1
|
Bukhari-Parlakturk N, Mulcahey PJ, Lutz MW, Ghazi R, Huang Z, Dannhauer M, Termsarasab P, Scott B, Simsek ZB, Groves S, Lipp M, Fei M, Tran TK, Wood E, Beynel L, Petty C, Voyvodic JT, Appelbaum LG, Al-Khalidi HR, Davis SW, Michael AM, Peterchev AV, Calakos N. Motor network reorganization associated with rTMS-induced writing improvement in writer's cramp dystonia. Brain Stimul 2025; 18:198-210. [PMID: 39924101 PMCID: PMC11994290 DOI: 10.1016/j.brs.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Writer's cramp (WC) dystonia is an involuntary movement disorder with distributed abnormalities in the brain's motor network. Prior studies established the potential for repetitive transcranial magnetic stimulation (rTMS) to either premotor cortex (PMC) or primary somatosensory cortex (PSC) to modify symptoms. However, clinical effects have been modest with limited understanding of the neural mechanisms hindering therapeutic advancement of this promising approach. OBJECTIVE This study aimed to understand the motor network effects of rTMS in WC that correspond with behavioral efficacy. We hypothesized that behavioral efficacy is associated with modulation of cortical and subcortical regions of the motor network. METHODS In a double-blind, cross-over design, twelve WC participants underwent rTMS in one of three conditions (Sham-TMS, 10 Hz PSC-rTMS, 10 Hz PMC-rTMS) while engaged in a writing task to activate dystonic movements and measure writing fluency. Brain connectivity was evaluated using task-based fMRI after each TMS session. RESULTS 10 Hz rTMS to PSC, but not PMC, significantly improved writing dysfluency. PSC-TMS also significantly weakened cortico-basal ganglia, cortico-cerebellum, and intra-cerebellum functional connectivity (FC), and strengthened striatal FC relative to Sham. Change in PSC and SPC BOLD activity were associated with reduced dysfluent writing behavior. CONCLUSIONS 10 Hz rTMS to PSC improved writing dysfluency by redistributing motor network connectivity and strengthening somatosensory-parietal connectivity. A key signature for effective stimulation at PSC and improvement in writing dysfluency may be strengthening of intra-cortical connectivity between primary somatosensory and superior parietal cortices. These findings offer mechanistic hypotheses to advance the therapeutic application of TMS for dystonia.
Collapse
Affiliation(s)
- Noreen Bukhari-Parlakturk
- Department of Neurology, Duke University School of Medicine, USA; Duke Institute for Brain Sciences, Duke University, USA.
| | | | - Michael W Lutz
- Department of Neurology, Duke University School of Medicine, USA
| | - Rabia Ghazi
- Department of Neurology, Duke University School of Medicine, USA
| | - Ziping Huang
- Department of Neurology, Duke University School of Medicine, USA
| | - Moritz Dannhauer
- Department of Computer Science, Center for Brain Stimulation, East Carolina University, Greenville, NC, USA
| | - Pichet Termsarasab
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Burton Scott
- Department of Neurology, Duke University School of Medicine, USA
| | - Zeynep B Simsek
- Department of Neurology, Duke University School of Medicine, USA
| | - Skylar Groves
- Department of Neurology, Duke University School of Medicine, USA
| | - Mikaela Lipp
- Department of Neurology, Duke University School of Medicine, USA
| | - Michael Fei
- Department of Neurology, Duke University School of Medicine, USA
| | - Tiffany K Tran
- Department of Neurology, Duke University School of Medicine, USA
| | - Eleanor Wood
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Lysianne Beynel
- Non Invasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA
| | - Chris Petty
- Brain Imaging & Analysis Center, Duke University School of Medicine, USA
| | - James T Voyvodic
- Duke Institute for Brain Sciences, Duke University, USA; Brain Imaging & Analysis Center, Duke University School of Medicine, USA
| | | | - Hussein R Al-Khalidi
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, USA
| | - Simon W Davis
- Department of Neurology, Duke University School of Medicine, USA; Duke Institute for Brain Sciences, Duke University, USA
| | | | - Angel V Peterchev
- Duke Institute for Brain Sciences, Duke University, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA; Department of Electrical and Computer Engineering, Duke University, USA; Department of Neurosurgery, Duke University School of Medicine, USA; Department of Biomedical Engineering, Duke University, USA
| | - Nicole Calakos
- Department of Neurology, Duke University School of Medicine, USA; Duke Institute for Brain Sciences, Duke University, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Bukhari-Parlakturk N, Mulcahey PJ, Lutz MW, Ghazi R, Huang Z, Dannhauer M, Termsarasab P, Scott B, Simsek ZB, Groves S, Lipp M, Fei M, Tran TK, Wood E, Beynel L, Petty C, Voyvodic JT, Appelbaum LG, Al-Khalidi HR, Davis SW, Michael AM, Peterchev AV, Calakos N. Motor network reorganization associated with rTMS-induced writing improvement in writer's cramp dystonia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.09.30.24314652. [PMID: 39867369 PMCID: PMC11759594 DOI: 10.1101/2024.09.30.24314652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background Writer's cramp (WC) dystonia is an involuntary movement disorder with distributed abnormalities in the brain's motor network. Prior studies established the potential for repetitive transcranial magnetic stimulation (rTMS) to either premotor cortex (PMC) or primary somatosensory cortex (PSC) to modify symptoms. However, clinical effects have been modest with limited understanding of the neural mechanisms hindering therapeutic advancement of this promising approach. Objective This study aimed to understand the motor network effects of rTMS in WC that correspond with behavioral efficacy. We hypothesized that behavioral efficacy is associated with modulation of cortical and subcortical regions of the motor network. Methods In a double-blind, cross-over design, twelve WC participants underwent rTMS in one of three conditions (Sham-TMS, 10 Hz PSC-rTMS, 10 Hz PMC-rTMS) while engaged in a writing task to activate dystonic movements and measure writing fluency. Brain connectivity was evaluated using task-based fMRI after each TMS session. Results 10 Hz rTMS to PSC, but not PMC, significantly improved writing dysfluency. PSC-TMS also significantly weakened cortico-basal ganglia, cortico-cerebellum, and intra-cerebellum functional connectivity (FC), and strengthened striatal FC relative to Sham. Changes in PSC and SPC BOLD activity were associated with reduced dysfluent writing behavior. Conclusions 10 Hz rTMS to PSC improved writing dysfluency by redistributing motor network connectivity and strengthening somatosensory-parietal connectivity. A key signature for effective stimulation at PSC and improvement in writing dysfluency may be strengthening of intra-cortical connectivity between primary somatosensory and superior parietal cortices. These findings offer mechanistic hypotheses to advance the therapeutic application of TMS for dystonia. Highlights 10 Hz repetitive TMS to somatosensory cortex reduces writing dysfluency in dystoniaIncreased somatosensory cortex activity correlates with reduced writing dysfluencyIn dystonia + sham-TMS, writing dysfluency correlates with cerebellar connectivity.10 Hz rTMS to somatosensory cortex induces reorganization of the motor network.
Collapse
|
3
|
Shamim EA, Kim MS, Kang SY, Srivanitchapoom P, Jin SH, Houdayer E, Diomi P, Thirugnanasambandam N, Kukke SN, Matsuhashi M, Lamy JC, Wu T, Meunier S, Hallett M. Long-term motor learning in focal hand dystonia. Clin Neurophysiol 2024; 168:63-71. [PMID: 39490029 DOI: 10.1016/j.clinph.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/25/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE Because focal hand dystonia usually occurs in the over-learned stage, it would be valuable to know long-term motor learning characteristics and underlying pathophysiological features that might predispose to dystonia. METHODS We conducted a case-control exploratory study of 15 visits over 12 weeks in the non-affected hand of a 4-finger sequence of 8 key presses in eight patients with FHD compared with eight age- and sex-matched, healthy volunteers (HVs). We studied the behavioral data and the physiological changes of the brain, including motor cortical excitability and cortical oscillations. RESULTS There was no significant difference in the time to reach 100 % accuracy between FHD and HV during the 80-day follow-up period. There was a statistically significant difference in the accuracy of sequential finger movement tasks between patients with FHD compared with HVs over 12 weeks, but post-hoc analysis with multiple comparion correction did not show difference. There were no significant differences in recruitment curve changes and task-related power changes of alpha and beta bands. CONCLUSION Over 12 weeks, FHD have motor learning capacity comparable to HVs and do not show pathophysiological abnormalities. SIGNIFICANCE Further studies would be valuable with more patients, more extended periods of practice, and more detailed electrophysiological explorations.
Collapse
Affiliation(s)
- Ejaz A Shamim
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Mid-Atlantic Permanente Research Institute, Kaiser Permanente, Rockville, MD 20852, USA.
| | - Min Seung Kim
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Gyeonggi-do 18450, Republic of Korea
| | - Suk Yun Kang
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Gyeonggi-do 18450, Republic of Korea.
| | - Prachaya Srivanitchapoom
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Division of Neurology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Seung-Hyun Jin
- MediRita, Inc., 37, Maebongsan-ro, Mapo-gu, Seoul 03909, Republic of Korea.
| | - Elise Houdayer
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan 30132, Italy
| | - Pierre Diomi
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Valley Patient Care-Urgent Care Center, 10076 Dumfries Rd, #80A, Manassas, VA 20110, United States
| | - Nivethida Thirugnanasambandam
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sahana N Kukke
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; The Office of Strategic Coordination, The Common Fund, Division of Program Coordination, Planning, and Strategic Initiatives, NIH, Rockville, MD 20852, USA.
| | - Masao Matsuhashi
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Jean-Charles Lamy
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Sorbonne Université, Paris Brain Institute, Inserm, CNRS, APHP, Paris 75013, France
| | - Tianxia Wu
- Clinical Neurosciences Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Sabine Meunier
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Sorbonne Université, Paris Brain Institute, Inserm, CNRS, APHP, Paris 75013, France
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Reinhold C, Knorr S, McFleder RL, Rauschenberger L, Muthuraman M, Arampatzi P, Gräfenhan T, Schlosser A, Sendtner M, Volkmann J, Ip CW. Gene-environment interaction elicits dystonia-like features and impaired translational regulation in a DYT-TOR1A mouse model. Neurobiol Dis 2024; 193:106453. [PMID: 38402912 DOI: 10.1016/j.nbd.2024.106453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024] Open
Abstract
DYT-TOR1A dystonia is the most common monogenic dystonia characterized by involuntary muscle contractions and lack of therapeutic options. Despite some insights into its etiology, the disease's pathophysiology remains unclear. The reduced penetrance of about 30% suggests that extragenetic factors are needed to develop a dystonic phenotype. In order to systematically investigate this hypothesis, we induced a sciatic nerve crush injury in a genetically predisposed DYT-TOR1A mouse model (DYT1KI) to evoke a dystonic phenotype. Subsequently, we employed a multi-omic approach to uncover novel pathophysiological pathways that might be responsible for this condition. Using an unbiased deep-learning-based characterization of the dystonic phenotype showed that nerve-injured DYT1KI animals exhibited significantly more dystonia-like movements (DLM) compared to naive DYT1KI animals. This finding was noticeable as early as two weeks following the surgical procedure. Furthermore, nerve-injured DYT1KI mice displayed significantly more DLM than nerve-injured wildtype (wt) animals starting at 6 weeks post injury. In the cerebellum of nerve-injured wt mice, multi-omic analysis pointed towards regulation in translation related processes. These observations were not made in the cerebellum of nerve-injured DYT1KI mice; instead, they were localized to the cortex and striatum. Our findings indicate a failed translational compensatory mechanisms in the cerebellum of phenotypic DYT1KI mice that exhibit DLM, while translation dysregulations in the cortex and striatum likely promotes the dystonic phenotype.
