clear debris. Traditionally, neutrophils were thought to cause collateral tissue damage before dying at the site. However, the presence of neutrophil infiltration into sterile injuries (in the absence of infections) suggests additional roles for these cells. Now, the view of neutrophils as indiscriminate killers seems to be changing as evolving evidence suggests that neutrophils actively orchestrate resolution of inflammation and contribute to tissue repair. Novel concepts include the idea that neutrophils are key to revascularization and subsequently reverse-transmigrate back to the vasculature, actively leaving sites of tissue damage to re-home to functional niches in the lung and bone marrow. This Review scrutinizes the role of neutrophils in tissue damage and repair, discussing recent findings and raising unresolved questions around this intriguing immune cell.
Collapse
Affiliation(s)
- Moritz Peiseler
- Department of Pharmacology and Physiology.,Snyder Institute for Chronic Diseases, and
| | - Paul Kubes
- Department of Pharmacology and Physiology.,Snyder Institute for Chronic Diseases, and.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
34
|
Spotlight on Neurotrauma Research in Canada's Leading Academic Centers. J Neurotrauma 2018; 35:1986-2004. [PMID: 30074875 DOI: 10.1089/neu.2018.29017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
David S, Kroner A, Greenhalgh AD, Zarruk JG, López-Vales R. Myeloid cell responses after spinal cord injury. J Neuroimmunol 2018; 321:97-108. [DOI: 10.1016/j.jneuroim.2018.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
|
36
|
Kong X, Gao J. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. J Cell Mol Med 2016; 21:941-954. [PMID: 27957787 PMCID: PMC5387136 DOI: 10.1111/jcmm.13034] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/29/2016] [Indexed: 01/18/2023] Open
Abstract
Acute spinal cord injury (SCI) has become epidemic in modern society. Despite advances made in the understanding of the pathogenesis and improvements in early recognition and treatment, it remains a devastating event, often producing severe and permanent disability. SCI has two phases: acute and secondary. Although the acute phase is marked by severe local and systemic events such as tissue contusion, ischaemia, haemorrhage and vascular damage, the outcome of SCI are mainly influenced by the secondary phase. SCI causes inflammatory responses through the activation of innate immune responses that contribute to secondary injury, in which polarization‐based macrophage activation is a hallmarker. Macrophages accumulated within the epicentre and the haematoma of the injured spinal cord play a significant role in this inflammation. Depending on their phenotype and activation status, macrophages may initiate secondary injury mechanisms and/or promote CNS regeneration and repair. When it comes to therapies for SCI, very few can be performed in the acute phase. However, as macrophage activation and polarization switch are exquisitely sensitive to changes in microenvironment, some trials have been conducted to modulate macrophage polarization towards benefiting the recovery of SCI. Given this, it is important to understand how macrophages and SCI interrelate and interact on a molecular pathophysiological level. This review provides a comprehensive overview of the immuno‐pathophysiological features of acute SCI mainly from the following perspectives: (i) the overview of the pathophysiology of acute SCI, (ii) the roles of macrophage, especially its polarization switch in acute SCI, and (iii) newly developed neuroprotective therapies modulating macrophage polarization in acute SCI.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
37
|
Majchrzak-Gorecka M, Majewski P, Grygier B, Murzyn K, Cichy J. Secretory leukocyte protease inhibitor (SLPI), a multifunctional protein in the host defense response. Cytokine Growth Factor Rev 2015; 28:79-93. [PMID: 26718149 DOI: 10.1016/j.cytogfr.2015.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
Abstract
Secretory leukocyte protease inhibitor (SLPI), a ∼12kDa nonglycosylated cationic protein, is emerging as an important regulator of innate and adaptive immunity and as a component of tissue regenerative programs. First described as an inhibitor of serine proteases such as neutrophil elastase, this protein is increasingly recognized as a molecule that benefits the host via its anti-proteolytic, anti-microbial and immunomodulatory activities. Here, we discuss the diverse functions of SLPI. Moreover, we review several novel layers of SLPI-mediated control that protect the host from excessive/dysregulated inflammation typical of infectious, allergic and autoinflammatory diseases and that support healing responses through affecting cell proliferation, differentiation and apoptosis.
