1
|
Klocke P, Loeffler MA, Lewis SJG, Gharabaghi A, Weiss D. Could adaptive deep brain stimulation treat freezing of gait in Parkinson's disease? J Neurol 2025; 272:267. [PMID: 40072634 PMCID: PMC11903562 DOI: 10.1007/s00415-025-13000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
Next-generation neurostimulators capable of running closed-loop adaptive deep brain stimulation (aDBS) are about to enter the clinical landscape for the treatment of Parkinson's disease. Already promising results using aDBS have been achieved for symptoms such as bradykinesia, rigidity and motor fluctuations. However, the heterogeneity of freezing of gait (FoG) with its wide range of clinical presentations and its exacerbation with cognitive and emotional load make it more difficult to predict and treat. Currently, a successful aDBS strategy to ameliorate FoG lacks a robust oscillatory biomarker. Furthermore, the technical implementation of suppressing an upcoming FoG episode in real-time represents a significant technical challenge. This review describes the neurophysiological signals underpinning FoG and explains how aDBS is currently being implemented. Furthermore, we offer a discussion addressing both theoretical and practical areas that will need to be resolved if we are going to be able to unlock the full potential of aDBS to treat FoG.
Collapse
Affiliation(s)
- Philipp Klocke
- Centre for Neurology, Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| | - Moritz A Loeffler
- Centre for Neurology, Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Macquarie Medical School, Macquarie University, 75 Talavera Road, Sydney, NSW, Australia
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, 72076, Tübingen, Germany
- Centre for Bionic Intelligence Tübingen Stuttgart (BITS), University Hospital and University of Tübingen, 72076, Tübingen, Germany
- German Centre for Mental Health (DZPG), University Hospital and University of Tübingen, 72076, Tübingen, Germany
| | - Daniel Weiss
- Centre for Neurology, Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| |
Collapse
|
2
|
Witzig V, Pjontek R, Tan SKH, Schulz JB, Holtbernd F. Modulating the cholinergic system-Novel targets for deep brain stimulation in Parkinson's disease. J Neurochem 2025; 169:e16264. [PMID: 39556446 PMCID: PMC11808463 DOI: 10.1111/jnc.16264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024]
Abstract
Parkinson's disease (PD) is the second-fastest growing neurodegenerative disease in the world. The major clinical symptoms rigor, tremor, and bradykinesia derive from the degeneration of the nigrostriatal pathway. However, PD is a multi-system disease, and neurodegeneration extends beyond the degradation of the dopaminergic pathway. Symptoms such as postural instability, freezing of gait, falls, and cognitive decline are predominantly caused by alterations of transmitter systems outside the classical dopaminergic axis. While levodopa and deep brain stimulation (DBS) of the subthalamic nucleus or globus pallidus internus effectively address PD primary motor symptoms, they often fall short in mitigating axial symptoms and cognitive impairment. Along these lines, the cholinergic system is increasingly recognized to play a crucial role in governing locomotion, postural stability, and cognitive function. Thus, there is a growing interest in bolstering the cholinergic tone by DBS of cholinergic targets such as the pedunculopontine nucleus (PPN) and nucleus basalis of Meynert (NBM), aiming to alleviate these debilitating symptoms resistant to traditional treatment strategies targeting the dopaminergic network. This review offers a comprehensive overview of the role of cholinergic dysfunction in PD. We discuss the impact of PPN and NBM DBS on the management of symptoms not readily accessible to established DBS targets and pharmacotherapy in PD and seek to provide guidance on patient selection, surgical approach, and stimulation paradigms.
Collapse
Affiliation(s)
- V. Witzig
- Department of NeurologyRWTH Aachen UniversityAachenGermany
| | - R. Pjontek
- Department of NeurosurgeryRWTH Aachen UniversityAachenGermany
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital CologneCologneGermany
| | - S. K. H. Tan
- Department of NeurosurgeryAntwerp University HospitalEdegemBelgium
- Translational Neurosciences, Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - J. B. Schulz
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingJülich Research Center GmbH and RWTH Aachen UniversityAachenGermany
| | - F. Holtbernd
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingJülich Research Center GmbH and RWTH Aachen UniversityAachenGermany
- Jülich Research Center, Institutes of Neuroscience and Medicine (INM‐4, INM‐11)JülichGermany
| |
Collapse
|
3
|
Klocke P, Loeffler MA, Muessler H, Breu MS, Gharabaghi A, Weiss D. Supraspinal contributions to defective antagonistic inhibition and freezing of gait in Parkinson's disease. Brain 2024; 147:4056-4071. [PMID: 39470410 DOI: 10.1093/brain/awae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 10/30/2024] Open
Abstract
The neuromuscular circuit mechanisms of freezing of gait in Parkinson's disease have received little study. Technological progress enables researchers chronically to sense local field potential activity of the basal ganglia in patients while walking. To study subthalamic activity and the circuit processes of supraspinal contributions to spinal motor integration, we recorded local field potentials, surface EMG of antagonistic leg muscles and gait kinematics in patients while walking and freezing. To evaluate the specificity of our findings, we controlled our findings to internally generated volitional stops. We found specific activation-deactivation abnormalities of oscillatory activity of the subthalamic nucleus both before and during a freeze. Furthermore, we were able to show with synchronization analyses that subthalamo-spinal circuits entrain the spinal motor neurons to a defective timing and activation pattern. The main neuromuscular correlates when turning into freezing were as follows: (i) disturbed reciprocity between antagonistic muscles; (ii) increased co-contraction of the antagonists; (iii) defective activation and time pattern of the gastrocnemius muscle; and (iv) increased subthalamo-muscular coherence with the gastrocnemius muscles before the freeze. Beyond the pathophysiological insights into the supraspinal mechanisms contributing to freezing of gait, our findings have potential to inform the conceptualization of future neurorestorative therapies.
Collapse
Affiliation(s)
- Philipp Klocke
- Centre for Neurology, Department of Neurodegenerative Diseases, University of Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, 72076 Tübingen, Germany
| | - Moritz A Loeffler
- Centre for Neurology, Department of Neurodegenerative Diseases, University of Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, 72076 Tübingen, Germany
| | - Hannah Muessler
- Centre for Neurology, Department of Neurodegenerative Diseases, University of Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, 72076 Tübingen, Germany
| | - Maria-Sophie Breu
- Centre for Neurology, Department of Epileptology, University of Tübingen, 72076 Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, 72076 Tübingen, Germany
- Centre for Bionic Intelligence Tübingen Stuttgart (BITS), University Hospital and University of Tübingen, 72076 Tübingen, Germany
- German Centre for Mental Health (DZPG), University Hospital and University of Tübingen, 72076 Tübingen, Germany
| | - Daniel Weiss
- Centre for Neurology, Department of Neurodegenerative Diseases, University of Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Chen J, Volkmann J, Ip CW. A framework for translational therapy development in deep brain stimulation. NPJ Parkinsons Dis 2024; 10:216. [PMID: 39516465 PMCID: PMC11549317 DOI: 10.1038/s41531-024-00829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Deep brain stimulation (DBS) is an established treatment for motor disorders like Parkinson's disease, but its mechanisms and effects on neurons and networks are not fully understood, limiting research-driven progress. This review presents a framework that combines neurophysiological insights and translational research to enhance DBS therapy, emphasizing biomarkers, device technology, and symptom-specific neuromodulation. It also examines the role of animal research in improving DBS, while acknowledging challenges in clinical translation.
Collapse
Affiliation(s)
- Jiazhi Chen
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany.
| |
Collapse
|
5
|
Jiao Y, Liu Z, Li J, Su Y, Chen X. Knowledge mapping of freezing of gait in Parkinson's disease: a bibliometric analysis. Front Neurosci 2024; 18:1388326. [PMID: 39315077 PMCID: PMC11417103 DOI: 10.3389/fnins.2024.1388326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Among the disturbing motor symptoms in Parkinson's disease (PD), freezing of gait (FOG) stands out as one of the most severe challenges. It typically arises during the initiation of gait or when turning. This phenomenon not only impose a heavy burden on patients, but also on their families. We conduct a bibliometric analysis to summarize current research hotspots and trends concerning freezing of gait in Parkinson's disease (PD-FOG) over past two decades. Methods We retrieved articles and reviews published in English about PD-FOG in the Web of science Core Collection database from 2000 to 2023 on November 30,2023. The tools VOSviewer and CiteSpace facilitated a visual analysis covering various aspects such as publications, countries/regions, organizations, authors, journals, cited references, and keywords. Result This study includes 1,340 articles from 64 countries/regions. There is a growth in publications related to PD-FOG over the past two decades, maintaining a stable high output since 2018, indicating a promising research landscape in the field of PD-FOG. The United States holds a leading position in this field, with Nieuwboer A and Giladi N being two of the most influential researchers. Over the past two decades, the research hotspots for PD-FOG have primarily encompassed the kinematic characteristics, diagnosis and detection, cognitive deficits and neural connectivity, as well as therapy and rehabilitation of PD-FOG. Topics including functional connectivity, virtual reality, deep learning and machine learning will be focal points of future research. Conclusion This is the first bibliometric analysis of PD-FOG. We construct this study to summarize the research in this field over past two decades, visually show the current hotspots and trends, and offer scholars in this field concepts and strategies for subsequent studies.
Collapse
Affiliation(s)
- Yue Jiao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zaichao Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juan Li
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Su
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xianwen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Giménez S, Millan A, Mora-Morell A, Ayuso N, Gastaldo-Jordán I, Pardo M. Advances in Brain Stimulation, Nanomedicine and the Use of Magnetoelectric Nanoparticles: Dopaminergic Alterations and Their Role in Neurodegeneration and Drug Addiction. Molecules 2024; 29:3580. [PMID: 39124985 PMCID: PMC11314096 DOI: 10.3390/molecules29153580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Recent advancements in brain stimulation and nanomedicine have ushered in a new era of therapeutic interventions for psychiatric and neurodegenerative disorders. This review explores the cutting-edge innovations in brain stimulation techniques, including their applications in alleviating symptoms of main neurodegenerative disorders and addiction. Deep Brain Stimulation (DBS) is an FDA-approved treatment for specific neurodegenerative disorders, including Parkinson's Disease (PD), and is currently under evaluation for other conditions, such as Alzheimer's Disease. This technique has facilitated significant advancements in understanding brain electrical circuitry by enabling targeted brain stimulation and providing insights into neural network function and dysfunction. In reviewing DBS studies, this review places particular emphasis on the underlying main neurotransmitter modifications and their specific brain area location, particularly focusing on the dopaminergic system, which plays a critical role in these conditions. Furthermore, this review delves into the groundbreaking developments in nanomedicine, highlighting how nanotechnology can be utilized to target aberrant signaling in neurodegenerative diseases, with a specific focus on the dopaminergic system. The discussion extends to emerging technologies such as magnetoelectric nanoparticles (MENPs), which represent a novel intersection between nanoformulation and brain stimulation approaches. These innovative technologies offer promising avenues for enhancing the precision and effectiveness of treatments by enabling the non-invasive, targeted delivery of therapeutic agents as well as on-site, on-demand stimulation. By integrating insights from recent research and technological advances, this review aims to provide a comprehensive understanding of how brain stimulation and nanomedicine can be synergistically applied to address complex neuropsychiatric and neurodegenerative disorders, paving the way for future therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Giménez
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
| | - Alexandra Millan
- Department of Neurobiology and Neurophysiology, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Alba Mora-Morell
- Faculty of Biological Sciences, Universidad de Valencia, 46100 Valencia, Spain;
| | - Noa Ayuso
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
| | - Isis Gastaldo-Jordán
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, 46017 Valencia, Spain;
| | - Marta Pardo
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), 46022 Valencia, Spain
| |
Collapse
|
7
|
Bastos-Gonçalves R, Coimbra B, Rodrigues AJ. The mesopontine tegmentum in reward and aversion: From cellular heterogeneity to behaviour. Neurosci Biobehav Rev 2024; 162:105702. [PMID: 38718986 DOI: 10.1016/j.neubiorev.2024.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
The mesopontine tegmentum, comprising the pedunculopontine tegmentum (PPN) and the laterodorsal tegmentum (LDT), is intricately connected to various regions of the basal ganglia, motor systems, and limbic systems. The PPN and LDT can regulate the activity of different brain regions of these target systems, and in this way are in a privileged position to modulate motivated behaviours. Despite recent findings, the PPN and LDT have been largely overlooked in discussions about the neural circuits associated with reward and aversion. This review aims to provide a timely and comprehensive resource on past and current research, highlighting the PPN and LDT's connectivity and influence on basal ganglia and limbic, and motor systems. Seminal studies, including lesion, pharmacological, and optogenetic/chemogenetic approaches, demonstrate their critical roles in modulating reward/aversive behaviours. The review emphasizes the need for further investigation into the associated cellular mechanisms, in order to clarify their role in behaviour and contribution for different neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ricardo Bastos-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
8
|
Zhao M, Pang H, Li X, Bu S, Wang J, Liu Y, Jiang Y, Fan G. Low and high-order topological disruption of functional networks in multiple system atrophy with freezing of gait: A resting-state study. Neurobiol Dis 2024; 195:106504. [PMID: 38615913 DOI: 10.1016/j.nbd.2024.106504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024] Open
Abstract
OBJECTIVE Freezing of gait (FOG), a specific survival-threatening gait impairment, needs to be urgently explored in patients with multiple system atrophy (MSA), which is characterized by rapid progression and death within 10 years of symptom onset. The objective of this study was to explore the topological organisation of both low- and high-order functional networks in patients with MAS and FOG. METHOD Low-order functional connectivity (LOFC) and high-order functional connectivity FC (HOFC) networks were calculated and further analysed using the graph theory approach in 24 patients with MSA without FOG, 20 patients with FOG, and 25 healthy controls. The relationship between brain activity and the severity of freezing symptoms was investigated in patients with FOG. RESULTS Regarding global topological properties, patients with FOG exhibited alterations in the whole-brain network, dorsal attention network (DAN), frontoparietal network (FPN), and default network (DMN), compared with patients without FOG. At the node level, patients with FOG showed decreased nodal centralities in sensorimotor network (SMN), DAN, ventral attention network (VAN), FPN, limbic regions, hippocampal network and basal ganglia network (BG), and increased nodal centralities in the FPN, DMN, visual network (VIN) and, cerebellar network. The nodal centralities of the right inferior frontal sulcus, left lateral amygdala and left nucleus accumbens (NAC) were negatively correlated with the FOG severity. CONCLUSION This study identified a disrupted topology of functional interactions at both low and high levels with extensive alterations in topological properties in MSA patients with FOG, especially those associated with damage to the FPN. These findings offer new insights into the dysfunctional mechanisms of complex networks and suggest potential neuroimaging biomarkers for FOG in patients with MSA.