Collapse
Affiliation(s)
- Colette Reinhold
- Department of Neurology, University Hospital of Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, Germany
| | | | | | | | | | - Tom Gräfenhan
- Core Unit Systems Medicine, Medical Faculty, University Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Germany.
| |
Collapse
|
5
|
Tarrano C, Galléa C, Delorme C, McGovern EM, Atkinson-Clement C, Barnham IJ, Brochard V, Thobois S, Tranchant C, Grabli D, Degos B, Corvol JC, Pedespan JM, Krystkowiak P, Houeto JL, Degardin A, Defebvre L, Valabrègue R, Beranger B, Apartis E, Vidailhet M, Roze E, Worbe Y. Association of abnormal explicit sense of agency with cerebellar impairment in myoclonus-dystonia. Brain Commun 2024; 6:fcae105. [PMID: 38601915 PMCID: PMC11004927 DOI: 10.1093/braincomms/fcae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Non-motor aspects in dystonia are now well recognized. The sense of agency, which refers to the experience of controlling one's own actions, has been scarcely studied in dystonia, even though its disturbances can contribute to movement disorders. Among various brain structures, the cerebral cortex, the cerebellum, and the basal ganglia are involved in shaping the sense of agency. In myoclonus dystonia, resulting from a dysfunction of the motor network, an altered sense of agency may contribute to the clinical phenotype of the condition. In this study, we compared the explicit and implicit sense of agency in patients with myoclonus dystonia caused by a pathogenic variant of SGCE (DYT-SGCE) and control participants. We utilized behavioural tasks to assess the sense of agency and performed neuroimaging analyses, including structural, resting-state functional connectivity, and dynamic causal modelling, to explore the relevant brain regions involved in the sense of agency. Additionally, we examined the relationship between behavioural performance, symptom severity, and neuroimaging findings. We compared 19 patients with DYT-SGCE and 24 healthy volunteers. Our findings revealed that patients with myoclonus-dystonia exhibited a specific impairment in explicit sense of agency, particularly when implicit motor learning was involved. However, their implicit sense of agency remained intact. These patients also displayed grey-matter abnormalities in the motor cerebellum, as well as increased functional connectivity between the cerebellum and pre-supplementary motor area. Dynamic causal modelling analysis further identified reduced inhibitory effects of the cerebellum on the pre-supplementary motor area, decreased excitatory effects of the pre-supplementary motor area on the cerebellum, and increased self-inhibition within the pre-supplementary motor area. Importantly, both cerebellar grey-matter alterations and functional connectivity abnormalities between the cerebellum and pre-supplementary motor area were found to correlate with explicit sense of agency impairment. Increased self-inhibition within the pre-supplementary motor area was associated with less severe myoclonus symptoms. These findings highlight the disruption of higher-level cognitive processes in patients with myoclonus-dystonia, further expanding the spectrum of neurological and psychiatric dysfunction already identified in this disorder.
Collapse
Affiliation(s)
- Clément Tarrano
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Cécile Galléa
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Department of Research Neuroimaging, Centre de NeuroImagerie de Recherche (CENIR), Sorbonne Université, Paris 75013, France
| | - Cécile Delorme
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Eavan M McGovern
- Department of Neurology, Beaumont Hospital, Dublin 9, D09 VY21, Ireland
- School of Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02 YN77, Ireland
| | - Cyril Atkinson-Clement
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Vanessa Brochard
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Stéphane Thobois
- Department of Neurology, Hospices Civils de Lyon, Lyon 69000, France
| | - Christine Tranchant
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg 67098, France
- INSERM-U964/CNRS-UMR7104, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch 67404, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg 67000, France
| | - David Grabli
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Bertrand Degos
- Department of Neurology, Assistance Publique-Hôpitaux de Paris, Avicenne Hospital, Sorbonne Paris Nord, Bobigny 93000, France
| | - Jean Christophe Corvol
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Jean-Michel Pedespan
- Department of Neuropediatry, Universitary Hospital of Pellegrin, Bordeaux 33076, France
| | - Pierre Krystkowiak
- Department of Neurology, Abu Dhabi Stem Cells Centre, Abu Dhabi, United Arab Emirates
| | - Jean-Luc Houeto
- Department of Neurology CHU Limoges, Inserm U1094, IRD U270, Univ. Limoges, EpiMaCT—Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges 87000, France
| | - Adrian Degardin
- Department of Neurology, Tourcoing Hospital, Tourcoing 59599, France
| | - Luc Defebvre
- Department of Neurology, University of Lille, Lille 59000, France
- Department of Neurology, Lille Centre of Excellence for Neurodegenerative Diseases » (LiCEND), Lille F-59000, France
| | - Romain Valabrègue
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Department of Research Neuroimaging, Centre de NeuroImagerie de Recherche (CENIR), Sorbonne Université, Paris 75013, France
| | - Benoit Beranger
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Department of Research Neuroimaging, Centre de NeuroImagerie de Recherche (CENIR), Sorbonne Université, Paris 75013, France
| | - Emmanuelle Apartis
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Department of Neurophysiology, Saint-Antoine Hospital, Paris 75012, France
| | - Marie Vidailhet
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Emmanuel Roze
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Yulia Worbe
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Department of Neurophysiology, Saint-Antoine Hospital, Paris 75012, France
| |
Collapse
|
6
|
Voegtle A, Terlutter C, Nikolai K, Farahat A, Hinrichs H, Sweeney-Reed CM. Suppression of Motor Sequence Learning and Execution Through Anodal Cerebellar Transcranial Electrical Stimulation. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1152-1165. [PMID: 36239839 PMCID: PMC10657296 DOI: 10.1007/s12311-022-01487-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Cerebellum (CB) and primary motor cortex (M1) have been associated with motor learning, with different putative roles. Modulation of task performance through application of transcranial direct current stimulation (TDCS) to brain structures provides causal evidence for their engagement in the task. Studies evaluating and comparing TDCS to these structures have provided conflicting results, however, likely due to varying paradigms and stimulation parameters. Here we applied TDCS to CB and M1 within the same experimental design, to enable direct comparison of their roles in motor sequence learning. We examined the effects of anodal TDCS during motor sequence learning in 60 healthy participants, randomly allocated to CB-TDCS, M1-TDCS, or Sham stimulation groups during a serial reaction time task. Key to the design was an equal number of repeated and random sequences. Reaction times (RTs) to implicitly learned and random sequences were compared between groups using ANOVAs and post hoc t-tests. A speed-accuracy trade-off was excluded by analogous analysis of accuracy scores. An interaction was observed between whether responses were to learned or random sequences and the stimulation group. Post hoc analyses revealed a preferential slowing of RTs to implicitly learned sequences in the group receiving CB-TDCS. Our findings provide evidence that CB function can be modulated through transcranial application of a weak electrical current, that the CB and M1 cortex perform separable functions in the task, and that the CB plays a specific role in motor sequence learning during implicit motor sequence learning.
Collapse
Affiliation(s)
- Angela Voegtle
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Clara Terlutter
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Katharina Nikolai
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Amr Farahat
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Ernst Strüngmann Institute for Neuroscience in Cooperation With Max Planck Society, Deutschordenstr. 46, 60528, Frankfurt, Frankfurt am Main, Germany
| | - Hermann Hinrichs
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Department of Neurology, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences - CBBS, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Catherine M Sweeney-Reed
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences - CBBS, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
7
|
Taiwo FT, Adebayo PB. Neuroimaging findings in DYT1 dystonia and the pathophysiological implication: A systematic review. Brain Behav 2023; 13:e3023. [PMID: 37165749 PMCID: PMC10275528 DOI: 10.1002/brb3.3023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Primary generalized dystonia due to the DYT1 gene is an autosomal dominant disorder caused by a GAG deletion on chromosome 9q34. It is a well-defined, genetically proven, isolated dystonia syndrome. However, its pathophysiology remains unclear. OBJECTIVES This study was aimed at profiling the functional neuroimaging findings in DYT1 dystonia and harmonizing the pathophysiological implications for DYT1 dystonia from the standpoint of different neuroimaging techniques. METHODS A systematic review was conducted using identified studies published in English from Medline, PsycINFO, Embase, CINAHL, and the Cochrane Database of Systematic Reviews (CDSR), between 1985 and December 2019 (PROSPERO protocol CRD42018111211). RESULTS All DYT1 gene carriers irrespective of clinical penetrance have reduced striatal GABA, dopamine receptors and increased metabolic activity in the lentiform nucleus, supplementary motor area, and cerebellum in addition to an abnormal cerebellothalamocortical pathway. Nonmanifesting carriers on the other hand have a disruption of the distal (thalamocortical) segment and have larger putaminal volumes than manifesting carriers and healthy controls. Activation of the midbrain, thalamus, and sensorimotor cortex was only found in the manifesting carriers. CONCLUSIONS Therefore, we propose that DYT1 dystonia is a cerebellostriatothalamocortical network disorder affecting either the structure or function of the different structures or nodes in the network.
Collapse
Affiliation(s)
- Funmilola T. Taiwo
- Neurology Unit, Department of MedicineUniversity College HospitalIbadanNigeria
| | - Philip B. Adebayo
- Neurology Section, Department of Internal MedicineAga Khan UniversityDar es SalaamTanzania
| |
Collapse
|
8
|
Rauschenberger L, Krenig EM, Stengl A, Knorr S, Harder TH, Steeg F, Friedrich MU, Grundmann-Hauser K, Volkmann J, Ip CW. Peripheral nerve injury elicits microstructural and neurochemical changes in the striatum and substantia nigra of a DYT-TOR1A mouse model with dystonia-like movements. Neurobiol Dis 2023; 179:106056. [PMID: 36863527 DOI: 10.1016/j.nbd.2023.106056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
The relationship between genotype and phenotype in DYT-TOR1A dystonia as well as the associated motor circuit alterations are still insufficiently understood. DYT-TOR1A dystonia has a remarkably reduced penetrance of 20-30%, which has led to the second-hit hypothesis emphasizing an important role of extragenetic factors in the symptomatogenesis of TOR1A mutation carriers. To analyze whether recovery from a peripheral nerve injury can trigger a dystonic phenotype in asymptomatic hΔGAG3 mice, which overexpress human mutated torsinA, a sciatic nerve crush was applied. An observer-based scoring system as well as an unbiased deep-learning based characterization of the phenotype showed that recovery from a sciatic nerve crush leads to significantly more dystonia-like movements in hΔGAG3 animals compared to wildtype control animals, which persisted over the entire monitored period of 12 weeks. In the basal ganglia, the analysis of medium spiny neurons revealed a significantly reduced number of dendrites, dendrite length and number of spines in the naïve and nerve-crushed hΔGAG3 mice compared to both wildtype control groups indicative of an endophenotypical trait. The volume of striatal calretinin+ interneurons showed alterations in hΔGAG3 mice compared to the wt groups. Nerve-injury related changes were found for striatal ChAT+, parvalbumin+ and nNOS+ interneurons in both genotypes. The dopaminergic neurons of the substantia nigra remained unchanged in number across all groups, however, the cell volume was significantly increased in nerve-crushed hΔGAG3 mice compared to naïve hΔGAG3 mice and wildtype littermates. Moreover, in vivo microdialysis showed an increase of dopamine and its metabolites in the striatum comparing nerve-crushed hΔGAG3 mice to all other groups. The induction of a dystonia-like phenotype in genetically predisposed DYT-TOR1A mice highlights the importance of extragenetic factors in the symptomatogenesis of DYT-TOR1A dystonia. Our experimental approach allowed us to dissect microstructural and neurochemical abnormalities in the basal ganglia, which either reflected a genetic predisposition or endophenotype in DYT-TOR1A mice or a correlate of the induced dystonic phenotype. In particular, neurochemical and morphological changes of the nigrostriatal dopaminergic system were correlated with symptomatogenesis.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Esther-Marie Krenig
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Alea Stengl
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Tristan H Harder
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Felix Steeg
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Maximilian U Friedrich
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Kathrin Grundmann-Hauser
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Germany; Centre for Rare Diseases, University of Tübingen, 72076, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| |
Collapse
|
9
|
Xing H, Yokoi F, Walker AL, Torres-Medina R, Liu Y, Li Y. Electrophysiological characterization of the striatal cholinergic interneurons in Dyt1 ΔGAG knock-in mice. DYSTONIA 2022; 1:10557. [PMID: 36329866 PMCID: PMC9629210 DOI: 10.3389/dyst.2022.10557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DYT1 dystonia is an inherited early-onset movement disorder characterized by sustained muscle contractions causing twisting, repetitive movements, and abnormal postures. Most DYT1 patients have a heterozygous trinucleotide GAG deletion mutation (ΔGAG) in DYT1/TOR1A, coding for torsinA. Dyt1 heterozygous ΔGAG knock-in (KI) mice show motor deficits and reduced striatal dopamine receptor 2 (D2R). Striatal cholinergic interneurons (ChIs) are essential in regulating striatal motor circuits. Multiple dystonia rodent models, including KI mice, show altered ChI firing and modulation. However, due to the errors in assigning KI mice, it is essential to replicate these findings in genetically confirmed KI mice. Here, we found irregular and decreased spontaneous firing frequency in the acute brain slices from Dyt1 KI mice. Quinpirole, a D2R agonist, showed less inhibitory effect on the spontaneous ChI firing in Dyt1 KI mice, suggesting decreased D2R function on the striatal ChIs. On the other hand, a muscarinic receptor agonist, muscarine, inhibited the ChI firing in both wild-type (WT) and Dyt1 KI mice. Trihexyphenidyl, a muscarinic acetylcholine receptor M1 antagonist, had no significant effect on the firing. Moreover, the resting membrane property and functions of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, μ-opioid receptors, and large-conductance calcium-activated potassium (BK) channels were unaffected in Dyt1 KI mice. The results suggest that the irregular and low-frequency firing and decreased D2R function are the main alterations of striatal ChIs in Dyt1 KI mice. These results appear consistent with the reduced dopamine release and high striatal acetylcholine tone in the previous reports.
