1
|
Packer E, Debelle H, Bailey HGB, Rehman RZU, Yarnall AJ, Rochester L, Alcock L, Del Din S. Systematic review of wearables assessing medication effect on motor function and symptoms in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:135. [PMID: 40404728 PMCID: PMC12098882 DOI: 10.1038/s41531-025-00943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 03/17/2025] [Indexed: 05/24/2025] Open
Abstract
To improve motor function and symptoms, people with Parkinson's (PwP) typically take dopaminergic medication. In PwP, wearable technology (WT) can provide objective insights into medication effect. This review aims to identify and explore literature which uses WT to quantify the effect of medication on motor function and symptoms in PwP (PROSPERO 2022 CRD42022310018). Nine databases were searched between January 2000-October 2024. Downs and Black quality appraisal assessed study quality. PRISMA guidelines were followed. Amongst the seventy-nine included studies, 50 different WTs were placed across 20 locations on the body, and medication effect was monitored on 13 different motor functions/symptoms. There was great heterogeneity amongst protocols, but many studies were performed in controlled environments, exploring short-term medication effects (ON vs OFF). Medication effect varied, improving certain variables, and having no effect on others. Future research should identify gold-standard protocols to explore medication effect in real-world settings, over prolonged periods.Registration and Protocol PROSPERO 2022 CRD42022310018.
Collapse
Affiliation(s)
- Emma Packer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Héloïse Debelle
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Harry G B Bailey
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rana Zia Ur Rehman
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Johnson & Johnson Innovative Medicine, 50-100 Holmers Farm Way, High Wycombe, Buckinghamshire, HP12, UK
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), based at Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle University and the Cumbria, Northumberland and Tyne and Wear (CNTW) NHS Foundation Trust, Newcastle upon Tyne, UK
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), based at Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle University and the Cumbria, Northumberland and Tyne and Wear (CNTW) NHS Foundation Trust, Newcastle upon Tyne, UK
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), based at Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle University and the Cumbria, Northumberland and Tyne and Wear (CNTW) NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), based at Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle University and the Cumbria, Northumberland and Tyne and Wear (CNTW) NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Putzolu M, Botta A, Cosentino C, Mezzarobba S, Bonassi G, Ravizzotti E, Terranova S, Lagravinese G, Pelosin E, Avanzino L. Recent advances of transcranial electrical stimulation in healthy aging and Parkinson's disease: Effects on dual tasking. JOURNAL OF PARKINSON'S DISEASE 2025:1877718X251327758. [PMID: 40241492 DOI: 10.1177/1877718x251327758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Dual tasking involves the simultaneous execution of two actions. In the context of healthy aging and neurodegenerative disorders, such as Parkinson's disease (PD) engagement in dual tasking frequently results in impaired gait or upper limb performance, thereby affecting functional independence. Transcranial electrical stimulation is a non-invasive technique able to modulate brain activity, which might represent a potential tool for reducing dual task interference. The goal of this review is to provide a comprehensive summary of the most recent findings about the use of transcranial electrical stimulation in improving dual tasking in the elderly and people with PD, including considerations about the optimal stimulation parameters. Differences in terms of stimulation protocols emerged across the included studies. Among transcranial electrical stimulation techniques, transcranial direct current stimulation (tDCS) was the most frequently employed. Currently, using tDCS to target dorsolateral prefrontal cortex either alone or in a multi-site fashion, along with a concurrent complex task, appears to be the most promising method for reducing dual task interference. Nevertheless, the lack of control over interindividual variability, the heterogeneity in outcome measures assessing dual tasking, and the variations in protocol elements like the frequency and the number of sessions prevented us from drawing definitive conclusions about the best paradigm.
Collapse
Affiliation(s)
- Martina Putzolu
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Carola Cosentino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Genoa, Italy
| | - Susanna Mezzarobba
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Genoa, Italy
| | - Gaia Bonassi
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Genoa, Italy
| | - Elisa Ravizzotti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Genoa, Italy
| | - Sara Terranova
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Genoa, Italy
| | | | - Elisa Pelosin
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Genoa, Italy
| | - Laura Avanzino
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
3
|
Tsai SY, Tai CH, Lee YY. Use of Transcranial Magnetic Stimulation to Probe Neuroplasticity and Predict Gait Performance After Treadmill Training in Parkinson's Disease. Mov Disord 2025; 40:517-525. [PMID: 39739544 DOI: 10.1002/mds.30100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Reduced step length is a hallmark of gait disturbance in people with Parkinson's disease (PD). Although treadmill training is effective for improving step length, the associated neural mechanisms have not been fully investigated. Moreover, exploring the baseline neurophysiological predictors for step length improvement after training could facilitate personalized gait rehabilitation for PD. OBJECTIVE The aim of this study was to investigate the neuroplastic changes in corticomotor excitability after treadmill training and to explore whether baseline neurophysiological measures could predict step length improvement in PD. METHODS Data from 61 participants with idiopathic PD who completed 12 treadmill training sessions were included. Gait