1
|
Villain N, Planche V, Lilamand M, Cordonnier C, Soto-Martin M, Mollion H, Bombois S, Delrieu J. Lecanemab for early Alzheimer's disease: Appropriate use recommendations from the French federation of memory clinics. J Prev Alzheimers Dis 2025; 12:100094. [PMID: 40011173 DOI: 10.1016/j.tjpad.2025.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
Lecanemab, a monoclonal antibody targeting β-amyloid protofibrils, has shown promising results in a Phase III clinical trial for the treatment of early stages of Alzheimer's disease (AD) and has been approved by the European Medicines Agency. An Early Market Authorization could be submitted to the French regulatory agencies, potentially allowing for the drug's use in clinical practice in France in 2025. To guide French clinicians in administering lecanemab in a standardized way, the French Federation of Memory Clinics has developed appropriate use recommendations for lecanemab that highlight relevant questions established to ensure an optimal risk-benefit ratio. The recommendations emphasize that lecanemab treatment requires a comprehensive individualized evaluation of the risk-benefit ratio, which should occur in multidisciplinary meetings. When approved, the guidelines support the use of blood biomarkers, proposing specific cutoffs for patients eligible for lecanemab under restricted conditions. In addition to the European Medicines Agency restrictions in patients on anticoagulants, and APOE4 homozygotes, the guidelines recommend against lecanemab treatment for patients with high amyloid-related hemorrhagic risk such as probable cerebral amyloid angiopathy (Boston criteria v1.5) until further data become available. Additionally, we recommend that MRI monitoring be started before the third infusion to account for early Amyloid Related Imaging Abnormalities (ARIA) occurring on lecanemab. It is recommended to establish a specific clinical care pathway with protocols for patients with ARIA, with trained physicians and radiologists with expertise in neurological emergency and intensive care. Finally, a discontinuation protocol based on dementia severity assessment after 18 months of lecanemab treatment is suggested. Access to lecanemab requires a personalized biological and genetic diagnosis of AD, which is currently not necessary in most cases. Therefore, the healthcare system must rapidly adjust to new diagnostic procedures and treatment delivery to ensure equal access for all individuals.
Collapse
Affiliation(s)
- Nicolas Villain
- Sorbonne Université, INSERM U1127, CNRS 7225, Institut du Cerveau - ICM, Paris, France; AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Department of Neurology, Institute of Memory and Alzheimer's Disease, Paris, France.
| | - Vincent Planche
- Univ. Bordeaux, CNRS, UMR 5293, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France; Centre Mémoire Ressources Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, F-33000 Bordeaux, France
| | - Matthieu Lilamand
- Université Paris Cité, INSERM UMR S-1144, Paris, France; AP-HP. Nord Université Paris Cité Department of Geriatrics and Cognitive Neurology Center, Lariboisière-Fernand Widal Hospital, Paris, France
| | - Charlotte Cordonnier
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Maria Soto-Martin
- Maintain Aging Research team, CERPOP, INSERM UMR 1295, Universite Paul Sabatier, Toulouse, France; Centre Mémoire Ressources Recherches de Toulouse, Pôle Gériatrie, Cité de la santé, Toulouse CHU, Toulouse, France
| | - Hélène Mollion
- Centre Mémoire Ressources Recherches de Lyon - Hôpital Neurologique - Hospices Civils de Lyon - F 69677 BRON cedex, France
| | - Stéphanie Bombois
- AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Department of Neurology, Institute of Memory and Alzheimer's Disease, Paris, France
| | - Julien Delrieu
- Maintain Aging Research team, CERPOP, INSERM UMR 1295, Universite Paul Sabatier, Toulouse, France; Centre Mémoire Ressources Recherches de Toulouse, Pôle Gériatrie, Cité de la santé, Toulouse CHU, Toulouse, France
| |
Collapse
|
2
|
Boon BDC, Frigerio I, de Gooijer D, Morrema THJ, Bol J, Galis-de Graaf Y, Heymans M, Murray ME, van der Lee SJ, Holstege H, van de Berg WDJ, Jonkman LE, Rozemuller AJM, Bouwman FH, Hoozemans JJM. Alzheimer's disease clinical variants show distinct neuroinflammatory profiles with neuropathology. Neuropathol Appl Neurobiol 2024; 50:e13009. [PMID: 39400356 DOI: 10.1111/nan.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
AIMS Although the neuroanatomical distribution of tau and amyloid-β is well studied in Alzheimer's disease (AD) (non)-amnestic clinical variants, that of neuroinflammation remains unexplored. We investigate the neuroanatomical distribution of activated myeloid cells, astrocytes, and complement alongside amyloid-β and phosphorylated tau in a clinically well-defined prospectively collected AD cohort. METHODS Clinical variants were diagnosed antemortem, and brain tissue was collected post-mortem. Typical AD (n = 10), behavioural/dysexecutive AD (n = 6), posterior cortical atrophy (PCA) AD (n = 3), and controls (n = 10) were neuropathologically assessed for AD neuropathology, concurrent pathology including Lewy body disease, limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and vascular pathology. For quantitative assessment, we analysed the corticolimbic distribution of phosphorylated tau, amyloid-β, CD68, MHC-II, C4b, and glial fibrillary acidic protein (GFAP) using digital pathology. RESULTS Phosphorylated tau was distinctly distributed in each variant. In all variants, amyloid-β was neocortical-dominant, with a notable increase in the middle frontal cortex of behavioural/dysexecutive AD. Typical AD and PCA AD had no concurrent Lewy body disease, whereas three out of six cases with behavioural/dysexecutive AD did. LATE-NC stage >0 was observed in three AD cases, two typical AD (stage 1/3), and one behavioural/dysexecutive AD (stage 2/3). Vascular pathology was present in each variant. In typical AD, CD68 and MHC-II were hippocampal-dominant. In behavioural/dysexecutive AD, C4b was elevated in the middle frontal and inferior parietal cortex. In PCA AD, MHC-II was increased in the fusiform gyrus, and GFAP in parietal cortices. Correlations between AD neuropathology and neuroinflammation were distinct within variants. CONCLUSIONS Our data suggests that different involvement of neuroinflammation may add to clinical heterogeneity in AD, which has implications for neuroinflammation-based biomarkers and future therapeutics.
Collapse
Affiliation(s)
- Baayla D C Boon
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Normal Aging Brain Collection Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| | - Irene Frigerio
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Normal Aging Brain Collection Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| | - Danae de Gooijer
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tjado H J Morrema
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - John Bol
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Normal Aging Brain Collection Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| | - Yvon Galis-de Graaf
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Normal Aging Brain Collection Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| | - Martijn Heymans
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Sven J van der Lee
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Henne Holstege
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Normal Aging Brain Collection Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Normal Aging Brain Collection Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| | - Femke H Bouwman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, program Neurodegeneration, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Sarazin M, Lagarde J, El Haddad I, de Souza LC, Bellier B, Potier MC, Bottlaender M, Dorothée G. The path to next-generation disease-modifying immunomodulatory combination therapies in Alzheimer's disease. NATURE AGING 2024; 4:761-770. [PMID: 38839924 DOI: 10.1038/s43587-024-00630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
The cautious optimism following recent anti-amyloid therapeutic trials for Alzheimer's disease (AD) provides a glimmer of hope after years of disappointment. Although these encouraging results represent discernible progress, they also highlight the need to enhance further the still modest clinical efficacy of current disease-modifying immunotherapies. Here, we highlight crucial milestones essential for advancing precision medicine in AD. These include reevaluating the choice of therapeutic targets by considering the key role of both central neuroinflammation and peripheral immunity in disease pathogenesis, refining patient stratification by further defining the inflammatory component within the forthcoming ATN(I) (amyloid, tau and neurodegeneration (and inflammation)) classification of AD biomarkers and defining more accurate clinical outcomes and prognostic biomarkers that better reflect disease heterogeneity. Next-generation immunotherapies will need to go beyond the current antibody-only approach by simultaneously targeting pathological proteins together with innate neuroinflammation and/or peripheral-central immune crosstalk. Such innovative immunomodulatory combination therapy approaches should be evaluated in appropriately redesigned clinical therapeutic trials, which must carefully integrate the neuroimmune component.
Collapse
Affiliation(s)
- Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France.
- Université Paris-Cité, Paris, France.
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, Orsay, France.
| | - Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France
- Université Paris-Cité, Paris, France
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, Orsay, France
| | - Inès El Haddad
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Leonardo Cruz de Souza
- Grupo de Pesquisa em Neurologia Cognitiva e do Comportamento, Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Programa de Pós-Graduação em Neurociências, UFMG, Belo Horizonte, Brazil
- Departamento de Clínica Médica, Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | - Bertrand Bellier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Marie-Claude Potier
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Michel Bottlaender
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, Orsay, France
- Université Paris-Saclay, UNIACT, Neurospin, Joliot Institute, CEA, Gif-sur-Yvette, France
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France.
| |
Collapse
|
4
|
Bejanin A, Villain N. Posterior cortical atrophy: new insights into treatments and biomarkers for Alzheimer's disease. Lancet Neurol 2024; 23:127-128. [PMID: 38267172 DOI: 10.1016/s1474-4422(23)00501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/26/2024]
Affiliation(s)
- Alexandre Bejanin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Nicolas Villain
- AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, Department of Neurology, Institute of Memory and Alzheimer's Disease, Paris, France; Sorbonne Université, INSERM U1127, CNRS 7225, Institut du Cerveau-ICM, Paris, France
| |
Collapse
|
5
|
Pelak VS, Tang‐Wai DF, Boeve BF, Bouwman FH, Graff‐Radford J, Rabinovici G, Holden SK, Townley RA, Day GS, Whitwell J, Ossenkoppele R, Boon BDC, Putcha D, Onyike CU, Snyder H, Crutch S, Yong KXX. Consensus recommendations for clinical assessment tools for the diagnosis of posterior cortical atrophy syndrome from the Atypical AD PIA of ISTAART. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12474. [PMID: 39329067 PMCID: PMC11425198 DOI: 10.1002/dad2.12474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Delay in diagnosis of posterior cortical atrophy (PCA) syndrome is common, and the lack of familiarity with assessment tools for identifying visual cortical dysfunction is a contributing factor. We propose recommendations for the approach to the evaluation of PCA clinical features during the office visit, the neuropsychological evaluation, and the research setting. A recommended screening battery for eye clinics is also proposed. METHODS Recommendations were developed using results from a web-based survey of members of Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART) Atypical Alzheimer's Disease Professional Interest Area (PIA), literature review, and consensus by the PCA assessment working party of the Atypical Alzheimer's Disease PIA. RESULTS Survey results revealed robust agreement for assessment tool preferences for PCA features, and many respondents indicated that they reserve assessment tools for use only when PCA is suspected. For some PCA features, curated tools were preferred over validated battery tools, particularly for the office visit. Consensus recommendations superseded survey preferences for two core cognitive features within the 2017 PCA diagnostic criteria. DISCUSSION These consensus recommendations provide an evaluation framework for PCA clinical features and can facilitate timely and accurate recognition and diagnosis of PCA. Broader use of these tools should be sought, and development and validation of novel PCA clinical outcome assessments are needed to improve our understanding of atypical AD and other dementias and support the inclusion of those with PCA in treatment trials.
Collapse
Affiliation(s)
- Victoria S. Pelak
- Departments of Neurology and OphthalmologyUniversity of Colorado School of Medicine, AuroraVictoriaColoradoUSA
| | - David F. Tang‐Wai
- Department of Medicine (Neurology)University of TorontoTorontoCanada
| | | | - Femke H. Bouwman
- Department of NeurologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | - Gil Rabinovici
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Samantha K. Holden
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Ryan A. Townley
- Department of NeurologyUniversity of Kansas School of MedicineKansas CityKansasUSA
| | - Gregory S. Day
- Department of NeurologyMayo Clinic JacksonvilleJacksonvilleFloridaUSA
| | - Jennifer Whitwell
- Department of RadiologyDivision of NeuroradiologyMayo ClinicRochesterMinnesotaUSA
| | - Rik Ossenkoppele
- Department of NeurologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Clinical Memory Research UnitLund UniversityLundSweden
| | - Baayla D. C. Boon
- Department of NeuroscienceMayo Clinic JacksonvilleJacksonvilleFloridaUSA
| | - Deepti Putcha
- Department of PsychiatryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Chiadi U. Onyike
- Department of PsychiatryJohns Hopkins MedicineBaltimoreMarylandUSA
| | - Heather Snyder
- Medical & Scientific RelationsAlzheimer's AssociationChicagoIllinoisUSA
| | - Sebastian Crutch
- UCL Queen Square Institute of NeurologyDementia Research CentreLondonUK
| | - Keir X. X. Yong
- UCL Queen Square Institute of NeurologyDementia Research CentreLondonUK
| |
Collapse
|
6
|
Abbate C. The Adult Neurogenesis Theory of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221279. [PMID: 37182879 DOI: 10.3233/jad-221279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alzheimer's disease starts in neural stem cells (NSCs) in the niches of adult neurogenesis. All primary factors responsible for pathological tau hyperphosphorylation are inherent to adult neurogenesis and migration. However, when amyloid pathology is present, it strongly amplifies tau pathogenesis. Indeed, the progressive accumulation of extracellular amyloid-β deposits in the brain triggers a state of chronic inflammation by microglia. Microglial activation has a significant pro-neurogenic effect that fosters the process of adult neurogenesis and supports neuronal migration. Unfortunately, this "reactive" pro-neurogenic activity ultimately perturbs homeostatic equilibrium in the niches of adult neurogenesis by amplifying tau pathogenesis in AD. This scenario involves NSCs in the subgranular zone of the hippocampal dentate gyrus in late-onset AD (LOAD) and NSCs in the ventricular-subventricular zone along the lateral ventricles in early-onset AD (EOAD), including familial AD (FAD). Neuroblasts carrying the initial seed of tau pathology travel throughout the brain via neuronal migration driven by complex signals and convey the disease from the niches of adult neurogenesis to near (LOAD) or distant (EOAD) brain regions. In these locations, or in close proximity, a focus of degeneration begins to develop. Then, tau pathology spreads from the initial foci to large neuronal networks along neural connections through neuron-to-neuron transmission.