Collapse
Affiliation(s)
- Hong Xing
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Ariel Luz Walker
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Rosemarie Torres-Medina
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Yuning Liu
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Yuqing Li
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| |
Collapse
|
10
|
A dystonia mouse model with motor and sequencing deficits paralleling human disease. Behav Brain Res 2022; 426:113844. [PMID: 35304183 DOI: 10.1016/j.bbr.2022.113844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/18/2022] [Accepted: 03/12/2022] [Indexed: 12/27/2022]
Abstract
The dystonias are a group of movement disorders characterized by involuntary twisting movements and postures. A lack of well characterized behavioral models of dystonia has impeded identification of circuit abnormalities giving rise to the disease. Most mouse behavioral assays are implemented independently of cortex, but cortical dysfunction is implicated in human dystonia. It is therefore important to identify dystonia models in which motor cortex-dependent behaviors are altered in ways relevant to human disease. The goal of this study was to characterize a cortically-dependent behavior in the recently-developed Dlx-CKO mouse model of DYT1 dystonia. Mice performed two tasks: skilled reaching and water-elicited grooming. These tests assess motor learning, dexterous skill, and innate motor sequencing. Furthermore, skilled reaching depends strongly on motor cortex, while dorsal striatum is critical for normal grooming. Dlx-CKO mice exhibited significantly lower success rates and pellet contacts compared to control mice during skilled reaching. Despite the skilled reaching impairments, Dlx-CKO mice adapt their reaching strategies. With training, they more consistently contacted the target. Grooming patterns of Dlx-CKO mice are more disorganized than in control mice, as evidenced by a higher proportion of non-chain grooming. However, when Dlx-CKO mice engage in syntactic chains, they execute them similarly to control mice. These abnormalities may provide targets for preclinical intervention trials, as well as facilitate determination of the physiologic path from torsinA dysfunction to motor phenotype.
Collapse
|
11
|
Yellajoshyula D, Pappas SS, Dauer WT. Oligodendrocyte and Extracellular Matrix Contributions to Central Nervous System Motor Function: Implications for Dystonia. Mov Disord 2022; 37:456-463. [PMID: 34989453 PMCID: PMC11152458 DOI: 10.1002/mds.28892] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
The quest to elucidate nervous system function and dysfunction in disease has focused largely on neurons and neural circuits. However, fundamental aspects of nervous system development, function, and plasticity are regulated by nonneuronal elements, including glial cells and the extracellular matrix (ECM). The rapid rise of genomics and neuroimaging techniques in recent decades has highlighted neuronal-glial interactions and ECM as a key component of nervous system development, plasticity, and function. Abnormalities of neuronal-glial interactions have been understudied but are increasingly recognized to play a key role in many neurodevelopmental disorders. In this report, we consider the role of myelination and the ECM in the development and function of central nervous system motor circuits and the neurodevelopmental disease dystonia. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Samuel S Pappas
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - William T Dauer
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Rauschenberger L, Knorr S, Pisani A, Hallett M, Volkmann J, Ip CW. Second hit hypothesis in dystonia: Dysfunctional cross talk between neuroplasticity and environment? Neurobiol Dis 2021; 159:105511. [PMID: 34537328 DOI: 10.1016/j.nbd.2021.105511] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
One of the great mysteries in dystonia pathophysiology is the role of environmental factors in disease onset and development. Progress has been made in defining the genetic components of dystonic syndromes, still the mechanisms behind the discrepant relationship between dystonic genotype and phenotype remain largely unclear. Within this review, the preclinical and clinical evidence for environmental stressors as disease modifiers in dystonia pathogenesis are summarized and critically evaluated. The potential role of extragenetic factors is discussed in monogenic as well as adult-onset isolated dystonia. The available clinical evidence for a "second hit" is analyzed in light of the reduced penetrance of monogenic dystonic syndromes and put into context with evidence from animal and cellular models. The contradictory studies on adult-onset dystonia are discussed in detail and backed up by evidence from animal models. Taken together, there is clear evidence of a gene-environment interaction in dystonia, which should be considered in the continued quest to unravel dystonia pathophysiology.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| |
Collapse
|
13
|
Yokoi F, Dang MT, Zhang L, Dexter KM, Efimenko I, Krishnaswamy S, Villanueva M, Misztal CI, Gerard M, Lynch P, Li Y. Reversal of motor-skill transfer impairment by trihexyphenidyl and reduction of dorsolateral striatal cholinergic interneurons in Dyt1 ΔGAG knock-in mice. IBRO Neurosci Rep 2021; 11:1-7. [PMID: 34189496 PMCID: PMC8215213 DOI: 10.1016/j.ibneur.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/06/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
DYT-TOR1A or DYT1 early-onset generalized dystonia is an inherited movement disorder characterized by sustained muscle contractions causing twisting, repetitive movements, or abnormal postures. The majority of the DYT1 dystonia patients have a trinucleotide GAG deletion in DYT1/TOR1A. Trihexyphenidyl (THP), an antagonist for excitatory muscarinic acetylcholine receptor M1, is commonly used to treat dystonia. Dyt1 heterozygous ΔGAG knock-in (KI) mice, which have the corresponding mutation, exhibit impaired motor-skill transfer. Here, the effect of THP injection during the treadmill training period on the motor-skill transfer to the accelerated rotarod performance was examined. THP treatment reversed the motor-skill transfer impairment in Dyt1 KI mice. Immunohistochemistry showed that Dyt1 KI mice had a significant reduction of the dorsolateral striatal cholinergic interneurons. In contrast, Western blot analysis showed no significant alteration in the expression levels of the striatal enzymes and transporters involved in the acetylcholine metabolism. The results suggest a functional alteration of the cholinergic system underlying the impairment of motor-skill transfer and the pathogenesis of DYT1 dystonia. Training with THP in a motor task may improve another motor skill performance in DYT1 dystonia.
Collapse
Key Words
- ACh, acetylcholine
- AChE, acetylcholinesterase
- BSA, bovine serum albumin
- CI, confidence interval
- ChAT, choline acetyltransferase
- ChI, cholinergic interneuron
- ChT, choline transporter
- Cholinergic interneuron
- DAB, 3,3′-diaminobenzidine
- DF, degrees of freedom
- Dystonia
- Dyt1 KI mice, Dyt1 ΔGAG heterozygous knock-in mice
- GAPDH, Glyceraldehyde-3-phosphate dehydrogenase
- KO, knockout
- LTD, long-term depression
- Motor learning
- PB, phosphate buffer
- PBS, phosphate-buffered saline
- PET, positron emission tomography
- Rotarod
- THP, trihexyphenidyl
- TOR1A
- TorsinA
- TrkA, tropomyosin receptor kinase A
- VAChT, vesicular acetylcholine transporter
- WT, wild-type
- n.s., not significant
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Mai Tu Dang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lin Zhang
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA.,Department of Biomedical Sciences, Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Kelly M Dexter
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Iakov Efimenko
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Shiv Krishnaswamy
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Matthew Villanueva
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Carly I Misztal
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Malinda Gerard
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Patrick Lynch
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Yuqing Li
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| |
Collapse
|
14
|
Motor learning deficits in cervical dystonia point to defective basal ganglia circuitry. Sci Rep 2021; 11:7332. [PMID: 33795752 PMCID: PMC8016965 DOI: 10.1038/s41598-021-86513-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
Dystonia is conceptualized as a network disorder involving basal ganglia, thalamus, sensorimotor cortex and the cerebellum. The cerebellum has been implicated in dystonia pathophysiology, but studies testing cerebellar function in dystonia patients have provided equivocal results. This study aimed to further elucidate motor network deficits in cervical dystonia with special interest in the role of the cerebellum. To this end we investigated motor learning tasks, that differ in their dependence on cerebellar and basal ganglia functioning. In 18 cervical dystonia patients and 18 age matched healthy controls we measured implicit motor sequence learning using a 12-item serial reaction time task mostly targeting basal ganglia circuitry and motor adaptation and eyeblink conditioning as markers of cerebellar functioning. ANOVA showed that motor sequence learning was overall impaired in cervical dystonia (p = 0.01). Moreover, unlike healthy controls, patients did not show a learning effect in the first part of the experiment. Visuomotor adaptation and eyeblink conditioning were normal. In conclusion, these data lend support to the notion that motor learning deficits in cervical dystonia relate to basal ganglia-thalamo-cortical loops rather than being a result of defective cerebellar circuitry.
Collapse
|
15
|
Knorr S, Rauschenberger L, Pasos UR, Friedrich MU, Peach RL, Grundmann-Hauser K, Ott T, O'Leary A, Reif A, Tovote P, Volkmann J, Ip CW. The evolution of dystonia-like movements in TOR1A rats after transient nerve injury is accompanied by dopaminergic dysregulation and abnormal oscillatory activity of a central motor network. Neurobiol Dis 2021; 154:105337. [PMID: 33753289 DOI: 10.1016/j.nbd.2021.105337] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
TOR1A is the most common inherited form of dystonia with still unclear pathophysiology and reduced penetrance of 30-40%. ∆ETorA rats mimic the TOR1A disease by expression of the human TOR1A mutation without presenting a dystonic phenotype. We aimed to induce dystonia-like symptoms in male ∆ETorA rats by peripheral nerve injury and to identify central mechanism of dystonia development. Dystonia-like movements (DLM) were assessed using the tail suspension test and implementing a pipeline of deep learning applications. Neuron numbers of striatal parvalbumin+, nNOS+, calretinin+, ChAT+ interneurons and Nissl+ cells were estimated by unbiased stereology. Striatal dopaminergic metabolism was analyzed via in vivo microdialysis, qPCR and western blot. Local field potentials (LFP) were recorded from the central motor network. Deep brain stimulation (DBS) of the entopeduncular nucleus (EP) was performed. Nerve-injured ∆ETorA rats developed long-lasting DLM over 12 weeks. No changes in striatal structure were observed. Dystonic-like ∆ETorA rats presented a higher striatal dopaminergic turnover and stimulus-induced elevation of dopamine efflux compared to the control groups. Higher LFP theta power in the EP of dystonic-like ∆ETorA compared to wt rats was recorded. Chronic EP-DBS over 3 weeks led to improvement of DLM. Our data emphasizes the role of environmental factors in TOR1A symptomatogenesis. LFP analyses indicate that the pathologically enhanced theta power is a physiomarker of DLM. This TOR1A model replicates key features of the human TOR1A pathology on multiple biological levels and is therefore suited for further analysis of dystonia pathomechanism.