performances and corticomotor excitability measured by transcranial magnetic stimulation (TMS) were obtained at baseline, postintervention, and 1-month follow-up. TMS outcomes included motor-evoked potentials, cortical silent period (CSP), intracortical facilitation (ICF), and short-interval intracortical inhibition (SICI). General estimating equation analysis and principal-component analyses were used to determine the neuroplastic changes induced by training, and multiple linear regression analysis was performed to explore the baseline TMS predictors for step length improvement at 1-month follow-up. RESULTS After treadmill training, SICI and CSP significantly increased and shared an emerging relationship. Regression analysis showed that female sex and greater baseline ICF and SICI were significant predictors of step length improvement at the follow-up. CONCLUSIONS This study advanced the understanding of neuroplastic changes induced by treadmill training in PD and showed that preserved SICI and ICF were predictors for lasting step length improvement after training. Future studies could investigate other influential factors for treadmill training in PD. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Si-Yu Tsai
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Yun Lee
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Physical Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Avila C, Sarter M. Cortico-striatal action control inherent of opponent cognitive-motivational styles. eLife 2025; 13:RP100988. [PMID: 39968969 PMCID: PMC11839163 DOI: 10.7554/elife.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Turning on cue or stopping at a red light requires attending to such cues to select action sequences, or suppress action, in accordance with learned cue-associated action rules. Cortico-striatal projections are an essential part of the brain's attention-motor interface. Glutamate-sensing microelectrode arrays were used to measure glutamate transients in the dorsomedial striatum (DMS) of male and female rats walking a treadmill and executing cued turns and stops. Prelimbic-DMS projections were chemogenetically inhibited to determine their behavioral necessity and the cortico-striatal origin of cue-evoked glutamate transients. Furthermore, we investigated rats exhibiting preferably goal-directed (goal trackers, GTs) versus cue-driven attention (sign-trackers, STs), to determine the impact of such cognitive-motivational biases on cortico-striatal control. GTs executed more cued turns and initiated such turns more slowly than STs. During turns, but not missed turns or cued stops, cue-evoked glutamate concentrations were higher in GTs than in STs. In STs, turn cue-locked glutamate concentrations frequently peaked twice or three times, contrasting with predominately single peaks in GTs. In GTs, but not STs, inhibition of prelimbic-DMS projections attenuated turn rates and turn cue-evoked glutamate concentrations and increased the number of turn cue-locked glutamate peaks. These findings indicate that turn cue-evoked glutamate release in GTs is tightly controlled by cortico-striatal neuronal activity. In contrast, in STs, glutamate release from DMS glutamatergic terminals may be regulated by other striatal circuitry, preferably mediating cued suppression of action and reward tracking. As cortico-striatal dysfunction has been hypothesized to contribute to a wide range of disorders, including complex movement control deficits in Parkinson's disease and compulsive drug taking, the demonstration of phenotypic contrasts in cortico-striatal control implies the presence of individual vulnerabilities for such disorders.
Collapse
Affiliation(s)
- Cassandra Avila
- Department of Psychology, University of MichiganAnn ArborUnited States
| | - Martin Sarter
- Department of Psychology, University of MichiganAnn ArborUnited States
- Department of Psychology & Neuroscience Program, University of MichiganAnn ArborUnited States
| |
Collapse
|
5
|
Pasquini J, Brooks DJ, Pavese N. The involvement of the cholinergic system in Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:215-229. [PMID: 40340062 DOI: 10.1016/b978-0-443-19088-9.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
In Parkinson disease (PD), cholinergic dysfunction develops in the early stages of the neurodegenerative process and progresses over time. Basal forebrain cholinergic system dysfunction is historically linked to cognitive decline in the dementia spectrum, and its pathophysiologic role in PD-related cognitive impairment has now been well established. However, cholinergic system dysfunction is also linked to several other manifestations of PD, such as gait difficulties, REM sleep behavior disorder (RBD), neuropsychiatric manifestations such as depression and visual hallucinations, and olfactory dysfunction. Furthermore, disruption of the striatal intrinsic cholinergic system, which modulates dopamine release, has been linked to cardinal motor manifestations and dyskinesia. Manifestations of cognitive decline, gait problems, falls, and RBD tend to cluster in a subset of people with PD, so that a "cholinergic phenotype" has been proposed. In this chapter, the involvement of the cholinergic system and its clinical correlates in PD will be discussed.
Collapse
Affiliation(s)
- Jacopo Pasquini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David J Brooks
- Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
6
|
Sathyanarayana S, Pavese N, Ledingham D. The cholinergic system in dementia with Lewy bodies. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:231-245. [PMID: 40340064 DOI: 10.1016/b978-0-443-19088-9.00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Dementia with Lewy bodies (DLB) is a progressive neurodegenerative disorder pathologically characterized by the presence of neuronal intracytoplasmic inclusions known as Lewy bodies. Core clinical features include fluctuating cognitive impairment, recurrent visual hallucinations, REM sleep behavior disorder, and Parkinsonism. Cholinergic dysfunction is implicated in many of the symptoms of DLB, based on both pathologic and functional imaging studies, as well as the clear symptomatic response of cognitive and behavioral symptoms to drugs that modulate the cholinergic system. In this chapter, we will review and discuss the evidence for cholinergic dysfunction in DLB and its clinical and therapeutic implications.