Collapse
Affiliation(s)
- Mengwan Zhao
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Huize Pang
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Xiaolu Li
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Shuting Bu
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Juzhou Wang
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Yu Liu
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Yueluan Jiang
- MR Research Collaboration, Siemens Healthineers, Beijing 7 Wangjing Zhonghuan Nanlu, Chaoyang District, Beijing 100102, PR China.
| | - Guoguang Fan
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| |
Collapse
|
9
|
Wang J, Wang X, Li H, Shi L, Song N, Xie J. Updates on brain regions and neuronal circuits of movement disorders in Parkinson's disease. Ageing Res Rev 2023; 92:102097. [PMID: 38511877 DOI: 10.1016/j.arr.2023.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 03/22/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with a global burden that affects more often in the elderly. The basal ganglia (BG) is believed to account for movement disorders in PD. More recently, new findings in the original regions in BG involved in motor control, as well as the new circuits or new nucleuses previously not specifically considered were explored. In the present review, we provide up-to-date information related to movement disorders and modulations in PD, especially from the perspectives of brain regions and neuronal circuits. Meanwhile, there are updates in deep brain stimulation (DBS) and other factors for the motor improvement in PD. Comprehensive understandings of brain regions and neuronal circuits involved in motor control could benefit the development of novel therapeutical strategies in PD.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Xiaoting Wang
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Hui Li
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Limin Shi
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
10
|
Vanegas-Arroyave N, Jankovic J. Spinal cord stimulation for gait disturbances in Parkinson's disease. Expert Rev Neurother 2023; 23:651-659. [PMID: 37345383 DOI: 10.1080/14737175.2023.2228492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Gait disturbances are a major contributor to the disability associated with Parkinson's disease. Although pharmacologic therapies and deep brain stimulation improve most motor parkinsonian features, their effects on gait are highly variable. Spinal cord stimulation, typically used for the treatment of chronic pain, has emerged as a potential therapeutic approach to improve gait disturbances in Parkinson's disease. AREAS COVERED The authors review the available evidence on the effects of spinal cord stimulation in patients with Parkinson's disease, targeting primarily gait abnormalities. They also discuss possible mechanisms, safety, and methodological implications for future clinical trials. This systematic review of originally published articles in English language was performed using The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA).
Collapse
Affiliation(s)
- Nora Vanegas-Arroyave
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Breit S, Milosevic L, Naros G, Cebi I, Weiss D, Gharabaghi A. Structural-Functional Correlates of Response to Pedunculopontine Stimulation in a Randomized Clinical Trial for Axial Symptoms of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023:JPD225031. [PMID: 37092235 DOI: 10.3233/jpd-225031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND Axial symptoms of Parkinson's disease (PD) can be debilitating and are often refractory to conventional therapies such as dopamine replacement therapy and deep brain stimulation (DBS) of the subthalamic nuclei (STN). OBJECTIVE Evaluate the efficacy of bilateral DBS of the pedunculopontine nucleus area (PPNa) and investigate structural and physiological correlates of clinical response. METHODS A randomized, double-blind, cross-over clinical trial was employed to evaluate the efficacy of bilateral PPNa-DBS on axial symptoms. Lead positions and neuronal activity were evaluated with respect to clinical response. Connectomic cortical activation profiles were generated based on the volumes of tissue activated. RESULTS PPNa-DBS modestly improved (p = 0.057) axial symptoms in the medication-off condition, with greatest positive effects on gait symptoms (p = 0.027). Electrode placements towards the anterior commissure (ρ= 0.912; p = 0.011) or foramen caecum (ρ= 0.853; p = 0.031), near the 50% mark of the ponto-mesencephalic junction, yielded better therapeutic responses. Recording trajectories of patients with better therapeutic responses (i.e., more anterior electrode placements) had neurons with lower firing-rates (p = 0.003) and higher burst indexes (p = 0.007). Structural connectomic profiles implicated activation of fibers of the posterior parietal lobule which is involved in orienting behavior and locomotion. CONCLUSION Bilateral PPNa-DBS influenced gait symptoms in patients with PD. Anatomical and physiological information may aid in localization of a favorable stimulation target.
Collapse
Affiliation(s)
- Sorin Breit
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, and German Centre of Neurodegenerative Diseases (DZNE), University Hospital and University Tübingen, Tübingen, Germany
| | - Luka Milosevic
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
- Krembil Research Institute, Clinical and Computational Neuroscience, University Health Network, Toronto, Canada
| | - Georgios Naros
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Idil Cebi
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, and German Centre of Neurodegenerative Diseases (DZNE), University Hospital and University Tübingen, Tübingen, Germany
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Daniel Weiss
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, and German Centre of Neurodegenerative Diseases (DZNE), University Hospital and University Tübingen, Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Su ZH, Patel S, Gavine B, Buchanan T, Bogdanovic M, Sarangmat N, Green AL, Bloem BR, FitzGerald JJ, Antoniades CA. Deep Brain Stimulation and Levodopa Affect Gait Variability in Parkinson Disease Differently. Neuromodulation 2023; 26:382-393. [PMID: 35562261 DOI: 10.1016/j.neurom.2022.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/07/2022] [Accepted: 02/06/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Both dopaminergic medication and subthalamic nucleus (STN) deep brain stimulation (DBS) can improve the amplitude and speed of gait in Parkinson disease (PD), but relatively little is known about their comparative effects on gait variability. Gait irregularity has been linked to the degeneration of cholinergic neurons in the pedunculopontine nucleus (PPN). OBJECTIVES The STN and PPN have reciprocal connections, and we hypothesized that STN DBS might improve gait variability by modulating PPN function. Dopaminergic medication should not do this, and we therefore sought to compare the effects of medication and STN DBS on gait variability. MATERIALS AND METHODS We studied 11 patients with STN DBS systems on and off with no alteration to their medication, and 15 patients with PD without DBS systems on and off medication. Participants walked for two minutes in each state, wearing six inertial measurement units. Variability has previously often been expressed in terms of SD or coefficient of variation over a testing session, but these measures conflate long-term variability (eg, gradual slowing, which is not necessarily pathological) with short-term variability (true irregularity). We used Poincaré analysis to separate the short- and long-term variability. RESULTS DBS decreased short-term variability in lower limb gait parameters, whereas medication did not have this effect. In contrast, STN DBS had no effect on arm swing and trunk motion variability, whereas medication increased them, without obvious dyskinesia. CONCLUSIONS Our results suggest that STN DBS acts through a nondopaminergic mechanism to reduce gait variability. We believe that the most likely explanation is the retrograde activation of cholinergic PPN projection neurons.
Collapse
Affiliation(s)
- Zi H Su
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Salil Patel
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Bronwyn Gavine
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Marko Bogdanovic
- Oxford Functional Neurosurgery, John Radcliffe Hospital, Oxford, UK
| | | | - Alexander L Green
- Oxford Functional Neurosurgery, John Radcliffe Hospital, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Bastiaan R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - James J FitzGerald
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford Functional Neurosurgery, John Radcliffe Hospital, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Chrystalina A Antoniades
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Razmkon A, Abdollahifard S, Taherifard E, Roshanshad A, Shahrivar K. Effect of deep brain stimulation on freezing of gait in patients with Parkinson's disease: a systematic review. Br J Neurosurg 2023; 37:3-11. [PMID: 35603983 DOI: 10.1080/02688697.2022.2077308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND OBJECTIVES Freezing of gait (FOG) is a disabling gait disorder in patients with Parkinson's disease (PD), characterized by recurrent episodes of halting steps. Dopaminergic drugs are common treatments for PD and FOG; however, these drugs may worsen FOG. Deep brain stimulation (DBS) is another option used to treat selected patients. The device needs to be programmed at a specific frequency, amplitude, and pulse width to achieve optimum effects for each patient. This systematic review aimed to evaluate the efficacy of DBS for FOG and its correlation with programmed parameters and the location of the electrodes in the brain. MATERIALS AND METHODS Data for this systematic review were gathered from five online databases: Medline (via PubMed), Scopus, Embase, Web of Science, and Cochrane Library (including both Cochrane Reviews and Cochrane Trials) with a broad search strategy. We included those articles that reported clinical trials and a specific measurement for FOG. RESULTS This review included 13 studies of DBS that targeted the subthalamic nucleus (STN), substantia nigra (SNr), or pedunculopontine nucleus (PPN). Our analysis showed that low-frequency stimulation (LFS) was superior to high-frequency stimulation (HFS) for improving FOG. In the long term, the efficacy of both LFS and HFS decreased. The effect of amplitude was variable, and this parameter needed to be adjusted for each patient. Bilateral stimulation was better than unilateral stimulation. CONCLUSION DBS is a promising choice for the treatment of severe FOG in patients with PD. Bilateral, low-frequency stimulation combined with medical therapy is associated with better responses, especially in the first 2 years of treatment. However, individualizing the DBS parameters should be considered to optimize treatment response.
Collapse
Affiliation(s)
- Ali Razmkon
- Research Center for Neuromodulation and Pain, Shiraz, Iran.,Unite de Recherche Clinique du Centre Hospitalier Henri Laborit, Poitiers, France
| | - Saeed Abdollahifard
- Research Center for Neuromodulation and Pain, Shiraz, Iran.,Unite de Recherche Clinique du Centre Hospitalier Henri Laborit, Poitiers, France
| | - Erfan Taherifard
- Research Center for Neuromodulation and Pain, Shiraz, Iran.,Department of Master Public Health (MPH), School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Roshanshad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Master Public Health (MPH), School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamyab Shahrivar
- Research Center for Neuromodulation and Pain, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Revuelta GJ, Embry A, Elm JJ, Jenkins S, Lee P, Kautz S. A feasibility study of objective outcome measures used in clinical trials of freezing of gait. Pilot Feasibility Stud 2022; 8:137. [PMID: 35787816 PMCID: PMC9252072 DOI: 10.1186/s40814-022-01092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Freezing of gait (FOG) is notoriously difficult to quantify, which has led to the use of multiple markers as outcomes for clinical trials. The instrumented timed up and go (TUG) and the many parameters that can be derived from it are commonly used as objective markers of FOG severity in clinical trials; however, it is unknown if they represent actual FOG severity. OBJECTIVE To determine the specificity and responsiveness of objective surrogate markers of FOG severity commonly utilized in FOG studies. METHODS Study design: We compared the specificity and responsiveness of commonly used markers in FOG clinical trials. Markers compared included velocity, step/stride length, step/stride length variability, TUG, and turn duration. Data was collected in four conditions (ON and OFF dopaminergic drugs, with and without a dual task). Unified Parkinson's Disease Rating Scale (UPDRS) was administered in the ON and OFF states. RESULTS Thirty-three subjects were recruited (17 PD subjects without FOG (PD-control) and 16 subjects with PD and dopa-responsive FOG PD-FOG). The UPDRS motor scores were 24.9 for the PD-control group in the ON state, 24.8 for the FOG group in the ON state, and 42.4 for the FOG group in the OFF state. Significant mean differences between the ON and OFF conditions were observed with all surrogate markers (p < 0.01). However, only dual task turn duration and step variability showed trends toward significance when comparing PD-control and ON-FOG (p = 0.08). Test-retest reliability was high (ICC > 0.90) for all markers except standard deviations. Step length variability was the only marker to show an area under the ROC curve analysis > 0.70 comparing ON-FOG vs. PD-control. CONCLUSIONS Multiple candidate surrogate markers for FOG severity showed responsiveness to levodopa challenge; however, most were not specific for FOG severity.