Collapse
Affiliation(s)
- Monika Majchrzak-Gorecka
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Pawel Majewski
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Beata Grygier
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Murzyn
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
38
|
Shakhbazau A, Mishra M, Chu TH, Brideau C, Cummins K, Tsutsui S, Shcharbin D, Majoral JP, Mignani S, Blanchard-Desce M, Bryszewska M, Yong VW, Stys PK, van Minnen J. Fluorescent Phosphorus Dendrimer as a Spectral Nanosensor for Macrophage Polarization and Fate Tracking in Spinal Cord Injury. Macromol Biosci 2015; 15:1523-34. [PMID: 26175127 DOI: 10.1002/mabi.201500150] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/29/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Antos Shakhbazau
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Manoj Mishra
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Tak-Ho Chu
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Craig Brideau
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Karen Cummins
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Shigeki Tsutsui
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | | | | | - Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique; Université Paris Descartes; Paris France
| | | | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection; University of Lodz; Lodz Poland
| | - V. Wee Yong
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Peter K. Stys
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Jan van Minnen
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| |
Collapse
|
39
|
Siddiq MM, Hannila SS. Looking downstream: the role of cyclic AMP-regulated genes in axonal regeneration. Front Mol Neurosci 2015; 8:26. [PMID: 26150769 PMCID: PMC4471816 DOI: 10.3389/fnmol.2015.00026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/03/2015] [Indexed: 11/16/2022] Open
Abstract
Elevation of intracellular cyclic AMP (cAMP) levels has proven to be one of the most effective means of overcoming inhibition of axonal regeneration by myelin-associated inhibitors such as myelin-associated glycoprotein (MAG), Nogo, and oligodendrocyte myelin glycoprotein. Pharmacological manipulation of cAMP through the administration of dibutyryl cAMP or rolipram leads to enhanced axonal growth both in vivo and in vitro, and importantly, upregulation of cAMP within dorsal root ganglion neurons is responsible for the conditioning lesion effect, which indicates that cAMP plays a significant role in the endogenous mechanisms that promote axonal regeneration. The effects of cAMP are transcription-dependent and are mediated through the activation of protein kinase A (PKA) and the transcription factor cyclic AMP response element binding protein (CREB). This leads to the induction of a variety of genes, several of which have been shown to overcome myelin-mediated inhibition in their own right. In this review, we will highlight the pro-regenerative effects of arginase I (ArgI), interleukin (IL)-6, secretory leukocyte protease inhibitor (SLPI), and metallothionein (MT)-I/II, and discuss their potential for therapeutic use in spinal cord injury.
Collapse
Affiliation(s)
- Mustafa M Siddiq
- Icahn Medical Institute, Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine New York, NY, USA
| | - Sari S Hannila
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
40
|
Aslanidis A, Karlstetter M, Scholz R, Fauser S, Neumann H, Fried C, Pietsch M, Langmann T. Activated microglia/macrophage whey acidic protein (AMWAP) inhibits NFκB signaling and induces a neuroprotective phenotype in microglia. J Neuroinflammation 2015; 12:77. [PMID: 25928566 PMCID: PMC4417279 DOI: 10.1186/s12974-015-0296-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/07/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Microglia reactivity is a hallmark of neurodegenerative diseases. We have previously identified activated microglia/macrophage whey acidic protein (AMWAP) as a counter-regulator of pro-inflammatory response. Here, we studied its mechanisms of action with a focus on toll-like receptor (TLR) and nuclear factor κB (NFκB) signaling. METHODS Recombinant AMWAP was produced in Escherichia coli and HEK293 EBNA cells and purified by affinity chromatography. AMWAP uptake was identified by fluorescent labeling, and pro-inflammatory microglia markers were measured by qRT-PCR after stimulation with TLR ligands. NFκB pathway proteins were assessed by immunocytochemistry, Western blot, and immunoprecipitation. A 20S proteasome activity assay was used to investigate the anti-peptidase activity of AMWAP. Microglial neurotoxicity was estimated by nitrite measurement and quantification of caspase 3/7 levels in 661W photoreceptors cultured in the presence of microglia-conditioned medium. Microglial proliferation was investigated using flow cytometry, and their phagocytosis was monitored by the uptake of 661W photoreceptor debris. RESULTS AMWAP was secreted from lipopolysaccharide (LPS)-activated microglia and recombinant AMWAP reduced gene transcription of IL6, iNOS, CCL2, CASP11, and TNFα in BV-2 microglia treated with LPS as TLR4 ligand. This effect was replicated with murine embryonic stem cell-derived microglia (ESdM) and primary brain microglia. AMWAP also diminished pro-inflammatory markers in microglia activated with the TLR2 ligand zymosan but had no effects on IL6, iNOS, and CCL2 transcription in cells treated with CpG oligodeoxynucleotides as TLR9 ligand. Microglial uptake of AMWAP effectively inhibited TLR4-dependent NFκB activation by preventing IRAK-1 and IκBα proteolysis. No inhibition of IκBα phosphorylation or ubiquitination and no influence on overall 20S proteasome activity were observed. Functionally, both microglial nitric oxide (NO) secretion and 661W photoreceptor apoptosis were significantly reduced after AMWAP treatment. AMWAP promoted the filopodia formation of microglia and increased the phagocytic uptake of apoptotic 661W photoreceptor cells. CONCLUSIONS AMWAP is secreted from reactive microglia and acts in a paracrine fashion to counter-balance TLR2/TLR4-induced reactivity through NFκB inhibition. AMWAP also induces a neuroprotective microglial phenotype with reduced neurotoxicity and increased phagocytosis. We therefore hypothesize that anti-inflammatory whey acidic proteins could have a therapeutic potential in neurodegenerative diseases of the brain and the retina.