Collapse
Affiliation(s)
- Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, 97080, Germany
| | | | - Uri Ramirez Pasos
- Department of Neurology, University Hospital of Würzburg, 97080, Germany
| | | | - Robert L Peach
- Department of Neurology, University Hospital of Würzburg, 97080, Germany
| | - Kathrin Grundmann-Hauser
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, 72076, Germany; Centre for Rare Diseases, University of Tübingen, 72076, Germany
| | - Thomas Ott
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, 72076, Germany; Core Facility Transgenic Animals, University Hospital of Tübingen, 72076, Germany
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, 60528, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, 60528, Germany
| | - Philip Tovote
- Systems Neurobiology, Institute of Clinical Neurobiology, University Hospital of Würzburg, Versbacher Straße 5, 97080, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, 97080, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, 97080, Germany.
| |
Collapse
|
16
|
Human brain connectivity: Clinical applications for clinical neurophysiology. Clin Neurophysiol 2020; 131:1621-1651. [DOI: 10.1016/j.clinph.2020.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
|
17
|
Zacharia SJ, Sokratous G, Samuel M, Costello A, Ashkan K, Shotbolt P. Neuropsychological and Neuropsychiatric Concerns for Deep Brain Stimulation in Dystonia: Preoperative Profiles in a Deep Brain Stimulation Cohort and Postoperative Changes in Three Case Series Reports. Cureus 2018; 10:e3507. [PMID: 30648047 PMCID: PMC6318105 DOI: 10.7759/cureus.3507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cognitive deficits and psychiatric morbidities are commonly detected in dystonia. Psychiatric disturbances are of particular clinical concern as they not only contribute to poor quality of life and disease associated burden, but also exacerbate motor and cognitive symptoms. Bilateral deep brain stimulation of the globus pallidus internus improves motor symptoms in treatment-resistant dystonia, but its implications for non-motor manifestations are poorly understood. Improved prediction of cognitive and neuropsychiatric outcomes is important in deep brain stimulation (DBS) research and we aim to assess the latter through established assessment tools. We document the cognitive and neuropsychiatric profiles in 11 primary and 10 secondary dystonia patients attending our DBS clinic. We performed routine multidisciplinary assessments including a comprehensive battery of neuropsychometric tests and detailed neuropsychiatric evaluations. Post-operative assessment outcomes are reported for three patients in case series. The main cognitive deficit was on the Brixton test of spatial anticipation in primary dystonia. Background medical history included psychiatric illness in 38.1% of the patients with 76% of patients having mood abnormalities confirming elevated psychiatric morbidity in this population. Depressive illness was more prominent in primary, whereas clinically relevant histories in secondary dystonia were varied. Of the 21 patients three were able to perform on selected tests due to extensive limitations of their dystonia. No obvious alteration in intellectual functioning following DBS surgery relative to performance at the time of initial assessment was observed. The frequency of individual impairments suggests that difficulties associated with dystonia are likely to be of clinical relevance to cognitive functions in the majority of patients. In particular, current findings suggest that executive difficulties related to inductive processes and spatial learning may be a common in primary dystonias. Psychiatric disturbances demand recognition as a central aspect of dystonia as they contribute to overall disease burden, poor quality of life and exacerbated motor disabilities. The available evidence provides overwhelming suggestion that vulnerability to depression is inherent to the dystonia phenotype.
Collapse
Affiliation(s)
| | | | - Mike Samuel
- Neurology, King's College Hospital, London, GBR
| | | | | | - Paul Shotbolt
- Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, London, GBR
| |
Collapse
|
18
|
Ratliff J, Ortega RA, Ooi HY, Mirallave A, Glickman A, Yu Q, Raymond D, Bressman S, Pullman S, Saunders-Pullman R. Digitized spiral analysis may be a potential biomarker for brachial dystonia. Parkinsonism Relat Disord 2018; 57:16-21. [PMID: 30037691 DOI: 10.1016/j.parkreldis.2018.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Objective measures for detection and quantification of dystonic movements may guide both diagnosis and clinical monitoring. Digitized spiral analysis is a non-invasive method used to assess upper limb motor control in movement disorders and may have utility in dystonia. We aimed to determine if digitized spiral analysis can distinguish dystonia subjects from controls, and evaluated correlation with a validated clinical rating scale. METHODS Kinematic, dynamic, and spatial attributes of Archimedean spirals drawn with an inking pen on a digitizing tablet were compared for participants with brachial dystonia and either Tor1A (DYT1) (n = 15) or THAP1 (DYT6) mutations (n = 12) and age and gender matched controls (n = 27) using Receiver Operator Characteristics (ROC) analysis. Spiral indices including an overall degree of severity (DoS) were also calculated and correlated with clinical severity ratings as measured by the Burke-Fahn-Marsden scale. RESULTS Dystonia spirals had significantly higher severity scores as well as higher measures of spiral irregularity compared to controls. ROC analysis demonstrated that the DoS score had good discriminative ability to distinguish dystonia spirals from controls, with an Area Under the Curve (AUC) of 0.87. Measures of spiral irregularity correlated with validated clinical rates of dystonia severity in the analyzed arm, with one particular index, Residue of Theta vs R, showing the highest correlation (r = 0.55, p = 0.005). CONCLUSION Digitized spiral analysis may be a promising non-invasive method to objectively quantify brachial dystonia. It may also be a useful way to monitor subtle changes in dystonia severity over time not captured with current clinical rating scales.
Collapse
Affiliation(s)
- Jeffrey Ratliff
- Department of Neurology, Mount Sinai Beth Israel and Icahn School of Medicine at Mount Sinai, Suite 5J, 10 Union Square East, New York, NY, 10003, USA; Department of Neurology, Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA.
| | - Roberto A Ortega
- Department of Neurology, Mount Sinai Beth Israel and Icahn School of Medicine at Mount Sinai, Suite 5J, 10 Union Square East, New York, NY, 10003, USA
| | - Hwai Yin Ooi
- Department of Neurology, Mount Sinai Beth Israel and Icahn School of Medicine at Mount Sinai, Suite 5J, 10 Union Square East, New York, NY, 10003, USA
| | - Ana Mirallave
- Department of Neurology, Clinical Motor Physiology Laboratory, Columbia University Medical Center, New York, NY, 10032, USA
| | - Amanda Glickman
- Department of Neurology, Mount Sinai Beth Israel and Icahn School of Medicine at Mount Sinai, Suite 5J, 10 Union Square East, New York, NY, 10003, USA
| | - Qiping Yu
- Department of Neurology, Clinical Motor Physiology Laboratory, Columbia University Medical Center, New York, NY, 10032, USA
| | - Deborah Raymond
- Department of Neurology, Mount Sinai Beth Israel and Icahn School of Medicine at Mount Sinai, Suite 5J, 10 Union Square East, New York, NY, 10003, USA
| | - Susan Bressman
- Department of Neurology, Mount Sinai Beth Israel and Icahn School of Medicine at Mount Sinai, Suite 5J, 10 Union Square East, New York, NY, 10003, USA
| | - Seth Pullman
- Department of Neurology, Clinical Motor Physiology Laboratory, Columbia University Medical Center, New York, NY, 10032, USA
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel and Icahn School of Medicine at Mount Sinai, Suite 5J, 10 Union Square East, New York, NY, 10003, USA
| |
Collapse
|
19
|
Perugini A, Basso MA. Perceptual decisions based on previously learned information are independent of dopaminergic tone. J Neurophysiol 2018; 119:849-861. [PMID: 29167328 PMCID: PMC5899318 DOI: 10.1152/jn.00761.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/07/2017] [Accepted: 11/19/2017] [Indexed: 02/02/2023] Open
Abstract
Both cognitive and motor symptoms in people with Parkinson's disease (PD) arise from either too little or too much dopamine (DA). Akinesia stems from DA neuronal cell loss, and dyskinesia often stems from an overdose of DA medication. Cognitive behaviors typically associated with frontal cortical function, such as working memory and task switching, are also affected by too little or too much DA in PD. Whether motor and cognitive circuits overlap in PD is unknown. In this article, we show that whereas motor performance improves in people with PD when on dopaminergic medication compared with off medication, perceptual decision-making based on previously learned information (priors) remains impaired whether on or off medications. To rule out effects of long-term DA treatment and dopaminergic neuronal loss such as occur in PD, we also tested a group of people with dopa-unresponsive focal dystonia, a disease that involves the basal ganglia, like PD, but has motor symptoms that are insensitive to dopamine treatment and is not thought to involve frontal cortical DA circuits, unlike PD. We found that people with focal dystonia showed intact perceptual decision-making performance but impaired use of priors in perceptual decision-making, similar to people with PD. Together, the results show a dissociation between motor and cognitive performance in people with PD and reveal a novel cognitive impairment, independent of sensory and motor impairment, in people with focal dystonia. The combined results from people with PD and people with focal dystonia provide mechanistic insights into the role of basal ganglia non-dopaminergic circuits in perceptual decision-making based on priors.
Collapse
Affiliation(s)
- Alessandra Perugini
- Joaquin Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, Department of Neurobiology, and The Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Michele A Basso
- Joaquin Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, Department of Neurobiology, and The Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, David Geffen School of Medicine, University of California , Los Angeles, California
| |
Collapse
|
20
|
Jaynes MJ, Mink JW. Motor sequence awareness is impaired in dystonia despite normal performance. Ann Neurol 2018; 83:52-60. [PMID: 29244239 DOI: 10.1002/ana.25121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 12/10/2017] [Accepted: 12/10/2017] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Dystonia is a movement disorder that has been associated with impaired motor learning and sequence recognition. However, despite evidence that patients with dystonia have a reduced sense of agency, it is unclear whether dystonia is specifically associated with impaired recognition of a movement sequence. We have shown previously that performance consistency in the temporal and kinematic domains predicts awareness of underlying motor patterns in a finger-tapping task. Since movements in dystonia are characterized by high variability, we predicted that subjects with dystonia would have decreased motor sequence awareness. METHODS Subjects with dystonia (n = 20) and healthy control adults (n = 30) performed finger-tapping sequences with a common motor pattern and changing stimulus-to-response mappings. Subjects were said to be "aware" of the motor pattern if they recognized that their fingers moved in the same order during each stimulus-to-response remapping. RESULTS Subjects with dystonia had decreased motor pattern awareness, but those differences were not due to greater performance variability. Subjects with dystonia tapped sequences as series of discrete movements, rather than as a combined series. INTERPRETATION Dystonia is associated with impaired recognition of a repeating movement pattern. This difference may result from a strategy of separating sequential elements and attending to them individually. Ann Neurol 2018;83:52-60.
Collapse
Affiliation(s)
| | - Jonathan W Mink
- Departments of Neurology, Neuroscience, and Pediatrics, University of Rochester, Rochester, NY
| |
Collapse
|
21
|
Abstract
Dystonia is a heterogeneous disorder characterized by involuntary muscle contractions, twisting movements, and abnormal postures in various body regions. It is widely accepted that the basal ganglia are involved in the pathogenesis of dystonia. A growing body of evidence, however, is challenging the traditional view and suggest that the cerebellum may also play a role in dystonia. Studies on animals indicate that experimental manipulations of the cerebellum lead to dystonic-like movements. Several clinical observations, including those from secondary dystonia cases as well as neurophysiologic and neuroimaging studies in human patients, provide further evidence in humans of a possible relationship between cerebellar abnormalities and dystonia. Claryfing the role of the cerebellum in dystonia is an important step towards providing alternative treatments based on noninvasive brain stimulation techniques.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; Neuromed Institute IRCCS, Pozzilli, Italy
| | - Alfredo Berardelli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; Neuromed Institute IRCCS, Pozzilli, Italy.
| |
Collapse
|
22
|
Fujita K, Sako W, Vo A, Bressman SB, Eidelberg D. Disruption of network for visual perception of natural motion in primary dystonia. Hum Brain Mapp 2017; 39:1163-1174. [PMID: 29214728 DOI: 10.1002/hbm.23907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/30/2017] [Accepted: 11/29/2017] [Indexed: 11/07/2022] Open
Abstract
In healthy subjects, brain activation in motor regions is greater during the visual perception of "natural" target motion, which complies with the two-thirds power law, than of "unnatural" motion, which does not. It is unknown whether motion perception is normally mediated by a specific network that can be altered in the setting of disease. We used block-design functional magnetic resonance imaging and covariance analysis to identify normal network topographies activated in response to "natural" versus "unnatural" motion. A visual motion perception-related pattern (VPRP) was identified in 12 healthy subjects, characterized by covarying activation responses in the inferior parietal lobule, frontal operculum, lateral occipitotemporal cortex, amygdala, and cerebellum (Crus I). Selective VPRP activation during "natural" motion was confirmed in 12 testing scans from healthy subjects. Consistent network activation was not seen, however, in 29 patients with dystonia, a neurodevelopmental disorder in which motion perception pathways may be involved. Using diffusion tractography, we evaluated the integrity of anatomical connections between the major VPRP nodes. Indeed, fiber counts in these pathways were substantially reduced in the dystonia subjects. In aggregate, the findings associate normal motion perception with a discrete brain network which can be disrupted under pathological conditions.