Collapse
Affiliation(s)
- Gonzalo J Revuelta
- Movement Disorders Division, Department of Neurology, College of Medicine, Medical University of South Carolina, 208B Rutledge Avenue, MSC 108, Charleston, SC, 29425, USA.
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| | - Aaron Embry
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Center for Rehabilitation Research in Neurological Conditions, Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| | - Jordan J Elm
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Shonna Jenkins
- Movement Disorders Division, Department of Neurology, College of Medicine, Medical University of South Carolina, 208B Rutledge Avenue, MSC 108, Charleston, SC, 29425, USA
| | - Philip Lee
- Movement Disorders Division, Department of Neurology, College of Medicine, Medical University of South Carolina, 208B Rutledge Avenue, MSC 108, Charleston, SC, 29425, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Steve Kautz
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Center for Rehabilitation Research in Neurological Conditions, Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
15
|
Baumgartner AJ, Thompson JA, Kern DS, Ojemann SG. Novel targets in deep brain stimulation for movement disorders. Neurosurg Rev 2022; 45:2593-2613. [PMID: 35511309 DOI: 10.1007/s10143-022-01770-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 03/08/2022] [Indexed: 12/26/2022]
Abstract
The neurosurgical treatment of movement disorders, primarily via deep brain stimulation (DBS), is a rapidly expanding and evolving field. Although conventional targets including the subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) for Parkinson's disease and ventral intermediate nucleus of the thalams (VIM) for tremor provide substantial benefit in terms of both motor symptoms and quality of life, other targets for DBS have been explored in an effort to maximize clinical benefit and also avoid undesired adverse effects associated with stimulation. These novel targets primarily include the rostral zona incerta (rZI), caudal zona incerta (cZI)/posterior subthalamic area (PSA), prelemniscal radiation (Raprl), pedunculopontine nucleus (PPN), substantia nigra pars reticulata (SNr), centromedian/parafascicular (CM/PF) nucleus of the thalamus, nucleus basalis of Meynert (NBM), dentato-rubro-thalamic tract (DRTT), dentate nucleus of the cerebellum, external segment of the globus pallidus (GPe), and ventral oralis (VO) complex of the thalamus. However, reports of outcomes utilizing these targets are scattered and disparate. In order to provide a comprehensive resource for researchers and clinicians alike, we have summarized the existing literature surrounding these novel targets, including rationale for their use, neurosurgical techniques where relevant, outcomes and adverse effects of stimulation, and future directions for research.
Collapse
Affiliation(s)
| | - John A Thompson
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Drew S Kern
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Steven G Ojemann
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA.
| |
Collapse
|
16
|
Yu K, Ren Z, Hu Y, Guo S, Ye X, Li J, Li Y. Efficacy of caudal pedunculopontine nucleus stimulation on postural instability and gait disorders in Parkinson's disease. Acta Neurochir (Wien) 2022; 164:575-585. [PMID: 35029762 DOI: 10.1007/s00701-022-05117-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/06/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Gait-related symptoms like postural instability and gait disorders (PIGD) inexorably worsen with Parkinson's disease (PD) deterioration and become refractory to current available medical treatment and deep brain stimulation (DBS) of conventional targets. Pedunculopontine nucleus (PPN) deep brain stimulation (DBS) is a promising method to treat PIGD. This prospective study aimed to clarify the clinical application of PPN-DBS and to explore effects of caudal PPN stimulation on PIGD. METHODS Five consecutive PD patients with severe medication-resistant postural instability and gait disorders accepted caudal PPN-DBS. LEAD-DBS toolbox was used to reconstruct and visualize the electrodes based on pre- and postoperative images. Outcomes were assessed with Movement Disorder Society (MDS)-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS), gait-specific questionnaires, and objective gait analysis with GAITRite system. RESULTS MDS-UPDRS subitems 35-38 scores were improved at postoperative 6 months (mean, 4.40 vs 11.00; p = 0.0006) and 12 months (mean, 5.60 vs 11.00; p = 0.0013) compared with baseline, and scores at 6 months were slightly lower than scores at 12 months (mean, 4.40 vs 5.60; p = 0.0116). Gait and Falls Questionnaire, New Freezing of Gait Questionnaire, and Falls Questionnaire scores also significantly improved at postoperative 6 months and 12 months compared with baseline. In addition, cadence, bilateral step length, and bilateral stride length significantly increased when PPN On-stimulation compared with Off-stimulation. CONCLUSIONS This study suggested that caudal PPN low-frequency stimulation improved PIGD for PD patients at the 6- and 12-month period.
Collapse
Affiliation(s)
- Kaijia Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Zhiwei Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yongsheng Hu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Song Guo
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Xiaofan Ye
- Department of Neurosurgery, The University of Hong Kong - Shenzhen Hospital, Shenzhen, 518040, China
| | - Jianyu Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Yongjie Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| |
Collapse
|
17
|
Braun Janzen T, Koshimori Y, Richard NM, Thaut MH. Rhythm and Music-Based Interventions in Motor Rehabilitation: Current Evidence and Future Perspectives. Front Hum Neurosci 2022; 15:789467. [PMID: 35111007 PMCID: PMC8801707 DOI: 10.3389/fnhum.2021.789467] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Research in basic and clinical neuroscience of music conducted over the past decades has begun to uncover music’s high potential as a tool for rehabilitation. Advances in our understanding of how music engages parallel brain networks underpinning sensory and motor processes, arousal, reward, and affective regulation, have laid a sound neuroscientific foundation for the development of theory-driven music interventions that have been systematically tested in clinical settings. Of particular significance in the context of motor rehabilitation is the notion that musical rhythms can entrain movement patterns in patients with movement-related disorders, serving as a continuous time reference that can help regulate movement timing and pace. To date, a significant number of clinical and experimental studies have tested the application of rhythm- and music-based interventions to improve motor functions following central nervous injury and/or degeneration. The goal of this review is to appraise the current state of knowledge on the effectiveness of music and rhythm to modulate movement spatiotemporal patterns and restore motor function. By organizing and providing a critical appraisal of a large body of research, we hope to provide a revised framework for future research on the effectiveness of rhythm- and music-based interventions to restore and (re)train motor function.
Collapse
Affiliation(s)
- Thenille Braun Janzen
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Yuko Koshimori
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, CAMH, Toronto, ON, Canada
| | - Nicole M. Richard
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Faculty of Music, Belmont University, Nashville, TN, United States
| | - Michael H. Thaut
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- *Correspondence: Michael H. Thaut,
| |
Collapse
|
18
|
Horn MA, Gulberti A, Hidding U, Gerloff C, Hamel W, Moll CKE, Pötter-Nerger M. Comparison of Shod and Unshod Gait in Patients With Parkinson's Disease With Subthalamic and Nigral Stimulation. Front Hum Neurosci 2022; 15:751242. [PMID: 35095446 PMCID: PMC8790533 DOI: 10.3389/fnhum.2021.751242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Background: The Parkinsonian [i.e., Parkinson's disease (PD)] gait disorder represents a therapeutical challenge with residual symptoms despite the use of deep brain stimulation of the subthalamic nucleus (STN DBS) and medical and rehabilitative strategies. The aim of this study was to assess the effect of different DBS modes as combined stimulation of the STN and substantia nigra (STN+SN DBS) and environmental rehabilitative factors as footwear on gait kinematics.Methods: This single-center, randomized, double-blind, crossover clinical trial assessed shod and unshod gait in patients with PD with medication in different DBS conditions (i.e., STIM OFF, STN DBS, and STN+SN DBS) during different gait tasks (i.e., normal gait, fast gait, and gait during dual task) and compared gait characteristics to healthy controls. Notably, 15 patients participated in the study, and 11 patients were analyzed after a dropout of four patients due to DBS-induced side effects.Results: Gait was modulated by both factors, namely, footwear and DBS mode, in patients with PD. Footwear impacted gait characteristics in patients with PD similarly to controls with longer step length, lower cadence, and shorter single-support time. Interestingly, DBS exerted specific effects depending on gait tasks with increased cognitive load. STN+SN DBS was the most efficient DBS mode compared to STIM OFF and STN DBS with intense effects as step length increment during dual task.Conclusion: The PD gait disorder is a multifactorial symptom, impacted by environmental factors as footwear and modulated by DBS. DBS effects on gait were specific depending on the gait task, with the most obvious effects with STN+SN DBS during gait with increased cognitive load.
Collapse
Affiliation(s)
- Martin A. Horn
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Gulberti
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ute Hidding
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian K. E. Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Monika Pötter-Nerger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Monika Pötter-Nerger
| |
Collapse
|
19
|
Yin Z, Zhu G, Liu Y, Zhao B, Liu D, Bai Y, Zhang Q, Shi L, Feng T, Yang A, Liu H, Meng F, Neumann WJ, Kühn AA, Jiang Y, Zhang J. OUP accepted manuscript. Brain 2022; 145:2407-2421. [PMID: 35441231 PMCID: PMC9337810 DOI: 10.1093/brain/awac121] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022] Open
Abstract
Freezing of gait is a debilitating symptom in advanced Parkinson’s disease and responds heterogeneously to treatments such as deep brain stimulation. Recent studies indicated that cortical dysfunction is involved in the development of freezing, while evidence depicting the specific role of the primary motor cortex in the multi-circuit pathology of freezing is lacking. Since abnormal beta-gamma phase-amplitude coupling recorded from the primary motor cortex in patients with Parkinson’s disease indicates parkinsonian state and responses to therapeutic deep brain stimulation, we hypothesized this metric might reveal unique information on understanding and improving therapy for freezing of gait. Here, we directly recorded potentials in the primary motor cortex using subdural electrocorticography and synchronously captured gait freezing using optoelectronic motion-tracking systems in 16 freely-walking patients with Parkinson’s disease who received subthalamic nucleus deep brain stimulation surgery. Overall, we recorded 451 timed up-and-go walking trials and quantified 7073 s of stable walking and 3384 s of gait freezing in conditions of on/off-stimulation and with/without dual-tasking. We found that (i) high beta-gamma phase-amplitude coupling in the primary motor cortex was detected in freezing trials (i.e. walking trials that contained freezing), but not non-freezing trials, and the high coupling in freezing trials was not caused by dual-tasking or the lack of movement; (ii) non-freezing episodes within freezing trials also demonstrated abnormally high couplings, which predicted freezing severity; (iii) deep brain stimulation of subthalamic nucleus reduced these abnormal couplings and simultaneously improved freezing; and (iv) in trials that were at similar coupling levels, stimulation trials still demonstrated lower freezing severity than no-stimulation trials. These findings suggest that elevated phase-amplitude coupling in the primary motor cortex indicates higher probabilities of freezing. Therapeutic deep brain stimulation alleviates freezing by both decoupling cortical oscillations and enhancing cortical resistance to abnormal coupling. We formalized these findings to a novel ‘bandwidth model,’ which specifies the role of cortical dysfunction, cognitive burden and therapeutic stimulation on the emergence of freezing. By targeting key elements in the model, we may develop next-generation deep brain stimulation approaches for freezing of gait.