Collapse
Affiliation(s)
- Sahana Sathyanarayana
- Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, United Kingdom; Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - David Ledingham
- Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, United Kingdom; Royal Victoria Infirmary, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|
7
|
Wen P, Zhu H, Liu Z, Chang A, Chen X. Attenuated afferent inhibition correlated with impaired gait performance in Parkinson's disease patients with freezing of gait. Front Aging Neurosci 2024; 16:1458005. [PMID: 39759396 PMCID: PMC11696980 DOI: 10.3389/fnagi.2024.1458005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Background The neural mechanisms underlying freezing of gait (FOG) in Parkinson's disease (PD) have not been completely comprehended. Sensory-motor integration dysfunction was proposed as one of the contributing factors. Here, we investigated short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI), and analyzed their association with gait performance in FOG PD patients, to further validate the role of sensorimotor integration in the occurrence of FOG in PD. Methods Twenty-five levodopa responsive-FOG PD patients (LR-FOG), fifteen levodopa unresponsive-FOG PD patients (LUR-FOG), twenty-eight PD patients without FOG (NO-FOG PD) and twenty-two healthy controls (HC) were included in the study. Clinical features such as PD motor symptoms, FOG severity and cognitive abilities were evaluated using clinical scales in subjects with PD. All participants underwent paired associative stimulation (PAS) to evaluate SAI and LAI in addition to regular input-output curve by transcranial magnetic stimulation. The performances of gait were assessed using a portable gait analyzing system in 10-meter timed Up and Go task. The correlations between the gait spatiotemporal parameters or the scores of FOG scale and the magnitudes of SAI or LAI were analyzed. Results Compared to HC and NO-FOG PD patients, SAI was decreased in FOG PD subgroups. LAI was also reduced in both LR-FOG PD and LUR-FOG PD in relative to HC; however, only LUR-FOG PD showed significant reduction of LAI in comparison to NO-FOG PD group. FOG PD patients showed poorer gait performance compared to HC and NO-FOG PD group. The reduction of SAI and LAI were correlated with the impaired gait spatiotemporal parameters or scores of FOG scale in PD with FOG. Conclusion The SAI and LAI were attenuated in PD patients with FOG, and the reduction of SAI or LAI were correlated to disturbed gait performance, indicating that sensory-motor integration dysfunction played a role in the development of FOG in PD.
Collapse
Affiliation(s)
- Puyuan Wen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Hong Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zaichao Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Amin Chang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xianwen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Avila C, Sarter M. Cortico-striatal action control inherent of opponent cognitive-motivational styles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584623. [PMID: 38559086 PMCID: PMC10979997 DOI: 10.1101/2024.03.12.584623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Turning on cue or stopping at a red light requires attending to such cues to select action sequences, or suppress action, in accordance with learned cue-associated action rules. Cortico-striatal projections are an essential part of the brain's attention-motor interface. Glutamate-sensing microelectrode arrays were used to measure glutamate transients in the dorsomedial striatum (DMS) of male and female rats walking a treadmill and executing cued turns and stops. Prelimbic-DMS projections were chemogenetically inhibited to determine their behavioral necessity and the cortico-striatal origin of cue-evoked glutamate transients. Furthermore, we investigated rats exhibiting preferably goal-directed (goal trackers, GTs) versus cue-driven attention (sign trackers, STs), to determine the impact of such cognitive-motivational biases on cortico-striatal control. GTs executed more cued turns and initiated such turns more slowly than STs. During turns, but not missed turns or cued stops, cue-evoked glutamate concentrations were higher in GTs than in STs. In STs, turn cue-locked glutamate concentrations frequently peaked twice or three times, contrasting with predominately single peaks in GTs. In GTs, but not STs, inhibition of prelimbic-DMS projections attenuated turn rates and turn cue-evoked glutamate concentrations and increased the number of turn cue-locked glutamate peaks. These findings indicate that turn cue-evoked glutamate release in GTs is tightly controlled by cortico-striatal neuronal activity. In contrast, in STs, glutamate release from DMS glutamatergic terminals may be regulated by other striatal circuitry, preferably mediating cued suppression of action and reward tracking. As cortico-striatal dysfunction has been hypothesized to contribute to a wide range of disorders, including complex movement control deficits in Parkinson's disease and compulsive drug taking, the demonstration of phenotypic contrasts in cortico-striatal control implies the presence of individual vulnerabilities for such disorders. Significance Statement Adaptive behavior involves the selection of behaviorally significant cues and the capacity of selected cues to control behavioral action. Neuronal projections from cortex to striatum are essential for such an integration of attentional with motor functions. Here we demonstrated that glutamate release from cortico-striatal projections primarily influences cued turns but not cued suppression of actions (cued stops). Cortico-striatal control of cued turning was especially powerful in rats which, as a psychological trait, preferably deploy goal-directed attention. Together, our findings demonstrate the role of cortico-striatal input in cued action selection, and they emphasize the experimental and biopsychological significance of investigating the brain's attentional-motor interface in the context of broader individual differences in cognitive-motivational styles.