Collapse
Affiliation(s)
- Koji Fujita
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030
| | - Wataru Sako
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030
| | - An Vo
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030
| | - Susan B Bressman
- Mirken Department of Neurology, Mount Sinai Beth Israel, New York, NY, 10003
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030
| |
Collapse
|
23
|
Loss of inhibition in sensorimotor networks in focal hand dystonia. NEUROIMAGE-CLINICAL 2017; 17:90-97. [PMID: 29062685 PMCID: PMC5645005 DOI: 10.1016/j.nicl.2017.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/05/2017] [Accepted: 10/10/2017] [Indexed: 11/21/2022]
Abstract
Objective To investigate GABA-ergic receptor density and associated brain functional and grey matter changes in focal hand dystonia (FHD). Methods 18 patients with FHD of the right hand and 18 age and gender matched healthy volunteers (HV) participated in this study. We measured the density of GABA-A receptors using [11C] Flumazenil and perfusion using [15O] H2O. Anatomical images were also used to measure grey matter volume with voxel-based morphometry (VBM). Results In FHD patients compared to HV, the vermis VI of the right cerebellum and the left sensorimotor cortex had a decrease of Flumazenil binding potential (FMZ-BP), whereas the striatum and the lateral cerebellum did not show significant change. Bilateral inferior prefrontal cortex had increased FMZ-BP and an increase of perfusion, which correlated negatively with disease duration. Only the left sensorimotor cortex showed a decrease of grey matter volume. Interpretation Impairments of GABAergic neurotransmission in the cerebellum and the sensorimotor cortical areas could explain different aspects of loss of inhibitory control in FHD, the former being involved in maladaptive plasticity, the latter in surround inhibition. Reorganization of the inferior prefrontal cortices, part of the associative network, might be compensatory for the loss of inhibitory control in sensorimotor circuits. These findings suggest that cerebellar and cerebral GABAergic abnormalities could play a role in the functional imbalance of striato-cerebello-cortical loops in dystonia. We tested GABAergic deficiency to explain inhibitory control loss in focal dystonia. The right cerebellar vermis and left sensorimotor cortex had GABAergic deficiencies. Bilateral prefrontal cortex had an increase of GABAergic potential and activity. Prefrontal changes correlated with cerebellar deficiency and disease duration. We highlighted the importance of the cerebellum for the pathophysiology of dystonia.
Collapse
|
24
|
Jahanshahi M. Neuropsychological and Neuropsychiatric Features of Idiopathic and DYT1 Dystonia and the Impact of Medical and Surgical treatment. Arch Clin Neuropsychol 2017; 32:888-905. [DOI: 10.1093/arclin/acx095] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 11/14/2022] Open
|
25
|
Yellajoshyula D, Liang CC, Pappas SS, Penati S, Yang A, Mecano R, Kumaran R, Jou S, Cookson MR, Dauer WT. The DYT6 Dystonia Protein THAP1 Regulates Myelination within the Oligodendrocyte Lineage. Dev Cell 2017; 42:52-67.e4. [PMID: 28697333 DOI: 10.1016/j.devcel.2017.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 04/25/2017] [Accepted: 06/07/2017] [Indexed: 11/30/2022]
Abstract
The childhood-onset motor disorder DYT6 dystonia is caused by loss-of-function mutations in the transcription factor THAP1, but the neurodevelopmental processes in which THAP1 participates are unknown. We find that THAP1 is essential for the timing of myelination initiation during CNS maturation. Conditional deletion of THAP1 in the CNS retards maturation of the oligodendrocyte (OL) lineage, delaying myelination and causing persistent motor deficits. The CNS myelination defect results from a cell-autonomous requirement for THAP1 in the OL lineage and is recapitulated in developmental assays performed on OL progenitor cells purified from Thap1 null mice. Loss of THAP1 function disrupts a core set of OL maturation genes and reduces the DNA occupancy of YY1, a transcription factor required for OL maturation. These studies establish a role for THAP1 transcriptional regulation at the inception of myelination and implicate abnormal timing of myelination in the pathogenesis of childhood-onset dystonia.
Collapse
Affiliation(s)
- Dhananjay Yellajoshyula
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Chun-Chi Liang
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Samuel S Pappas
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Silvia Penati
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Angela Yang
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Rodan Mecano
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Ravindran Kumaran
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Stephanie Jou
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - William T Dauer
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; VAAAHS, University of Michigan Medical School, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Shakkottai VG, Batla A, Bhatia K, Dauer WT, Dresel C, Niethammer M, Eidelberg D, Raike RS, Smith Y, Jinnah HA, Hess EJ, Meunier S, Hallett M, Fremont R, Khodakhah K, LeDoux MS, Popa T, Gallea C, Lehericy S, Bostan AC, Strick PL. Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia. THE CEREBELLUM 2017; 16:577-594. [PMID: 27734238 DOI: 10.1007/s12311-016-0825-6] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A role for the cerebellum in causing ataxia, a disorder characterized by uncoordinated movement, is widely accepted. Recent work has suggested that alterations in activity, connectivity, and structure of the cerebellum are also associated with dystonia, a neurological disorder characterized by abnormal and sustained muscle contractions often leading to abnormal maintained postures. In this manuscript, the authors discuss their views on how the cerebellum may play a role in dystonia. The following topics are discussed: The relationships between neuronal/network dysfunctions and motor abnormalities in rodent models of dystonia. Data about brain structure, cerebellar metabolism, cerebellar connections, and noninvasive cerebellar stimulation that support (or not) a role for the cerebellum in human dystonia. Connections between the cerebellum and motor cortical and sub-cortical structures that could support a role for the cerebellum in dystonia. Overall points of consensus include: Neuronal dysfunction originating in the cerebellum can drive dystonic movements in rodent model systems. Imaging and neurophysiological studies in humans suggest that the cerebellum plays a role in the pathophysiology of dystonia, but do not provide conclusive evidence that the cerebellum is the primary or sole neuroanatomical site of origin.
Collapse
Affiliation(s)
- Vikram G Shakkottai
- Department of Neurology, University of Michigan, Room 4009, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA. .,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-2200, USA.
| | - Amit Batla
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, UK
| | - Kailash Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, UK
| | - William T Dauer
- Department of Neurology, University of Michigan, Room 4009, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christian Dresel
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Martin Niethammer
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Robert S Raike
- Global Research Organization, Medtronic Inc. Neuromodulation, Minneapolis, MN, USA
| | - Yoland Smith
- Yerkes National Primate Center and Department of Neurology, Emory University, Atlanta, GA, USA
| | - H A Jinnah
- Department of Neurology, Human Genetics and Pediatrics, Emory University, Atlanta, GA, USA
| | - Ellen J Hess
- Departments of Pharmacology and Neurology, Emory University, Atlanta, GA, USA
| | - Sabine Meunier
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR, S 1127, Paris, France.,Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Rachel Fremont
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, and The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | - Mark S LeDoux
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Traian Popa
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Cécile Gallea
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,Centre de NeuroImagerie de Recherche - CENIR, ICM, F-75013, Paris, France
| | - Stéphane Lehericy
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Andreea C Bostan
- Systems Neuroscience Institute and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter L Strick
- Systems Neuroscience Institute and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Jahanshahi M, Torkamani M. The cognitive features of idiopathic and DYT1 dystonia. Mov Disord 2017. [DOI: 10.1002/mds.27048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Marjan Jahanshahi
- Cognitive Motor Neuroscience Group; Sobell Department of Motor Neuroscience & Movement Disorders, University College London (UCL) Institute of Neurology, The National Hospital for Neurology & Neurosurgery; London UK
| | - Mariam Torkamani
- Cognitive Motor Neuroscience Group; Sobell Department of Motor Neuroscience & Movement Disorders, University College London (UCL) Institute of Neurology, The National Hospital for Neurology & Neurosurgery; London UK
| |
Collapse
|
28
|
Bologna M, Berardelli A. Cerebellum: An explanation for dystonia? CEREBELLUM & ATAXIAS 2017; 4:6. [PMID: 28515949 PMCID: PMC5429509 DOI: 10.1186/s40673-017-0064-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/28/2017] [Indexed: 11/29/2022]
Abstract
Dystonia is a movement disorder that is characterized by involuntary muscle contractions, abnormal movements and postures, as well as by non-motor symptoms, and is due to abnormalities in different brain areas. In this article, we focus on the growing number of experimental studies aimed at explaining the pathophysiological role of the cerebellum in dystonia. Lastly, we highlight gaps in current knowledge and issues that future research studies should focus on as well as some of the potential applications of this research avenue. Clarifying the pathophysiological role of cerebellum in dystonia is an important concern given the increasing availability of invasive and non-invasive stimulation techniques and their potential therapeutic role in this condition.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Neurology and Psychiatry and Neuromed Institute, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.,Neuromed Institute IRCCS, Pozzilli, IS Italy
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry and Neuromed Institute, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.,Neuromed Institute IRCCS, Pozzilli, IS Italy
| |
Collapse
|
29
|
Ismail FY, Fatemi A, Johnston MV. Cerebral plasticity: Windows of opportunity in the developing brain. Eur J Paediatr Neurol 2017; 21:23-48. [PMID: 27567276 DOI: 10.1016/j.ejpn.2016.07.007] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Neuroplasticity refers to the inherently dynamic biological capacity of the central nervous system (CNS) to undergo maturation, change structurally and functionally in response to experience and to adapt following injury. This malleability is achieved by modulating subsets of genetic, molecular and cellular mechanisms that influence the dynamics of synaptic connections and neural circuitry formation culminating in gain or loss of behavior or function. Neuroplasticity in the healthy developing brain exhibits a heterochronus cortex-specific developmental profile and is heightened during "critical and sensitive periods" of pre and postnatal brain development that enable the construction and consolidation of experience-dependent structural and functional brain connections. PURPOSE In this review, our primary goal is to highlight the essential role of neuroplasticity in brain development, and to draw attention to the complex relationship between different levels of the developing nervous system that are subjected to plasticity in health and disease. Another goal of this review is to explore the relationship between plasticity responses of the developing brain and how they are influenced by critical and sensitive periods of brain development. Finally, we aim to motivate researchers in the pediatric neuromodulation field to build on the current knowledge of normal and abnormal neuroplasticity, especially synaptic plasticity, and their dependence on "critical or sensitive periods" of neural development to inform the design, timing and sequencing of neuromodulatory interventions in order to enhance and optimize their translational applications in childhood disorders of the brain. METHODS literature review. RESULTS We discuss in details five patterns of neuroplasticity expressed by the developing brain: 1) developmental plasticity which is further classified into normal and impaired developmental plasticity as seen in syndromic autism spectrum disorders, 2) adaptive (experience-dependent) plasticity following intense motor skill training, 3) reactive plasticity to pre and post natal CNS injury or sensory deprivation, 4) excessive plasticity (loss of homeostatic regulation) as seen in dystonia and refractory epilepsy, 6) and finally, plasticity as the brain's "Achilles tendon" which induces brain vulnerability under certain conditions such as hypoxic ischemic encephalopathy and epileptic encephalopathy syndromes. We then explore the unique feature of "time-sensitive heightened plasticity responses" in the developing brain in the in the context of neuromodulation. CONCLUSION The different patterns of neuroplasticity and the unique feature of heightened plasticity during critical and sensitive periods are important concepts for researchers and clinicians in the field of pediatric neurology and neurodevelopmental disabilities. These concepts need to be examined systematically in the context of pediatric neuromodulation. We propose that critical and sensitive periods of brain development in health and disease can create "windows of opportunity" for neuromodulatory interventions that are not commonly seen in adult brain and probably augment plasticity responses and improve clinical outcomes.