Collapse
Affiliation(s)
| | | | | | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Defeng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Quan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huanguang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Wolf Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité—Campus Mitte, Charite—Universitatsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité—Campus Mitte, Charite—Universitatsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
- Berlin School of Mind and Brain, Charite—Universitatsmedizin Berlin, Unter den Linden 6, 10099 Berlin, Germany
- NeuroCure, Charite—Universitatsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Yin Jiang
- Correspondence may also be addressed to: Dr Yin Jiang Capital Medical University Department of Functional Neurosurgery, Beijing Neurosurgical Institute No. 119 South 4208 Ring West Road Fengtai District, 100070 Beijing, China E-mail:
| | - Jianguo Zhang
- Correspondence to: Prof. Dr Jianguo Zhang Capital Medical University Department of Neurosurgery, Beijing Tiantan Hospital No. 119 South 4th Ring West Road Fengtai District, 100070 Beijing, China E-mail:
| |
Collapse
|
20
|
Bourilhon J, Olivier C, You H, Collomb-Clerc A, Grabli D, Belaid H, Mullie Y, François C, Czernecki V, Lau B, Pérez-García F, Bardinet E, Fernandez-Vidal S, Karachi C, Welter ML. Pedunculopontine and Cuneiform Nuclei Deep Brain Stimulation for Severe Gait and Balance Disorders in Parkinson's Disease: Interim Results from a Randomised Double-Blind Clinical Trial. JOURNAL OF PARKINSONS DISEASE 2021; 12:639-653. [PMID: 34744048 DOI: 10.3233/jpd-212793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Dopa-resistant freezing of gait (FOG) and falls represent the dominant motor disabilities in advanced Parkinson's disease (PD). OBJECTIVE We investigate the effects of deep brain stimulation (DBS) of the mesencephalic locomotor region (MLR), comprised of the pedunculopontine (PPN) and cuneiform (CuN) nuclei, for treating gait and balance disorders, in a randomized double-blind cross-over trial. METHODS Six PD patients with dopa-resistant FOG and/or falls were operated for MLR-DBS. Patients received three DBS conditions, PPN, CuN, or sham, in a randomized order for 2-months each, followed by an open-label phase. The primary outcome was the change in anteroposterior anticipatory-postural-adjustments (APAs) during gait initiation on a force platformResults:The anteroposterior APAs were not significantly different between the DBS conditions (median displacement [1st-3rd quartile] of 3.07 [3.12-4.62] cm with sham-DBS, 1.95 [2.29-3.85] cm with PPN-DBS and 2.78 [1.66-4.04] cm with CuN-DBS; p = 0.25). Step length and velocity were significantly higher with CuN-DBS vs. both sham-DBS and PPN-DBS. Conversely, step length and velocity were lower with PPN-DBS vs. sham-DBS, with greater double stance and gait initiation durations. One year after surgery, step length was significantly lower with PPN-DBS vs. inclusion. We did not find any significant change in clinical scales between DBS conditions or one year after surgery. CONCLUSION Two months of PPN-DBS or CuN-DBS does not effectively improve clinically dopa-resistant gait and balance disorders in PD patients.
Collapse
Affiliation(s)
- Julie Bourilhon
- Department of Neurophysiology, Rouen UniversityHospital and University of Rouen, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France PANAM platform, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France
| | - Claire Olivier
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France PANAM platform, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France.,PANAM platform, Institut du Cerveau et de la Moelle É14 pinière (ICM), Paris, France
| | - Hana You
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France PANAM platform, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France.,Clinical Investigation Center, Pitié-Salpêtrière, Charles Foix University Hospital, Assistance Publique-Hôpitaux de Paris, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France
| | - Antoine Collomb-Clerc
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France PANAM platform, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France
| | - David Grabli
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France PANAM platform, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France.,Fédération des Maladies du Système Nerveux, Pitié-Salpêtrière, Charles Foix University Hospital, Assistance Publique-Hôpitaux de Paris Paris, Paris, France
| | - Hayat Belaid
- Department of Neurosurgery, Pitié-Salpêtrière, Charles Foix University Hospital, Assistance Publique-Hôpitaux Paris, Paris, France
| | - Yannick Mullie
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France PANAM platform, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France
| | - Chantal François
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France PANAM platform, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France
| | - Virginie Czernecki
- Fédération des Maladies du Système Nerveux, Pitié-Salpêtrière, Charles Foix University Hospital, Assistance Publique-Hôpitaux de Paris Paris, Paris, France
| | - Brian Lau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France PANAM platform, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France
| | - Fernando Pérez-García
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France PANAM platform, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France.,CENIR Platform, Institut du Cerveau et de la Moelle É22 pinière (ICM), Paris, France
| | - Eric Bardinet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France PANAM platform, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France.,CENIR Platform, Institut du Cerveau et de la Moelle É22 pinière (ICM), Paris, France
| | - Sara Fernandez-Vidal
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France PANAM platform, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France.,STIM Platform, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France
| | - Carine Karachi
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France PANAM platform, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France.,Department of Neurosurgery, Pitié-Salpêtrière, Charles Foix University Hospital, Assistance Publique-Hôpitaux Paris, Paris, France
| | - Marie-Laure Welter
- Department of Neurophysiology, Rouen UniversityHospital and University of Rouen, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France PANAM platform, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France
| |
Collapse
|
21
|
Insola A, Mazzone P, Della Marca G, Capozzo A, Vitale F, Scarnati E. Pedunculopontine tegmental Nucleus-evoked prepulse inhibition of the blink reflex in Parkinson's disease. Clin Neurophysiol 2021; 132:2729-2738. [PMID: 34417108 DOI: 10.1016/j.clinph.2021.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the effects on the blink reflex (BR) of single stimuli applied to the pedunculopontine tegmental nucleus (PPTg). METHODS The BR was evoked by stimulating the supraorbital nerve (SON) in fifteen patients suffering from idiopathic Parkinson's disease (PD) who had electrodes monolaterally or bilaterally implanted in the PPTg for deep brain stimulation (DBS). Single stimuli were delivered to the PPTg through externalized electrode connection wires 3-4 days following PPTg implantation. RESULTS PPTg stimuli increased the latency and reduced duration, amplitude and area of the R2 component of the BR in comparison to the response recorded in the absence of PPTg stimulation. These effects were independent of the side of SON stimulation and were stable for interstimulus interval (ISI) between PPTg prepulse and SON stimulus from 0 to 110 ms. The PPTg-induced prepulse inhibition of the BR was bilaterally present in the brainstem. The R1 component was unaffected. CONCLUSIONS The prepulse inhibition of the R2 component may be modulated by the PPTg. SIGNIFICANCE These findings suggest that abnormalities of BR occurring in PD may be ascribed to a reduction of basal ganglia-mediated inhibition of brainstem excitability.
Collapse
Affiliation(s)
- Angelo Insola
- Clinical Neurophysiopathology, CTO Andrea Alesini Hospital, ASL Roma 2, Via San Nemesio 21, 00145 Rome, Italy.
| | - Paolo Mazzone
- Functional and Stereotactic Neurosurgery, CTO Andrea Alesini Hospital, ASL Roma 2, Via San Nemesio 21, 00145 Rome, Italy
| | - Giacomo Della Marca
- Institute of Neurology, Catholic University, Largo A.Gemelli 8, 00168 Rome, Italy
| | - Annamaria Capozzo
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| | - Flora Vitale
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| | - Eugenio Scarnati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| |
Collapse
|
22
|
Tractography patterns of pedunculopontine nucleus deep brain stimulation. J Neural Transm (Vienna) 2021; 128:659-670. [PMID: 33779812 PMCID: PMC8105200 DOI: 10.1007/s00702-021-02327-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/08/2021] [Indexed: 11/11/2022]
Abstract
Deep brain stimulation of the pedunculopontine nucleus is a promising surgical procedure for the treatment of Parkinsonian gait and balance dysfunction. It has, however, produced mixed clinical results that are poorly understood. We used tractography with the aim to rationalise this heterogeneity. A cohort of eight patients with postural instability and gait disturbance (Parkinson’s disease subtype) underwent pre-operative structural and diffusion MRI, then progressed to deep brain stimulation targeting the pedunculopontine nucleus. Pre-operative and follow-up assessments were carried out using the Gait and Falls Questionnaire, and Freezing of Gait Questionnaire. Probabilistic diffusion tensor tractography was carried out between the stimulating electrodes and both cortical and cerebellar regions of a priori interest. Cortical surface reconstructions were carried out to measure cortical thickness in relevant areas. Structural connectivity between stimulating electrode and precentral gyrus (r = 0.81, p = 0.01), Brodmann areas 1 (r = 0.78, p = 0.02) and 2 (r = 0.76, p = 0.03) were correlated with clinical improvement. A negative correlation was also observed for the superior cerebellar peduncle (r = −0.76, p = 0.03). Lower cortical thickness of the left parietal lobe and bilateral premotor cortices were associated with greater pre-operative severity of symptoms. Both motor and sensory structural connectivity of the stimulated surgical target characterises the clinical benefit, or lack thereof, from surgery. In what is a challenging region of brainstem to effectively target, these results provide insights into how this can be better achieved. The mechanisms of action are likely to have both motor and sensory components, commensurate with the probable nature of the underlying dysfunction.
Collapse
|
23
|
Hurt CP, Kuhman DJ, Guthrie BL, Lima CR, Wade M, Walker HC. Walking Speed Reliably Measures Clinically Significant Changes in Gait by Directional Deep Brain Stimulation. Front Hum Neurosci 2021; 14:618366. [PMID: 33584227 PMCID: PMC7879982 DOI: 10.3389/fnhum.2020.618366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction: Although deep brain stimulation (DBS) often improves levodopa-responsive gait symptoms, robust therapies for gait dysfunction from Parkinson's disease (PD) remain a major unmet need. Walking speed could represent a simple, integrated tool to assess DBS efficacy but is often not examined systematically or quantitatively during DBS programming. Here we investigate the reliability and functional significance of changes in gait by directional DBS in the subthalamic nucleus. Methods: Nineteen patients underwent unilateral subthalamic nucleus DBS surgery with an eight-contact directional lead (1-3-3-1 configuration) in the most severely affected hemisphere. They arrived off dopaminergic medications >12 h preoperatively and for device activation 1 month after surgery. We measured a comfortable walking speed using an instrumented walkway with DBS off and at each of 10 stimulation configurations (six directional contacts, two virtual rings, and two circular rings) at the midpoint of the therapeutic window. Repeated measures of ANOVA contrasted preoperative vs. maximum and minimum walking speeds across DBS configurations during device activation. Intraclass correlation coefficients examined walking speed reliability across the four trials within each DBS configuration. We also investigated whether changes in walking speed related to modification of step length vs. cadence with a one-sample t-test. Results: Mean comfortable walking speed improved significantly with DBS on vs. both DBS off and minimum speeds with DBS on (p < 0.001, respectively). Pairwise comparisons showed no significant difference between DBS off and minimum comfortable walking speed with DBS on (p = 1.000). Intraclass correlations were ≥0.949 within each condition. Changes in comfortable walk speed were conferred primarily by changes in step length (p < 0.004). Conclusion: Acute assessment of walking speed is a reliable, clinically meaningful measure of gait function during DBS activation. Directional and circular unilateral subthalamic DBS in appropriate configurations elicit acute and clinically significant improvements in gait dysfunction related to PD. Next-generation directional DBS technologies have significant potential to enhance gait by individually tailoring stimulation parameters to optimize efficacy.
Collapse
Affiliation(s)
- Christopher P Hurt
- Rehabilitation Sciences, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daniel J Kuhman
- Rehabilitation Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Barton L Guthrie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Carla R Lima
- Rehabilitation Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Melissa Wade
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harrison C Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
24
|
Sui Y, Tian Y, Ko WKD, Wang Z, Jia F, Horn A, De Ridder D, Choi KS, Bari AA, Wang S, Hamani C, Baker KB, Machado AG, Aziz TZ, Fonoff ET, Kühn AA, Bergman H, Sanger T, Liu H, Haber SN, Li L. Deep Brain Stimulation Initiative: Toward Innovative Technology, New Disease Indications, and Approaches to Current and Future Clinical Challenges in Neuromodulation Therapy. Front Neurol 2021; 11:597451. [PMID: 33584498 PMCID: PMC7876228 DOI: 10.3389/fneur.2020.597451] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023] Open
Abstract
Deep brain stimulation (DBS) is one of the most important clinical therapies for neurological disorders. DBS also has great potential to become a great tool for clinical neuroscience research. Recently, the National Engineering Laboratory for Neuromodulation at Tsinghua University held an international Deep Brain Stimulation Initiative workshop to discuss the cutting-edge technological achievements and clinical applications of DBS. We specifically addressed new clinical approaches and challenges in DBS for movement disorders (Parkinson's disease and dystonia), clinical application toward neurorehabilitation for stroke, and the progress and challenges toward DBS for neuropsychiatric disorders. This review highlighted key developments in (1) neuroimaging, with advancements in 3-Tesla magnetic resonance imaging DBS compatibility for exploration of brain network mechanisms; (2) novel DBS recording capabilities for uncovering disease pathophysiology; and (3) overcoming global healthcare burdens with online-based DBS programming technology for connecting patient communities. The successful event marks a milestone for global collaborative opportunities in clinical development of neuromodulation to treat major neurological disorders.