Collapse
Affiliation(s)
- Cassandra Avila
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Lasisi WO, Wadden KP, Kirkland MC, Critch AL, Newell CJ, Alcock LR, Ploughman M. Short-latency afferent inhibition and its relationship to covert sensory and motor hand impairment in multiple sclerosis. Clin Neurophysiol 2024; 167:106-116. [PMID: 39307101 DOI: 10.1016/j.clinph.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 11/27/2024]
Abstract
OBJECTIVE To investigate sensorimotor integration by quantifying short-latency afferent inhibition (SAI) in people with MS who experience manual dexterity problems compared to controls. METHODS 22 people with MS with self-reported manual dexterity problems and 10 sex and age-matched controls were assessed using various upper extremity clinical tests. SAI was assessed by a transcranial magnetic stimulation pulse over the primary motor cortex preceded by peripheral nerve stimulation to the median nerve at 6 interstimulus intervals 2 - 8 ms longer than individualized N20 latencies. RESULTS Although within normal limits, persons with MS exhibited significantly slower Nine Hole Peg Test performance and pinch strength in the dominant hand. They also exhibited greater sensory impairment (monofilament test) in the dominant hand. Persons with MS showed significantly greater disinhibition of SAI in the dominant hand compared to controls, which was significantly correlated with weaker pinch strength. CONCLUSION Reduced SAI in people with MS, particularly in the dominant hand, signifies disruptions in cortical cholinergic inhibitory activity and is associated with lower pinch strength. SIGNIFICANCE Evaluating changes in SAI may offer insight into the disrupted cortical cholinergic inhibitory activity that contributes to sensorimotor disintegration, potentially advancing disease management in persons with MS.
Collapse
Affiliation(s)
- Wendy O Lasisi
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Katie P Wadden
- Wadden Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Megan C Kirkland
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Amber L Critch
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Caitlin J Newell
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Lynsey R Alcock
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Michelle Ploughman
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| |
Collapse
|
10
|
Nishida A, Shima A, Kambe D, Furukawa K, Sakamaki-Tsukita H, Yoshimura K, Wada I, Sakato Y, Terada Y, Sawamura M, Nakanishi E, Taruno Y, Yamakado H, Fushimi Y, Okada T, Nakamoto Y, Takahashi R, Sawamoto N. Frontoparietal-Striatal Network and Nucleus Basalis Modulation in Patients With Parkinson Disease and Gait Disturbance. Neurology 2024; 103:e209606. [PMID: 38976821 DOI: 10.1212/wnl.0000000000209606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Neural computations underlying gait disorders in Parkinson disease (PD) are multifactorial and involve impaired expression of stereotactic locomotor patterns and compensatory recruitment of cognitive functions. This study aimed to clarify the network mechanisms of cognitive contribution to gait control and its breakdown in patients with PD. METHODS Patients with PD were instructed to walk at a comfortable pace on a mat with pressure sensors. The characterization of cognitive-motor interplay was enhanced by using a gait with a secondary cognitive task (dual-task condition) and a gait without additional tasks (single-task condition). Participants were scanned using 3-T MRI and 123I-ioflupane SPECT. RESULTS According to gait characteristics, cluster analysis assisted by a nonlinear dimensionality reduction technique, t-distributed stochastic neighbor embedding, categorized 56 patients with PD into 3 subpopulations. The preserved gait (PG) subgroup (n = 23) showed preserved speed and variability during gait, both with and without additional cognitive load. Compared with the PG subgroup, the mildly impaired gait (MIG) subgroup (n = 16) demonstrated deteriorated gait variability with additional cognitive load and impaired speed and gait variability without additional cognitive load. The severely impaired gait (SIG) subgroup (n = 17) revealed the slowest speed and highest gait variability. In addition, group differences were found in attention/working memory and executive function domains, with the lowest performance in the SIG subgroup than in the PG and MIG subgroups. Using resting-state functional MRI, the SIG subgroup demonstrated lower functional connectivity of the left and right frontoparietal network (FPN) with the caudate than the PG subgroup did (left FPN, d = 1.21, p < 0.001; right FPN, d = 1.05, p = 0.004). Cortical thickness in the FPN and 123I-ioflupane uptake in the striatum did not differ among the 3 subgroups. By contrast, the severity of Ch4 density loss was significantly correlated with the level of functional connectivity degradation of the FPN and caudate (left FPN-caudate, r = 0.27, p = 0.04). DISCUSSION These findings suggest that the functional connectivity of the FPN with the caudate, as mediated by the cholinergic Ch4 projection system, underlies the compensatory recruitment of attention and executive function for damaged automaticity in gait in patients with PD.
