1
|
Depression in breast cancer patients: Immunopathogenesis and immunotherapy. Cancer Lett 2022; 536:215648. [DOI: 10.1016/j.canlet.2022.215648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/10/2023]
|
2
|
Tatsumi K, Kinugawa K, Isonishi A, Kitabatake M, Okuda H, Takemura S, Tanaka T, Mori E, Wanaka A. Olig2-astrocytes express neutral amino acid transporter SLC7A10 (Asc-1) in the adult brain. Mol Brain 2021; 14:163. [PMID: 34749773 PMCID: PMC8573876 DOI: 10.1186/s13041-021-00874-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
We have reported that the transcription factor Olig2 labels a subpopulation of astrocytes (Olig2-astrocytes), which show distribution patterns different from those of GFAP-expressing astrocytes (GFAP-astrocytes) in the adult brain. Here, to uncover the specific functions of Olig2-astrocytes, we first analyzed public single-cell RNA-seq databases of adult mouse brains. Unbiased classification of gene expression profiles and subsequent gene ontology analyses revealed that the majority of Olig2-astrocytes belonged to an astrocytic cluster that is enriched for transporter-related genes. SLC7A10 (also known as ASC-1) was one of the representative neutral amino acid transporter genes in the cluster. To complement the in silico data analyses, we differentially isolated Olig2- and GFAP-astrocytes from the same frozen section of the lateral globus pallidus using laser microdissection and compared their gene expression by quantitative reverse transcription PCR. We confirmed that Olig2 and GFAP mRNAs were preferentially expressed in the Olig2- and GFAP-astrocytes, respectively, indicating that the laser microdissection method yielded minimal cross-contamination between two types of cells. The Olig2-astrocytes expressed significantly higher levels of SLC7A10 mRNA than the GFAP-astrocytes, corroborating the in silico data. We next localized SLC7A10 protein by immunohistochemistry in the lateral globus pallidus, which was also genetically labeled for Olig2. SLC7A10 co-localized with Olig2-genetic labeling, especially on the fine processes of Olig2-astrocytes. These results are consistent with the recent discovery that SLC7A10 is expressed not only in neurons but also in a subset of astrocytes. Taken together, our findings suggest that SLC7A10 exerts specific functions in Olig2-astrocytes of the adult brain.
Collapse
Affiliation(s)
- Kouko Tatsumi
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Nara, 634-8521, Japan.
| | - Kaoru Kinugawa
- Department of Neurology, Faculty of Medicine, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Ayami Isonishi
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Faculty of Medicine, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Hiroaki Okuda
- Department of Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shoko Takemura
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Tatsuhide Tanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Faculty of Medicine, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
3
|
Dupont J, Vieira JP, Tavares ALT, Conceição CR, Khan S, Bertoli-Avella AM, Sousa AB. Adding evidence to the role of NEUROG1 in congenital cranial dysinnervation disorders. Clin Genet 2021; 99:588-593. [PMID: 33439489 DOI: 10.1111/cge.13922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 11/28/2022]
Abstract
Congenital cranial dysinnervation disorders (CCDDs) are a heterogeneous group of neurodevelopmental phenotypes caused by a primary disturbance of innervation due to deficient, absent, or misguided cranial nerves. Although some CCDDs genes are known, several clinical phenotypes and their aetiologies remain to be elucidated. We describe a 12-year-old boy with hypotonia, developmental delay, sensorineural hearing loss, and keratoconjunctivitis due to lack of corneal reflex. He had a long expressionless face, severe oromotor dysfunction, bilateral agenesis/severe hypoplasia of the VIII nerve with marked atresia of the internal auditory canals and cochlear labyrinth malformation. Trio-exome sequencing identified a homozygous loss of function variant in the NEUROG1 gene (NM_006161.2: c.202G > T, p.Glu68*). NEUROG1 is considered a causal candidate for CCDDs based on (i) the previous report of a patient with a homozygous gene deletion and developmental delay, deafness due to absent bilateral VIII nerves, and severe oromotor dysfunction; (ii) a second patient with a homozygous NEUROG1 missense variant and corneal opacity, absent corneal reflex and intellectual disability; and (iii) the knockout mouse model phenotype which highly resembles the disorder observed in humans. Our findings support the growing compelling evidence that loss of NEUROG1 leads to a very distinctive disorder of cranial nerves development.