Collapse
Affiliation(s)
- Yanan Sui
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Ye Tian
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Wai Kin Daniel Ko
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Zhiyan Wang
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Fumin Jia
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Andreas Horn
- Charité, Department of Neurology, Movement Disorders and Neuromodulation Unit, University Medicine Berlin, Berlin, Germany
| | - Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ki Sueng Choi
- Department of Psychiatry and Behavioural Science, Emory University, Atlanta, GA, United States.,Department of Radiology, Mount Sinai School of Medicine, New York, NY, United States.,Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY, United States
| | - Ausaf A Bari
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andre G Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Tipu Z Aziz
- Department of Neurosurgery, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Erich Talamoni Fonoff
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil.,Hospital Sírio-Libanês and Hospital Albert Einstein, São Paulo, Brazil
| | - Andrea A Kühn
- Charité, Department of Neurology, Movement Disorders and Neuromodulation Unit, University Medicine Berlin, Berlin, Germany
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research (ELSC), The Hebrew University and Department of Neurosurgery, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Terence Sanger
- University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Hesheng Liu
- Department of Neuroscience, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY, United States.,McLean Hospital and Harvard Medical School, Belmont, MA, United States
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| |
Collapse
|
25
|
Smith MD, Brazier DE, Henderson EJ. Current Perspectives on the Assessment and Management of Gait Disorders in Parkinson's Disease. Neuropsychiatr Dis Treat 2021; 17:2965-2985. [PMID: 34584414 PMCID: PMC8464370 DOI: 10.2147/ndt.s304567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/25/2021] [Indexed: 12/31/2022] Open
Abstract
Gait dysfunction is a key defining feature of Parkinson's disease (PD), and is associated with symptoms of freezing and an increased risk of falls. In this narrative review, we cover the putative mechanisms of gait dysfunction in PD, the assessment of gait abnormalities, and the management of symptoms caused by the inherent difficulty in walking. Our understanding of the causes of gait problems in PD has progressed in recent times, moving from neurocognitive theory to correlates of affected neuronal pathways. In particular, this can be shown to correspond with abnormalities in responses to dual-task paradigms and dysfunction in cholinergic signaling. Great progress has been made in the sophistication and precision of gait assessment; however, it has firmly remained in the research domain. There is significant momentum behind wearable technologies that can be used by patients in their own environment, acting as digital biomarkers that can not only reflect progression but also independently discriminate PD from non-PD individuals. The treatment of gait dysfunction has historically relied on physical therapies and training combined with a view to mitigating the impact of such consequences as falls. Pharmacological therapies that are the mainstay of treatment in PD have tended to address symptoms like bradykinesia; however, optimization of dopaminergic therapies likely has a positive effect on quality of gait. Other targets have been assessed with the goal of improving gait, of which medications that improve cholinergic signaling appear most promising. Neuromodulation techniques are increasingly used in the form of deep-brain stimulation; however, standard targets, such as the globus pallidus interna, have a modest effect on gait. Considerable benefit has been seen through targeting the pedunculopontine nucleus, and a dual-target approach may be warranted. Stimulation of the spinal cord and brain through direct or magnetic approaches has been assessed, but requires further evidence.
Collapse
Affiliation(s)
- Matthew D Smith
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,Older People's Unit, Royal United Hospital NHS Foundation Trust, Bath, UK
| | - Danielle E Brazier
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emily J Henderson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,Older People's Unit, Royal United Hospital NHS Foundation Trust, Bath, UK
| |
Collapse
|
26
|
Nobleza CMN, Siddiqui M, Shah PV, Balani P, Lopez AR, Khan S. The Relationship of Rapid Eye Movement Sleep Behavior Disorder and Freezing of Gait in Parkinson's Disease. Cureus 2020; 12:e12385. [PMID: 33532150 PMCID: PMC7846434 DOI: 10.7759/cureus.12385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rapid eye movement sleep behavior disorder (RBD) contributes to injury due to the alteration of the expected atonia during rapid eye movement (REM) sleep. It occurs before the overt signs of Parkinson's disease (PD). The co-expression of PD and RBD is characterized by non-tremor predominant subtype and higher incidence of freezing. Freezing of gait (FOG) is a debilitating symptom seen in PD patients that lead to falls. While this phenomenon is understood poorly, the involvement of the pedunculopontine nucleus (PPN) and the neural circuits that control locomotion and gait have been examined. This network has also the same control for REM sleep and arousal. The close relationship between PD and RBD and FOG's consequences has led us to explore the relationship between RBD and PD with FOG. This review provides an overview of the neural connections that control gait, locomotion, and REM sleep. The neural changes were seen in PD with FOG and RBD, and sensory and motor changes observed in these two diseases. The functional neuroanatomy that controls REM sleep, arousal, and locomotion overlap significantly with multiple neural circuits affected in RBD and PD with FOG. Visual perception dysfunction and motor symptoms that primarily affect gait initiation are common to both patients with RBD and FOG in PD, leading to freezing episodes. Prospective studies should be conducted to elucidate the relationship of RBD and PD with FOG subtype and find innovative treatment approaches and diagnostic tools for PD with FOG.
Collapse
Affiliation(s)
- Chelsea Mae N Nobleza
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mariah Siddiqui
- Neurology, St. George's University, True Blue, GRD.,Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Parth V Shah
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Prachi Balani
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Angel R Lopez
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
27
|
Yu K, Ren Z, Guo S, Li J, Li Y. Effects of pedunculopontine nucleus deep brain stimulation on gait disorders in Parkinson's Disease: A meta-analysis of the literature. Clin Neurol Neurosurg 2020; 198:106108. [PMID: 32763669 DOI: 10.1016/j.clineuro.2020.106108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The pedunculopontine nucleus (PPN) is considered a promising target to alleviate gait disorders. We aimed to evaluate the effects of PPN stimulation on motor symptoms and gait disorders in patients with Parkinson's disease (PD) to help assess the potential role of PPN-DBS treatment in gait disorders. METHODS Studies were searched for low-frequency PPN stimulation to treat gait disorders and freezing of gait (FOG) in the PubMed, Embase, Cochrane Library, Web of Science, and ClinicalKey up to April 2020. Outcomes of Unified Parkinson's Disease Rating Scale (UPDRS) part III, subitems 27-30; UPDRS subitems 13 and 14; the Freezing of Gait Questionnaire (FOGQ), and the Gait and Falls Questionnaire (GFQ) were extracted and evaluated during PPN On-stimulation compared to preoperation or Off-stimulation in both Off- and On-medication states. RESULTS There was a significant improvement in subitems 27-30 with PPN On-stimulation versus Off-stimulation in Off-medication and On-medication states, but no improvement in UPDRS part III. The occurrence of FOG and falls also declined between PPN On-stimulation and presurgery, with a significant improvement in subitem 13 and subitem 14 in Off-medication and On-medication states, GFQ, and FQGQ. Heterogeneity in stimulation frequency, follow-up, electrode location, and unilateral or bilateral stimulation existed among the included studies. CONCLUSIONS In some conditions and in some selective PD patients, low-frequency PPN-DBS has beneficial effects on FOG and falls but no wider benefits on rigidity, resting tremor, or bradykinesia.
Collapse
Affiliation(s)
- Kaijia Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Zhiwei Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Song Guo
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Jianyu Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China.
| | - Yongjie Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| |
Collapse
|
28
|
Gao C, Liu J, Tan Y, Chen S. Freezing of gait in Parkinson's disease: pathophysiology, risk factors and treatments. Transl Neurodegener 2020; 9:12. [PMID: 32322387 PMCID: PMC7161193 DOI: 10.1186/s40035-020-00191-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background Freezing of gait (FOG) is a common, disabling symptom of Parkinson's disease (PD), but the mechanisms and treatments of FOG remain great challenges for clinicians and researchers. The main focus of this review is to summarize the possible mechanisms underlying FOG, the risk factors for screening and predicting the onset of FOG, and the clinical trials involving various therapeutic strategies. In addition, the limitations and recommendations for future research design are also discussed. Main body In the mechanism section, we briefly introduced the physiological process of gait control and hypotheses about the mechanism of FOG. In the risk factor section, gait disorders, PIGD phenotype, lower striatal DAT uptake were found to be independent risk factors of FOG with consistent evidence. In the treatment section, we summarized the clinical trials of pharmacological and non-pharmacological treatments. Despite the limited effectiveness of current medications for FOG, especially levodopa resistant FOG, there were some drugs that showed promise such as istradefylline and rasagiline. Non-pharmacological treatments encompass invasive brain and spinal cord stimulation, noninvasive repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) and vagus nerve stimulation (VNS), and physiotherapeutic approaches including cues and other training strategies. Several novel therapeutic strategies seem to be effective, such as rTMS over supplementary motor area (SMA), dual-site DBS, spinal cord stimulation (SCS) and VNS. Of physiotherapy, wearable cueing devices seem to be generally effective and promising. Conclusion FOG model hypotheses are helpful for better understanding and characterizing FOG and they provide clues for further research exploration. Several risk factors of FOG have been identified, but need combinatorial optimization for predicting FOG more precisely. Although firm conclusions cannot be drawn on therapeutic efficacy, the literature suggested that some therapeutic strategies showed promise.
Collapse
Affiliation(s)
- Chao Gao
- 1Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- 1Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyan Tan
- 1Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- 1Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province China
| |
Collapse
|
29
|
Lin F, Wu D, Lin C, Cai H, Chen L, Cai G, Ye Q, Cai G. Pedunculopontine Nucleus Deep Brain Stimulation Improves Gait Disorder in Parkinson's Disease: A Systematic Review and Meta-analysis. Neurochem Res 2020; 45:709-719. [PMID: 31950450 DOI: 10.1007/s11064-020-02962-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/17/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) has been proposed as a treatment strategy for gait disorder in patients with Parkinson's disease (PD). We thus performed a systematic review and meta-analysis of randomized and nonrandomized controlled trials to assess the effect of this treatment on gait disorder in patients with PD. We systematically searched PubMed, Cochrane, Web of Knowledge, Wan Fang and WIP for randomized and nonrandomized controlled trials (published before July 29, 2014; no language restrictions) comparing PPN-DBS with other treatments. We assessed pooled data using a random effects model and a fixed effects model. Of 130 identified studies, 14 were eligible and were included in our analysis (N = 82 participants). Compared to those presurgery, the Unified Parkinson Disease Rating Scale (UPDRS) 27-30 scores for patients were lowered by PPN-DBS [3.94 (95% confidence interval, CI = 1.23 to 6.65)]. The UPDRS 13 and 14 scores did not improve with levodopa treatment [0.43 (- 0.35 to 1.20); 0.35 (- 0.50 to 1.19)], whereas the UPDRS 27-30 scores could be improved by the therapy [1.42 (95% CI 0.34 to 2.51)]. The Gait and Falls Questionnaire and UPDRS 13 and 14 scores showed significant improvements after PPN-DBS under the medication-off (MED-OFF) status [15.44 (95% CI = 8.44 to 22.45); 1.57 (95% CI = 0.84 to 2.30); 1.34 (95% CI = 0.84 to 1.84)]. PPN-DBS is a potential therapeutic target that could improve gait and fall disorders in patients with PD. Our findings will help improve the clinical application of DBS in PD patients with gait disorder.
Collapse
Affiliation(s)
- Fabin Lin
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.,Department of Clinical Medical, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Dihang Wu
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.,Department of Clinical Medical, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Chenxin Lin
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.,Department of Clinical Medical, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Huihui Cai
- Department of Clinical Medical, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Lina Chen
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Guofa Cai
- College of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
30
|
Chambers NE, Lanza K, Bishop C. Pedunculopontine Nucleus Degeneration Contributes to Both Motor and Non-Motor Symptoms of Parkinson's Disease. Front Pharmacol 2020; 10:1494. [PMID: 32009944 PMCID: PMC6974690 DOI: 10.3389/fphar.2019.01494] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by hypokinetic motor features; however, patients also display non-motor symptoms like sleep disorders. The standard treatment for PD is dopamine replacement with L-DOPA; however, symptoms including gait deficits and sleep disorders are unresponsive to L-DOPA. Notably, these symptoms have been linked to aberrant activity in the pedunculopontine nucleus (PPN). Of late, clinical trials involving PPN deep brain stimulation (DBS) have been employed to alleviate gait deficits. Although preclinical evidence implicating PPN cholinergic neurons in gait dysfunction was initially promising, DBS trials fell short of expected outcomes. One reason for the failure of DBS may be that the PPN is a heterogenous nucleus that consists of GABAergic, cholinergic, and glutamatergic neurons that project to a diverse array of brain structures. Second, DBS trials may have been unsuccessful because PPN neurons are susceptible to mitochondrial dysfunction, Lewy body pathology, and degeneration in PD. Therefore, pharmaceutical or gene-therapy strategies targeting specific PPN neuronal populations or projections could better alleviate intractable PD symptoms. Unfortunately, how PPN neuronal populations and their respective projections influence PD motor and non-motor symptoms remains enigmatic. Herein, we discuss normal cellular and neuroanatomical features of the PPN, the differential susceptibility of PPN neurons to PD-related insults, and we give an overview of literature suggesting a role for PPN neurons in motor and sleep deficits in PD. Finally, we identify future approaches directed towards the PPN for the treatment of PD motor and sleep symptoms.