Collapse
Affiliation(s)
- Fatima Yousif Ismail
- Department of neurology and developmental medicine, The Kennedy Krieger Institute, Johns Hopkins Medical Institutions, MD, USA; Department of pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al- Ain, UAE.
| | - Ali Fatemi
- Departments of Neurology and Pediatrics, The Kennedy Krieger Institute, and Johns Hopkins University School of Medicine, MD, USA
| | - Michael V Johnston
- Departments of Neurology and Pediatrics, The Kennedy Krieger Institute, and Johns Hopkins University School of Medicine, MD, USA
| |
Collapse
|
30
|
Brüggemann N, Heldmann M, Klein C, Domingo A, Rasche D, Tronnier V, Rosales RL, Jamora RDG, Lee LV, Münte TF. Neuroanatomical changes extend beyond striatal atrophy in X-linked dystonia parkinsonism. Parkinsonism Relat Disord 2016; 31:91-97. [DOI: 10.1016/j.parkreldis.2016.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/09/2016] [Accepted: 07/22/2016] [Indexed: 01/09/2023]
|
31
|
Milardi D, Arrigo A, Anastasi G, Cacciola A, Marino S, Mormina E, Calamuneri A, Bruschetta D, Cutroneo G, Trimarchi F, Quartarone A. Extensive Direct Subcortical Cerebellum-Basal Ganglia Connections in Human Brain as Revealed by Constrained Spherical Deconvolution Tractography. Front Neuroanat 2016; 10:29. [PMID: 27047348 PMCID: PMC4796021 DOI: 10.3389/fnana.2016.00029] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
The connections between the cerebellum and basal ganglia were assumed to occur at the level of neocortex. However evidences from animal data have challenged this old perspective showing extensive subcortical pathways linking the cerebellum with the basal ganglia. Here we tested the hypothesis if these connections also exist between the cerebellum and basal ganglia in the human brain by using diffusion magnetic resonance imaging and tractography. Fifteen healthy subjects were analyzed by using constrained spherical deconvolution technique obtained with a 3T magnetic resonance imaging scanner. We found extensive connections running between the subthalamic nucleus and cerebellar cortex and, as novel result, we demonstrated a direct route linking the dentate nucleus to the internal globus pallidus as well as to the substantia nigra. These findings may open a new scenario on the interpretation of basal ganglia disorders.
Collapse
Affiliation(s)
- Demetrio Milardi
- IRCCS Centro Neurolesi "Bonino Pulejo", MessinaItaly; Department of Biomedical Sciences and of Morphological and Functional Images, University of MessinaMessina, Italy
| | - Alessandro Arrigo
- Department of Biomedical Sciences and of Morphological and Functional Images, University of Messina Messina, Italy
| | - Giuseppe Anastasi
- Department of Biomedical Sciences and of Morphological and Functional Images, University of Messina Messina, Italy
| | - Alberto Cacciola
- Department of Biomedical Sciences and of Morphological and Functional Images, University of Messina Messina, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino Pulejo", MessinaItaly; Department of Biomedical Sciences and of Morphological and Functional Images, University of MessinaMessina, Italy
| | - Enricomaria Mormina
- Department of Biomedical Sciences and of Morphological and Functional Images, University of Messina Messina, Italy
| | - Alessandro Calamuneri
- Department of Biomedical Sciences and of Morphological and Functional Images, University of Messina Messina, Italy
| | - Daniele Bruschetta
- Department of Biomedical Sciences and of Morphological and Functional Images, University of Messina Messina, Italy
| | - Giuseppina Cutroneo
- Department of Biomedical Sciences and of Morphological and Functional Images, University of Messina Messina, Italy
| | - Fabio Trimarchi
- Department of Biomedical Sciences and of Morphological and Functional Images, University of Messina Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi "Bonino Pulejo", MessinaItaly; Department of Biomedical Sciences and of Morphological and Functional Images, University of MessinaMessina, Italy
| |
Collapse
|
32
|
Chu VW, Park SW, Sanger TD, Sternad D. Children With Dystonia Can Learn a Novel Motor Skill: Strategies That are Tolerant to High Variability. IEEE Trans Neural Syst Rehabil Eng 2016; 24:847-858. [PMID: 26829795 DOI: 10.1109/tnsre.2016.2521404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Children with dystonia are characterized by highly variable and seemingly uncontrolled movements. An important question for any rehabilitative effort is whether these children can learn and improve their performance. This study compared children with dystonia due to cerebral palsy, typically developing children, and healthy adults in their ability to acquire a novel sensorimotor skill. Using a virtual setup, subjects threw a virtual ball tethered to a post to hit a virtual target. Multiple combinations of release angle and velocity of the arm at ball release could achieve a target hit-the task was redundant and afforded solutions with different sensitivity to variability. Subjects performed 200 trials for two target locations that presented different types of redundancy. We hypothesized that children with dystonia develop strategies that are tolerant to their high variability. Estimating this variability highlighted the insufficiency of traditional outcome measures. Therefore, additional analyses of data distributions and of ball release timing were applied. Results showed that: 1) children with dystonia reduced their performance error despite their high variability; 2) this improvement was brought about by finding error-tolerant solutions; and 3) they generated arm trajectories that created time windows for ball release that were tolerant to timing variability. While reduced in magnitude, the performance improvements in children with dystonia paralleled those in healthy children and adults. These findings demonstrate that children with dystonia are able to adapt their behavior to their high variability, an important basis for any rehabilitative intervention.
Collapse
|
33
|
Sako W, Fujita K, Vo A, Rucker JC, Rizzo JR, Niethammer M, Carbon M, Bressman SB, Uluğ AM, Eidelberg D. The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia. Brain 2015; 138:3598-609. [PMID: 26419798 PMCID: PMC4840548 DOI: 10.1093/brain/awv282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 07/15/2015] [Accepted: 08/01/2015] [Indexed: 11/14/2022] Open
Abstract
Although primary dystonia is defined by its characteristic motor manifestations, non-motor signs and symptoms have increasingly been recognized in this disorder. Recent neuroimaging studies have related the motor features of primary dystonia to connectivity changes in cerebello-thalamo-cortical pathways. It is not known, however, whether the non-motor manifestations of the disorder are associated with similar circuit abnormalities. To explore this possibility, we used functional magnetic resonance imaging to study primary dystonia and healthy volunteer subjects while they performed a motion perception task in which elliptical target trajectories were visually tracked on a computer screen. Prior functional magnetic resonance imaging studies of healthy subjects performing this task have revealed selective activation of motor regions during the perception of 'natural' versus 'unnatural' motion (defined respectively as trajectories with kinematic properties that either comply with or violate the two-thirds power law of motion). Several regions with significant connectivity changes in primary dystonia were situated in proximity to normal motion perception pathways, suggesting that abnormalities of these circuits may also be present in this disorder. To determine whether activation responses to natural versus unnatural motion in primary dystonia differ from normal, we used functional magnetic resonance imaging to study 10 DYT1 dystonia and 10 healthy control subjects at rest and during the perception of 'natural' and 'unnatural' motion. Both groups exhibited significant activation changes across perceptual conditions in the cerebellum, pons, and subthalamic nucleus. The two groups differed, however, in their responses to 'natural' versus 'unnatural' motion in these regions. In healthy subjects, regional activation was greater during the perception of natural (versus unnatural) motion (P < 0.05). By contrast, in DYT1 dystonia subjects, activation was relatively greater during the perception of unnatural (versus natural) motion (P < 0.01). To explore the microstructural basis for these functional changes, the regions with significant interaction effects (i.e. those with group differences in activation across perceptual conditions) were used as seeds for tractographic analysis of diffusion tensor imaging scans acquired in the same subjects. Fibre pathways specifically connecting each of the significant functional magnetic resonance imaging clusters to the cerebellum were reconstructed. Of the various reconstructed pathways that were analysed, the ponto-cerebellar projection alone differed between groups, with reduced fibre integrity in dystonia (P < 0.001). In aggregate, the findings suggest that the normal pattern of brain activation in response to motion perception is disrupted in DYT1 dystonia. Thus, it is unlikely that the circuit changes that underlie this disorder are limited to primary sensorimotor pathways.
Collapse
Affiliation(s)
- Wataru Sako
- 1 Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Koji Fujita
- 1 Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - An Vo
- 1 Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Janet C Rucker
- 2 Department of Neurology, NYU Langone Medical Center, New York, NY 10016, USA
| | - John-Ross Rizzo
- 3 Department of Rehabilitation Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | - Martin Niethammer
- 1 Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Maren Carbon
- 1 Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Susan B Bressman
- 4 Mirken Department of Neurology, Beth Israel Medical Center, New York, NY 10003, USA
| | - Aziz M Uluğ
- 1 Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA 5 Department of Radiology, Albert Einstein College of Medicine, Bronx, NY 10461, USA 6 Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - David Eidelberg
- 1 Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| |
Collapse
|
34
|
Pappas SS, Darr K, Holley SM, Cepeda C, Mabrouk OS, Wong JMT, LeWitt TM, Paudel R, Houlden H, Kennedy RT, Levine MS, Dauer WT. Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons. eLife 2015; 4:e08352. [PMID: 26052670 PMCID: PMC4473728 DOI: 10.7554/elife.08352] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/07/2015] [Indexed: 12/12/2022] Open
Abstract
Striatal dysfunction plays an important role in dystonia, but the striatal cell types that contribute to abnormal movements are poorly defined. We demonstrate that conditional deletion of the DYT1 dystonia protein torsinA in embryonic progenitors of forebrain cholinergic and GABAergic neurons causes dystonic-like twisting movements that emerge during juvenile CNS maturation. The onset of these movements coincides with selective degeneration of dorsal striatal large cholinergic interneurons (LCI), and surviving LCI exhibit morphological, electrophysiological, and connectivity abnormalities. Consistent with the importance of this LCI pathology, murine dystonic-like movements are reduced significantly with an antimuscarinic agent used clinically, and we identify cholinergic abnormalities in postmortem striatal tissue from DYT1 dystonia patients. These findings demonstrate that dorsal LCI have a unique requirement for torsinA function during striatal maturation, and link abnormalities of these cells to dystonic-like movements in an overtly symptomatic animal model. DOI:http://dx.doi.org/10.7554/eLife.08352.001 Dystonia is disorder of the nervous system that causes people to suffer from abnormal and involuntary twisting movements. These movements are triggered, in part, by irregularities in a part of the brain called the striatum. The most common view among researchers is that dystonia is caused by abnormal activity in an otherwise structurally normal nervous system. But, recent findings indicate that the degeneration of small populations of nerve cells in the brain may be important. The striatum is made up of several different types of nerve cells, but it is poorly understood which of these are affected in dystonia. One type of dystonia, which most often occurs in children, is caused by a defect in a protein called torsinA. Pappas et al. have now discovered that deleting the gene for torsinA from particular populations of nerve cells in the brains of mice (including a population in the striatum) causes abnormal twisting movements. Like people with dystonia, these mice developed the abnormal movements as juveniles, and the movements were suppressed with ‘anti-cholinergic’ medications. Pappas et al. then analyzed brain tissue from these mice and revealed that the twisting movements began at the same time that a single type of cell in the striatum—called ‘cholinergic interneurons’—degenerated. Postmortem studies of brain tissue from dystonia patients also revealed abnormalities of these neurons. Together these findings challenge the notion that dystonia occurs in a structurally normal nervous system and reveal that cholinergic interneurons in the striatum specifically require torsinA to survive. Following on from this work, the next challenges are to identify what causes the selective loss of cholinergic interneurons, and to investigate how this cell loss affects the activity within the striatum. DOI:http://dx.doi.org/10.7554/eLife.08352.002
Collapse
Affiliation(s)
- Samuel S Pappas
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Katherine Darr
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Omar S Mabrouk
- Department of Pharmacology, University of Michigan, Ann Arbor, United States
| | - Jenny-Marie T Wong
- Department of Chemistry, University of Michigan, Ann Arbor, United States
| | - Tessa M LeWitt
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Reema Paudel
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, United States
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - William T Dauer
- Department of Neurology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
35
|
Normal motor adaptation in cervical dystonia: a fundamental cerebellar computation is intact. THE CEREBELLUM 2015; 13:558-67. [PMID: 24872202 PMCID: PMC4155166 DOI: 10.1007/s12311-014-0569-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The potential role of the cerebellum in the pathophysiology of dystonia has become a focus of recent research. However, direct evidence for a cerebellar contribution in humans with dystonia is difficult to obtain. We examined motor adaptation, a test of cerebellar function, in 20 subjects with primary cervical dystonia and an equal number of aged matched controls. Adaptation to both visuomotor (distorting visual feedback by 30°) and forcefield (applying a velocity-dependent force) conditions were tested. Our hypothesis was that cerebellar abnormalities observed in dystonia research would translate into deficits of cerebellar adaptation. We also examined the relationship between adaptation and dystonic head tremor as many primary tremor models implicate the cerebellothalamocortical network which is specifically tested by this motor paradigm. Rates of adaptation (learning) in cervical dystonia were identical to healthy controls in both visuomotor and forcefield tasks. Furthermore, the ability to adapt was not clearly related to clinical features of dystonic head tremor. We have shown that a key motor control function of the cerebellum is intact in the most common form of primary dystonia. These results have important implications for current anatomical models of the pathophysiology of dystonia. It is important to attempt to progress from general statements that implicate the cerebellum to a more specific evidence-based model. The role of the cerebellum in this enigmatic disease perhaps remains to be proven.