Collapse
Affiliation(s)
- Alexander Aslanidis
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Kerpener Strasse 62, D-50931, Cologne, Germany.
| | - Marcus Karlstetter
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Kerpener Strasse 62, D-50931, Cologne, Germany.
| | - Rebecca Scholz
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Kerpener Strasse 62, D-50931, Cologne, Germany.
| | - Sascha Fauser
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Kerpener Strasse 62, D-50931, Cologne, Germany.
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, University of Bonn, Sigmund-Freud-Straße 25, D-53127, Bonn, Germany.
| | - Cora Fried
- Department of Pharmacology, University of Cologne, Gleueler Straße 24, D-50931, Cologne, Germany.
| | - Markus Pietsch
- Department of Pharmacology, University of Cologne, Gleueler Straße 24, D-50931, Cologne, Germany.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Kerpener Strasse 62, D-50931, Cologne, Germany.
| |
Collapse
|
41
|
Nagai J, Kitamura Y, Owada K, Yamashita N, Takei K, Goshima Y, Ohshima T. Crmp4 deletion promotes recovery from spinal cord injury by neuroprotection and limited scar formation. Sci Rep 2015; 5:8269. [PMID: 25652774 PMCID: PMC4317684 DOI: 10.1038/srep08269] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/14/2015] [Indexed: 11/08/2022] Open
Abstract
Axonal outgrowth inhibitors and scar formation are two major obstacles to central nervous system (CNS) repair. No target molecule that regulates both axonal growth and scarring has been identified. Here we identified collapsin response mediator protein 4 (CRMP4), a common mediator of inhibitory signals after neural injury, as a crucial factor that contributes to both axonal growth inhibition and scarring after spinal cord injury (SCI). We found increases in the inhibitory and toxic forms of CRMP4 in injured spinal cord. Notably, CRMP4 expression was evident in inflammatory cells as well as in neurons after spinal cord transection. Crmp4-/- mice displayed neuroprotection against SCI and reductions in inflammatory response and scar formation. This permissive environment for axonal growth due to CRMP4 deletion restored locomotor activity at an unusually early phase of healing. These results suggest that deletion of CRMP4 is a unique therapeutic strategy that overcomes two obstacles to CNS repair after SCI.