Collapse
Affiliation(s)
| | | | - Christopher Bishop
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
31
|
Pieruccini‐Faria F, Sarquis‐Adamson Y, Anton‐Rodrigo I, Noguerón‐García A, Bray NW, Camicioli R, Muir‐Hunter SW, Speechley M, McIlroy B, Montero‐Odasso M. Mapping Associations Between Gait Decline and Fall Risk in Mild Cognitive Impairment. J Am Geriatr Soc 2019; 68:576-584. [DOI: 10.1111/jgs.16265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Frederico Pieruccini‐Faria
- Gait and Brain LaboratoryParkwood Institute and Lawson Health Research InstituteUniversity of Western Ontario London Ontario Canada
- Division of Geriatric Medicine, Department of Medicine, Schulich School of Medicine and DentistryUniversity of Western Ontario London Ontario Canada
| | - Yanina Sarquis‐Adamson
- Gait and Brain LaboratoryParkwood Institute and Lawson Health Research InstituteUniversity of Western Ontario London Ontario Canada
| | - Ivan Anton‐Rodrigo
- Department of Geriatric MedicineMatia Fundazioa, Hospital Ricardo Bermingham San Sebastian Spain
| | | | - Nick W. Bray
- Gait and Brain LaboratoryParkwood Institute and Lawson Health Research InstituteUniversity of Western Ontario London Ontario Canada
- Faculty of Health SciencesSchool of Kinesiology, University of Western Ontario London Ontario, Canada
| | - Richard Camicioli
- Faculty of Health Sciences, School of Physical TherapyUniversity of Western Ontario London Ontario Canada
| | - Susan W. Muir‐Hunter
- Faculty of Health Sciences, School of Physical TherapyUniversity of Western Ontario London Ontario Canada
| | - Mark Speechley
- Department of Epidemiology and BiostatisticsUniversity of Western Ontario London Ontario Canada
| | - Bill McIlroy
- Department of KinesiologyUniversity of Waterloo Waterloo Ontario Canada
| | - Manuel Montero‐Odasso
- Gait and Brain LaboratoryParkwood Institute and Lawson Health Research InstituteUniversity of Western Ontario London Ontario Canada
- Division of Geriatric Medicine, Department of Medicine, Schulich School of Medicine and DentistryUniversity of Western Ontario London Ontario Canada
- Faculty of Health SciencesSchool of Kinesiology, University of Western Ontario London Ontario, Canada
- Division of Neurology, Department of MedicineUniversity of Alberta Edmonton Alberta Canada
| |
Collapse
|
32
|
Garcia-Rill E. Neuroepigenetics of arousal: Gamma oscillations in the pedunculopontine nucleus. J Neurosci Res 2019; 97:1515-1520. [PMID: 30916810 PMCID: PMC6764922 DOI: 10.1002/jnr.24417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 01/20/2023]
Abstract
Four major discoveries on the function of the pedunculopontine nucleus (PPN) have significantly advanced our understanding of the role of arousal in neurodegenerative disorders. The first was the finding that stimulation of the PPN-induced controlled locomotion on a treadmill in decerebrate animals, the second was the revelation of electrical coupling in the PPN and other arousal and sleep-wake control regions, the third was the determination of intrinsic gamma band oscillations in PPN neurons, and the last was the discovery of gene transcription resulting from the manifestation of gamma activity in the PPN. These discoveries have led to novel therapies such as PPN deep brain stimulation (DBS) for Parkinson's disease (PD), identified the mechanism of action of the stimulant modafinil, determined the presence of separate mechanisms underlying gamma activity during waking versus REM sleep, and revealed the presence of gene transcription during the manifestation of gamma band oscillations. These discoveries set the stage for additional major advances in the treatment of a number of disorders.
Collapse
Affiliation(s)
- Edgar Garcia-Rill
- Center for Translational Neuroscience (CTN), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
33
|
Yoon SY, Lee SC, An YS, Kim YW. Neural correlates and gait characteristics for hypoxic-ischemic brain injury induced freezing of gait. Clin Neurophysiol 2019; 131:46-53. [PMID: 31751839 DOI: 10.1016/j.clinph.2019.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 09/04/2019] [Accepted: 09/29/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To investigate gait characteristics in patients with freezing of gait (FOG) after hypoxic-ischemic brain injury (HIBI) and to elucidate neural correlates for FOG using F-18 fluoro-2-deoxy-d-glucose positron emission tomography. METHODS We enrolled 12 patients with FOG after HIBI and 17 patients without FOG after HIBI. We performed three-dimensional gait analyses and compared each parameter and gait variability. Brain metabolism was measured, and we compared regional brain metabolism using a voxel-by-voxel-based statistical mapping analysis. RESULTS The FOG group revealed a significantly decreased joint range of motion (ROM), particularly in the sagittal plane for three-joint summated ROM (p < 0.0025). Spatiotemporal results demonstrated that stride length and step length were decreased in the with FOG group (p < 0.005). FOG severity was negatively correlated with brain metabolism in the left thalamus, and three-joint summated ROM in the sagittal plane was positively associated with brain metabolism in the left thalamus and midbrain (p < 0.05). CONCLUSIONS Central organizational level amplitude disorder may play an important role in the pathophysiology, and disturbance in the cholinergic pathway might contribute to the development of FOG in patients with HIBI. SIGNIFICANCE These findings contribute to understanding FOG in HIBI.
Collapse
Affiliation(s)
- Seo Yeon Yoon
- Department of Rehabilitation Medicine, Bundang Jesaeng General Hospital, Gyeonggi-do, Republic of Korea
| | - Sang Chul Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Sil An
- Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Wang X, Geng X, Li M, Xie J, Chen D, Han H, Meng X, Yao X, Zhang H, Gao Y, Chang H, Zhang X, Wang Y, Wang M. Electrophysiological and Neurochemical Considerations of Distinct Neuronal Populations in the Rat Pedunculopontine Nucleus and Their Responsiveness Following 6-Hydroxydopamine Lesions. Front Neurosci 2019; 13:1034. [PMID: 31616246 PMCID: PMC6775246 DOI: 10.3389/fnins.2019.01034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 09/12/2019] [Indexed: 12/30/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is composed of a morphologically and neurochemically heterogeneous population of neurons, which is severely affected by Parkinson’s disease (PD). However, the role of each subtype of neurons within the PPN in the pathophysiology of PD has not been completely elucidated. In this study, we present the discharge profiles of three classified subtypes of PPN neurons and their alterations after 6-hydroxydopamine (6-OHDA) lesion. Following 6-OHDA lesion, the spike timing of the Type II (GABAergic) and Type III (glutamatergic) neurons had phase-lock with the oscillations in the delta and beta band frequency range in the PPN, respectively. Morphological evidence has shown distinct alteration in three kinds of neurons after 6-OHDA lesion. These findings revealed that the changes in the firing characteristics of neurons in PPN in hemi-parkinsonism rats are closely associated with damaged neuronal morphology, which would make contributions to the divergence of dysfunctions in Parkinsonism.
Collapse
Affiliation(s)
- Xuenan Wang
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Xiwen Geng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Advanced Material Genome Innovation Team, Advanced Materials Institute, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| | - Min Li
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Jinlu Xie
- Department of Physiology, School of Medical Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Dadian Chen
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Hongyu Han
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Xiaoqian Meng
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Xiaomeng Yao
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China.,School of Nursing, Qilu Institute of Technology, Jinan, China
| | - Haiyan Zhang
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Yunfeng Gao
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Hongli Chang
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Xiao Zhang
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Yanan Wang
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Min Wang
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
35
|
Barrett MJ, Cloud LJ, Shah H, Holloway KL. Therapeutic approaches to cholinergic deficiency in Lewy body diseases. Expert Rev Neurother 2019; 20:41-53. [DOI: 10.1080/14737175.2020.1676152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Matthew J. Barrett
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Leslie J. Cloud
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Harsh Shah
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kathryn L. Holloway
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- The Southeast Parkinson’s Disease Research, Education, and Care Center, Hunter Holmes McGuire Veteran Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
36
|
Virmani T, Urbano FJ, Bisagno V, Garcia-Rill E. The pedunculopontine nucleus: From posture and locomotion to neuroepigenetics. AIMS Neurosci 2019; 6:219-230. [PMID: 32341978 PMCID: PMC7179357 DOI: 10.3934/neuroscience.2019.4.219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/19/2019] [Indexed: 12/04/2022] Open
Abstract
In this review, we discuss first an example of one of the symptoms of PD, freezing of gait (FOG), then we will turn to the use of deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) to treat PD, and the original studies that led to identification of the PPN as one source of locomotor control and why stimulation frequency is critical, and then describe the intrinsic properties of PPN neurons that require beta/gamma stimulation in order to fully activate all types of PPN neurons. Finally, we will describe recent findings on the proteomic and molecular consequences of gamma band activity in PPN neurons, with emphasis on the potential neuroepigenetic sequelae. These considerations will provide essential information for the appropriate refining and testing of PPN DBS as a potential therapy for PD, as well as alternative options.
Collapse
Affiliation(s)
- T Virmani
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 847, Little Rock, AR 72205, USA.,Department of Neurology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - F J Urbano
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 847, Little Rock, AR 72205, USA.,Instituto Nacional de Investigaciones Farmacologicas, Argentina
| | - V Bisagno
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 847, Little Rock, AR 72205, USA.,Universidad de Buenos Aires, Buenos Aires, Argentina
| | - E Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 847, Little Rock, AR 72205, USA
| |
Collapse
|
37
|
Pinto C, Schuch CP, Balbinot G, Salazar AP, Hennig EM, Kleiner AFR, Pagnussat AS. Movement smoothness during a functional mobility task in subjects with Parkinson's disease and freezing of gait - an analysis using inertial measurement units. J Neuroeng Rehabil 2019; 16:110. [PMID: 31488184 PMCID: PMC6729092 DOI: 10.1186/s12984-019-0579-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/19/2019] [Indexed: 11/25/2022] Open
Abstract
Background Impairments of functional mobility may affect locomotion and quality of life in subjects with Parkinson’s disease (PD). Movement smoothness measurements, such as the spectral arc length (SPARC), are novel approaches to quantify movement quality. Previous studies analyzed SPARC in simple walking conditions. However, SPARC outcomes during functional mobility tasks in subjects with PD and freezing of gait (FOG) were never investigated. This study aimed to analyze SPARC during the Timed Up and Go (TUG) test in individuals with PD and FOG. Methods Thirty-one participants with PD and FOG and six healthy controls were included. SPARC during TUG test was calculated for linear and angular accelerations using an inertial measurement unit system. SPARC data were correlated with clinical parameters: motor section of the Unified Parkinson’s Disease Rating Scale, Hoehn & Yahr scale, Freezing of Gait Questionnaire, and TUG test. Results We reported lower SPARC values (reduced smoothness) during the entire TUG test, turn and stand to sit in subjects with PD and FOG, compared to healthy controls. Unlike healthy controls, individuals with PD and FOG displayed a broad spectral range that encompassed several dominant frequencies. SPARC metrics also correlated with all the above-mentioned clinical parameters. Conclusion SPARC values provide valid and relevant clinical data about movement quality (e.g., smoothness) of subjects with PD and FOG during a functional mobility test. Electronic supplementary material The online version of this article (10.1186/s12984-019-0579-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camila Pinto
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite Street, Porto Alegre, RS, 90050170, Brazil.,Movement Analysis and Rehabilitation Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Clarissa Pedrini Schuch
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite Street, Porto Alegre, RS, 90050170, Brazil
| | - Gustavo Balbinot
- Brain Institute, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Ana Paula Salazar
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite Street, Porto Alegre, RS, 90050170, Brazil.,Movement Analysis and Rehabilitation Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ewald Max Hennig
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - Aline Souza Pagnussat
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite Street, Porto Alegre, RS, 90050170, Brazil. .,Movement Analysis and Rehabilitation Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
38
|
Xiang M, Glasauer S, Seemungal BM. Quantitative postural models as biomarkers of balance in Parkinson's disease. Brain 2019; 141:2824-2827. [PMID: 31367748 PMCID: PMC6158586 DOI: 10.1093/brain/awy250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Min Xiang
- Brain and Vestibular Group, Neuro-Otology Unit, Division of Brain Sciences, Imperial College London
| | - Stefan Glasauer
- Computational Neuroscience, Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Germany
| | - Barry M Seemungal
- Brain and Vestibular Group, Neuro-Otology Unit, Division of Brain Sciences, Imperial College London
| |
Collapse
|
39
|
Vitale F, Capozzo A, Mazzone P, Scarnati E. Neurophysiology of the pedunculopontine tegmental nucleus. Neurobiol Dis 2019. [DOI: 10.1016/j.nbd.2018.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
Tubert C, Galtieri D, Surmeier DJ. The pedunclopontine nucleus and Parkinson's disease. Neurobiol Dis 2019; 128:3-8. [PMID: 30171892 PMCID: PMC6546542 DOI: 10.1016/j.nbd.2018.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/22/2018] [Accepted: 08/26/2018] [Indexed: 01/08/2023] Open
Abstract
In the last decade, scientific and clinical interest in the pedunculopontine nucleus (PPN) has grown dramatically. This growth is largely a consequence of experimental work demonstrating its connection to the control of gait and of clinical work implicating PPN pathology in levodopa-insensitive gait symptoms of Parkinson's disease (PD). In addition, the development of optogenetic and chemogenetic approaches has made experimental analysis of PPN circuitry and function more tractable. In this brief review, recent findings in the field linking PPN to the basal ganglia and PD are summarized; in addition, an attempt is made to identify key gaps in our understanding and challenges this field faces in moving forward.