Collapse
Affiliation(s)
- Juliette Dupont
- Genetics Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - José Pedro Vieira
- Neurology Department, Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Ana Lisa Taylor Tavares
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.,Department of Health, Genomics England, Queen Mary University of London, Charterhouse Square, London, UK
| | - Carla Ribeiro Conceição
- Neuroradiology Department, Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Suliman Khan
- Research Data Analysis, CENTOGENE AG, Rostock, Germany
| | | | - Ana Berta Sousa
- Genetics Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal.,Laboratório de Imunologia Básica, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Chen D, Li YP, Yu YX, Zhou T, Liu C, Fei EK, Gao F, Mu CC, Ren HG, Wang GH. Dendritic cell nuclear protein-1 regulates melatonin biosynthesis by binding to BMAL1 and inhibiting the transcription of N-acetyltransferase in C6 cells. Acta Pharmacol Sin 2018; 39:597-606. [PMID: 29219947 PMCID: PMC5888688 DOI: 10.1038/aps.2017.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023]
Abstract
Dendritic cell nuclear protein-1 (DCNP1) is a protein associated with major depression. In the brains of depression patients, DCNP1 is up-regulated. However, how DCNP1 participates in the pathogenesis of major depression remains unknown. In this study, we first transfected HEK293 cells with EGFP-DCNP1 and demonstrated that the full-length DCNP1 protein was localized in the nucleus, and RRK (the residues 117-119) composed its nuclear localization signal (NLS). An RRK-deletion form of DCNP1 (DCNP1ΔRRK) and truncated form (DCNP11-116), each lacking the RRK residues, did not show the specific nuclear localization like full-length DCNP1 in the cells. A rat glioma cell line C6 can synthesize melatonin, a hormone that plays important roles in both sleep and depression. We then revealed that transfection of C6 cells with full-length DCNP1 but not DCNP1ΔRRK or DCNP11-116 significantly decreased the levels of melatonin. Furthermore, overexpression of full-length DCNP1, but not DCNP1ΔRRK or DCNP11-116, in C6 cells significantly decreased both the mRNA and protein levels of N-acetyltransferase (NAT), a key enzyme in melatonin synthesis. Full-length DCNP1 but not DCNP1ΔRRK or DCNP11-116 was detected to interact with the Nat promoter and inhibited its activity through its E-box motif. Furthermore, full-length DCNP1 but not the mutants interacted with and repressed the transcriptional activity of BMAL1, a transcription factor that transactivates Nat through the E-box motif. In conclusion, we have shown that RRK (the residues 117-119) are the NLS responsible for DCNP1 nuclear localization. Nuclear DCNP1 represses NAT expression and melatonin biosynthesis by interacting with BMAL1 and repressing its transcriptional activity. Our study reveals a connection between the major depression candidate protein DCNP1, circadian system and melatonin biosynthesis, which may contribute to the pathogenesis of depression.
Collapse
Affiliation(s)
- Dong Chen
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yi-pei Li
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yan-xia Yu
- Department of Pharmacy, Suzhou Hospital Affiliated with Nanjing Medical University, Suzhou 215002, China
| | - Tian Zhou
- Medical School of Nanchang University, Nanchang 330031, China
| | - Chao Liu
- Department of Histology and Embryology, School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Er-kang Fei
- Laboratory of Synapse Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Feng Gao
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Chen-chen Mu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hai-gang Ren
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Guang-hui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Mikkelsen K, Stojanovska L, Prakash M, Apostolopoulos V. The effects of vitamin B on the immune/cytokine network and their involvement in depression. Maturitas 2016; 96:58-71. [PMID: 28041597 DOI: 10.1016/j.maturitas.2016.11.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Increasing evidence indicates that there are various interactions between the nervous system and the immune system, and that the immune system plays an important role in the pathogenesis of depression. Pro-inflammatory cytokines (such as IL-1, IL-6, TNF-α) have been implicated in the neurobiological manifestations of depression. The immune/cytokine network has a powerful influence on the brain. In addition, deficiency in B vitamins has been linked to depression. Hence, greater knowledge of how immune cells change in the presence of vitamin B derivatives could improve understanding of how immune changes may correlate with depression, all of which are discussed herein.