Collapse
Affiliation(s)
- Jun Nagai
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, TWIns, Waseda University, Tokyo, 162-8480 Japan
- Research Fellow of Japan Society for the Promotion of Science
| | - Yoshiteru Kitamura
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, TWIns, Waseda University, Tokyo, 162-8480 Japan
| | - Kazuki Owada
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, TWIns, Waseda University, Tokyo, 162-8480 Japan
| | - Naoya Yamashita
- Department of Molecular Pharmacology and Neurobiology, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Kohtaro Takei
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 236-0004, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, TWIns, Waseda University, Tokyo, 162-8480 Japan
| |
Collapse
|
42
|
Cheng H, Liu X, Hua R, Dai G, Wang X, Gao J, An Y. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. J Transl Med 2014; 12:253. [PMID: 25209445 PMCID: PMC4172930 DOI: 10.1186/s12967-014-0253-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/02/2014] [Indexed: 12/16/2022] Open
Abstract
Background Umbilical cord mesenchymal stem cells (UCMSCs) have a considerable advantage and potential in treating for central nervous system diseases and have become a novel alternative treatment for spinal cord injury. This study aims to compare the neurological function outcome of stem cell transplantation, rehabilitation therapy, and self-healing for sequelae of spinal cord injury. Methods Thirty-four cases of thoracolumbar spinal cord injury were randomly divided into three groups: the stem cell transplantation group was given CT-guided UCMSC transplantation twice; the rehabilitation group received rehabilitation therapy; and the blank control group did not receive any specific treatment. AIS grading, ASIA scoring, the manual muscle strength and muscle tension scale, and the Barthel index were used to evaluate the clinical outcome. Urodynamic examination was also performed for patients in the UCMSC group and the rehabilitation therapy group. Results Seven of the ten patients in the UCMSC group had significant and stable improvement in movement, self-care ability, and muscular tension; five of the forteen patients (36%) in the rehabilitation group also had certain improvement in these aspects. Urodynamic examination demonstrated that patients in the UCMSC group exhibited an increase in maximum urinary flow rate and maximum bladder capacity, as well as a decrease in residue urine volume and maximum detrusor pressure. The rehabilitation group exhibited decreased maximum bladder capacity, but no perceptible change in maximum urinary flow rate, residue urine volume or maximum detrusor pressure. Conclusions UCMSC transplantation can effectively improve neurological functional recovery after spinal cord injury, and its efficacy is superior to that of rehabilitation therapy and self-healing. Trial registration The present clinical study was registered at chictr.org (registration number: NCT01393977).
Collapse
|
43
|
Neirinckx V, Coste C, Franzen R, Gothot A, Rogister B, Wislet S. Neutrophil contribution to spinal cord injury and repair. J Neuroinflammation 2014; 11:150. [PMID: 25163400 PMCID: PMC4174328 DOI: 10.1186/s12974-014-0150-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/12/2014] [Indexed: 01/13/2023] Open
Abstract
Spinal cord injuries remain a critical issue in experimental and clinical research nowadays, and it is now well accepted that the immune response and subsequent inflammatory reactions are of significant importance in regulating the damage/repair balance after injury. The role of macrophages in such nervous system lesions now becomes clearer and their contribution in the wound healing process has been largely described in the last few years. Conversely, the contribution of neutrophils has traditionally been considered as detrimental and unfavorable to proper tissue regeneration, even if there are very few studies available on their precise impact in spinal cord lesions. Indeed, recent data show that neutrophils are required for promoting functional recovery after spinal cord trauma. In this review, we gathered recent evidence concerning the role of neutrophils in spinal cord injuries but also in some other neurological diseases, highlighting the need for further understanding the different mechanisms involved in spinal cord injury and repair.
Collapse
Affiliation(s)
| | | | | | | | | | - Sabine Wislet
- GIGA Research Center, Neurosciences Unit, Nervous system diseases and treatment, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium.
| |
Collapse
|
44
|
Hannila SS. Secretory Leukocyte Protease Inhibitor (SLPI): Emerging Roles in CNS Trauma and Repair. Neuroscientist 2014; 21:630-6. [PMID: 25118190 DOI: 10.1177/1073858414546000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
At first glance, secretory leukocyte protease inhibitor (SLPI) would appear to have little relevance to the central nervous system (CNS). This serine protease inhibitor is most commonly found in mucosal fluids such as saliva and is best known for its anti-inflammatory and antimicrobial properties. It has been shown to promote wound healing by reducing expression of pro-inflammatory cytokines, and it can also inhibit bacterial growth and block HIV infection of macrophages. In the past 10 years, however, several studies have reported that SLPI is strongly up-regulated in response to CNS injury and that exogenous administration of SLPI is neuroprotective. It has also been shown that SLPI can overcome inhibition by CNS myelin and promote axonal regeneration. In this review, we will discuss these studies, examine the molecular mechanisms underlying SLPI's effects, and consider SLPI's potential for therapeutic use in cerebral ischemia, spinal cord injury, and multiple sclerosis.