Collapse
Affiliation(s)
- Cecilia Tubert
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daniel Galtieri
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
41
|
Perera T, Tan JL, Cole MH, Yohanandan SAC, Silberstein P, Cook R, Peppard R, Aziz T, Coyne T, Brown P, Silburn PA, Thevathasan W. Balance control systems in Parkinson's disease and the impact of pedunculopontine area stimulation. Brain 2019; 141:3009-3022. [PMID: 30165427 PMCID: PMC6158752 DOI: 10.1093/brain/awy216] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/26/2018] [Indexed: 11/23/2022] Open
Abstract
Impaired balance is a major contributor to falls and diminished quality of life in Parkinson’s disease, yet the pathophysiology is poorly understood. Here, we assessed if patients with Parkinson’s disease and severe clinical balance impairment have deficits in the intermittent and continuous control systems proposed to maintain upright stance, and furthermore, whether such deficits are potentially reversible, with the experimental therapy of pedunculopontine nucleus deep brain stimulation. Two subject groups were assessed: (i) 13 patients with Parkinson’s disease and severe clinical balance impairment, implanted with pedunculopontine nucleus deep brain stimulators; and (ii) 13 healthy control subjects. Patients were assessed in the OFF medication state and blinded to two conditions; off and on pedunculopontine nucleus stimulation. Postural sway data (deviations in centre of pressure) were collected during quiet stance using posturography. Intermittent control of sway was assessed by calculating the frequency of intermittent switching behaviour (discontinuities), derived using a wavelet-based transformation of the sway time series. Continuous control of sway was assessed with a proportional–integral–derivative (PID) controller model using ballistic reaction time as a measure of feedback delay. Clinical balance impairment was assessed using the ‘pull test’ to rate postural reflexes and by rating attempts to arise from sitting to standing. Patients with Parkinson’s disease demonstrated reduced intermittent switching of postural sway compared with healthy controls. Patients also had abnormal feedback gains in postural sway according to the PID model. Pedunculopontine nucleus stimulation improved intermittent switching of postural sway, feedback gains in the PID model and clinical balance impairment. Clinical balance impairment correlated with intermittent switching of postural sway (rho = − 0.705, P < 0.001) and feedback gains in the PID model (rho = 0.619, P = 0.011). These results suggest that dysfunctional intermittent and continuous control systems may contribute to the pathophysiology of clinical balance impairment in Parkinson’s disease. Clinical balance impairment and their related control system deficits are potentially reversible, as demonstrated by their improvement with pedunculopontine nucleus deep brain stimulation.
Collapse
Affiliation(s)
- Thushara Perera
- The Bionics Institute, East Melbourne, Victoria, Australia.,Department of Medical Bionics, The University of Melbourne, Parkville, Victoria, Australia
| | - Joy L Tan
- The Bionics Institute, East Melbourne, Victoria, Australia.,Department of Medical Bionics, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael H Cole
- School of Exercise Science, Australian Catholic University, Brisbane, Queensland, Australia
| | | | - Paul Silberstein
- Royal North Shore and North Shore Private Hospitals, Sydney, New South Wales, Australia
| | - Raymond Cook
- Royal North Shore and North Shore Private Hospitals, Sydney, New South Wales, Australia
| | - Richard Peppard
- The Bionics Institute, East Melbourne, Victoria, Australia.,Clinical Neurosciences, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Tipu Aziz
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX1 3TH, UK
| | - Terry Coyne
- Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter Brown
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX1 3TH, UK.,Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, UK
| | - Peter A Silburn
- Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Wesley Thevathasan
- The Bionics Institute, East Melbourne, Victoria, Australia.,Departments of Neurology, The Royal Melbourne and Austin Hospitals, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
42
|
Ehgoetz Martens KA, Hall JM, Georgiades MJ, Gilat M, Walton CC, Matar E, Lewis SJG, Shine JM. The functional network signature of heterogeneity in freezing of gait. Brain 2019; 141:1145-1160. [PMID: 29444207 DOI: 10.1093/brain/awy019] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/12/2017] [Indexed: 11/12/2022] Open
Abstract
Freezing of gait is a complex, heterogeneous, and highly variable phenomenon whose pathophysiology and neural signature remains enigmatic. Evidence suggests that freezing is associated with impairments across cognitive, motor and affective domains; however, most research to date has focused on investigating one axis of freezing of gait in isolation. This has led to inconsistent findings and a range of different pathophysiological models of freezing of gait, due in large part to the tendency for studies to investigate freezing of gait as a homogeneous entity. To investigate the neural mechanisms of this heterogeneity, we used an established virtual reality paradigm to elicit freezing behaviour in 41 Parkinson's disease patients with freezing of gait and examined individual differences in the component processes (i.e. cognitive, motor and affective function) that underlie freezing of gait in conjunction with task-based functional MRI. First, we combined three unique components of the freezing phenotype: impaired set-shifting ability, step time variability, and self-reported anxiety and depression in a principal components analysis to estimate the severity of freezing behaviour with a multivariate approach. By combining these measures, we were then able to interrogate the pattern of task-based functional connectivity associated with freezing (compared to normal foot tapping) in a sub-cohort of 20 participants who experienced sufficient amounts of freezing during task functional MRI. Specifically, we used the first principal component from our behavioural analysis to classify patterns of functional connectivity into those that were associated with: (i) increased severity; (ii) increased compensation; or (iii) those that were independent of freezing severity. Coupling between the cognitive and limbic networks was associated with 'worse freezing severity', whereas anti-coupling between the putamen and the cognitive and limbic networks was related to 'increased compensation'. Additionally, anti-coupling between cognitive cortical regions and the caudate nucleus were 'independent of freezing severity' and thus may represent common neural underpinnings of freezing that are unaffected by heterogenous factors. Finally, we related these connectivity patterns to each of the individual components (cognitive, motor, affective) in turn, thus exposing latent heterogeneity in the freezing phenotype, while also identifying critical functional network signatures that may represent potential targets for novel therapeutic intervention. In conclusion, our findings provide confirmatory evidence for systems-level impairments in the pathophysiology of freezing of gait and further advance our understanding of the whole-brain deficits that mediate symptom expression in Parkinson's disease.
Collapse
Affiliation(s)
- Kaylena A Ehgoetz Martens
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia.,ForeFront, Brain and Mind Centre, University of Sydney, Australia
| | - Julie M Hall
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia.,ForeFront, Brain and Mind Centre, University of Sydney, Australia.,School of Social Sciences and Psychology, Western Sydney University, Australia
| | - Matthew J Georgiades
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia.,ForeFront, Brain and Mind Centre, University of Sydney, Australia
| | - Moran Gilat
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia.,ForeFront, Brain and Mind Centre, University of Sydney, Australia
| | - Courtney C Walton
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia.,ForeFront, Brain and Mind Centre, University of Sydney, Australia
| | - Elie Matar
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia.,ForeFront, Brain and Mind Centre, University of Sydney, Australia
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia.,ForeFront, Brain and Mind Centre, University of Sydney, Australia
| | - James M Shine
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia.,ForeFront, Brain and Mind Centre, University of Sydney, Australia
| |
Collapse
|
43
|
Galazky I, Kaufmann J, Voges J, Hinrichs H, Heinze HJ, Sweeney-Reed CM. Neuronal spiking in the pedunculopontine nucleus in progressive supranuclear palsy and in idiopathic Parkinson's disease. J Neurol 2019; 266:2244-2251. [PMID: 31155683 DOI: 10.1007/s00415-019-09396-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/24/2022]
Abstract
The pedunculopontine nucleus (PPN) is engaged in posture and gait control, and neuronal degeneration in the PPN has been associated with Parkinsonian disorders. Clinical outcomes of deep brain stimulation of the PPN in idiopathic Parkinson's disease (IPD) and progressive supranuclear palsy (PSP) differ, and we investigated whether the PPN is differentially affected in these conditions. We had the rare opportunity to record continuous electrophysiological data intraoperatively in 30 s blocks from single microelectrode contacts implanted in the PPN in six PSP patients and three IPD patients during rest, passive movement, and active movement. Neuronal spikes were sorted according to shape using a wavelet-based clustering approach to enable comparisons between individual neuronal firing rates in the two disease states. The action potential widths showed a bimodal distribution consistent with previous findings, suggesting spikes from noncholinergic (likely glutamatergic) and cholinergic neurons. A higher PPN spiking rate of narrow action potentials was observed in the PSP than in the IPD patients when pooled across all three conditions (Wilcoxon rank sum test: p = 0.0141). No correlation was found between firing rate and disease severity or duration. The firing rates were higher during passive movement than rest and active movement in both groups, but the differences between conditions were not significant. PSP and IPD are believed to represent distinct disease processes, and our findings that the neuronal firing rates differ according to disease state support the proposal that pathological processes directly involving the PPN may be more pronounced in PSP than IPD.
Collapse
Affiliation(s)
- I Galazky
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - J Kaufmann
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Departments of Neurology and Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - J Voges
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - H Hinrichs
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- German Center for Neurodegenerative Disease (DZNE), Magdeburg, Germany
- Forschungscampus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
| | - H-J Heinze
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- German Center for Neurodegenerative Disease (DZNE), Magdeburg, Germany
| | - C M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Departments of Neurology and Stereotactic Neurosurgery, Otto-Von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
44
|
Yang X, Fan D, Ren A, Zhao N, Zhang Z, Haider D, Khan MB, Tian J. Non-Contact Early Warning of Shaking Palsy. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2019; 7:1800408. [PMID: 31392103 PMCID: PMC6681892 DOI: 10.1109/jtehm.2019.2919065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/02/2019] [Accepted: 05/21/2019] [Indexed: 11/10/2022]
Abstract
Parkinsonian gait is a defining feature of shaking palsy (SP) and it has one of the worse impacts on human healthy life than other SP symptoms. The objective of this work is to propose a Parkinsonian gait detection system based on an S-band perception technique to classify abnormal gait and normal walking. Due to the differences in the Gaits of Parkinson's patients compared with healthy persons, the wireless signals reflect and generates different variations at the receiver that could be used for SP diagnosis and classification. To detect a Parkinsonian gait, we first implement data preprocessing of the original data to obtain clear amplitude and phase information. Then, the feature extraction is carried out by principal component analysis (PCA). Finally, a support vector machine (SVM) classification algorithm is applied on collected data to classify the abnormal gait of SP patients compared with a normal gait. We evaluate the proposed system with different people, and the experimental outcomes show that the Parkinsonian gait detection of this training-based system achieves a high accuracy of above 90%. Moreover, the early warning of SP is achieved in a non-contact manner.
Collapse
Affiliation(s)
- Xiaodong Yang
- 1School of Electronic EngineeringXidian UniversityXi'an710071China
| | - Dou Fan
- 1School of Electronic EngineeringXidian UniversityXi'an710071China
| | - Aifeng Ren
- 1School of Electronic EngineeringXidian UniversityXi'an710071China
| | - Nan Zhao
- 1School of Electronic EngineeringXidian UniversityXi'an710071China
| | - Zhiya Zhang
- 1School of Electronic EngineeringXidian UniversityXi'an710071China
| | - Daniyal Haider
- 1School of Electronic EngineeringXidian UniversityXi'an710071China
| | | | - Jie Tian
- 2School of Life Science and TechnologyXidian UniversityXi'an710126China.,3Institute of AutomationChinese Academy of SciencesBeijing100190China
| |
Collapse
|
45
|
Hyam JA, Wang S, Roy H, Moosavi SH, Martin SC, Brittain JS, Coyne T, Silburn P, Aziz TZ, Green AL. The pedunculopontine region and breathing in Parkinson's disease. Ann Clin Transl Neurol 2019; 6:837-847. [PMID: 31139681 PMCID: PMC6529926 DOI: 10.1002/acn3.752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/11/2019] [Indexed: 01/02/2023] Open
Abstract
Objective Respiratory abnormalities such as upper airway obstruction are common in Parkinson's disease (PD) and are an important cause of mortality and morbidity. We tested the effect of pedunculopontine region (PPNr) stimulation on respiratory maneuvers in human participants with PD, and separately recorded PPNr neural activity reflected in the local field potential (LFP) during these maneuvers. Methods Nine patients with deep brain stimulation electrodes in PPNr, and seven in globus pallidus interna (GPi) were studied during trials of maximal inspiration followed by forced expiration with stimulation OFF and ON. Local field potentials (LFPs) were recorded in the unstimulated condition. Results PEFR increased from 6.41 ± 0.63 L/sec in the OFF stimulation state to 7.5 L ± 0.65 L/sec in the ON stimulation state (z = −2.666, df = 8, P = 0.024). Percentage improvement in PEFR was strongly correlated with proximity of the stimulated electrode contact to the mesencephalic locomotor region in the rostral PPN (r = 0.814, n = 9, P = 0.008). Mean PPNr LFP power increased within the alpha band (7–11 Hz) during forced respiratory maneuvers (1.63 ± 0.16 μV2/Hz) compared to resting breathing (0.77 ± 0.16 μV2/Hz; z = −2.197, df = 6, P = 0.028). No changes in alpha activity or spirometric indices were seen with GPi recording or stimulation. Percentage improvement in PEFR was strongly positively correlated with increase in alpha power (r = 0.653, n = 14 (7 PPNr patients recorded bilaterally), P = 0.0096). Interpretation PPNr stimulation in PD improves indices of upper airway function. Increased alpha‐band activity is seen within the PPNr during forced respiratory maneuvers. Our findings suggest a link between the PPNr and respiratory performance in PD.