Collapse
|
36
|
Neumann WJ, Jha A, Bock A, Huebl J, Horn A, Schneider GH, Sander TH, Litvak V, Kühn AA. Cortico-pallidal oscillatory connectivity in patients with dystonia. Brain 2015; 138:1894-906. [PMID: 25935723 DOI: 10.1093/brain/awv109] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/26/2015] [Indexed: 12/12/2022] Open
Abstract
Primary dystonia has been associated with an underlying dysfunction of a wide network of brain regions including the motor cortex, basal ganglia, cerebellum, brainstem and spinal cord. Dystonia can be effectively treated by pallidal deep brain stimulation although the mechanism of this effect is not well understood. Here, we sought to characterize cortico-basal ganglia functional connectivity using a frequency-specific measure of connectivity-coherence. We recorded direct local field potentials from the human pallidum simultaneously with whole head magnetoencephalography to characterize functional connectivity in the cortico-pallidal oscillatory network in nine patients with idiopathic dystonia. Three-dimensional cortico-pallidal coherence images were compared to surrogate images of phase shuffled data across patients to reveal clusters of significant coherence (family-wise error P < 0.01, voxel extent 1000). Three frequency-specific, spatially-distinct cortico-pallidal networks have been identified: a pallido-temporal source of theta band (4-8 Hz) coherence, a pallido-cerebellar source of alpha band (7-13 Hz) coherence and a cortico-pallidal source of beta band (13-30 Hz) coherence over sensorimotor areas. Granger-based directionality analysis revealed directional coupling with the pallidal local field potentials leading in the theta and alpha band and the magnetoencephalographic cortical source leading in the beta band. The degree of pallido-cerebellar coupling showed an inverse correlation with dystonic symptom severity. Our data extend previous findings in patients with Parkinson's disease describing motor cortex-basal ganglia oscillatory connectivity in the beta band to patients with dystonia. Source coherence analysis revealed two additional frequency-specific networks involving the temporal cortex and the cerebellum. Pallido-cerebellar oscillatory connectivity and its association with dystonic symptoms provides further confirmation of cerebellar involvement in dystonia that has been recently reported using functional magnetic resonance imaging and fibre tracking.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany 2 The Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK
| | - Ashwani Jha
- 3 Sobell Department of Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Antje Bock
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany
| | - Julius Huebl
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany
| | - Andreas Horn
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany
| | - Gerd-Helge Schneider
- 4 Department of Neurosurgery, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany
| | - Tillmann H Sander
- 5 Physikalisch-Technische Bundesanstalt, Institut Berlin, Abbestr. 2-12, 10587 Berlin, Germany
| | - Vladimir Litvak
- 2 The Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK
| | - Andrea A Kühn
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany 6 Berlin School of Mind and Brain, Charité - University Medicine Berlin, Unter den Linden 6, 10099 Berlin,Germany Berlin, Germany 7 NeuroCure, Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
37
|
Gallea C, Balas M, Bertasi E, Valabregue R, García-Lorenzo D, Coynel D, Bonnet C, Grabli D, Pélégrini-Issac M, Doyon J, Benali H, Roze E, Vidailhet M, Lehericy S. Increased cortico-striatal connectivity during motor practice contributes to the consolidation of motor memory in writer's cramp patients. NEUROIMAGE-CLINICAL 2015; 8:180-92. [PMID: 26106542 PMCID: PMC4473821 DOI: 10.1016/j.nicl.2015.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 01/19/2023]
Abstract
Sensorimotor representations of movements are created in the sensorimotor network through repeated practice to support successful and effortless performance. Writer's cramp (WC) is a disorder acquired through extensive practice of finger movements, and it is likely associated with the abnormal acquisition of sensorimotor representations. We investigated (i) the activation and connectivity changes in the brain network supporting the acquisition of sensorimotor representations of finger sequences in patients with WC and (ii) the link between these changes and consolidation of motor performance 24 h after the initial practice. Twenty-two patients with WC and 22 age-matched healthy volunteers practiced a complex sequence with the right (pathological) hand during functional MRI recording. Speed and accuracy were measured immediately before and after practice (day 1) and 24 h after practice (day 2). The two groups reached equivalent motor performance on day 1 and day 2. During motor practice, patients with WC had (i) reduced hippocampal activation and hippocampal-striatal functional connectivity; and (ii) overactivation of premotor-striatal areas, whose connectivity correlated with motor performance after consolidation. These results suggest that patients with WC use alternative networks to reach equiperformance in the acquisition of new motor memories.
Collapse
Key Words
- BA, Brodmann area
- CD, consolidation dependent
- CV-RT, coefficient of variation for reaction time
- DT1, dual task 1
- DT2, dual task 2
- FA, fractional anisotropy
- FHD, focal hand dystonia
- Focal dystonia
- HV, healthy volunteers
- Hippocampus
- LD, longitudinal diffusivity
- MRI
- Motor cortex
- PD, practice dependent
- PMd, dorsal premotor cortex
- PMv, ventral premotor cortex
- PPI, psychophysiological interaction
- RD, radial diffusivity
- Striatum
- WC, writer's cramp
Collapse
Affiliation(s)
- C Gallea
- Université Pierre et Marie Curie (UPMC Univ Paris 6), Institut du Cerveau et de la Moelle épinière - ICM, UMR-S975, Inserm, U975, CNRS, UMR 7225, Paris, France ; Centre de Neuroimagerie de Recherche, CENIR, Institut du Cerveau et de la Moelle épinière - ICM, Paris, France
| | - M Balas
- Université Pierre et Marie Curie (UPMC Univ Paris 6), Institut du Cerveau et de la Moelle épinière - ICM, UMR-S975, Inserm, U975, CNRS, UMR 7225, Paris, France ; Centre de Neuroimagerie de Recherche, CENIR, Institut du Cerveau et de la Moelle épinière - ICM, Paris, France ; Laboratoire d'Imagerie NeuroFonctionnelle, Université Pierre et Marie Curie (UPMC Univ Paris 6), Inserm U678, Paris, France
| | - E Bertasi
- Université Pierre et Marie Curie (UPMC Univ Paris 6), Institut du Cerveau et de la Moelle épinière - ICM, UMR-S975, Inserm, U975, CNRS, UMR 7225, Paris, France ; Centre de Neuroimagerie de Recherche, CENIR, Institut du Cerveau et de la Moelle épinière - ICM, Paris, France
| | - R Valabregue
- Université Pierre et Marie Curie (UPMC Univ Paris 6), Institut du Cerveau et de la Moelle épinière - ICM, UMR-S975, Inserm, U975, CNRS, UMR 7225, Paris, France
| | - D García-Lorenzo
- Université Pierre et Marie Curie (UPMC Univ Paris 6), Institut du Cerveau et de la Moelle épinière - ICM, UMR-S975, Inserm, U975, CNRS, UMR 7225, Paris, France
| | - D Coynel
- Laboratoire d'Imagerie NeuroFonctionnelle, Université Pierre et Marie Curie (UPMC Univ Paris 6), Inserm U678, Paris, France
| | - C Bonnet
- Fédération de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France ; Centre d'Investigation Clinique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France ; Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - D Grabli
- Université Pierre et Marie Curie (UPMC Univ Paris 6), Institut du Cerveau et de la Moelle épinière - ICM, UMR-S975, Inserm, U975, CNRS, UMR 7225, Paris, France ; Fédération de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France ; Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - M Pélégrini-Issac
- Laboratoire d'Imagerie NeuroFonctionnelle, Université Pierre et Marie Curie (UPMC Univ Paris 6), Inserm U678, Paris, France
| | - J Doyon
- Unité de Neuroimagerie Fonctionnelle et Département de Psychologie, Université de Montréal, Québec, Canada
| | - H Benali
- Laboratoire d'Imagerie NeuroFonctionnelle, Université Pierre et Marie Curie (UPMC Univ Paris 6), Inserm U678, Paris, France
| | - E Roze
- Université Pierre et Marie Curie (UPMC Univ Paris 6), Institut du Cerveau et de la Moelle épinière - ICM, UMR-S975, Inserm, U975, CNRS, UMR 7225, Paris, France ; Fédération de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France ; Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - M Vidailhet
- Université Pierre et Marie Curie (UPMC Univ Paris 6), Institut du Cerveau et de la Moelle épinière - ICM, UMR-S975, Inserm, U975, CNRS, UMR 7225, Paris, France ; Fédération de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France ; Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - S Lehericy
- Université Pierre et Marie Curie (UPMC Univ Paris 6), Institut du Cerveau et de la Moelle épinière - ICM, UMR-S975, Inserm, U975, CNRS, UMR 7225, Paris, France ; Centre de Neuroimagerie de Recherche, CENIR, Institut du Cerveau et de la Moelle épinière - ICM, Paris, France ; Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
38
|
|
39
|
Yokoi F, Dang MT, Liu J, Gandre JR, Kwon K, Yuen R, Li Y. Decreased dopamine receptor 1 activity and impaired motor-skill transfer in Dyt1 ΔGAG heterozygous knock-in mice. Behav Brain Res 2014; 279:202-10. [PMID: 25451552 DOI: 10.1016/j.bbr.2014.11.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 11/21/2014] [Indexed: 01/08/2023]
Abstract
DYT1 dystonia is a movement disorder caused by a trinucleotide deletion (ΔGAG) in DYT1 (TOR1A), corresponding to a glutamic acid loss in the C-terminal region of torsinA. Functional alterations in the basal ganglia circuits have been reported in both DYT1 dystonia patients and rodent models. Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits and decreased striatal dopamine receptor 2 (D2R) binding activity, suggesting a malfunction of the indirect pathway. However, the role of the direct pathway in pathogenesis of dystonia is not yet clear. Here, we report that Dyt1 KI mice exhibit significantly decreased striatal dopamine receptor 1 (D1R) binding activity and D1R protein levels, suggesting the alteration of the direct pathway. The decreased D1R may be caused by translational or post-translational processes since Dyt1 KI mice had normal levels of striatal D1R mRNA and a normal number of striatal neurons expressing D1R. Levels of striatal ionotropic glutamate receptor subunits, dopamine transporter, acetylcholine muscarinic M4 receptor and adenosine A2A receptor were not altered suggesting a specificity of affected polytopic membrane-associated proteins. Contribution of the direct pathway to motor-skill learning has been suggested in another pharmacological rat model injected with a D1R antagonist. In the present study, we developed a novel motor skill transfer test for mice and found deficits in Dyt1 KI mice. Further characterization of both the direct and the indirect pathways in Dyt1 KI mice will aid the development of novel therapeutic drugs.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Mai T Dang
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jun Liu
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jason R Gandre
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Kelly Kwon
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Robert Yuen
- Department of Radiology, School of Medicine, Saint Louis University, Saint Louis, MO 63104, USA
| | - Yuqing Li
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA.
| |
Collapse
|
40
|
Dresel C, Li Y, Wilzeck V, Castrop F, Zimmer C, Haslinger B. Multiple changes of functional connectivity between sensorimotor areas in focal hand dystonia. J Neurol Neurosurg Psychiatry 2014; 85:1245-52. [PMID: 24706945 DOI: 10.1136/jnnp-2013-307127] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Task-specific focal hand dystonia impairs the control of arm muscles during fine motor skills such as writing (writer's cramp (WC)). Functional imaging found abnormal task-related activation of sensorimotor areas in this disorder, but little is known on their functional connectivity (FC). METHODS Resting-state fMRI and regions of interest (ROI)-voxel cross-correlation analyses were used for systematically analysing the FC between multiple ROIs within the cerebello-basal ganglia-thalamocortical network in 15 patients with right-sided WC and 15 healthy volunteers. RESULTS Patients with WC showed a lower positive FC of several seed ROIs (left lateral premotor cortex, left thalamus, left/right pallidum) to the symptomatic left primary sensorimotor cortex compared with controls. The FC of the left primary motor cortex to prefrontal areas, pre- supplementary motor area and right somatosensory cortex was reduced and correlated with disease severity. Several cerebellar seed ROIs (right dentate nucleus, right crus I and bilateral crus II) revealed a stronger negative FC to primary and secondary sensorimotor areas. CONCLUSIONS An increase of negative cerebello-cortical FC at rest is in line with the hypothesis of a pathogenetic role of the cerebellum in dystonia. The deficit of positive subcortico-cortical FC indicates more generalised changes within the basal ganglia-thalamocortical motor loops beyond primary sensorimotor areas in WC. As patients with WC are asymptomatic during rest, these functional network changes could reflect an underlying abnormality or compensatory neuroplastic changes of network architecture in this disorder.