Collapse
Affiliation(s)
- Akira Nishida
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Atsushi Shima
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Daisuke Kambe
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Koji Furukawa
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Haruhi Sakamaki-Tsukita
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Kenji Yoshimura
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Ikko Wada
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Yusuke Sakato
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Yuta Terada
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Masanori Sawamura
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Etsuro Nakanishi
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Yosuke Taruno
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Hodaka Yamakado
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Yasutaka Fushimi
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Tomohisa Okada
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Yuji Nakamoto
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Ryosuke Takahashi
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Nobukatsu Sawamoto
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| |
Collapse
|
11
|
Zhang X, Wang M, Lee SY, Yue Y, Chen Z, Zhang Y, Wang L, Guan Q, Fan W, Shen T. Cholinergic nucleus degeneration and its association with gait impairment in Parkinson's disease. J Neuroeng Rehabil 2024; 21:120. [PMID: 39026279 PMCID: PMC11256459 DOI: 10.1186/s12984-024-01417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/04/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The contribution of cholinergic degeneration to gait disturbance in Parkinson's disease (PD) is increasingly recognized, yet its relationship with dopaminergic-resistant gait parameters has been poorly investigated. We investigated the association between comprehensive gait parameters and cholinergic nucleus degeneration in PD. METHODS This cross-sectional study enrolled 84 PD patients and 69 controls. All subjects underwent brain structural magnetic resonance imaging to assess the gray matter density (GMD) and volume (GMV) of the cholinergic nuclei (Ch123/Ch4). Gait parameters under single-task (ST) and dual-task (DT) walking tests were acquired using sensor wearables in PD group. We compared cholinergic nucleus morphology and gait performance between groups and examined their association. RESULTS PD patients exhibited significantly decreased GMD and GMV of the left Ch4 compared to controls after reaching HY stage > 2. Significant correlations were observed between multiple gait parameters and bilateral Ch123/Ch4. After multiple testing correction, the Ch123/Ch4 degeneration was significantly associated with shorter stride length, lower gait velocity, longer stance phase, smaller ankle toe-off and heel-strike angles under both ST and DT condition. For PD patients with HY stage 1-2, there were no significant degeneration of Ch123/4, and only right side Ch123/Ch4 were corrected with the gait parameters. However, as the disease progressed to HY stage > 2, bilateral Ch123/Ch4 nuclei showed correlations with gait performance, with more extensive significant correlations were observed in the right side. CONCLUSIONS Our study demonstrated the progressive association between cholinergic nuclei degeneration and gait impairment across different stages of PD, and highlighting the potential lateralization of the cholinergic nuclei's impact on gait impairment. These findings offer insights for the design and implementation of future clinical trials investigating cholinergic treatments as a promising approach to address gait impairments in PD.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Neurology, Ningbo NO.2 Hospital, NO.6 Building, 41 Xibei Street, Haishu District, Ningbo, Zhejiang Province, China
- Department of Emergency Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mateng Wang
- Department of General Surgery, Yinzhou NO.2 Hospital, Ningbo, Zhejiang Province, China
| | - Shi Yeow Lee
- Department of Emergency Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yumei Yue
- Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhaoying Chen
- Department of Neurology, Ningbo NO.2 Hospital, NO.6 Building, 41 Xibei Street, Haishu District, Ningbo, Zhejiang Province, China
| | - Yilin Zhang
- Department of Emergency Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lulu Wang
- Department of Neurology, Ningbo NO.2 Hospital, NO.6 Building, 41 Xibei Street, Haishu District, Ningbo, Zhejiang Province, China
| | - Qiongfeng Guan
- Department of Neurology, Ningbo NO.2 Hospital, NO.6 Building, 41 Xibei Street, Haishu District, Ningbo, Zhejiang Province, China
| | - Weinv Fan
- Department of Neurology, Ningbo NO.2 Hospital, NO.6 Building, 41 Xibei Street, Haishu District, Ningbo, Zhejiang Province, China.
| | - Ting Shen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Bastos-Gonçalves R, Coimbra B, Rodrigues AJ. The mesopontine tegmentum in reward and aversion: From cellular heterogeneity to behaviour. Neurosci Biobehav Rev 2024; 162:105702. [PMID: 38718986 DOI: 10.1016/j.neubiorev.2024.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
The mesopontine tegmentum, comprising the pedunculopontine tegmentum (PPN) and the laterodorsal tegmentum (LDT), is intricately connected to various regions of the basal ganglia, motor systems, and limbic systems. The PPN and LDT can regulate the activity of different brain regions of these target systems, and in this way are in a privileged position to modulate motivated behaviours. Despite recent findings, the PPN and LDT have been largely overlooked in discussions about the neural circuits associated with reward and aversion. This review aims to provide a timely and comprehensive resource on past and current research, highlighting the PPN and LDT's connectivity and influence on basal ganglia and limbic, and motor systems. Seminal studies, including lesion, pharmacological, and optogenetic/chemogenetic approaches, demonstrate their critical roles in modulating reward/aversive behaviours. The review emphasizes the need for further investigation into the associated cellular mechanisms, in order to clarify their role in behaviour and contribution for different neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ricardo Bastos-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
13
|
Radlicka-Borysewska A, Jabłońska J, Lenarczyk M, Szumiec Ł, Harda Z, Bagińska M, Barut J, Pera J, Kreiner G, Wójcik DK, Rodriguez Parkitna J. Non-motor symptoms associated with progressive loss of dopaminergic neurons in a mouse model of Parkinson's disease. Front Neurosci 2024; 18:1375265. [PMID: 38745938 PMCID: PMC11091341 DOI: 10.3389/fnins.2024.1375265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Parkinson's disease (PD) is characterized by three main motor symptoms: bradykinesia, rigidity and tremor. PD is also associated with diverse non-motor symptoms that may develop in parallel or precede motor dysfunctions, ranging from autonomic system dysfunctions and impaired sensory perception to cognitive deficits and depression. Here, we examine the role of the progressive loss of dopaminergic transmission in behaviors related to the non-motor symptoms of PD in a mouse model of the disease (the TIF-IADATCreERT2 strain). We found that in the period from 5 to 12 weeks after the induction of a gradual loss of dopaminergic neurons, mild motor symptoms became detectable, including changes in the distance between paws while standing as well as the swing speed and step sequence. Male mutant mice showed no apparent changes in olfactory acuity, no anhedonia-like behaviors, and normal learning in an instrumental task; however, a pronounced increase in the number of operant responses performed was noted. Similarly, female mice with progressive dopaminergic neuron degeneration showed normal learning in the probabilistic reversal learning task and no loss of sweet-taste preference, but again, a robustly higher number of choices were performed in the task. In both males and females, the higher number of instrumental responses did not affect the accuracy or the fraction of rewarded responses. Taken together, these data reveal discrete, dopamine-dependent non-motor symptoms that emerge in the early stages of dopaminergic neuron degeneration.