Collapse
Affiliation(s)
- Kathleen Mikkelsen
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, PO Box 14426, Melbourne, VIC 8001, Australia
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, PO Box 14426, Melbourne, VIC 8001, Australia
| | - Monica Prakash
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, PO Box 14426, Melbourne, VIC 8001, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, PO Box 14426, Melbourne, VIC 8001, Australia.
| |
Collapse
|
6
|
Lack of association between dendritic cell nuclear protein-1 gene and major depressive disorder in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:7-10. [PMID: 23619526 DOI: 10.1016/j.pnpbp.2013.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/14/2013] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Dendritic cell nuclear protein-1 (DCNP1) has been associated with major depressive disorder (MDD) based on analysis of a population of patients in the United Kingdom. In the present study we have investigated a possible role of DCNP in MDD in the Han Chinese population, including a meta-analysis of different ethnic populations. METHODS Eight single nucleotide polymorphisms (SNPs) spanning the entire DCNP1 were carefully selected, genotyped and used for the SNP and haplotype analyses in 574 patients with MDD and 642 healthy controls. Considering the potential genetic association difference across different ethnic populations, we further conducted a meta-analysis for Chinese and European populations. RESULTS rs10061623 showed initial association with MDD in females in the allele analysis (p-value: 0.043). However, this association did not remain significant after Bonferroni correction to adjust for multiple comparisons (corrected p-value: 0.344). Other single-marker and haplotype analyses did not reveal any significant differences between patients and controls. The SNP (rs12520799), positive in the original UK study, gave negative results in all our analyses. The meta-analysis results of rs12520799 also suggested possible negative association between this SNP and MDD in the Han Chinese population. CONCLUSIONS In the Han Chinese population, common DCNP1 polymorphisms are unlikely to be important in the genetic susceptibility to MDD.
Collapse
|
7
|
Schröder JC, Läßig AK, Galetzka D, Peters A, Castle JC, Diederich S, Zechner U, Müller-Forell W, Keilmann A, Bartsch O. A boy with homozygous microdeletion of NEUROG1 presents with a congenital cranial dysinnervation disorder [Moebius syndrome variant]. Behav Brain Funct 2013; 9:7. [PMID: 23419067 PMCID: PMC3599919 DOI: 10.1186/1744-9081-9-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/23/2013] [Indexed: 01/20/2023] Open
Abstract
Background We report on a 6-year-old Turkish boy with profound sensorineural deafness, balance disorder, severe disorder of oral motor function, and mild developmental delay. Further findings included scaphocephaly, plagiocephaly, long palpebral fissures, high narrow palate, low-set posteriorly rotated ears, torticollis, hypoplastic genitalia and faulty foot posture. Parents were consanguineous. Methods and results Computed tomography and magnetic resonance imaging showed bilateral single widened cochlear turn, narrowing of the internal auditory canal, and bilateral truncation of the vestibulo-cochlear nerve. Microarray analysis and next generation sequencing showed a homozygous deletion of chromosome 5q31.1 spanning 115.3 kb and including three genes: NEUROG1 (encoding neurogenin 1), DCNP1 (dendritic cell nuclear protein 1, C5ORF20) and TIFAB (TIFA-related protein). The inability to chew and swallow, deafness and balance disorder represented congenital palsies of cranial nerves V (trigeminal nerve) and VIII (vestibulo-cochlear nerve) and thus a congenital cranial dysinnervation disorder. Conclusions Based on reported phenotypes of neurog1 null mutant mice and other vertebrates, we strongly propose NEUROG1 as the causative gene in this boy. The human NEUROG1 resides within the DFNB60 locus for non-syndromic autosomal recessive deafness on chromosome 5q22-q31, but linkage data have excluded it from being causative in the DFNB60 patients. Given its large size (35 Mb, >100 genes), the 5q22-q31 area could harbor more than one deafness gene. We propose NEUROG1 as a new gene for syndromic autosomal recessive hearing loss and congenital cranial dysinnervation disorder including cranial nerves V and VIII.