Collapse
Affiliation(s)
- Christian Dresel
- Department of Neurology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| | - Yong Li
- Department of Neurology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| | - Verena Wilzeck
- Department of Neurology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| | - Florian Castrop
- Department of Neurology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| |
Collapse
|
41
|
Sadnicka A, Teo JT, Kojovic M, Pareés I, Saifee TA, Kassavetis P, Schwingenschuh P, Katschnig-Winter P, Stamelou M, Mencacci NE, Rothwell JC, Edwards MJ, Bhatia KP. All in the blink of an eye: new insight into cerebellar and brainstem function in DYT1 and DYT6 dystonia. Eur J Neurol 2014; 22:762-7. [PMID: 25039324 DOI: 10.1111/ene.12521] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/26/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE Traditionally dystonia has been considered a disorder of basal ganglia dysfunction. However, recent research has advocated a more complex neuroanatomical network. In particular, there is increasing interest in the pathophysiological role of the cerebellum. Patients with cervical and focal hand dystonia have impaired cerebellar associative learning using the paradigm eyeblink conditioning. This is perhaps the most direct evidence to date that the cerebellum is implicated in patients. METHODS Eleven patients with DYT1 dystonia and five patients with DYT6 dystonia were examined and rates of eyeblink conditioning were compared with age-matched controls. A marker of brainstem excitability, the blink reflex recovery, was also studied in the same groups. RESULTS Patients with DYT1 and DYT6 dystonia have a normal ability to acquire conditioned responses. Blink reflex recovery was enhanced in DYT1 but this effect was not seen in DYT6. CONCLUSIONS If the cerebellum is an important driver in DYT1 and DYT6 dystonia our data suggest that there is specific cerebellar dysfunction such that the circuits essential for conditioning function normally. Our data are contrary to observations in focal dystonia and suggest that the cerebellum may have a distinct role in different subsets of dystonia. Evidence of enhanced blink reflex recovery in all patients with dystonia was not found and recent studies calling for the blink recovery reflex to be used as a diagnostic test for dystonic tremor may require further corroboration.
Collapse
Affiliation(s)
- A Sadnicka
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Genetic animal models of dystonia: common features and diversities. Prog Neurobiol 2014; 121:91-113. [PMID: 25034123 DOI: 10.1016/j.pneurobio.2014.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 01/13/2023]
Abstract
Animal models are pivotal for studies of pathogenesis and treatment of disorders of the central nervous system which in its complexity cannot yet be modeled in vitro or using computer simulations. The choice of a specific model to test novel therapeutic strategies for a human disease should be based on validity of the model for the approach: does the model reflect symptoms, pathogenesis and treatment response present in human patients? In the movement disorder dystonia, prior to the availability of genetically engineered mice, spontaneous mutants were chosen based on expression of dystonic features, including abnormal muscle contraction, movements and postures. Recent discovery of a number of genes and gene products involved in dystonia initiated research on pathogenesis of the disorder, and the creation of novel models based on gene mutations. Here we present a review of current models of dystonia, with a focus on genetic rodent models, which will likely be first choice in the future either for pathophysiological or for preclinical drug testing or both. In order to help selection of a model depending on expression of a specific feature of dystonia, this review is organized by symptoms and current knowledge of pathogenesis of dystonia. We conclude that albeit there is increasing need for research on pathogenesis of the disease and development of improved models, current models do replicate features of dystonia and are useful tools to develop urgently demanded treatment for this debilitating disorder.
Collapse
|
43
|
Motor sequence learning and motor adaptation in primary cervical dystonia. J Clin Neurosci 2014; 21:934-8. [DOI: 10.1016/j.jocn.2013.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/13/2013] [Accepted: 08/24/2013] [Indexed: 11/17/2022]
|
44
|
Vo A, Sako W, Niethammer M, Carbon M, Bressman SB, Uluğ AM, Eidelberg D. Thalamocortical Connectivity Correlates with Phenotypic Variability in Dystonia. Cereb Cortex 2014; 25:3086-94. [PMID: 24860017 DOI: 10.1093/cercor/bhu104] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dystonia is a brain disorder characterized by abnormal involuntary movements without defining neuropathological changes. The disease is often inherited as an autosomal-dominant trait with incomplete penetrance. Individuals with dystonia, whether inherited or sporadic, exhibit striking phenotypic variability, with marked differences in the somatic distribution and severity of clinical manifestations. In the current study, we used magnetic resonance diffusion tensor imaging to identify microstructural changes associated with specific limb manifestations. Functional MRI was used to localize specific limb regions within the somatosensory cortex. Microstructural integrity was preserved when assessed in subrolandic white matter regions somatotopically related to the clinically involved limbs, but was reduced in regions linked to clinically uninvolved (asymptomatic) body areas. Clinical manifestations were greatest in subjects with relatively intact microstructure in somatotopically relevant white matter regions. Tractography revealed significant phenotype-related differences in the visualized thalamocortical tracts while corticostriatal and corticospinal pathways did not differ between groups. Cerebellothalamic microstructural abnormalities were also seen in the dystonia subjects, but these changes were associated with genotype, rather than with phenotypic variation. The findings suggest that the thalamocortical motor system is a major determinant of dystonia phenotype. This pathway may represent a novel therapeutic target for individuals with refractory limb dystonia.
Collapse
Affiliation(s)
- An Vo
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Wataru Sako
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Martin Niethammer
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Maren Carbon
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Susan B Bressman
- Mirken Department of Neurology, Beth Israel Medical Center, New York, NY 10003, USA
| | - Aziz M Uluğ
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA Department of Radiology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| |
Collapse
|
45
|
Delineating the cortico-striatal-cerebellar network in implicit motor sequence learning. Neuroimage 2014; 94:222-230. [PMID: 24632466 DOI: 10.1016/j.neuroimage.2014.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 11/20/2022] Open
Abstract
Theoretical models and experimental evidence suggest that cortico-striatal-cerebellar networks play a crucial role in mediating motor sequence learning. However, how these different regions interact in order to mediate learning is less clear. In the present fMRI study, we used dynamic causal modeling to investigate effective connectivity within the cortico-striatal-cerebellar network while subjects performed a serial reaction time task. Using Bayesian model selection and family wise inference, we show that the cortico-cerebellar loop had higher model evidence than the cortico-striatal loop during motor learning. We observed significant negative modulatory effects on the connections from M1 to cerebellum bilaterally during learning. The results suggest that M1 causes the observed decrease in activity in the cerebellum as learning progresses. The current study stresses the significant role that the cerebellum plays in motor learning as previously suggested by fMRI studies in healthy subjects as well as behavioral studies in patients with cerebellar dysfunction. These results provide important insight into the neural mechanisms underlying motor learning.
Collapse
|
46
|
Lehéricy S, Tijssen MAJ, Vidailhet M, Kaji R, Meunier S. The anatomical basis of dystonia: current view using neuroimaging. Mov Disord 2014; 28:944-57. [PMID: 23893451 DOI: 10.1002/mds.25527] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 04/06/2013] [Accepted: 05/02/2013] [Indexed: 12/15/2022] Open
Abstract
This review will consider the knowledge that neuroimaging studies have provided to the understanding of the anatomy of dystonia. Major advances have occurred in the use of neuroimaging for dystonia in the past 2 decades. At present, the most developed imaging approaches include whole-brain or region-specific studies of structural or diffusion changes, functional imaging using fMRI or positron emission tomography (PET), and metabolic imaging using fluorodeoxyglucose PET. These techniques have provided evidence that regions other than the basal ganglia are involved in dystonia. In particular, there is increasing evidence that primary dystonia can be viewed as a circuit disorder, involving the basal ganglia-thalamo-cortical and cerebello-thalamo-cortical pathways. This suggests that a better understanding of the dysfunction in each region in the network and their interactions are important topics to address. Current views of interpretation of imaging data as cause or consequence of dystonia, and the postmortem correlates of imaging data are presented. The application of imaging as a tool to monitor therapy and its use as an outcome measure will be discussed. © 2013 Movement Disorder Society.
Collapse
Affiliation(s)
- Stéphane Lehéricy
- Institut du Cerveau et de la Moelle (ICM) epiniere, Centre de NeuroImagerie de Recherche (CENIR), Paris, France.
| | | | | | | | | |
Collapse
|
47
|
Schulz R, Wessel MJ, Zimerman M, Timmermann JE, Gerloff C, Hummel FC. White Matter Integrity of Specific Dentato-Thalamo-Cortical Pathways is Associated with Learning Gains in Precise Movement Timing. Cereb Cortex 2014; 25:1707-14. [DOI: 10.1093/cercor/bht356] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Abstract
This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role--Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function.
Collapse
|
49
|
Piccinin CC, Santos MCA, Piovesana LG, Campos LS, Guimarães RP, Campos BM, Torres FR, França MC, Amato-Filho AC, Lopes-Cendes I, Cendes F, D'Abreu A. Infratentorial gray matter atrophy and excess in primary craniocervical dystonia. Parkinsonism Relat Disord 2013; 20:198-203. [PMID: 24262871 DOI: 10.1016/j.parkreldis.2013.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/08/2013] [Accepted: 10/25/2013] [Indexed: 01/05/2023]
Abstract
BACKGROUND Primary craniocervical dystonia (CCD) is generally attributed to functional abnormalities in the cortico-striato-pallido-thalamocortical loops, but cerebellar pathways have also been implicated in neuroimaging studies. Hence, our purpose was to perform a volumetric evaluation of the infratentorial structures in CCD. METHODS We compared 35 DYT1/DYT6 negative patients with CCD and 35 healthy controls. Cerebellar volume was evaluated using manual volumetry (DISPLAY software) and infratentorial volume by voxel based morphometry of gray matter (GM) segments derived from T1 weighted 3 T MRI using the SUIT tool (SPM8/Dartel). We used t-tests to compare infratentorial volumes between groups. RESULTS Cerebellar volume was (1.14 ± 0.17) × 10(2) cm(3) for controls and (1.13 ± 0.14) × 10(2) cm(3) for patients; p = 0.74. VBM demonstrated GM increase in the left I-IV cerebellar lobules and GM decrease in the left lobules VI and Crus I and in the right lobules VI, Crus I and VIIIb. In a secondary analysis, VBM demonstrated GM increase also in the brainstem, mostly in the pons. CONCLUSION While gray matter increase is observed in the anterior lobe of the cerebellum and in the brainstem, the atrophy is concentrated in the posterior lobe of the cerebellum, demonstrating a differential pattern of infratentorial involvement in CCD. This study shows subtle structural abnormalities of the cerebellum and brainstem in primary CCD.
Collapse
Affiliation(s)
- Camila C Piccinin
- Neuroimaging Laboratory, UNICAMP, University of Campinas, Campinas, Brazil.
| | - Maria C A Santos
- Neuroimaging Laboratory, UNICAMP, University of Campinas, Campinas, Brazil
| | - Luiza G Piovesana
- Department of Neurology, UNICAMP, University of Campinas, Campinas, Brazil
| | - Lidiane S Campos
- Department of Neurology, UNICAMP, University of Campinas, Campinas, Brazil
| | - Rachel P Guimarães
- Neuroimaging Laboratory, UNICAMP, University of Campinas, Campinas, Brazil
| | - Brunno M Campos
- Neuroimaging Laboratory, UNICAMP, University of Campinas, Campinas, Brazil
| | - Fabio R Torres
- Department of Medical Genetics, UNICAMP, University of Campinas, Campinas, Brazil
| | - Marcondes C França
- Neuroimaging Laboratory, UNICAMP, University of Campinas, Campinas, Brazil; Department of Neurology, UNICAMP, University of Campinas, Campinas, Brazil
| | | | - Iscia Lopes-Cendes
- Department of Medical Genetics, UNICAMP, University of Campinas, Campinas, Brazil
| | - Fernando Cendes
- Neuroimaging Laboratory, UNICAMP, University of Campinas, Campinas, Brazil; Department of Neurology, UNICAMP, University of Campinas, Campinas, Brazil
| | - Anelyssa D'Abreu
- Neuroimaging Laboratory, UNICAMP, University of Campinas, Campinas, Brazil; Department of Neurology, UNICAMP, University of Campinas, Campinas, Brazil
| |
Collapse
|
50
|
|