Collapse
Affiliation(s)
- Anna Radlicka-Borysewska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Judyta Jabłońska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Michał Lenarczyk
- Faculty of Management and Social Communication, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Łukasz Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Zofia Harda
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Monika Bagińska
- Department of Brain Biochemistry, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Justyna Barut
- Department of Brain Biochemistry, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Joanna Pera
- Department of Neurology, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Daniel K. Wójcik
- Faculty of Management and Social Communication, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
14
|
d'Angremont E, Sommer IEC, van der Zee S, van Laar T, de Vries EFJ, Zijdewind I. Short-latency afferent inhibition as a biomarker of cholinergic degeneration compared to PET imaging in Parkinson's disease. Parkinsonism Relat Disord 2024; 121:106032. [PMID: 38364622 DOI: 10.1016/j.parkreldis.2024.106032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
INTRODUCTION Short-latency afferent inhibition (SAI) is a relatively cheap and non-invasive method that has been proposed as a cholinergic marker in Parkinson's disease (PD). We aim to verify the clinical feasibility of SAI as a cholinergic marker in PD using positron emission tomography (PET) with the tracer (2R,3R)-5-(2-[18F]fluoroethoxy)benzovesamicol ([18F]FEOBV) as a reference. METHODS We examined relations between SAI and [18F]FEOBV PET using linear regression analysis, with the primary motor cortex (M1) as primary region of interest. Additionally, we examined relations of both measures with clinical features. RESULTS 30 PD patients with varying degrees of cognitive dysfunction and 10 healthy controls (HC) were included in the analysis. SAI was not related to tracer uptake in M1 in the PD group (p = .291) or the HC group (p = .206). We could not replicate the previously published relations between SAI and cholinergic symptoms, such as cognition, psychotic experiences and olfactory function. CONCLUSION SAI was not related to [18F]FEOBV imaging parameters, nor to clinical measures of cholinergic dysfunction. Therefore, SAI may not be feasible as a clinically applied cholinergic marker in PD.
Collapse
Affiliation(s)
- Emile d'Angremont
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, the Netherlands.
| | - Iris E C Sommer
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, the Netherlands
| | - Sygrid van der Zee
- Department of Neurology, University Medical Center Groningen, the Netherlands
| | - Teus van Laar
- Department of Neurology, University Medical Center Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, the Netherlands
| | - Inge Zijdewind
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, the Netherlands
| |
Collapse
|
15
|
Islam M, Hasan Majumder M, Hussein M, Hossain KM, Miah M. A review of machine learning and deep learning algorithms for Parkinson's disease detection using handwriting and voice datasets. Heliyon 2024; 10:e25469. [PMID: 38356538 PMCID: PMC10865258 DOI: 10.1016/j.heliyon.2024.e25469] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
Parkinson's Disease (PD) is a prevalent neurodegenerative disorder with significant clinical implications. Early and accurate diagnosis of PD is crucial for timely intervention and personalized treatment. In recent years, Machine Learning (ML) and Deep Learning (DL) techniques have emerged as promis-ing tools for improving PD diagnosis. This review paper presents a detailed analysis of the current state of ML and DL-based PD diagnosis, focusing on voice, handwriting, and wave spiral datasets. The study also evaluates the effectiveness of various ML and DL algorithms, including classifiers, on these datasets and highlights their potential in enhancing diagnostic accuracy and aiding clinical decision-making. Additionally, the paper explores the identifi-cation of biomarkers using these techniques, offering insights into improving the diagnostic process. The discussion encompasses different data formats and commonly employed ML and DL methods in PD diagnosis, providing a comprehensive overview of the field. This review serves as a roadmap for future research, guiding the development of ML and DL-based tools for PD detection. It is expected to benefit both the scientific community and medical practitioners by advancing our understanding of PD diagnosis and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Md.Ariful Islam
- Department of Robotics and Mechatronics Engineering, University of Dhaka, Nilkhet Rd, Dhaka, 1000, Bangladesh
| | - Md.Ziaul Hasan Majumder
- Institute of Electronics, Bangladesh Atomic Energy Commission, Dhaka, 1207, Bangladesh
- Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md.Alomgeer Hussein
- Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Khondoker Murad Hossain
- Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md.Sohel Miah
- Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
- Moulvibazar Polytechnic Institute, Bangladesh
| |
Collapse
|
16
|
Mondal B, Choudhury S, Banerjee R, Roy A, Chatterjee K, Basu P, Singh R, Halder S, Shubham S, Baker SN, Baker MR, Kumar H. Effects of non-invasive vagus nerve stimulation on clinical symptoms and molecular biomarkers in Parkinson's disease. Front Aging Neurosci 2024; 15:1331575. [PMID: 38384731 PMCID: PMC10879328 DOI: 10.3389/fnagi.2023.1331575] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 02/23/2024] Open
Abstract
Non-invasive vagus nerve stimulation (nVNS) is an established neurostimulation therapy used in the treatment of epilepsy, migraine and cluster headache. In this randomized, double-blind, sham-controlled trial we explored the role of nVNS in the treatment of gait and other motor symptoms in Parkinson's disease (PD) patients. In a subgroup of patients, we measured selected neurotrophins, inflammatory markers and markers of oxidative stress in serum. Thirty-three PD patients with freezing of gait (FOG) were randomized to either active nVNS or sham nVNS. After baseline assessments, patients were instructed to deliver six 2 min stimulations (12 min/day) of the active nVNS/sham nVNS device for 1 month at home. Patients were then re-assessed. After a one-month washout period, they were allocated to the alternate treatment arm and the same process was followed. Significant improvements in key gait parameters (speed, stance time and step length) were observed with active nVNS. While serum tumor necrosis factor- α decreased, glutathione and brain-derived neurotrophic factor levels increased significantly (p < 0.05) after active nVNS treatment. Here we present the first evidence of the efficacy and safety of nVNS in the treatment of gait in PD patients, and propose that nVNS can be used as an adjunctive therapy in the management of PD patients, especially those suffering from FOG. Clinical trial registration: identifier ISRCTN14797144.