Collapse
Affiliation(s)
- Sari S Hannila
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
45
|
Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 2013; 114:25-57. [PMID: 24269804 DOI: 10.1016/j.pneurobio.2013.11.002] [Citation(s) in RCA: 555] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder that affects thousands of individuals each year. Over the past decades an enormous progress has been made in our understanding of the molecular and cellular events generated by SCI, providing insights into crucial mechanisms that contribute to tissue damage and regenerative failure of injured neurons. Current treatment options for SCI include the use of high dose methylprednisolone, surgical interventions to stabilize and decompress the spinal cord, and rehabilitative care. Nonetheless, SCI is still a harmful condition for which there is yet no cure. Cellular, molecular, rehabilitative training and combinatorial therapies have shown promising results in animal models. Nevertheless, work remains to be done to ascertain whether any of these therapies can safely improve patient's condition after human SCI. This review provides an extensive overview of SCI research, as well as its clinical component. It starts covering areas from physiology and anatomy of the spinal cord, neuropathology of the SCI, current clinical options, neuronal plasticity after SCI, animal models and techniques to assess recovery, focusing the subsequent discussion on a variety of promising neuroprotective, cell-based and combinatorial therapeutic approaches that have recently moved, or are close, to clinical testing.
Collapse
Affiliation(s)
- Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Caldas das Taipas, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
46
|
Fukushima K, Kamimura T, Takimoto-Kamimura M. Structure basis 1/2SLPI and porcine pancreas trypsin interaction. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:943-7. [PMID: 24121345 PMCID: PMC3795561 DOI: 10.1107/s090904951302133x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
SLPI (secretory leukocyte protease inhibitor) is a 107-residue protease inhibitor which inhibits various serine proteases, including elastase, cathepsin G, chymotrypsin and trypsin. SLPI is obtained as a multiple inhibitor in lung defense and in chronic airway infection. X-ray crystal structures have so far reported that they are full-length SLPIs with bovine α-chymotrypsin and 1/2SLPI (recombinant C-terminal domain of SLPI; Arg58-Ala107) with HNE (human neutrophil elastase). To understand the role of this multiple inhibitory mechanism, the crystal structure of 1/2SLPI with porcine pancreas trypsin was solved and the binding modes of two other complexes compared. The Leu residue surprisingly interacts with the S1 site of trypsin, as with chymotrypsin and elastase. The inhibitory mechanism of 1/2SLPI using the wide primary binding site contacts (from P2' to P5) with various serine proteases is discussed. These inhibitory mechanisms have been acquired in the evolution of the protection system for acute inflammatory diseases.
Collapse
Affiliation(s)
- Kei Fukushima
- Medicinal Chemistry Technology Department, Teijin Institute for Bio-Medical Research, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Takashi Kamimura
- Medicinal Chemistry Technology Department, Teijin Institute for Bio-Medical Research, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Midori Takimoto-Kamimura
- Medicinal Chemistry Technology Department, Teijin Institute for Bio-Medical Research, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| |
Collapse
|
47
|
Chazaud B. Macrophages: supportive cells for tissue repair and regeneration. Immunobiology 2013; 219:172-8. [PMID: 24080029 DOI: 10.1016/j.imbio.2013.09.001] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/21/2013] [Accepted: 09/01/2013] [Indexed: 12/12/2022]
Abstract
Macrophages, and more broadly inflammation, have been considered for a long time as bad markers of tissue homeostasis. However, if it is indisputable that macrophages are associated with many diseases in a deleterious way, new roles have emerged, showing beneficial properties of macrophages during tissue repair and regeneration. This discrepancy is likely due to the high plasticity of macrophages, which may exhibit a wide range of phenotypes and functions depending on their environment. Therefore, regardless of their role in immunity, macrophages play a myriad of roles in the maintenance and recovery of tissue homeostasis. They take a major part in the resolution of inflammation. They also exert various effects of parenchymal cells, including stem and progenitor cell, of which they regulate the fate. In the present review, few examples from various tissues are presented to illustrate that, beyond their specific properties in a given tissue, common features have been described that sustain a role of macrophages in the recovery and maintenance of tissue homeostasis.