Collapse
Affiliation(s)
- Carlo Abbate
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
7
|
Lagarde J, Olivieri P, Tonietto M, Rodrigo S, Gervais P, Caillé F, Moussion M, Bottlaender M, Sarazin M. Could tau-PET imaging contribute to a better understanding of the different patterns of clinical progression in Alzheimer's disease? A 2-year longitudinal study. Alzheimers Res Ther 2023; 15:91. [PMID: 37138309 PMCID: PMC10155356 DOI: 10.1186/s13195-023-01237-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Monitoring the progression of Tau pathology makes it possible to study the clinical diversity of Alzheimer's disease. In this 2-year longitudinal PET study, we aimed to determine the progression of [18F]-flortaucipir binding and of cortical atrophy, and their relationships with cognitive decline. METHODS Twenty-seven AD patients at the mild cognitive impairment/mild dementia stages and twelve amyloid-negative controls underwent a neuropsychological assessment, 3 T brain MRI, and [18F]-flortaucipir PET imaging (Tau1) and were monitored annually over 2 years with a second brain MRI and tau-PET imaging after 2 years (Tau2). We analyzed the progression of tau standardized uptake value ratio (SUVr) and grey matter atrophy both at the regional and voxelwise levels. We used mixed effects models to explore the relations between the progression of SUVr values, cortical atrophy, and cognitive decline. RESULTS We found an average longitudinal increase in tau SUVr values, except for the lateral temporoparietal cortex where the average SUVr values decreased. Individual analyses revealed distinct profiles of SUVr progression according to temporoparietal Tau1 uptake: high-Tau1 patients demonstrated an increase in SUVr values over time in the frontal lobe, but a decrease in the temporoparietal cortex and a rapid clinical decline, while low-Tau1 patients displayed an increase in SUVr values in all cortical regions and a slower clinical decline. Cognitive decline was strongly associated with the progression of regional cortical atrophy, but only weakly associated with SUVr progression. CONCLUSIONS Despite a relatively small sample size, our results suggest that tau-PET imaging could identify patients with a potentially "more aggressive" clinical course characterized by high temporoparietal Tau1 SUVr values and a rapid clinical progression. In these patients, the paradoxical decrease in temporoparietal SUVr values over time could be due to the rapid transition to ghost tangles, for which the affinity of the radiotracer is lower. They could particularly benefit from future therapeutic trials, the neuroimaging outcome measures of which deserve to be discussed.
Collapse
Affiliation(s)
- Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
- Université Paris-Cité, 75006, Paris, France.
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France.
| | - Pauline Olivieri
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, 75014, Paris, France
- Université Paris-Cité, 75006, Paris, France
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| | - Matteo Tonietto
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| | - Sébastian Rodrigo
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| | - Philippe Gervais
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| | - Fabien Caillé
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| | - Martin Moussion
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, 75014, Paris, France
- Centre d'Evaluation Troubles Psychiques Et Vieillissement, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, Bâtiment Magnan, , 1 Rue Cabanis, 75014, Paris, France
| | - Michel Bottlaender
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
- Université Paris-Saclay, UNIACT, Neurospin, Joliot Institute, CEA, 91140, Gif Sur Yvette, France
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, 75014, Paris, France
- Université Paris-Cité, 75006, Paris, France
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| |
Collapse
|
8
|
Delabar JM, Lagarde J, Fructuoso M, Mohammad A, Bottlaender M, Doran E, Lott I, Rivals I, Schmitt FA, Head E, Sarazin M, Potier MC. Increased plasma DYRK1A with aging may protect against neurodegenerative diseases. Transl Psychiatry 2023; 13:111. [PMID: 37015911 PMCID: PMC10073199 DOI: 10.1038/s41398-023-02419-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023] Open
Abstract
Early markers are needed for more effective prevention of Alzheimer's disease. We previously showed that individuals with Alzheimer's disease have decreased plasma DYRK1A levels compared to controls. We assessed DYRK1A in the plasma of cognitively healthy elderly volunteers, individuals with either Alzheimer's disease (AD), tauopathies or Down syndrome (DS), and in lymphoblastoids from individuals with DS. DYRK1A levels were inversely correlated with brain amyloid β burden in asymptomatic elderly individuals and AD patients. Low DYRK1A levels were also detected in patients with tauopathies. Individuals with DS had higher DYRK1A levels than controls, although levels were lower in individuals with DS and with dementia. These data suggest that plasma DYRK1A levels could be used for early detection of at risk individuals of AD and for early detection of AD. We hypothesize that lack of increase of DYRK1A at middle age (40-50 years) could be a warning before the cognitive decline, reflecting increased risk for AD.
Collapse
Affiliation(s)
- Jean M Delabar
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France.
| | - Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, Paris, 75013, France
- Paris-Saclay University, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, 91400, France
| | - Marta Fructuoso
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Ammara Mohammad
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Michel Bottlaender
- Paris-Saclay University, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, 91400, France
| | - Eric Doran
- School of Medicine, Department of Pediatrics, University of California, Irvine, CA, 92697, USA
| | - Ira Lott
- School of Medicine, Department of Pediatrics, University of California, Irvine, CA, 92697, USA
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, INSERM, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, PSL Research University, Paris, 75005, France
| | - Frederic A Schmitt
- Department of Neurology, University of Kentucky, Lexington, KY, 40506, USA
| | - Elizabeth Head
- Department of Neurology, University of Kentucky, Lexington, KY, 40506, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, 92697, USA
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, Paris, 75013, France
- Paris-Saclay University, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, 91400, France
| | - Marie-Claude Potier
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France.
| |
Collapse
|
9
|
Yong KXX, Graff-Radford J, Ahmed S, Chapleau M, Ossenkoppele R, Putcha D, Rabinovici GD, Suarez-Gonzalez A, Schott JM, Crutch S, Harding E. Diagnosis and Management of Posterior Cortical Atrophy. Curr Treat Options Neurol 2023; 25:23-43. [PMID: 36820004 PMCID: PMC9935654 DOI: 10.1007/s11940-022-00745-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/10/2023]
Abstract
Purpose of review The study aims to provide a summary of recent developments for diagnosing and managing posterior cortical atrophy (PCA). We present current efforts to improve PCA characterisation and recommendations regarding use of clinical, neuropsychological and biomarker methods in PCA diagnosis and management and highlight current knowledge gaps. Recent findings Recent multi-centre consensus recommendations provide PCA criteria with implications for different management strategies (e.g. targeting clinical features and/or disease). Studies emphasise the preponderance of primary or co-existing Alzheimer's disease (AD) pathology underpinning PCA. Evidence of approaches to manage PCA symptoms is largely derived from small studies. Summary PCA diagnosis is frequently delayed, and people are likely to receive misdiagnoses of ocular or psychological conditions. Current treatment of PCA is symptomatic - pharmacological and non-pharmacological - and the use of most treatment options is based on small studies or expert opinion. Recommendations for non-pharmacological approaches include interdisciplinary management tailored to the PCA clinical profile - visual-spatial - rather than memory-led, predominantly young onset - and psychosocial implications. Whilst emerging disease-modifying treatments have not been tested in PCA, an accurate and timely diagnosis of PCA and determining underlying pathology is of increasing importance in the advent of disease-modifying therapies for AD and other albeit rare causes of PCA.
Collapse
Affiliation(s)
- Keir X. X. Yong
- Dementia Research Centre, UCL Queen Square Institute of Neurology, Box 16, Queen Square, London, WC1N 3BG UK
| | | | - Samrah Ahmed
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, Berkshire UK
| | - Marianne Chapleau
- Memory and Aging Center, University of California San Francisco, San Francisco, CA USA
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Deepti Putcha
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Gil D. Rabinovici
- Department of Neurology, Radiology, and Biomedical Imaging, University of California San Francisco, San Francisco, CA USA
| | - Aida Suarez-Gonzalez
- Dementia Research Centre, UCL Queen Square Institute of Neurology, Box 16, Queen Square, London, WC1N 3BG UK
| | - Jonathan M. Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, Box 16, Queen Square, London, WC1N 3BG UK
| | - Sebastian Crutch
- Dementia Research Centre, UCL Queen Square Institute of Neurology, Box 16, Queen Square, London, WC1N 3BG UK
| | - Emma Harding
- Dementia Research Centre, UCL Queen Square Institute of Neurology, Box 16, Queen Square, London, WC1N 3BG UK
| |
Collapse
|
10
|
Haeger A, Boumezbeur F, Bottlaender M, Rabrait-Lerman C, Lagarde J, Mirzazade S, Krahe J, Hohenfeld C, Sarazin M, Schulz JB, Romanzetti S, Reetz K. 3T sodium MR imaging in Alzheimer's disease shows stage-dependent sodium increase influenced by age and local brain volume. NEUROIMAGE: CLINICAL 2022; 36:103274. [PMID: 36451374 PMCID: PMC9723320 DOI: 10.1016/j.nicl.2022.103274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Application of MRI in clinical routine mainly addresses structural alterations. However, pathological changes at a cellular level are expected to precede the occurrence of brain atrophy clusters and of clinical symptoms. In this context, 23Na-MRI examines sodium changes in the brain as a potential metabolic parameter. Recently, we have shown that 23Na-MRI at ultra-high-field (7 T) was able to detect increased tissue sodium concentration (TSC) in Alzheimer's disease (AD). In this work, we aimed at assessing AD-pathology with 23Na-MRI in a larger cohort and on a clinical 3T MR scanner. METHODS We used a multimodal MRI protocol on 52 prodromal to mild AD patients and 34 cognitively healthy control subjects on a clinical 3T MR scanner. We examined the TSC, brain volume, and cortical thickness in association with clinical parameters. We further compared TSC with intra-individual normalized TSC for the reduction of inter-individual TSC variability resulting from physiological as well as experimental conditions. Normalized TSC maps were created by normalizing each voxel to the mean TSC inside the brain stem. RESULTS We found increased normalized TSC in the AD cohort compared to elderly control subjects both on global as well as on a region-of-interest-based level. We further confirmed a significant association of local brain volume as well as age with TSC. TSC increase in the left temporal lobe was further associated with the cognitive state, evaluated via the Montreal cognitive assessment (MoCA) screening test. An increase of normalized TSC depending on disease stage reflected by the Clinical Dementia Rating (CDR) was found in our AD patients in temporal lobe regions. In comparison to classical brain volume and cortical thickness assessments, normalized TSC had a higher discriminative power between controls and prodromal AD patients in several regions of the temporal lobe. DISCUSSION We confirm the feasibility of 23Na-MRI at 3T and report an increase of TSC in AD in several regions of the brain, particularly in brain regions of the temporal lobe. Furthermore, to reduce inter-subject variability caused by physiological factors such as circadian rhythms and experimental conditions, we introduced normalized TSC maps. This showed a higher discriminative potential between different clinical groups in comparison to the classical TSC analysis. In conclusion, 23Na-MRI represents a potential translational imaging marker applicable e.g.for diagnostics and the assessment of intervention outcomes in AD even under clinically available field strengths such as 3T. Implication of 23Na-MRI in association with other metabolic imaging marker needs to be further elucidated.