Collapse
Affiliation(s)
| | | | | | - Akash Roy
- Institute of Neurosciences Kolkata, Kolkata, India
| | | | - Purba Basu
- Institute of Neurosciences Kolkata, Kolkata, India
| | - Ravi Singh
- Institute of Neurosciences Kolkata, Kolkata, India
| | | | | | - Stuart N. Baker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mark R. Baker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
17
|
Heß T, Themann P, Oehlwein C, Milani TL. Does Impaired Plantar Cutaneous Vibration Perception Contribute to Axial Motor Symptoms in Parkinson's Disease? Effects of Medication and Subthalamic Nucleus Deep Brain Stimulation. Brain Sci 2023; 13:1681. [PMID: 38137129 PMCID: PMC10742284 DOI: 10.3390/brainsci13121681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVE To investigate whether impaired plantar cutaneous vibration perception contributes to axial motor symptoms in Parkinson's disease (PD) and whether anti-parkinsonian medication and subthalamic nucleus deep brain stimulation (STN-DBS) show different effects. METHODS Three groups were evaluated: PD patients in the medication "on" state (PD-MED), PD patients in the medication "on" state and additionally "on" STN-DBS (PD-MED-DBS), as well as healthy subjects (HS) as reference. Motor performance was analyzed using a pressure distribution platform. Plantar cutaneous vibration perception thresholds (VPT) were investigated using a customized vibration exciter at 30 Hz. RESULTS Motor performance of PD-MED and PD-MED-DBS was characterized by greater postural sway, smaller limits of stability ranges, and slower gait due to shorter strides, fewer steps per minute, and broader stride widths compared to HS. Comparing patient groups, PD-MED-DBS showed better overall motor performance than PD-MED, particularly for the functional limits of stability and gait. VPTs were significantly higher for PD-MED compared to those of HS, which suggests impaired plantar cutaneous vibration perception in PD. However, PD-MED-DBS showed less impaired cutaneous vibration perception than PD-MED. CONCLUSIONS PD patients suffer from poor motor performance compared to healthy subjects. Anti-parkinsonian medication in tandem with STN-DBS seems to be superior for normalizing axial motor symptoms compared to medication alone. Plantar cutaneous vibration perception is impaired in PD patients, whereas anti-parkinsonian medication together with STN-DBS is superior for normalizing tactile cutaneous perception compared to medication alone. Consequently, based on our results and the findings of the literature, impaired plantar cutaneous vibration perception might contribute to axial motor symptoms in PD.
Collapse
Affiliation(s)
- Tobias Heß
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Peter Themann
- Department of Neurology and Parkinson, Clinic at Tharandter Forest, 09633 Halsbruecke, Germany
| | - Christian Oehlwein
- Neurological Outpatient Clinic for Parkinson Disease and Deep Brain Stimulation, 07551 Gera, Germany
| | - Thomas L. Milani
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| |
Collapse
|
18
|
Woo KA, Joun JH, Yoon EJ, Lee CY, Jeon B, Kim YK, Lee JY. Monoaminergic Degeneration and Ocular Motor Abnormalities in De Novo Parkinson's Disease. Mov Disord 2023; 38:2291-2301. [PMID: 37846885 DOI: 10.1002/mds.29623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Evaluating eye movements in Parkinson's disease (PD) provides valuable insights into the underlying pathophysiological changes. OBJECTIVE The aim was to investigate the relationship between monoaminergic degeneration and ocular motor abnormalities in de novo PD. METHODS Drug-naive PD patients who underwent N-(3-[18 F]fluoropropyl)-2-carbomethoxy-3-(4-iodophenyl) nortropane positron emission tomography scans and video-oculography at diagnosis were eligible. Measurements of saccadic accuracy, latency, and smooth pursuit gain and square wave jerk frequency were collected. Patients underwent Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and detailed cognitive tests. We investigated the associations between ocular motor measurements and specific tracer uptake ratios (SUR) in the caudate nucleus, anterior and posterior putamen, thalamus, and dorsal raphe nuclei, along with motor and cognitive symptoms. RESULTS One-hundred twenty-four subjects were included in this study. Saccadic accuracy was positively associated with parkinsonian motor severity expressed as Hoehn and Yahr stages, MDS-UPDRS Part III scores, and subscores for bradykinesia and rigidity but not with tremor scores (PFDR < 0.05). Saccadic accuracy correlated with poor performances in the Rey-Complex-Figure copy, and latency with the Digit Symbol Coding and the Montreal Cognitive Assessment scores (PFDR < 0.05). Prolonged saccadic latency correlated with reduced thalamic SUR, whereas decreased saccadic accuracy correlated with reduced SUR in the anterior and posterior putamen (PFDR < 0.05). Reduced smooth pursuit gain showed associations with reduced SUR in the dorsal raphe, a serotonin-predominant region, but did not correlate with parkinsonism severity scores. CONCLUSION Defective dopaminergic and nondopaminergic neural systems may discretely influence ocular motor function in de novo PD patients. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kyung Ah Woo