Collapse
Affiliation(s)
- Bénédicte Chazaud
- Institut Cochin, INSERM U1016, Paris, France; CNRS 8104, Paris, France; Université Paris Descartes, Paris, France.
| |
Collapse
|
48
|
Secretory leukocyte protease inhibitor reverses inhibition by CNS myelin, promotes regeneration in the optic nerve, and suppresses expression of the transforming growth factor-β signaling protein Smad2. J Neurosci 2013; 33:5138-51. [PMID: 23516280 DOI: 10.1523/jneurosci.5321-12.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
After CNS injury, axonal regeneration is limited by myelin-associated inhibitors; however, this can be overcome through elevation of intracellular cyclic AMP (cAMP), as occurs with conditioning lesions of the sciatic nerve. This study reports that expression of secretory leukocyte protease inhibitor (SLPI) is strongly upregulated in response to elevation of cAMP. We also show that SLPI can overcome inhibition by CNS myelin and significantly enhance regeneration of transected retinal ganglion cell axons in rats. Furthermore, regeneration of dorsal column axons does not occur after a conditioning lesion in SLPI null mutant mice, indicating that expression of SLPI is required for the conditioning lesion effect. Mechanistically, we demonstrate that SLPI localizes to the nuclei of neurons, binds to the Smad2 promoter, and reduces levels of Smad2 protein. Adenoviral overexpression of Smad2 also blocked SLPI-induced axonal regeneration. SLPI and Smad2 may therefore represent new targets for therapeutic intervention in CNS injury.
Collapse
|
49
|
Abstract
αB-crystallin is a member of the heat shock protein family that exerts cell protection under several stress-related conditions. Recent studies have revealed that αB-crystallin plays a beneficial role in a mouse model of multiple sclerosis, brain ischemia, and Alexander disease. Whether αB-crystallin plays a role in modulating the secondary damage after CNS trauma is not known. We report here that αB-crystallin mediates protective effects after spinal cord injury. The levels of αB-crystallin are reduced in spinal cord tissue following contusion lesion. In addition, administration of recombinant human αB-crystallin for the first week after contusion injury leads to sustained improvement in locomotor skills and amelioration of secondary tissue damage. We also provide evidence that recombinant human αB-crystallin modulates the inflammatory response in the injured spinal cord, leading to increased infiltration of granulocytes and reduced recruitment of inflammatory macrophages. Furthermore, the delivery of recombinant human αB-crystallin promotes greater locomotor recovery even when the treatment is initiated 6 h after spinal cord injury. Our findings suggest that administration of recombinant human αB-crystallin may be a good therapeutic approach for treating acute spinal cord injury, for which there is currently no effective treatment.
Collapse
|
50
|
Nguyen DH, Cho N, Satkunendrarajah K, Austin JW, Wang J, Fehlings MG. Immunoglobulin G (IgG) attenuates neuroinflammation and improves neurobehavioral recovery after cervical spinal cord injury. J Neuroinflammation 2012; 9:224. [PMID: 22998664 PMCID: PMC3503837 DOI: 10.1186/1742-2094-9-224] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/30/2012] [Indexed: 01/02/2023] Open
Abstract
Background Evidence suggests that the inflammatory events in the acute phase of spinal cord injury (SCI) exacerbate the initial trauma to the cord leading to poor functional recovery. As a result, minimizing the detrimental aspects of the inflammatory response after SCI is a promising treatment strategy. In this regard, immunoglobulin G (IgG) from pooled human serum is a promising treatment candidate. Due to its putative, though poorly characterized immuno-modulatory effects, IgG has been used clinically to treat neuroinflammatory disorders such as Guillain-Barré syndrome, but its effects in neurotrauma remain largely unexplored. Methods This study examines the potential neuroprotective effects of IgG in a well-characterized cervical model of SCI. Female Wistar rats were subject to moderate-severe clip compression injury at the C7-T1 level. IgG (0.4 g/kg) or saline was injected intravenously to randomly selected animals at 15 min post SCI. At several time points post SCI, biochemical assays, histology and immunohistochemistry analyses, and neurobehavioral assessments were used to examine the neuroprotective effects of IgG at the molecular, cellular, and neurobehavioral levels. Results We found that intravenous treatment of IgG following acute clip-compression SCI at C7-T1 significantly reduced two important inflammatory cytokines: interleukin (IL)-1β and IL-6. This early reduction in pro-inflammatory signaling was associated with significant reductions in neutrophils in the spinal cord and reductions in the expression of myeloperoxidase and matrix metalloproteinase-9 in the injured spinal cord at 24 h after SCI. These beneficial effects of IgG were associated with enhanced tissue preservation, improved neurobehavioral recovery as measured by the BBB and inclined plane tests, and enhanced electrophysiological evidence of central axonal conduction as determined by motor-evoked potentials. Conclusion The findings from this study indicate that IgG is a novel immuno-modulatory therapy which shows promise as a potential treatment for SCI.
Collapse
Affiliation(s)
- Dung Hoang Nguyen
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|