Collapse
Affiliation(s)
- Alexa Haeger
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Fawzi Boumezbeur
- NeuroSpin, CEA, CNRS UMR9027, Paris-Saclay University, Gif-sur-Yvette, France
| | - Michel Bottlaender
- NeuroSpin, CEA, CNRS UMR9027, Paris-Saclay University, Gif-sur-Yvette, France,Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | | | - Julien Lagarde
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France,Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France,Université Paris-Cité, F-75006 Paris, France
| | - Shahram Mirzazade
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Janna Krahe
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Christian Hohenfeld
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Marie Sarazin
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France,Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France,Université Paris-Cité, F-75006 Paris, France
| | - Jörg B. Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany,Corresponding author at: Department of Neurology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
11
|
Therriault J, Pascoal TA, Savard M, Mathotaarachchi S, Benedet AL, Chamoun M, Tissot C, Lussier FZ, Rahmouni N, Stevenson J, Qureshi MNI, Kang MS, Thomas É, Vitali P, Soucy JP, Massarweh G, Saha-Chaudhuri P, Gauthier S, Rosa-Neto P. Intrinsic connectivity of the human brain provides scaffold for tau aggregation in clinical variants of Alzheimer's disease. Sci Transl Med 2022; 14:eabc8693. [PMID: 36001678 DOI: 10.1126/scitranslmed.abc8693] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) phenotypes might result from differences in selective vulnerability. Evidence from preclinical models suggests that tau pathology has cell-to-cell propagation properties. Therefore, here, we tested the cell-to-cell propagation framework in the amnestic, visuospatial, language, and behavioral/dysexecutive phenotypes of AD. We report that each AD phenotype is associated with a distinct network-specific pattern of tau aggregation, where tau aggregation is concentrated in brain network hubs. In all AD phenotypes, regional tau load could be predicted by connectivity patterns of the human brain. Furthermore, regions with greater connectivity displayed similar rates of longitudinal tau accumulation in an independent cohort. Connectivity-based tau deposition was not restricted to a specific vulnerable network but was rather a general property of brain organization, linking selective vulnerability and transneuronal spreading models of neurodegeneration. Together, this study indicates that intrinsic brain connectivity provides a framework for tau aggregation across diverse phenotypic manifestations of AD.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Mélissa Savard
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada
| | - Andréa L Benedet
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Muhammad Naveed Iqbal Qureshi
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Émilie Thomas
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Paolo Vitali
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Gassan Massarweh
- Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada.,Department of Radiochemistry, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada.,Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec H3A 1G1, Canada
| |
Collapse
|
12
|
GC-CNNnet: Diagnosis of Alzheimer’s Disease with PET Images Using Genetic and Convolutional Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7413081. [PMID: 35983158 PMCID: PMC9381254 DOI: 10.1155/2022/7413081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
There is a wide variety of effects of Alzheimer's disease (AD), a neurodegenerative disease that can lead to cognitive decline, deterioration of daily life, and behavioral and psychological changes. A polymorphism of the ApoE gene ε 4 is considered a genetic risk factor for Alzheimer's disease. The purpose of this paper is to demonstrate that single-nucleotide polymorphic markers (SNPs) have a causal relationship with quantitative PET imaging traits. Additionally, the classification of AD is based on the frequency of brain tissue variations in PET images using a combination of k-nearest-neighbor (KNN), support vector machine (SVM), linear discrimination analysis (LDA), and convolutional neural network (CNN) techniques. According to the results, the suggested SNPs appear to be associated with quantitative traits more strongly than the SNPs in the ApoE genes. Regarding the classification result, the highest accuracy is obtained by the CNN with 91.1%. These results indicate that the KNN and CNN methods are beneficial in diagnosing AD. Nevertheless, the LDA and SVM are demonstrated with a lower level of accuracy.
Collapse
|
13
|
Lagarde J, Olivieri P, Tonietto M, Tissot C, Rivals I, Gervais P, Caillé F, Moussion M, Bottlaender M, Sarazin M. Tau-PET imaging predicts cognitive decline and brain atrophy progression in early Alzheimer's disease. J Neurol Neurosurg Psychiatry 2022; 93:459-467. [PMID: 35228270 DOI: 10.1136/jnnp-2021-328623] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To explore whether regional tau binding measured at baseline is associated with the rapidity of Alzheimer's disease (AD) progression over 2 years, as assessed by the decline in specified cognitive domains, and the progression of regional brain atrophy, in comparison with amyloid-positron emission tomography (PET), MRI and cerebrospinal fluid (CSF) biomarkers. METHODS Thirty-six patients with AD (positive CSF biomarkers and amyloid-PET) and 15 controls underwent a complete neuropsychological assessment, 3T brain MRI, [11C]-PiB and [18F]-flortaucipir PET imaging, and were monitored annually over 2 years, with a second brain MRI after 2 years. We used mixed effects models to explore the relations between tau-PET, amyloid-PET, CSF biomarkers and MRI at baseline and cognitive decline and the progression of brain atrophy over 2 years in patients with AD. RESULTS Baseline tau-PET was strongly associated with the subsequent cognitive decline in regions that are usually associated with each cognitive domain. No significant relationship was observed between the cognitive decline and initial amyloid load, regional cortical atrophy or CSF biomarkers. Baseline tau tracer binding in the superior temporal gyrus was associated with subsequent atrophy in an inferomedial temporal volume of interest, as was the voxelwise tau tracer binding with subsequent cortical atrophy in the superior temporal, parietal and frontal association cortices. CONCLUSIONS These results suggest that tau tracer binding is predictive of cognitive decline in AD in domain-specific brain areas, which provides important insights into the interaction between tau burden and neurodegeneration, and is of the utmost importance to develop new prognostic markers that will help improve the design of therapeutic trials.
Collapse
Affiliation(s)
- Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France .,Université de Paris, Paris, France.,Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| | - Pauline Olivieri
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France.,Université de Paris, Paris, France.,Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| | - Matteo Tonietto
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| | - Cecile Tissot
- McGill University Research Centre for Studies in Aging, Montreal, Quebec, Canada
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, INSERM, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 10 rue Vauquelin, Paris, France
| | - Philippe Gervais
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| | - Fabien Caillé
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| | - Martin Moussion
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France.,Centre d'évaluation Troubles Psychiques et Vieillissement, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France
| | - Michel Bottlaender
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France.,Université Paris-Saclay, UNIACT, Neurospin, Joliot Institute, CEA, Gif sur Yvette, France
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France.,Université de Paris, Paris, France.,Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| |
Collapse
|
14
|
Imaging Clinical Subtypes and Associated Brain Networks in Alzheimer’s Disease. Brain Sci 2022; 12:brainsci12020146. [PMID: 35203910 PMCID: PMC8869882 DOI: 10.3390/brainsci12020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) does not present uniform symptoms or a uniform rate of progression in all cases. The classification of subtypes can be based on clinical symptoms or patterns of pathological brain alterations. Imaging techniques may allow for the identification of AD subtypes and their differentiation from other neurodegenerative diseases already at an early stage. In this review, the strengths and weaknesses of current clinical imaging methods are described. These include positron emission tomography (PET) to image cerebral glucose metabolism and pathological amyloid or tau deposits. Magnetic resonance imaging (MRI) is more widely available than PET. It provides information on structural or functional changes in brain networks and their relation to AD subtypes. Amyloid PET provides a very early marker of AD but does not distinguish between AD subtypes. Regional patterns of pathology related to AD subtypes are observed with tau and glucose PET, and eventually as atrophy patterns on MRI. Structural and functional network changes occur early in AD but have not yet provided diagnostic specificity.
Collapse
|
15
|
Haeger A, Bottlaender M, Lagarde J, Porciuncula Baptista R, Rabrait-Lerman C, Luecken V, Schulz JB, Vignaud A, Sarazin M, Reetz K, Romanzetti S, Boumezbeur F. What can 7T sodium MRI tell us about cellular energy depletion and neurotransmission in Alzheimer's disease? Alzheimers Dement 2021; 17:1843-1854. [PMID: 34855281 DOI: 10.1002/alz.12501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
The pathophysiological processes underlying the development and progression of Alzheimer's disease (AD) on the neuronal level are still unclear. Previous research has hinted at metabolic energy deficits and altered sodium homeostasis with impaired neuronal function as a potential metabolic marker relevant for neurotransmission in AD. Using sodium (23 Na) magnetic resonance (MR) imaging on an ultra-high-field 7 Tesla MR scanner, we found increased cerebral tissue sodium concentration (TSC) in 17 biomarker-defined AD patients compared to 22 age-matched control subjects in vivo. TSC was highly discriminative between controls and early AD stages and was predictive for cognitive state, and associated with regional tau load assessed with flortaucipir-positron emission tomography as a possible mediator of TSC-associated neurodegeneration. TSC could therefore serve as a non-invasive, stage-dependent, metabolic imaging marker. Setting a focus on cellular metabolism and potentially disturbed interneuronal communication due to energy-dependent altered cell homeostasis could hamper progressive cognitive decline by targeting these processes in future interventions.
Collapse
Affiliation(s)
- Alexa Haeger
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France.,Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Michel Bottlaender
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France.,Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Julien Lagarde
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France.,Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Sainte-Anne Hospital, Paris, France.,Université de Paris, Paris, France
| | | | | | - Volker Luecken
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Alexandre Vignaud
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Marie Sarazin
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France.,Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Sainte-Anne Hospital, Paris, France.,Université de Paris, Paris, France
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Fawzi Boumezbeur
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Distinct amyloid and tau PET signatures are associated with diverging clinical and imaging trajectories in patients with amnestic syndrome of the hippocampal type. Transl Psychiatry 2021; 11:498. [PMID: 34588422 PMCID: PMC8481505 DOI: 10.1038/s41398-021-01628-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/04/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022] Open
Abstract
We aimed to investigate the amyloid and tau PET imaging signatures of patients with amnestic syndrome of the hippocampal type (ASHT) and study their clinical and imaging progression according to their initial PET imaging status. Thirty-six patients with a progressive ASHT and 30 controls underwent a complete neuropsychological assessment, 3 T brain MRI, [11C]-PiB and [18F]-Flortaucipir PET imaging. Subjects were clinically followed-up annually over 2 years, with a second 3 T MRI (n = 27 ASHT patients, n = 28 controls) and tau-PET (n = 20 ASHT patients) at the last visit. At baseline, in accordance with the recent biological definition of Alzheimer's disease (AD), the AD PET signature was defined as the combination of (i) positive cortical amyloid load, and (ii) increased tau tracer binding in the entorhinal cortices and at least one of the following regions: amygdala, parahippocampal gyri, fusiform gyri. Patients who did not meet these criteria were considered to have a non-AD pathology (SNAP). Twenty-one patients were classified as AD and 15 as SNAP. We found a circumscribed tau tracer retention in the entorhinal cortices and/or amygdala in 5 amyloid-negative SNAP patients. At baseline, the SNAP patients were older and had lower ApoE ε4 allele frequency than the AD patients, but both groups did not differ regarding the neuropsychological testing and medial temporal lobe atrophy. During the 2-year follow-up, the episodic memory and language decline, as well as the temporo-parietal atrophy progression, were more pronounced in the AD sub-group, while the SNAP patients had a more pronounced progression of atrophy in the frontal lobes. Longitudinal tau tracer binding increased in AD patients but remained stable in SNAP patients. At baseline, distinct amyloid and tau PET signatures differentiated early AD and SNAP patients despite identical cognitive profiles characterized by an isolated ASHT and a similar degree of medial temporal atrophy. During the longitudinal follow-up, AD and SNAP patients diverged regarding clinical and imaging progression. Among SNAP patients, tau PET imaging could detect a tauopathy restricted to the medial temporal lobes, which was possibly explained by primary age-related tauopathy.
Collapse
|
17
|
Lagarde J, Olivieri P, Bottlaender M, Sarazin M. Diagnosi clinicolaboratoristica della malattia di Alzheimer. Neurologia 2021. [DOI: 10.1016/s1634-7072(21)45320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Shea YF, Pan Y, Mak HKF, Bao Y, Lee SC, Chiu PKC, Chan HWF. A systematic review of atypical Alzheimer's disease including behavioural and psychological symptoms. Psychogeriatrics 2021; 21:396-406. [PMID: 33594793 DOI: 10.1111/psyg.12665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is the commonest cause of dementia, characterized by the clinical presentation of progressive anterograde episodic memory impairment. However, atypical presentation of patients is increasingly recognized. These atypical AD include logopenic aphasia, behavioural variant AD, posterior cortical atrophy, and corticobasal syndrome. These atypical AD are more common in patients with young onset AD before the age of 65 years old. Since medical needs (including the behavioural and psychological symptoms of dementia) of atypical AD patients could be different from typical AD patients, it is important for clinicians to be aware of these atypical forms of AD. In addition, disease modifying treatment may be available in the future. This review aims at providing an update on various important subtypes of atypical AD including behavioural and psychological symptoms.