Collapse
Affiliation(s)
- Jonathan A Hyam
- Department of Physiology, Anatomy & Genetics University of Oxford Oxford UK.,Department of Neurosurgery John Radcliffe Hospital Oxford UK.,Nuffield Department of Surgical Sciences University of Oxford Oxford UK
| | - Shouyan Wang
- Department of Physiology, Anatomy & Genetics University of Oxford Oxford UK
| | - Holly Roy
- Nuffield Department of Surgical Sciences University of Oxford Oxford UK
| | - Shakeeb H Moosavi
- Department of Biological and Medical Sciences Oxford Brookes University Headington, Oxford UK
| | - Sean C Martin
- Nuffield Department of Surgical Sciences University of Oxford Oxford UK
| | | | - Terry Coyne
- St Andrews and Wesley Hospitals Brisbane Australia
| | - Peter Silburn
- St Andrews and Wesley Hospitals Brisbane Australia.,Queensland Brain Institute University of Queensland Brisbane Australia
| | - Tipu Z Aziz
- Department of Physiology, Anatomy & Genetics University of Oxford Oxford UK.,Department of Neurosurgery John Radcliffe Hospital Oxford UK.,Nuffield Department of Surgical Sciences University of Oxford Oxford UK
| | - Alexander L Green
- Department of Physiology, Anatomy & Genetics University of Oxford Oxford UK.,Department of Neurosurgery John Radcliffe Hospital Oxford UK.,Nuffield Department of Surgical Sciences University of Oxford Oxford UK
| |
Collapse
|
46
|
Local and Relayed Effects of Deep Brain Stimulation of the Pedunculopontine Nucleus. Brain Sci 2019; 9:brainsci9030064. [PMID: 30889866 PMCID: PMC6468768 DOI: 10.3390/brainsci9030064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Our discovery of low-threshold stimulation-induced locomotion in the pedunculopontine nucleus (PPN) led to the clinical use of deep brain stimulation (DBS) for the treatment of disorders such as Parkinson's disease (PD) that manifest gait and postural disorders. Three additional major discoveries on the properties of PPN neurons have opened new areas of research for the treatment of motor and arousal disorders. The description of (a) electrical coupling, (b) intrinsic gamma oscillations, and (c) gene regulation in the PPN has identified a number of novel therapeutic targets and methods for the treatment of a number of neurological and psychiatric disorders. We first delve into the circuit, cellular, intracellular, and molecular organization of the PPN, and then consider the clinical results to date on PPN DBS. This comprehensive review will provide valuable information to explain the network effects of PPN DBS, point to new directions for treatment, and highlight a number of issues related to PPN DBS.
Collapse
|
47
|
Sweeney D, Quinlan LR, Browne P, Richardson M, Meskell P, ÓLaighin G. A Technological Review of Wearable Cueing Devices Addressing Freezing of Gait in Parkinson's Disease. SENSORS 2019; 19:s19061277. [PMID: 30871253 PMCID: PMC6470562 DOI: 10.3390/s19061277] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 11/16/2022]
Abstract
Freezing of gait is one of the most debilitating symptoms of Parkinson’s disease and is an important contributor to falls, leading to it being a major cause of hospitalization and nursing home admissions. When the management of freezing episodes cannot be achieved through medication or surgery, non-pharmacological methods such as cueing have received attention in recent years. Novel cueing systems were developed over the last decade and have been evaluated predominantly in laboratory settings. However, to provide benefit to people with Parkinson’s and improve their quality of life, these systems must have the potential to be used at home as a self-administer intervention. This paper aims to provide a technological review of the literature related to wearable cueing systems and it focuses on current auditory, visual and somatosensory cueing systems, which may provide a suitable intervention for use in home-based environments. The paper describes the technical operation and effectiveness of the different cueing systems in overcoming freezing of gait. The “What Works Clearinghouse (WWC)” tool was used to assess the quality of each study described. The paper findings should prove instructive for further researchers looking to enhance the effectiveness of future cueing systems.
Collapse
Affiliation(s)
- Dean Sweeney
- Electrical & Electronic Engineering, School of Engineering and Informatics, NUI Galway, University Road, H91 TK33 Galway, Ireland.
- Human Movement Laboratory, CÚRAM Centre for Research in Medical Devices, NUI Galway, University Road, H91 TK33 Galway, Ireland.
| | - Leo R Quinlan
- Human Movement Laboratory, CÚRAM Centre for Research in Medical Devices, NUI Galway, University Road, H91 TK33 Galway, Ireland.
- Physiology, School of Medicine, NUI Galway, University Road, H91 TK33 Galway, Ireland.
| | - Patrick Browne
- Neurology Department, University Hospital Galway, H91 YR71 Galway, Ireland.
- School of Nursing and Midwifery, NUI Galway, University Road, H91 TK33 Galway, Ireland.
- School of Medicine, NUI Galway, University Road, H91 TK33 Galway, Ireland.
| | - Margaret Richardson
- Neurology Department University Hospital Limerick, Dooradoyle, V94 F858 Limerick, Ireland.
| | - Pauline Meskell
- Department of Nursing and Midwifery University of Limerick, Castletroy, V94 T9PX Limerick, Ireland.
| | - Gearóid ÓLaighin
- Electrical & Electronic Engineering, School of Engineering and Informatics, NUI Galway, University Road, H91 TK33 Galway, Ireland.
- Human Movement Laboratory, CÚRAM Centre for Research in Medical Devices, NUI Galway, University Road, H91 TK33 Galway, Ireland.
| |
Collapse
|
48
|
Albin RL, Surmeier DJ, Tubert C, Sarter M, Müller ML, Bohnen NI, Dauer WT. Targeting the pedunculopontine nucleus in Parkinson's disease: Time to go back to the drawing board. Mov Disord 2018; 33:1871-1875. [PMID: 30398673 PMCID: PMC6448144 DOI: 10.1002/mds.27540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/24/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Roger L. Albin
- Neurology Service & GRECC, VAAAHS GRECC, Ann Arbor, MI, 48105, USA
- Dept. of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, 48109, USA
| | - D. James Surmeier
- Dept. of Physiology, Northwestern University, Chicago, IL, 60611, USA
- Northwestern University Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Chicago, IL, 60611, USA
| | - Cecilia Tubert
- Dept. of Physiology, Northwestern University, Chicago, IL, 60611, USA
| | - Martin Sarter
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, 48109, USA
- Dept. of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Martijn L.T.M. Müller
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, 48109, USA
- Dept of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicolaas I. Bohnen
- Neurology Service & GRECC, VAAAHS GRECC, Ann Arbor, MI, 48105, USA
- Dept. of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, 48109, USA
- Dept of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - William T. Dauer
- Neurology Service & GRECC, VAAAHS GRECC, Ann Arbor, MI, 48105, USA
- Dept. of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, 48109, USA
- Dept of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
49
|
Thevathasan W, Moro E. What is the therapeutic mechanism of pedunculopontine nucleus stimulation in Parkinson's disease? Neurobiol Dis 2018; 128:67-74. [PMID: 29933055 DOI: 10.1016/j.nbd.2018.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022] Open
Abstract
Pedunculopontine nucleus (PPN) deep brain stimulation (DBS) is an experimental treatment for Parkinson's disease (PD) which offers a fairly circumscribed benefit for gait freezing and perhaps balance impairment. The benefit on gait freezing is variable and typically incomplete, which may reflect that the clinical application is yet to be optimised or reflect a fundamental limitation of the therapeutic mechanism. Thus, a better understanding of the therapeutic mechanism of PPN DBS may guide the further development of this therapy. The available evidence supports that the PPN is underactive in PD due to a combination of both degeneration and excessive inhibition. Low frequency PPN DBS could enhance PPN network activity, perhaps via disinhibition. A clinical implication is that in some PD patients, the PPN may be too degenerate for PPN DBS to work. Reaction time studies report that PPN DBS mediates a very specific benefit on pre-programmed movement. This seems relevant to the pathophysiology of gait freezing, which can be argued to reflect impaired release of pre-programmed adjustments to locomotion. Thus, the benefit of PPN DBS on gait freezing could be akin to that mediated by external cues. Alpha band activity is a prominent finding in local field potential recordings from PPN electrodes in PD patients. Alpha band activity is implicated in the suppression of task irrelevant processes and thus the effective allocation of attention (processing resources). Attentional deficits are prominent in patients with PD and gait freezing and PPN alpha activity has been observed to drop out prior to gait freezing episodes and to increase with levodopa. This raises the hypothesis that PPN DBS could support or emulate PPN alpha activity and consequently enhance the allocation of attention. Although PPN DBS has not been convincingly shown to increase general alertness or attention, it remains possible that PPN DBS may enhance the allocation of processing resources within the motor system, or "motor attention". For example, this could facilitate the 'switching' of motor state between continuation of pattern generated locomotion towards the intervention of pre-programmed adjustments. However, if the downstream consequence of PPN DBS on movement is limited to a circumscribed unblocking of pre-programmed movement, then this may have a similarly circumscribed degree of benefit for gait. If this is the case, then it may be possible to identify patients who may benefit most from PPN DBS. For example, those in whom pre-programmed deficits are the major contributors to gait freezing.
Collapse
Affiliation(s)
- Wesley Thevathasan
- Departments of Neurology, Royal Melbourne Hospital and Austin Hospitals, University of Melbourne, Australia and the Bionics Institute of Australia, Melbourne, Australia
| | - Elena Moro
- Movement Disorders Center, Division of Neurology, CHU Grenoble, Grenoble Alpes University, INSERM U1214, Grenoble, France.
| |
Collapse
|
50
|
Galazky I, Kaufmann J, Lorenzl S, Ebersbach G, Gandor F, Zaehle T, Specht S, Stallforth S, Sobieray U, Wirkus E, Casjens F, Heinze HJ, Kupsch A, Voges J. Deep brain stimulation of the pedunculopontine nucleus for treatment of gait and balance disorder in progressive supranuclear palsy: Effects of frequency modulations and clinical outcome. Parkinsonism Relat Disord 2018; 50:81-86. [PMID: 29503154 DOI: 10.1016/j.parkreldis.2018.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/08/2018] [Accepted: 02/14/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Imke Galazky
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Stefan Lorenzl
- Institute of Nursing Science and Practice, Paracelsus Medical University, Salzburg, Austria; Clinic and Policlinic for Palliative Care, Klinikum der Universität München, Ludwig Maximilians University, Munich, Germany; Department of Neurology, Agatharied University Hospital, Hausham, Germany
| | - Georg Ebersbach
- Neurological Specialist Hospital for Movement Disorders/Parkinson, Beelitz-Heilstätten, Germany
| | - Florin Gandor
- Neurological Specialist Hospital for Movement Disorders/Parkinson, Beelitz-Heilstätten, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sylke Specht
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sabine Stallforth
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Uwe Sobieray
- German Centre for Neurodegenerative Diseases, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Edyta Wirkus
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Franziska Casjens
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; German Centre for Neurodegenerative Diseases, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; Department of Behavioural Neurology, Leibniz Institute of Neurobiology, Brenneckestr. 6, 39120 Magdeburg, Germany
| | - Andreas Kupsch
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; Department of Stereotactic Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; NEUROLOGY MOVES, Academic Neurological Practice, Bismarckstrasse 45-47, 10627 Berlin, Germany
| | - Jürgen Voges
- German Centre for Neurodegenerative Diseases, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; Department of Behavioural Neurology, Leibniz Institute of Neurobiology, Brenneckestr. 6, 39120 Magdeburg, Germany; Department of Stereotactic Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|