Collapse
Affiliation(s)
- Julia C Schröder
- Institute of Human Genetics, University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, D-55101, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Raison CL, Miller AH. The evolutionary significance of depression in Pathogen Host Defense (PATHOS-D). Mol Psychiatry 2013; 18:15-37. [PMID: 22290120 PMCID: PMC3532038 DOI: 10.1038/mp.2012.2] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/21/2011] [Accepted: 01/03/2012] [Indexed: 12/24/2022]
Abstract
Given the manifold ways that depression impairs Darwinian fitness, the persistence in the human genome of risk alleles for the disorder remains a much debated mystery. Evolutionary theories that view depressive symptoms as adaptive fail to provide parsimonious explanations for why even mild depressive symptoms impair fitness-relevant social functioning, whereas theories that suggest that depression is maladaptive fail to account for the high prevalence of depression risk alleles in human populations. These limitations warrant novel explanations for the origin and persistence of depression risk alleles. Accordingly, studies on risk alleles for depression were identified using PubMed and Ovid MEDLINE to examine data supporting the hypothesis that risk alleles for depression originated and have been retained in the human genome because these alleles promote pathogen host defense, which includes an integrated suite of immunological and behavioral responses to infection. Depression risk alleles identified by both candidate gene and genome-wide association study (GWAS) methodologies were found to be regularly associated with immune responses to infection that were likely to enhance survival in the ancestral environment. Moreover, data support the role of specific depressive symptoms in pathogen host defense including hyperthermia, reduced bodily iron stores, conservation/withdrawal behavior, hypervigilance and anorexia. By shifting the adaptive context of depression risk alleles from relations with conspecifics to relations with the microbial world, the Pathogen Host Defense (PATHOS-D) hypothesis provides a novel explanation for how depression can be nonadaptive in the social realm, whereas its risk alleles are nonetheless represented at prevalence rates that bespeak an adaptive function.
Collapse
Affiliation(s)
- C L Raison
- Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ 85724-5137, USA.
| | | |
Collapse
|
9
|
Lalli MA, Garcia G, Madrigal L, Arcos-Burgos M, Arcila ML, Kosik KS, Lopera F. Exploratory data from complete genomes of familial alzheimer disease age-at-onset outliers. Hum Mutat 2012; 33:1630-4. [PMID: 22829467 DOI: 10.1002/humu.22167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/07/2012] [Indexed: 11/08/2022]
Abstract
Identifying genes that modify the age at onset (AAO) of Alzheimer disease and targeting them pharmacologically represent a potential treatment strategy. In this exploratory study, we sequenced the complete genomes of six individuals with familial Alzheimer disease due to the autosomal dominant mutation p.Glu280Ala in PSEN1 (MIM# 104311; NM_000021.3:c.839A>C). The disease and its AAO are highly heritable, motivating our search for genetic variants that modulate AAO. The median AAO of dementia in carriers of the mutant allele is 49 years. Extreme phenotypic outliers for AAO in this genetically isolated population with limited environmental variance are likely to harbor onset modifying genetic variants. A narrow distribution of AAO in this kindred suggests large effect sizes of genetic determinants of AAO in these outliers. Identity by descent (IBD) analysis and a combination of bioinformatics filters have suggested several candidate variants for AAO modifiers. Future work and replication studies on these variants may provide mechanistic insights into the etiopathology of Alzheimer disease.
Collapse
Affiliation(s)
- Matthew A Lalli
- Neuroscience Research Institute, University of California at Santa Barbara, CA, USA
| | | | | | | | | | | | | |
Collapse
|