Collapse
Affiliation(s)
- Yat-Fung Shea
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Yining Pan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Henry Ka-Fung Mak
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yiwen Bao
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Shui-Ching Lee
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Patrick Ka-Chun Chiu
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Hon-Wai Felix Chan
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| |
Collapse
|
19
|
Olivieri P, Lebouvier T, Hardouin JB, Courtemanche H, Le Dily S, Barbin L, Pallardy A, Derkinderen P, Boutoleau-Bretonnière C. LeSCoD: a new clinical scale for the detection of Lewy body disease in neurocognitive disorders. J Neurol 2021; 268:3886-3896. [PMID: 33830336 DOI: 10.1007/s00415-021-10539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Dementia with Lewy bodies remains underdiagnosed in clinical practice mainly because of the low sensitivity of existing diagnostic criteria and a strong overlap with Alzheimer's pathology that can mask the Lewy phenotype. OBJECTIVE The objective of this study was therefore to develop and validate a new clinical scale designed to detect signs of Lewy body disease, called LeSCoD for Lewy body Screening scale in Cognitive Disorders. METHODS 128 patients who fulfilled the clinical criteria of dementia with Lewy bodies (DLB; n = 32), Alzheimer's disease (AD; n = 77) or both (n = 19) was prospectively enrolled. 18F-DOPA PET imaging and/or CSF biomarkers were available in some patients. LeSCoD scale was systematically administered and the potential correlation with 18F-DOPA PET imaging was evaluated in a subgroup of patients. RESULTS LeSCoD scale showed robust internal and external validity. We determined a cut-off of 10 above which the sensitivity and specificity for Lewy body disease diagnosis were 86% and 95%, respectively. The LeSCoD scale correlated with striatal dopamine uptake in 18F-DOPA PET. CONCLUSION LeSCoD scale is a simple and reliable tool for the evaluation of Lewy body disease in routine clinical practice, with a higher sensitivity and specificity than the existing criteria. It might be an alternative to the use of dopamine-specific imaging.
Collapse
Affiliation(s)
- Pauline Olivieri
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.,Université de Paris, 75006, Paris, France
| | - Thibaud Lebouvier
- University of Lille, Inserm U1172, CHU Lille, DISTALZ, Lille, France
| | - Jean-Benoît Hardouin
- UMR INSERM 1246-SPHERE "Methods in Patient-Centered Outcomes and Health Research", Université de Nantes, Université de Tours, Tours, France.,Unit of Methodology and Biostatistics, Université de Nantes, Nantes, France
| | - Hélène Courtemanche
- Centre Mémoire Ressource et Recherche (CMRR), Department of Neurology, CHU Nantes, 44093, Nantes, France.,INSERM CIC 04, Nantes, France
| | | | | | | | | | - Claire Boutoleau-Bretonnière
- Centre Mémoire Ressource et Recherche (CMRR), Department of Neurology, CHU Nantes, 44093, Nantes, France. .,INSERM CIC 04, Nantes, France. .,Claire Boutoleau-Bretonnière, Centre Mémoire Ressource et Recherche (CMRR), Centre Hospitalier Universitaire de Nantes Hôpital Laennec, Boulevard Jacques Monod, 44000, Nantes, France.
| |
Collapse
|
20
|
Drzezga A, Bischof GN, Giehl K, van Eimeren T. PET and SPECT Imaging of Neurodegenerative Diseases. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
21
|
Therriault J, Pascoal TA, Savard M, Benedet AL, Chamoun M, Tissot C, Lussier F, Kang MS, Thomas E, Terada T, Rej S, Massarweh G, Nasreddine Z, Vitali P, Soucy JP, Saha-Chaudhuri P, Gauthier S, Rosa-Neto P. Topographic Distribution of Amyloid-β, Tau, and Atrophy in Patients With Behavioral/Dysexecutive Alzheimer Disease. Neurology 2020; 96:e81-e92. [PMID: 33093220 PMCID: PMC7884976 DOI: 10.1212/wnl.0000000000011081] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/12/2020] [Indexed: 11/24/2022] Open
Abstract
Objective To determine the associations between amyloid-PET, tau-PET, and atrophy with the behavioral/dysexecutive presentation of Alzheimer disease (AD), how these differ from amnestic AD, and how they correlate to clinical symptoms. Methods We assessed 15 patients with behavioral/dysexecutive AD recruited from a tertiary care memory clinic, all of whom had biologically defined AD. They were compared with 25 patients with disease severity– and age-matched amnestic AD and a group of 131 cognitively unimpaired (CU) elderly individuals. All participants were evaluated with amyloid-PET with [18F]AZD4694, tau-PET with [18F]MK6240, MRI, and neuropsychological testing. Results Voxelwise contrasts identified patterns of frontal cortical tau aggregation in behavioral/dysexecutive AD, with peaks in medial prefrontal, anterior cingulate, and frontal insular cortices in contrast to amnestic AD. No differences were observed in the distribution of amyloid-PET or atrophy as determined by voxel-based morphometry. Voxelwise area under the receiver operating characteristic curve analyses revealed that tau-PET uptake in the medial prefrontal, anterior cingulate, and frontal insular cortices were best able to differentiate between behavioral/dysexecutive and amnestic AD (area under the curve 0.87). Voxelwise regressions demonstrated relationships between frontal cortical tau load and degree of executive dysfunction. Conclusions Our results provide evidence of frontal cortical involvement of tau pathology in behavioral/dysexecutive AD and highlight the need for consensus clinical criteria in this syndrome.
Collapse
Affiliation(s)
- Joseph Therriault
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada
| | - Tharick A Pascoal
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada
| | - Melissa Savard
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada
| | - Andrea L Benedet
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada
| | - Mira Chamoun
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada
| | - Cecile Tissot
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada
| | - Firoza Lussier
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada
| | - Min Su Kang
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada
| | - Emilie Thomas
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada
| | - Tatsuhiro Terada
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada
| | - Soham Rej
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada
| | - Gassan Massarweh
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada
| | - Ziad Nasreddine
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada
| | - Paolo Vitali
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada
| | - Jean-Paul Soucy
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada
| | - Paramita Saha-Chaudhuri
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada
| | - Serge Gauthier
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada
| | - Pedro Rosa-Neto
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., M.S., A.L.B., M.C., C.T., F.L., M.S.K., E.T., T.T., P.V., S.G., P.R.-N.), and Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., E.T., P.V., J.-P.S., S.G., P.R.-N.), Psychiatry (S.R., S.G.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University; Montreal Neurological Institute (J.T., T.A.P., A.L.B., M.C., C.T., F.L., M.S.K., G.M., J.-P.S., P.R.-N.), Canada; Department of Biofunctional Imaging (T.T.), Hamamatsu University School of Medicine, Japan; and MoCA Clinic and Institute (Z.N.), Montreal, Canada.
| |
Collapse
|
22
|
Mathies F, Lange C, Mäurer A, Apostolova I, Klutmann S, Buchert R. Brain FDG PET for the Etiological Diagnosis of Clinically Uncertain Cognitive Impairment During Delirium in Remission. J Alzheimers Dis 2020; 77:1609-1622. [PMID: 32925050 DOI: 10.3233/jad-200530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Positron emission tomography (PET) of the brain with 2-[F-18]-fluoro-2-deoxy-D-glucose (FDG) is widely used for the etiological diagnosis of clinically uncertain cognitive impairment (CUCI). Acute full-blown delirium can cause reversible alterations of FDG uptake that mimic neurodegenerative disease. OBJECTIVE This study tested whether delirium in remission affects the performance of FDG PET for differentiation between neurodegenerative and non-neurodegenerative etiology of CUCI. METHODS The study included 88 patients (82.0±5.7 y) with newly detected CUCI during hospitalization in a geriatric unit. Twenty-seven (31%) of the patients were diagnosed with delirium during their current hospital stay, which, however, at time of enrollment was in remission so that delirium was not considered the primary cause of the CUCI. Cases were categorized as neurodegenerative or non-neurodegenerative etiology based on visual inspection of FDG PET. The diagnosis at clinical follow-up after ≥12 months served as ground truth to evaluate the diagnostic performance of FDG PET. RESULTS FDG PET was categorized as neurodegenerative in 51 (58%) of the patients. Follow-up after 16±3 months was obtained in 68 (77%) of the patients. The clinical follow-up diagnosis confirmed the FDG PET-based categorization in 60 patients (88%, 4 false negative and 4 false positive cases with respect to detection of neurodegeneration). The fraction of correct PET-based categorization did not differ between patients with delirium in remission and patients without delirium (86% versus 89%, p = 0.666). CONCLUSION Brain FDG PET is useful for the etiological diagnosis of CUCI in hospitalized geriatric patients, as well as in patients with delirium in remission.
Collapse
Affiliation(s)
- Franziska Mathies
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catharina Lange
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anja Mäurer
- Evangelisches Geriatriezentrum Berlin, Berlin, Germany
| | - Ivayla Apostolova
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Klutmann
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Kas A, Migliaccio R, Tavitian B. A future for PET imaging in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2020; 47:231-234. [PMID: 31858177 DOI: 10.1007/s00259-019-04640-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aurélie Kas
- Nuclear Medicine Department Pitié-Salpêtrière Hospital, APHP Sorbonne-Université, Paris, France.,Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France
| | - Raffaella Migliaccio
- Neurology Departement, Pitié-Salpêtrière Hospital, Institut de la mémoire et de la maladie d'Alzheimer, IM2A, Reference Centre for Rare Dementias and Early Onset Alzheimer's Disease, Paris, France.,Institut du cerveau et de la moelle épinière, Frontlab ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Pitié-Salpêtrière Hospital, Paris, France
| | - Bertrand Tavitian
- Université de Paris, PARCC, INSERM, In vivo Imaging Research, 75015, Paris, France. .,Radiology Department, APHP Centre, Hôpital Européen Georges Pompidou, 75015, Paris, France.
| |
Collapse
|
24
|
Haeger A, Mangin JF, Vignaud A, Poupon C, Grigis A, Boumezbeur F, Frouin V, Deverre JR, Sarazin M, Hertz-Pannier L, Bottlaender M. Imaging the aging brain: study design and baseline findings of the SENIOR cohort. ALZHEIMERS RESEARCH & THERAPY 2020; 12:77. [PMID: 32591008 PMCID: PMC7320588 DOI: 10.1186/s13195-020-00642-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/11/2020] [Indexed: 11/13/2022]
Abstract
Background Current demographic trends point towards an aging society entailing increasing occurrence and burden of neurodegenerative diseases. In this context, understanding physiological aging and its turning point into neurodegeneration is essential for the development of possible biomarkers and future therapeutics of brain disease. Methods The SENIOR study represents a longitudinal, observational study including cognitively healthy elderlies aged between 50 and 70 years old at the time of inclusion, being followed annually over 10 years. Our multimodal protocol includes structural, diffusion, functional, and sodium magnetic resonance imaging (MRI) at 3 T and 7 T, positron emission tomography (PET), blood samples, genetics, audiometry, and neuropsychological and neurological examinations as well as assessment of neuronal risk factors. Results One hundred forty-two participants (50% females) were enrolled in the SENIOR cohort with a mean age of 60 (SD 6.3) years at baseline. Baseline results with multiple regression analyses reveal that cerebral white matter lesions can be predicted by cardiovascular and cognitive risk factors and age. Cardiovascular risk factors were strongly associated with juxtacortical and periventricular lesions. Intra-subject across-test variability as a measure of neuropsychological test performance and possible cognitive marker predicts white matter volume and is significantly associated with risk profile. Division of the cohort into subjects with a higher and lower risk profile shows significant differences in intra-subject across-test variability and volumes as well as cortical thickness of brain regions of the temporal lobe. There is no difference between the lower- and higher-risk groups in amyloid load using PET data from a subset of 81 subjects. Conclusions We here describe the study protocol and baseline findings of the SENIOR observational study which aim is the establishment of integrated, multiparametric maps of normal aging and the identification of early biomarkers for neurodegeneration. We show that intra-subject across-test variability as a marker of neuropsychological test performance as well as age, gender, and combined risk factors influence neuronal decline as represented by decrease in brain volume, cortical thickness, and increase in white matter lesions. Baseline findings will be used as underlying basis for the further implications of aging and neuronal degeneration as well as examination of brain aging under different aspects of brain pathology versus physiological aging.
Collapse
Affiliation(s)
- Alexa Haeger
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France.,Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Jean-François Mangin
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Alexandre Vignaud
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Cyril Poupon
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Antoine Grigis
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fawzi Boumezbeur
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Vincent Frouin
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Jean-Robert Deverre
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Marie Sarazin
- Unit of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Paris University, Paris, France.,Paris-Saclay University, CEA, CNRS, INSERM, BioMaps, Service Hospitalier Frédéric Joliot, F-91400, Orsay, France
| | - Lucie Hertz-Pannier
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Michel Bottlaender
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France. .,Paris-Saclay University, CEA, CNRS, INSERM, BioMaps, Service Hospitalier Frédéric Joliot, F-91400, Orsay, France.
| | | |
Collapse
|
25
|
Lagarde J, Olivieri P, Caillé F, Gervais P, Baron JC, Bottlaender M, Sarazin M. [18F]-AV-1451 tau PET imaging in Alzheimer’s disease and suspected non-AD tauopathies using a late acquisition time window. J Neurol 2019; 266:3087-3097. [DOI: 10.1007/s00415-019-09530-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/12/2023]
|
26
|
Abstract
Technologies for imaging the pathophysiology of Alzheimer disease (AD) now permit studies of the relationships between the two major proteins deposited in this disease - amyloid-β (Aβ) and tau - and their effects on measures of neurodegeneration and cognition in humans. Deposition of Aβ in the medial parietal cortex appears to be the first stage in the development of AD, although tau aggregates in the medial temporal lobe (MTL) precede Aβ deposition in cognitively healthy older people. Whether aggregation of tau in the MTL is the first stage in AD or a fairly benign phenomenon that may be transformed and spread in the presence of Aβ is a major unresolved question. Despite a strong link between Aβ and tau, the relationship between Aβ and neurodegeneration is weak; rather, it is tau that is associated with brain atrophy and hypometabolism, which, in turn, are related to cognition. Although there is support for an interaction between Aβ and tau resulting in neurodegeneration that leads to dementia, the unknown nature of this interaction, the strikingly different patterns of brain Aβ and tau deposition and the appearance of neurodegeneration in the absence of Aβ and tau are challenges to this model that ultimately must be explained.
Collapse
|
27
|
Bertoux M, Lagarde J, Corlier F, Hamelin L, Mangin JF, Colliot O, Chupin M, Braskie MN, Thompson PM, Bottlaender M, Sarazin M. Sulcal morphology in Alzheimer's disease: an effective marker of diagnosis and cognition. Neurobiol Aging 2019; 84:41-49. [PMID: 31491594 DOI: 10.1016/j.neurobiolaging.2019.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
Measuring the morphology of brain sulci has been recently proposed as a novel imaging approach in Alzheimer's disease (AD). We aimed to investigate the relevance of such an approach in AD, by exploring its (1) clinical relevance in comparison with traditional imaging methods, (2) relationship with amyloid deposition, (3) association with cognitive functions. Here, 51 patients (n = 32 mild cognitive impairment/mild dementia-AD, n = 19 moderate/severe dementia-AD) diagnosed according to clinical-biological criteria (CSF biomarkers and amyloid-PET) and 29 controls (with negative amyloid-PET) underwent neuropsychological and 3T-MRI examinations. Mean sulcal width (SW) and mean cortical thickness around the sulcus (CT-S) were automatically measured. We found higher SW and lower CT-S in patients with AD than in controls. These differences were more pronounced at later stages of the disease and provided the best diagnostic accuracies among the imaging markers. Correlations were not found between CT-S or SW and amyloid deposition but between specific cognitive functions and regional CT-S/SW in key associated regions. Sulcal morphology is a good supporting diagnosis tool that reflects the main cognitive impairments in AD. It could be considered as a good surrogate marker to evaluate the efficacy of new drugs.
Collapse
Affiliation(s)
- Maxime Bertoux
- Univ Lille, Inserm, CHU Lille, UMR 1171, Degenerative and Vascular Cognitive Disorders, Lille, France; Unit of Neurology of Memory and Language, Université Paris Descartes, Sorbonne Paris Cité, Centre Hospitalier Sainte Anne, Paris, France.
| | - Julien Lagarde
- Unit of Neurology of Memory and Language, Université Paris Descartes, Sorbonne Paris Cité, Centre Hospitalier Sainte Anne, Paris, France; UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Fabian Corlier
- Imaging Genetics Center, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, USA
| | - Lorraine Hamelin
- Unit of Neurology of Memory and Language, Université Paris Descartes, Sorbonne Paris Cité, Centre Hospitalier Sainte Anne, Paris, France; UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | | | - Olivier Colliot
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Marie Chupin
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Meredith N Braskie
- Imaging Genetics Center, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, USA
| | - Paul M Thompson
- Imaging Genetics Center, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, USA
| | - Michel Bottlaender
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France; Neurospin, CEA, Gif-sur-Yvette, France
| | - Marie Sarazin
- Unit of Neurology of Memory and Language, Université Paris Descartes, Sorbonne Paris Cité, Centre Hospitalier Sainte Anne, Paris, France; UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
28
|
Olivieri P, Lagarde J, Lehericy S, Valabrègue R, Michel A, Macé P, Caillé F, Gervais P, Bottlaender M, Sarazin M. Early alteration of the locus coeruleus in phenotypic variants of Alzheimer's disease. Ann Clin Transl Neurol 2019; 6:1345-1351. [PMID: 31353860 PMCID: PMC6649639 DOI: 10.1002/acn3.50818] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022] Open
Abstract
Neuropathological studies showed early locus coeruleus (LC) neuronal loss associated with tauopathy in Alzheimer's Disease (AD). We used the LC signal intensity (LC-I) on 3T MRI to assess the LC integrity in AD (n = 37) and controls (n = 17). The LC-I was decreased in AD regardless of typical (amnesic) and atypical presentation (logopenic aphasia/visuo-spatial deficit), from the prodromal stage, and independently of the amyloid load measured by PiB-PET. The LC-I was correlated with memory performance of typical AD. This supports the pathophysiological model in which the LC plays a critical role in AD and may thus be a potential therapeutic target.
Collapse
Affiliation(s)
- Pauline Olivieri
- Unit of Neurology of Memory and LanguageUniversité Paris Descartes, Sorbonne Paris Cité, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte AnneParisFrance
- UMR 1023IMIVService Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris‐SaclayOrsayFrance
| | - Julien Lagarde
- Unit of Neurology of Memory and LanguageUniversité Paris Descartes, Sorbonne Paris Cité, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte AnneParisFrance
- UMR 1023IMIVService Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris‐SaclayOrsayFrance
| | - Stéphane Lehericy
- Institut du Cerveau et de la Moelle épinière ‐ ICM, Centre de NeuroImagerie de Recherche ‐ CENIRF‐75013ParisFrance
- Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICMF‐75013ParisFrance
| | - Romain Valabrègue
- Institut du Cerveau et de la Moelle épinière ‐ ICM, Centre de NeuroImagerie de Recherche ‐ CENIRF‐75013ParisFrance
- Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICMF‐75013ParisFrance
| | - Adeline Michel
- Unit of Neurology of Memory and LanguageUniversité Paris Descartes, Sorbonne Paris Cité, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte AnneParisFrance
| | - Pierre Macé
- Unit of Neurology of Memory and LanguageUniversité Paris Descartes, Sorbonne Paris Cité, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte AnneParisFrance
| | - Fabien Caillé
- UMR 1023IMIVService Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris‐SaclayOrsayFrance
| | - Philippe Gervais
- UMR 1023IMIVService Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris‐SaclayOrsayFrance
| | - Michel Bottlaender
- UMR 1023IMIVService Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris‐SaclayOrsayFrance
- UNIACT, NeurospinCEA, Gif‐sur‐YvetteF‐91191France
| | - Marie Sarazin
- Unit of Neurology of Memory and LanguageUniversité Paris Descartes, Sorbonne Paris Cité, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte AnneParisFrance
- UMR 1023IMIVService Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris‐SaclayOrsayFrance
| |
Collapse
|
29
|
Putcha D, Brickhouse M, Touroutoglou A, Collins JA, Quimby M, Wong B, Eldaief M, Schultz A, El Fakhri G, Johnson K, Dickerson BC, McGinnis SM. Visual cognition in non-amnestic Alzheimer's disease: Relations to tau, amyloid, and cortical atrophy. Neuroimage Clin 2019; 23:101889. [PMID: 31200149 PMCID: PMC6562373 DOI: 10.1016/j.nicl.2019.101889] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 12/15/2022]
Abstract
Heterogeneity within the Alzheimer's disease (AD) syndromic spectrum is typically classified in a domain-specific manner (e.g., language vs. visual cognitive function). The central aim of this study was to investigate whether impairment in visual cognitive tasks thought to be subserved by posterior cortical dysfunction in non-amnestic AD presentations is associated with tau, amyloid, or neurodegeneration in those regions using 18F-AV-1451 and 11C-PiB positron emission tomography (PET) and magnetic resonance imaging (MRI). Sixteen amyloid-positive patients who met criteria for either Posterior Cortical Atrophy (PCA; n = 10) or logopenic variant Primary Progressive Aphasia (lvPPA; n = 6) were studied. All participants underwent a structured clinical assessment, neuropsychological battery, structural MRI, amyloid PET, and tau PET. The neuropsychological battery included two visual cognitive tests: VOSP Number Location and Benton Facial Recognition. Surface-based whole-cortical general linear models were used to first explore the similarities and differences between these biomarkers in the two patient groups, and then to assess their regional associations with visual cognitive test performance. The results show that these two variants of AD have both dissociable and overlapping areas of tau and atrophy, but amyloid is distributed with a stereotyped localization in both variants. Performance on both visual cognitive tests were associated with tau and atrophy in the right lateral and medial occipital association cortex, superior parietal cortex, and posterior ventral occipitotemporal cortex. No cortical associations were observed with amyloid PET. We further demonstrate that cortical atrophy has a partially mediating effect on the association between tau pathology and visual cognitive task performance. Our findings show that non-amnestic variants of AD have partially dissociable spatial patterns of tau and atrophy that localize as expected based on symptoms, but similar patterns of amyloid. Further, we demonstrate that impairments of visual cognitive dysfunction are strongly associated with tau in visual cortical regions and mediated in part by atrophy.
Collapse
Affiliation(s)
- Deepti Putcha
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Michael Brickhouse
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica A Collins
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark Eldaief
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Aaron Schultz
- Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Keith Johnson
- Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott M McGinnis
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Dong Y, Lagarde J, Xicota L, Corne H, Chantran Y, Chaigneau T, Crestani B, Bottlaender M, Potier MC, Aucouturier P, Dorothée G, Sarazin M, Elbim C. Neutrophil hyperactivation correlates with Alzheimer's disease progression. Ann Neurol 2019; 83:387-405. [PMID: 29369398 DOI: 10.1002/ana.25159] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Recent studies have underlined the effect of systemic inflammation on the pathophysiology of Alzheimer's disease (AD). Neutrophils are key components of early innate immunity and contribute to uncontrolled systemic inflammation if not tightly regulated. The aim of our study was to fully characterize human circulating neutrophils at different disease stages in AD. METHODS We analyzed neutrophil phenotypes and functions in 42 patients with AD (16 with mild cognitive impairment and 26 with dementia), and compared them to 22 age-matched healthy subjects. This study was performed directly in whole blood to avoid issues with data interpretation related to cell isolation procedures. RESULTS Blood samples from AD patients with dementia revealed neutrophil hyperactivation associated with increased reactive oxygen species production and increased levels of intravascular neutrophil extravascular traps. The homeostasis of circulating neutrophils in these patients also changed: The ratio between the harmful hyperreactive CXCR4high /CD62Llow senescent and the CD16bright /CD62Ldim immunosuppressive neutrophil subsets rose in the later stage of the disease. These abnormalities were greater in fast-decliner than in slow-decliner patients. INTERPRETATION Our results indicate that the inflammatory properties of circulating neutrophils shift as the percentage of aged neutrophils expands in patients with AD-changes that may play an instrumental role in establishing systemic chronic inflammation. Most important, our data strongly suggest that the neutrophil phenotype may be associated with the rate of cognitive decline and may thus constitute an innovative and prognostic blood biomarker in patients with AD. Ann Neurol 2018;83:387-405.
Collapse
Affiliation(s)
- Yuan Dong
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine, team "Immune System, Neuroinflammation and Neurodegenerative Diseases", Hôpital Saint-Antoine, Paris, France
| | - Julien Lagarde
- Unit of Neurology of Memory and Language, Centre Hospitalier Sainte Anne, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratoire Imagerie Moléculaire In Vivo (IMIV), UMR 1023 Inserm/CEA/Université Paris Sud-ERL 9218 CNRS; CEA/I2BM/Service Hospitalier Frédéric Joliot, Orsay, France
| | - Laura Xicota
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Hélène Corne
- Unit of Neurology of Memory and Language, Centre Hospitalier Sainte Anne, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Yannick Chantran
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine, team "Immune System, Neuroinflammation and Neurodegenerative Diseases", Hôpital Saint-Antoine, Paris, France
| | - Thomas Chaigneau
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine, team "Immune System, Neuroinflammation and Neurodegenerative Diseases", Hôpital Saint-Antoine, Paris, France
| | - Bruno Crestani
- APHP, Hôpital Bichat, Service de Pneumologie A, Centre de référence des maladies pulmonaires rares, Paris, France
| | - Michel Bottlaender
- Laboratoire Imagerie Moléculaire In Vivo (IMIV), UMR 1023 Inserm/CEA/Université Paris Sud-ERL 9218 CNRS; CEA/I2BM/Service Hospitalier Frédéric Joliot, Orsay, France.,UNIACT, NeuroSpin, Institut d'Imagerie Biomédicale, Direction des sciences du vivant, Commissariat à I'Energie Atomique, Gif-sur-Yvette, France
| | - Marie-Claude Potier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Pierre Aucouturier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine, team "Immune System, Neuroinflammation and Neurodegenerative Diseases", Hôpital Saint-Antoine, Paris, France
| | - Guillaume Dorothée
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine, team "Immune System, Neuroinflammation and Neurodegenerative Diseases", Hôpital Saint-Antoine, Paris, France
| | - Marie Sarazin
- Unit of Neurology of Memory and Language, Centre Hospitalier Sainte Anne, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratoire Imagerie Moléculaire In Vivo (IMIV), UMR 1023 Inserm/CEA/Université Paris Sud-ERL 9218 CNRS; CEA/I2BM/Service Hospitalier Frédéric Joliot, Orsay, France
| | - Carole Elbim
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine, team "Immune System, Neuroinflammation and Neurodegenerative Diseases", Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
31
|
Montembeault M, Brambati SM, Lamari F, Michon A, Samri D, Epelbaum S, Lacomblez L, Lehéricy S, Habert MO, Dubois B, Kas A, Migliaccio R. Atrophy, metabolism and cognition in the posterior cortical atrophy spectrum based on Alzheimer's disease cerebrospinal fluid biomarkers. Neuroimage Clin 2018; 20:1018-1025. [PMID: 30340200 PMCID: PMC6197495 DOI: 10.1016/j.nicl.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/25/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022]
Abstract
INTRODUCTION In vivo clinical, anatomical and metabolic differences between posterior cortical atrophy (PCA) patients presenting with different Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers profiles are still unknown. METHODS Twenty-seven PCA patients underwent CSF examination and were classified as 1) PCA with a typical CSF AD profile (PCA-tAD; abnormal amyloid and T-tau/P-tau biomarkers, n = 13); 2) PCA with an atypical AD CSF profile (PCA-aAD; abnormal amyloid biomarker only, n = 9); and 3) PCA not associated with AD (PCA-nonAD; normal biomarkers, n = 5). All patients underwent clinical and cognitive assessment, structural MRI, and a subset of them underwent brain 18F-FDG PET. RESULTS All patients' groups showed a common pattern of posterior GM atrophy and hypometabolism typical of PCA, as well as equivalent demographics and clinical/cognitive profiles. PCA-tAD patients showed a group-specific pattern of hypometabolism in the left fusiform gyrus and inferior temporal gyrus. PCA-aAD did not present a group-specific atrophy pattern. Finally, group-specific gray matter atrophy in the right dorsolateral prefrontal cortex, left caudate nucleus and right medial temporal regions and hypometabolism in the right supplementary motor area and paracentral lobule were observed in PCA-nonAD patients. CONCLUSION Our findings suggest that both PCA-tAD and PCA-aAD patients are on the AD continuum, in agreement with the recently suggested A/T/N model. Furthermore, in PCA, the underlying pathology has an impact at least on the anatomo-functional presentation. Brain damage observed in PCA-tAD and PCA-aAD was mostly consistent with the well-described presentation of the disease, although it was more widespread in PCA-tAD group, especially in the left temporal lobe. Additional fronto-temporal (especially dorsolateral prefrontal) damage seems to be a clue to underlying non-AD pathology in PCA, which warrants the need for longitudinal follow-ups to investigate frontal symptoms in these patients.
Collapse
Affiliation(s)
- Maxime Montembeault
- FrontLab, Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, UMR S1127, Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière hospital, 75013 Paris, France
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, H3W 1W6 Montréal, QC, Canada
- Department of Psychology, University of Montreal, H2V 2S9 Montréal, QC, Canada
| | - Simona M. Brambati
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, H3W 1W6 Montréal, QC, Canada
- Department of Psychology, University of Montreal, H2V 2S9 Montréal, QC, Canada
| | - Foudil Lamari
- Department of Metabolic biochemistry, Pitié-Salpêtrière hospital, 75013 Paris, France
| | - Agnès Michon
- Department of Nervous system diseases, Institut de la mémoire et de la maladie d’Alzheimer (IM2A), Neurology, Pitié-Salpêtrière hospital, 75013 Paris, France
| | - Dalila Samri
- Department of Nervous system diseases, Institut de la mémoire et de la maladie d’Alzheimer (IM2A), Neurology, Pitié-Salpêtrière hospital, 75013 Paris, France
| | - Stéphane Epelbaum
- Department of Nervous system diseases, Institut de la mémoire et de la maladie d’Alzheimer (IM2A), Neurology, Pitié-Salpêtrière hospital, 75013 Paris, France
| | - Lucette Lacomblez
- LIB, Inserm U1146, Université Pierre et Marie Curie, Paris 6, 75006 Paris, France
- Department of Nervous system diseases, CIC-CET, Pitié-Salpêtrière hospital, 75013 Paris, France
- Pharmacology service, Pitié-Salpêtrière hospital, 75013 Paris, France
| | - Stéphane Lehéricy
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, UMR S1127, Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière hospital, 75013 Paris, France
- Centre de Neuro-imagerie de Recherche (CENIR) de l’Institut du Cerveau et de la Moelle Epiniere (ICM), Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Marie-Odile Habert
- LIB, Inserm U1146, Université Pierre et Marie Curie, Paris 6, 75006 Paris, France
- Department of Nuclear Medicine, Pitié-Salpêtrière hospital, 75013 Paris, France
| | - Bruno Dubois
- FrontLab, Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, UMR S1127, Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière hospital, 75013 Paris, France
- Department of Nervous system diseases, Institut de la mémoire et de la maladie d’Alzheimer (IM2A), Neurology, Pitié-Salpêtrière hospital, 75013 Paris, France
| | - Aurélie Kas
- LIB, Inserm U1146, Université Pierre et Marie Curie, Paris 6, 75006 Paris, France
- Department of Nuclear Medicine, Pitié-Salpêtrière hospital, 75013 Paris, France
| | - Raffaella Migliaccio
- FrontLab, Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, UMR S1127, Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière hospital, 75013 Paris, France
- Department of Nervous system diseases, Institut de la mémoire et de la maladie d’Alzheimer (IM2A), Neurology, Pitié-Salpêtrière hospital, 75013 Paris, France
| |
Collapse
|
32
|
Molecular imaging in dementia: Past, present, and future. Alzheimers Dement 2018; 14:1522-1552. [DOI: 10.1016/j.jalz.2018.06.2855] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/02/2018] [Accepted: 06/03/2018] [Indexed: 12/14/2022]
|
33
|
Boon BDC, Hoozemans JJM, Lopuhaä B, Eigenhuis KN, Scheltens P, Kamphorst W, Rozemuller AJM, Bouwman FH. Neuroinflammation is increased in the parietal cortex of atypical Alzheimer's disease. J Neuroinflammation 2018; 15:170. [PMID: 29843759 PMCID: PMC5975447 DOI: 10.1186/s12974-018-1180-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/26/2018] [Indexed: 01/06/2023] Open
Abstract
Background While most patients with Alzheimer’s disease (AD) present with memory complaints, 30% of patients with early disease onset present with non-amnestic symptoms. This atypical presentation is thought to be caused by a different spreading of neurofibrillary tangles (NFT) than originally proposed by Braak and Braak. Recent studies suggest a prominent role for neuroinflammation in the spreading of tau pathology. Methods We aimed to explore whether an atypical spreading of pathology in AD is associated with an atypical distribution of neuroinflammation. Typical and atypical AD cases were selected based on both NFT distribution and amnestic or non-amnestic clinical presentation. Immunohistochemistry was performed on the temporal pole and superior parietal lobe of 10 typical and 9 atypical AD cases. The presence of amyloid-beta (N-terminal; IC16), pTau (AT8), reactive astrocytes (GFAP), microglia (Iba1, CD68, and HLA-DP/DQ/DR), and complement factors (C1q, C3d, C4b, and C5b-9) was quantified by image analysis. Differences in lobar distribution patterns of immunoreactivity were statistically assessed using a linear mixed model. Results We found a temporal dominant distribution for amyloid-beta, GFAP, and Iba1 in both typical and atypical AD. Distribution of pTau, CD68, HLA-DP/DQ/DR, C3d, and C4b differed between AD variants. Typical AD cases showed a temporal dominant distribution of these markers, whereas atypical AD cases showed a parietal dominant distribution. Interestingly, when quantifying for the number of amyloid-beta plaques instead of stained surface area, atypical AD cases differed in distribution pattern from typical AD cases. Remarkably, plaque morphology and localization of neuroinflammation within the plaques was different between the two phenotypes. Conclusions Our data show a different localization of neuroinflammatory markers and amyloid-beta plaques between AD phenotypes. In addition, these markers reflect the atypical distribution of tau pathology in atypical AD, suggesting that neuroinflammation might be a crucial link between amyloid-beta deposits, tau pathology, and clinical symptoms.
Collapse
Affiliation(s)
- Baayla D C Boon
- Department of Neurology, Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands. .,Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Boaz Lopuhaä
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Kristel N Eigenhuis
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Wouter Kamphorst
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Femke H Bouwman
- Department of Neurology, Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Hamelin L, Lagarde J, Dorothée G, Potier MC, Corlier F, Kuhnast B, Caillé F, Dubois B, Fillon L, Chupin M, Bottlaender M, Sarazin M. Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer's disease. Brain 2018; 141:1855-1870. [DOI: 10.1093/brain/awy079] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/02/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lorraine Hamelin
- Unit of Neurology of Memory and Language, Université Paris Descartes, Sorbonne Paris Cité, Centre Hospitalier Sainte Anne, Paris, France
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Julien Lagarde
- Unit of Neurology of Memory and Language, Université Paris Descartes, Sorbonne Paris Cité, Centre Hospitalier Sainte Anne, Paris, France
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Guillaume Dorothée
- INSERM, UMRS 938, CdR Saint-Antoine, Laboratory Immune System, Neuroinflammation and Neurodegenerative Diseases, Hôpital St-Antoine, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine, Paris, France
| | - Marie Claude Potier
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Fabian Corlier
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, USA
| | - Bertrand Kuhnast
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Fabien Caillé
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Bruno Dubois
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM), Hôpital Pitié-Salpêtrière, Boulevard de l’Hôpital, F-75013, Paris, France
- Dementia Research Center (IM2A), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Ludovic Fillon
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, Hôpital de la Pitié-Salpêtrière, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM), Hôpital Pitié-Salpêtrière, Boulevard de l’Hôpital, F-75013, Paris, France
- CATI, Centre d’Acquisition et de Traitement des Images, Paris, France
| | - Marie Chupin
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, Hôpital de la Pitié-Salpêtrière, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM), Hôpital Pitié-Salpêtrière, Boulevard de l’Hôpital, F-75013, Paris, France
- CATI, Centre d’Acquisition et de Traitement des Images, Paris, France
| | - Michel Bottlaender
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
- UNIACT, Neurospin, CEA, Gif-sur-Yvette, F-91191, France
| | - Marie Sarazin
- Unit of Neurology of Memory and Language, Université Paris Descartes, Sorbonne Paris Cité, Centre Hospitalier Sainte Anne, Paris, France
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
35
|
Implementation of [18F]-labeled amyloid brain PET imaging biomarker in the diagnosis of Alzheimer’s disease. Nucl Med Commun 2018; 39:186-192. [DOI: 10.1097/mnm.0000000000000787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Sarazin M, Lagarde J, Bottlaender M. Distinct tau PET imaging patterns in typical and atypical Alzheimer's disease. Brain 2018; 139:1321-4. [PMID: 27189580 DOI: 10.1093/brain/aww041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Marie Sarazin
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte Anne and Université Paris Descartes, Sorbonne Paris Cité, France
| | - Julien Lagarde
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte Anne and Université Paris Descartes, Sorbonne Paris Cité, France
| | - Michel Bottlaender
- UNIACT, NeuroSpin, Institut d'Imagerie Biomédicale, Direction des sciences du vivant, Commissariat à l'Energie Atomique; Laboratoire Imagerie Moléculaire in Vivo, UMR 1023, Service Hospitalier Frédéric Joliot, Institut d'Imagerie Biomédicale, Direction des sciences du vivant, Commissariat à l'Energie Atomique, France
| |
Collapse
|
37
|
Tau-PET Binding Distinguishes Patients With Early-stage Posterior Cortical Atrophy From Amnestic Alzheimer Disease Dementia. Alzheimer Dis Assoc Disord 2017; 31:87-93. [PMID: 28394771 DOI: 10.1097/wad.0000000000000196] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Flortaucipir (tau) positron emission tomography (PET) binding distinguishes individuals with clinically well-established posterior cortical atrophy (PCA) due to Alzheimer disease (AD) from cognitively normal (CN) controls. However, it is not known whether tau-PET binding patterns differentiate individuals with PCA from those with amnestic AD, particularly early in the symptomatic stages of disease. METHODS Flortaucipir and florbetapir (β-amyloid) PET imaging were performed in individuals with early-stage PCA (N=5), amnestic AD dementia (N=22), and CN controls (N=47). Average tau and β-amyloid deposition were quantified using standard uptake value ratios and compared at a voxelwise level, controlling for age. RESULTS PCA patients [median age-at-onset, 59 (51 to 61) years] were younger at symptom onset than similarly staged individuals with amnestic AD [75 (60 to 85) years] or CN controls [73 (61 to 90) years; P=0.002]. Flortaucipir uptake was higher in individuals with early-stage symptomatic PCA versus those with early-stage amnestic AD or CN controls, and greatest in posterior regions. Regional elevations in florbetapir were observed in areas of greatest tau deposition in PCA patients. CONCLUSIONS AND RELEVANCE Flortaucipir uptake distinguished individuals with PCA and amnestic AD dementia early in the symptomatic course. The posterior brain regions appear to be uniquely vulnerable to tau deposition in PCA, aligning with clinical deficits that define this disease subtype.
Collapse
|
38
|
Phillips JS, Das SR, McMillan CT, Irwin DJ, Roll EE, Da Re F, Nasrallah IM, Wolk DA, Grossman M. Tau PET imaging predicts cognition in atypical variants of Alzheimer's disease. Hum Brain Mapp 2017; 39:691-708. [PMID: 29105977 DOI: 10.1002/hbm.23874] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/15/2017] [Accepted: 10/23/2017] [Indexed: 12/26/2022] Open
Abstract
Accumulation of paired helical filament tau contributes to neurodegeneration in Alzheimer's disease (AD). 18 F-flortaucipir is a positron emission tomography (PET) radioligand sensitive to tau in AD, but its clinical utility will depend in part on its ability to predict cognitive symptoms in diverse dementia phenotypes associated with selective, regional uptake. We examined associations between 18 F-flortaucipir and cognition in 14 mildly-impaired patients (12 with cerebrospinal fluid analytes consistent with AD pathology) who had amnestic (n = 5) and non-amnestic AD syndromes, including posterior cortical atrophy (PCA, n = 5) and logopenic-variant primary progressive aphasia (lvPPA, n = 4). Amnestic AD patients had deficits in memory; lvPPA in language; and both amnestic AD and PCA patients in visuospatial function. Associations with cognition were tested using sparse regression and compared to associations in anatomical regions-of-interest (ROIs). 18 F-flortaucipir uptake was expected to show regionally-specific correlations with each domain. In multivariate analyses, uptake was elevated in neocortical areas specifically associated with amnestic and non-amnestic syndromes. Uptake in left anterior superior temporal gyrus accounted for 67% of the variance in language performance. Uptake in right lingual gyrus predicted 85% of the variance in visuospatial performance. Memory was predicted by uptake in right fusiform gyrus and cuneus as well as a cluster comprising right anterior hippocampus and amygdala; this eigenvector explained 57% of the variance in patients' scores. These results provide converging evidence for associations between 18 F-flortaucipir uptake, tau pathology, and patients' cognitive symptoms.
Collapse
Affiliation(s)
- Jeffrey S Phillips
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Sandhitsu R Das
- Penn Image Computing and Science Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - David J Irwin
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Emily E Roll
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Fulvio Da Re
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104.,PhD Program in Neuroscience, University of Milano-Bicocca, Milan, Italy.,School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
| | - Ilya M Nasrallah
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - David A Wolk
- Penn Memory Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
39
|
The Nature and Natural History of Posterior Cortical Atrophy Syndrome. Alzheimer Dis Assoc Disord 2017; 31:295-306. [DOI: 10.1097/wad.0000000000000207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Crutch SJ, Schott JM, Rabinovici GD, Murray M, Snowden JS, van der Flier WM, Dickerson BC, Vandenberghe R, Ahmed S, Bak TH, Boeve BF, Butler C, Cappa SF, Ceccaldi M, de Souza LC, Dubois B, Felician O, Galasko D, Graff-Radford J, Graff-Radford NR, Hof PR, Krolak-Salmon P, Lehmann M, Magnin E, Mendez MF, Nestor PJ, Onyike CU, Pelak VS, Pijnenburg Y, Primativo S, Rossor MN, Ryan NS, Scheltens P, Shakespeare TJ, Suárez González A, Tang-Wai DF, Yong KXX, Carrillo M, Fox NC. Consensus classification of posterior cortical atrophy. Alzheimers Dement 2017; 13:870-884. [PMID: 28259709 PMCID: PMC5788455 DOI: 10.1016/j.jalz.2017.01.014] [Citation(s) in RCA: 428] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/06/2017] [Indexed: 11/23/2022]
Abstract
INTRODUCTION A classification framework for posterior cortical atrophy (PCA) is proposed to improve the uniformity of definition of the syndrome in a variety of research settings. METHODS Consensus statements about PCA were developed through a detailed literature review, the formation of an international multidisciplinary working party which convened on four occasions, and a Web-based quantitative survey regarding symptom frequency and the conceptualization of PCA. RESULTS A three-level classification framework for PCA is described comprising both syndrome- and disease-level descriptions. Classification level 1 (PCA) defines the core clinical, cognitive, and neuroimaging features and exclusion criteria of the clinico-radiological syndrome. Classification level 2 (PCA-pure, PCA-plus) establishes whether, in addition to the core PCA syndrome, the core features of any other neurodegenerative syndromes are present. Classification level 3 (PCA attributable to AD [PCA-AD], Lewy body disease [PCA-LBD], corticobasal degeneration [PCA-CBD], prion disease [PCA-prion]) provides a more formal determination of the underlying cause of the PCA syndrome, based on available pathophysiological biomarker evidence. The issue of additional syndrome-level descriptors is discussed in relation to the challenges of defining stages of syndrome severity and characterizing phenotypic heterogeneity within the PCA spectrum. DISCUSSION There was strong agreement regarding the definition of the core clinico-radiological syndrome, meaning that the current consensus statement should be regarded as a refinement, development, and extension of previous single-center PCA criteria rather than any wholesale alteration or redescription of the syndrome. The framework and terminology may facilitate the interpretation of research data across studies, be applicable across a broad range of research scenarios (e.g., behavioral interventions, pharmacological trials), and provide a foundation for future collaborative work.
Collapse
Affiliation(s)
| | | | - Gil D Rabinovici
- Department of Neurology, Memory & Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Melissa Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Julie S Snowden
- Cerebral Function Unit, Greater Manchester Neuroscience Centre, Salford Royal NHS Foundation Trust, Salford, UK; Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Wiesje M van der Flier
- Department of Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands; Alzheimer Center, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Samrah Ahmed
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Thomas H Bak
- Human Cognitive Neuroscience, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Christopher Butler
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stefano F Cappa
- Center for Cognitive Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Mathieu Ceccaldi
- INSERM U 1106, Institut des Neurosciences des Systèmes, Aix Marseille Université, Marseilles, France
| | - Leonardo Cruz de Souza
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Dubois
- Institute for Memory and Alzheimer's Disease, UMR-S975, Salpêtrière Hospital, Pierre & Marie Curie University, Paris, France
| | - Olivier Felician
- Aix-Marseille Université, INSERM, Institut de Neurosciences des Systèmes, Marseille, France; AP-HM Hôpitaux de la Timone, Service de Neurologie et Neuropsychologie, Marseille, France
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, San Diego, USA
| | | | | | - Patrick R Hof
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Pierre Krolak-Salmon
- Clinical and Research Memory Center of Lyon, Hospices Civils de Lyon, INSERM U1028, CNRS UMR5292, University of Lyon, Lyon, France
| | - Manja Lehmann
- Dementia Research Centre, UCL Institute of Neurology, London, UK; Department of Neurology, Memory & Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Eloi Magnin
- Department of Neurology, Regional Memory Centre (CMRR), CHU Besançon, Besançon, France
| | - Mario F Mendez
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Peter J Nestor
- Cognitive Neurology and Neurodegeneration Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Victoria S Pelak
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yolande Pijnenburg
- Department of Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands; Alzheimer Center, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Silvia Primativo
- Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Martin N Rossor
- Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Natalie S Ryan
- Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Philip Scheltens
- Department of Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands; Alzheimer Center, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - Aida Suárez González
- Dementia Research Centre, UCL Institute of Neurology, London, UK; Memory Disorders Unit, Neurology Department, University Hospital Virgen del Rocio, Seville, Spain
| | - David F Tang-Wai
- Division of Neurology, University Health Network Memory Clinic, University of Toronto, Toronto, Ontario, Canada
| | - Keir X X Yong
- Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Maria Carrillo
- Medical and Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| | - Nick C Fox
- Dementia Research Centre, UCL Institute of Neurology, London, UK
| |
Collapse
|
41
|
Nasrallah IM, Chen YJ, Hsieh MK, Phillips JS, Ternes K, Stockbower GE, Sheline Y, McMillan CT, Grossman M, Wolk DA. 18F-Flortaucipir PET/MRI Correlations in Nonamnestic and Amnestic Variants of Alzheimer Disease. J Nucl Med 2017; 59:299-306. [PMID: 28747523 DOI: 10.2967/jnumed.117.194282] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/05/2017] [Indexed: 12/19/2022] Open
Abstract
Nonamnestic Alzheimer disease (AD) variants, including posterior cortical atrophy and the logopenic variant of primary progressive aphasia, differ from amnestic AD in distributions of tau aggregates and neurodegeneration. We evaluated whether 18F-flortaucipir (also called 18F-AV-1451) PET, targeting tau aggregates, detects these differences, and we compared the results with MRI measures of gray matter (GM) atrophy. Methods: Five subjects with posterior cortical atrophy, 4 subjects with the logopenic variant of primary progressive aphasia, 6 age-matched patients with AD, and 6 control subjects underwent 18F-flortaucipir PET and MRI. SUV ratios and GM volumes were compared using regional and voxel-based methods. Results: The subgroups showed the expected 18F-flortaucipir-binding patterns. Group effect sizes were generally stronger with 18F-flortaucipir PET than with MRI volumes. There were moderate-to-high correlations between regional GM atrophy and 18F-flortaucipir uptake. 18F-flortaucipir binding and GM atrophy correlated similarly to cognitive test performance. Conclusion:18F-flortaucipir binding corresponds to the expected neurodegeneration patterns in nonamnestic AD, with potential for earlier detection of pathology than is possible with MRI atrophy measures.
Collapse
Affiliation(s)
- Ilya M Nasrallah
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yin Jie Chen
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Meng-Kang Hsieh
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey S Phillips
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Kylie Ternes
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Grace E Stockbower
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Yvette Sheline
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| |
Collapse
|
42
|
Papma JM, Smits M, de Groot M, Mattace Raso FU, van der Lugt A, Vrooman HA, Niessen WJ, Koudstaal PJ, van Swieten JC, van der Veen FM, Prins ND. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment. Eur Radiol 2017; 27:3716-3724. [PMID: 28289940 PMCID: PMC5544779 DOI: 10.1007/s00330-017-4768-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 01/10/2017] [Accepted: 02/01/2017] [Indexed: 11/30/2022]
Abstract
Objectives Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer’s disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). Method MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. Results We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Conclusions Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. Key Points • PCC functioning during episodic memory relates to hippocampal functioning in MCI. • PCC functioning during episodic memory does not relate to hippocampal structure in MCI. • Functional network changes are an important predictor of PCC functioning in MCI. Electronic supplementary material The online version of this article (doi:10.1007/s00330-017-4768-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janne M Papma
- Department of Neurology, Erasmus MC - University Medical Center Rotterdam, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| | - Marion Smits
- Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marius de Groot
- Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Medical Informatics, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Francesco U Mattace Raso
- Department of Geriatrics, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henri A Vrooman
- Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Medical Informatics, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wiro J Niessen
- Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Medical Informatics, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.,Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Peter J Koudstaal
- Department of Neurology, Erasmus MC - University Medical Center Rotterdam, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology, Erasmus MC - University Medical Center Rotterdam, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | | | - Niels D Prins
- Alzheimer Center, Department of Neurology, VU University Medical Center, Neuroscience Campus, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Granadillo E, Paholpak P, Mendez MF, Teng E. Visual Ratings of Medial Temporal Lobe Atrophy Correlate with CSF Tau Indices in Clinical Variants of Early-Onset Alzheimer Disease. Dement Geriatr Cogn Disord 2017; 44:45-54. [PMID: 28675901 PMCID: PMC5575973 DOI: 10.1159/000477718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND/AIMS Prior studies of late-onset Alzheimer disease (AD) have reported that cerebrospinal fluid (CSF) tau levels correlate with hippocampal/medial temporal lobe atrophy. These findings suggest that CSF tau indices in AD may reflect tau-related neurodegeneration in the medial temporal lobe. However, it remains uncertain whether elevated CSF tau levels in the clinically heterogeneous subtypes of early-onset AD (EOAD; amnestic, posterior cortical atrophy [PCA], and logopenic progressive aphasia [LPA]) are attributable to similar underlying mechanisms. METHODS We identified 41 EOAD patients (18 amnestic, 14 with LPA, and 9 with PCA) with CSF and brain MRI data. Semiquantitative ratings were used to assess medial temporal lobe atrophy and PCA, which were compared to CSF biomarker indices. RESULTS Lower CSF tau levels were seen in PCA relative to amnestic EOAD and LPA, but similar ratings for medial temporal lobe atrophy and PCA were seen across the groups. After adjustments for demographics and cognitive performance, both total (p = 0.004) and hyperphosphorylated (p = 0.026) tau levels correlated with medial temporal lobe atrophy across this EOAD cohort. CONCLUSIONS These results replicate prior findings in late-onset AD and support the hypothesis that CSF tau levels primarily reflect tau-related neurodegenerative changes in the hippocampus/medial temporal lobe across the clinical subtypes of EOAD.
Collapse
Affiliation(s)
- Elias Granadillo
- Department of Neurology, David Geffen School of Medicine at
UCLA,Veterans Affairs Greater Los Angeles Healthcare System
| | - Pongsatorn Paholpak
- Department of Neurology, David Geffen School of Medicine at
UCLA,Veterans Affairs Greater Los Angeles Healthcare System,Department of Psychiatry, Faculty of Medicine, Khon Kaen
University
| | - Mario F. Mendez
- Department of Neurology, David Geffen School of Medicine at
UCLA,Department of Psychiatry and Behavioral Sciences, David Geffen
School of Medicine at UCLA,Veterans Affairs Greater Los Angeles Healthcare System
| | - Edmond Teng
- Department of Neurology, David Geffen School of Medicine at
UCLA,Veterans Affairs Greater Los Angeles Healthcare System
| |
Collapse
|
44
|
Kreisl WC, Lyoo CH, Liow JS, Snow J, Page E, Jenko KJ, Morse CL, Zoghbi SS, Pike VW, Turner RS, Innis RB. Distinct patterns of increased translocator protein in posterior cortical atrophy and amnestic Alzheimer's disease. Neurobiol Aging 2016; 51:132-140. [PMID: 28068564 DOI: 10.1016/j.neurobiolaging.2016.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/28/2022]
Abstract
We sought to determine whether patients with posterior cortical atrophy (PCA) demonstrate a pattern of binding to translocator protein 18 kDa, a marker of microglial activation, that is distinct from that in patients with amnestic presentation of Alzheimer's disease (AD). Eleven PCA patients, 11 amnestic AD patients, and 15 age-matched controls underwent positron emission tomography with 11C-PBR28 to measure translocator protein 18 kDa. PCA patients showed greater 11C-PBR28 binding than controls in occipital, posterior parietal, and temporal regions. In contrast, amnestic AD patients showed greater 11C-PBR28 binding in inferior and medial temporal cortex. Increased 11C-PBR28 binding overlapped with reduced cortical volume for both PCA and amnestic AD patients, and with areas of reduced glucose metabolism in PCA patients. While both patient groups showed diffuse amyloid binding, PCA patients showed greater binding than amnestic AD patients in bilateral occipital cortex. These results suggest that microglial activation is closely associated with neurodegeneration across different subtypes of AD.
Collapse
Affiliation(s)
- William C Kreisl
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA.
| | - Chul Hyoung Lyoo
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Joseph Snow
- Office of the Clinical Director, National Institute of Mental Health, Bethesda, MD, USA
| | - Emily Page
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Kimberly J Jenko
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - R Scott Turner
- Memory Disorders Program, Georgetown University, Washington, DC, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Abstract
Amyloid plaques, along with neurofibrillary tangles, are a neuropathologic hallmark of Alzheimer disease (AD). Recently, amyloid PET radiotracers have been developed and approved for clinical use in the evaluation of suspected neurodegenerative disorders. In both research and clinical settings, amyloid PET imaging has provided important diagnostic and prognostic information for the management of patients with possible AD, mild cognitive impairment (MCI), and other challenging diagnostic presentations. Although the overall impact of amyloid imaging is still being evaluated, the Society of Nuclear Medicine and Molecular Imaging and Alzheimer's Association Amyloid Imaging Task Force have created appropriate use criteria for the standard clinical use of amyloid PET imaging. By the appropriate use criteria, amyloid imaging is appropriate for patients with (1) persistent or unexplained MCI, (2) AD as a possible but still uncertain diagnosis after expert evaluation and (3) atypically early-age-onset progressive dementia. To better understand the clinical and economic effect of amyloid imaging, the Imaging Dementia-Evidence for Amyloid Scanning (IDEAS) study is an ongoing large multicenter study in the United States, which is evaluating how amyloid imaging affects diagnosis, management, and outcomes for cognitively impaired patients who cannot be completely evaluated by clinical assessment alone. Multiple other large-scale studies are evaluating the prognostic role of amyloid PET imaging for predicting MCI progression to AD in general and high-risk populations. At the same time, amyloid imaging is an important tool for evaluating potential disease-modifying therapies for AD. Overall, the increased use of amyloid PET imaging has led to a better understanding of the strengths and limitations of this imaging modality and how it may best be used with other clinical, molecular, and imaging assessment techniques for the diagnosis and management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Atul Mallik
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT.
| | - Alex Drzezga
- Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT
| |
Collapse
|
46
|
Mattsson N, Schott JM, Hardy J, Turner MR, Zetterberg H. Selective vulnerability in neurodegeneration: insights from clinical variants of Alzheimer's disease. J Neurol Neurosurg Psychiatry 2016; 87:1000-4. [PMID: 26746185 DOI: 10.1136/jnnp-2015-311321] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/05/2015] [Indexed: 11/04/2022]
Abstract
Selective vulnerability in the nervous system refers to the fact that subpopulations of neurons in different brain systems may be more or less prone to abnormal function or death in response to specific types of pathological states or injury. The concept has been used extensively as a potential way of explaining differences in degeneration patterns and the clinical presentation of different neurodegenerative diseases. Yet the increasing complexity of molecular histopathology at the cellular level in neurodegenerative disorders frequently appears at odds with phenotyping based on clinically-directed, macroscopic regional brain involvement. While cross-disease comparisons can provide insights into the differential vulnerability of networks and neuronal populations, we focus here on what is known about selective vulnerability-related factors that might explain the differential phenotypic expressions of the same disease-in this case, typical and atypical forms of Alzheimer's disease. Whereas considerable progress has been made in this area, much is yet to be elucidated; further studies comparing different phenotypic variants aimed at identifying both vulnerability and resilience factors may provide valuable insights into disease pathogenesis, and suggest novel targets for therapy.
Collapse
Affiliation(s)
- Niklas Mattsson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
47
|
Clinical and neuroimaging differences between posterior cortical atrophy and typical amnestic Alzheimer's disease patients at an early disease stage. Sci Rep 2016; 6:29372. [PMID: 27377199 PMCID: PMC4932506 DOI: 10.1038/srep29372] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/16/2016] [Indexed: 11/09/2022] Open
Abstract
To identify clinical and neuroimaging characteristics between posterior cortical atrophy (PCA) and typical amnestic Alzheimer's disease (tAD) patients at an early disease stage, 16 PCA and 13 age-matched tAD patients were enrolled. Compared with tAD patients, PCA patients showed higher mean recognition and recall test scores, and lower mean calculation, spatial attention, shape discrimination, and writing test scores. Mean right hippocampal volume was larger in PCA patients compared with tAD patients, while cortical gray matter (GM) volume of bilateral parietal and occipital lobes was smaller in PCA patients. Further, when compared with tAD patients, significant hypometabolism was observed in bilateral parietal and occipital lobes, particularly the right occipitotemporal junction in PCA patients. Additionally, there were significant positive correlations in recognition and recall scores with hippocampal volumes. In PCA patients, calculation and visuospatial ability scores are positively associated with GM volume of parietal and occipital lobes. And only spatial attention and shape discrimination scores are positively associated with regional glucose metabolism of parietal and occipital lobes. Therefore, PCA patients display better recognition and recall scores, which are associated with larger hippocampal volumes and poorer performance in visual spatial tasks because of marked GM atrophy and hypometabolism of parietal and occipital lobes.
Collapse
|
48
|
Ortner M, Kurz A. [Posterior cortical atrophy. Pathology, diagnosis and treatment of a rare form of dementia]. DER NERVENARZT 2016; 86:833-9. [PMID: 25791802 DOI: 10.1007/s00115-015-4265-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The syndrome of posterior cortical atrophy (PCA) is a rare clinical manifestation of several neurodegenerative diseases which affect the parieto-occipital cortex. The most frequent underlying pathology is Alzheimer's disease but some cases are caused by Lewy body disease, progressive subcortical gliosis, corticobasal degeneration or prion diseases. The most prominent clinical feature of PCA is complex visual disturbances including object agnosia, simultanagnosia, optical ataxia and oculomotor apraxia while basic visual functions remain intact. These deficits lead to multiple impairments in activities of daily living that require visual control. On progression of the disease amnestic, apraxic and dysexecutive symptoms occur so that a global dementia gradually emerges. At the core of the diagnostic work-up are a detailed patient history, accurate analysis of behavior and neuropsychological testing. Structural and functional brain imaging are suitable to demonstrate the localization of the disease process. Measurement of cerebrospinal fluid proteins (e.g. beta amyloid, tau, phospho-tau and 14-3-3) serves to confirm or exclude Alzheimer's disease or prion diseases. The mainstay of treatment are non-pharmacological interventions to support activities of daily living and personal independence. These treatments include cognitive training and compensatory strategies which can be prescribed as neuropsychological treatment or occupational therapy. If Alzheimer's disease or Lewy body disease is the likely cause, a treatment with cholinesterase inhibitor may be tried. Caregiver education and support are another essential part of the treatment regimen as with all forms of dementia.
Collapse
Affiliation(s)
- M Ortner
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland,
| | | |
Collapse
|
49
|
Hamelin L, Lagarde J, Dorothée G, Leroy C, Labit M, Comley RA, de Souza LC, Corne H, Dauphinot L, Bertoux M, Dubois B, Gervais P, Colliot O, Potier MC, Bottlaender M, Sarazin M. Early and protective microglial activation in Alzheimer’s disease: a prospective study using18F-DPA-714 PET imaging. Brain 2016; 139:1252-64. [DOI: 10.1093/brain/aww017] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/05/2016] [Indexed: 11/14/2022] Open
|
50
|
Canadian Consensus Guidelines on Use of Amyloid Imaging in Canada: Update and Future Directions from the Specialized Task Force on Amyloid imaging in Canada. Can J Neurol Sci 2016; 43:503-12. [DOI: 10.1017/cjn.2015.401] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractPositron emission tomography (PET) imaging of brain amyloid beta is now clinically available in several countries including the United States and the United Kingdom, but not Canada. It has become an established technique in the field of neuroimaging of aging and dementia, with data incorporated in the new consensus guidelines for the diagnosis of Alzheimer disease and predementia Alzheimer’s disease–related conditions. At this point, there are three US Food and Drug Administration– and European Union–approved tracers. Guided by appropriate use criteria developed in 2013 by the Alzheimer’s Association and the Society of Nuclear Medicine and Molecular Imaging, the utility of amyloid imaging in medical practice is now supported by a growing body of research. In this paper, we aimed to provide an update on the 2012 Canadian consensus guidelines to dementia care practitioners on proper use of amyloid imaging. We also wished to generate momentum for the industry to submit a new drug proposal to Health Canada. A group of local, national, and international dementia experts and imaging specialists met to discuss scenarios in which amyloid PET could be used appropriately. Peer-reviewed and published literature between January 2004 and May 2015 was searched. Technical and regulatory considerations pertaining to Canada were considered. The results of a survey of current practices in Canadian dementia centers were considered. A set of specific clinical and research guidelines was agreed on that defines the types of patients and clinical circumstances in which amyloid PET could be used in Canada. Future research directions were also outlined, notably the importance of studies that would assess the pharmaco-economics of amyloid imaging.
Collapse
|