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joo Hong Joun
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Jin Yoon
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Memory Network Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Chan Young Lee
- Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
20
|
Gan C, Cao X, Wang L, Sun H, Ji M, Zhang H, Yuan Y, Zhang K. Cholinergic basal forebrain atrophy in Parkinson's disease with freezing of gait. Ann Clin Transl Neurol 2023; 10:814-824. [PMID: 37000969 DOI: 10.1002/acn3.51769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/21/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Mounting research support that cholinergic dysfunction plays a prominent role in freezing of gait (FOG), which commonly occurs in Parkinson's disease (PD). Basal forebrain (BF), especially the cholinergic nuclei 4 (Ch4), provides the primary source of the brain cholinergic input. However, whether the degeneration of BF and its innervated cortex contribute to the pathogenesis of FOG is unknown. OBJECTIVE To explore the role of structural alterations of BF and its innervated cortical brain regions in the pathogenesis of PD patients with freezing. METHODS Magnetic resonance imaging assessments and neurological assessments were performed on 20 PD patients with FOG (PD-FOG), 20 without FOG (PD-NFOG), and 21 healthy participants. Subregion volumes of the BF were compared among groups. Local gyrification index (LGI) was computed to reveal the cortical alternations. Relationships among subregional BF volumes, LGI, and the severity of FOG were evaluated by multiple linear regression. RESULTS Our study discovered that, compared to PD-NFOG, PD-FOG exhibited significant Ch4 atrophy (p = 4.6 × 10-5 ), accompanied by decreased LGI values in the left entorhinal cortex (p = 3.00 × 10-5 ) and parahippocampal gyrus (p = 2.90 × 10-5 ). Based on the regression analysis, Ch4 volume was negatively associated with FOG severity in PD-FOG group (β = -12.224, T = -2.556, p = 0.031). INTERPRETATION Our results imply that Ch4 degeneration and microstructural disorganization of its innervated cortical brain regions may play important roles in PD-FOG.
Collapse
|
21
|
Ramdeo KR, Rehsi RS, Foglia SD, Turco CV, Toepp SL, Nelson AJ. Experimental environment improves the reliability of short-latency afferent inhibition. PLoS One 2023; 18:e0281867. [PMID: 36812217 PMCID: PMC9946256 DOI: 10.1371/journal.pone.0281867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Evidence indicates attention can alter afferent inhibition, a Transcranial Magnetic Stimulation (TMS) evoked measure of cortical inhibition following somatosensory input. When peripheral nerve stimulation is delivered prior to TMS, a phenomenon known as afferent inhibition occurs. The latency between the peripheral nerve stimulation dictates the subtype of afferent inhibition evoked, either short latency afferent inhibition (SAI) or long latency afferent inhibition (LAI). While afferent inhibition is emerging as a valuable tool for clinical assessment of sensorimotor function, the reliability of the measure remains relatively low. Therefore, to improve the translation of afferent inhibition within and beyond the research lab, the reliability of the measure must be improved. Previous literature suggests that the focus of attention can modify the magnitude of afferent inhibition. As such, controlling the focus of attention may be one method to improve the reliability of afferent inhibition. In the present study, the magnitude and reliability of SAI and LAI was assessed under four conditions with varying attentional demands focused on the somatosensory input that evokes SAI and LAI circuits. Thirty individuals participated in four conditions; three conditions were identical in their physical parameters and varied only in the focus of directed attention (visual attend, tactile attend, non- directed attend) and one condition consisted of no external physical parameters (no stimulation). Reliability was measured by repeating conditions at three time points to assess intrasession and intersession reliability. Results indicate that the magnitude of SAI and LAI were not modulated by attention. However, the reliability of SAI demonstrated increased intrasession and intersession reliability compared to the no stimulation condition. The reliability of LAI was unaffected by the attention conditions. This research demonstrates the impact of attention/arousal on the reliability of afferent inhibition and has identified new parameters to inform the design of TMS research to improve reliability.
Collapse
Affiliation(s)
| | - Ravjot S. Rehsi
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | - Stevie D. Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, Canada
| | - Claudia V. Turco
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Stephen L. Toepp
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Canada
- * E-mail:
| |
Collapse
|
22
|
Sigurdsson HP, Hunter H, Alcock L, Wilson R, Pienaar I, Want E, Baker MR, Taylor JP, Rochester L, Yarnall AJ. Safety and tolerability of adjunct non-invasive vagus nerve stimulation in people with parkinson's: a study protocol. BMC Neurol 2023; 23:58. [PMID: 36737716 PMCID: PMC9896761 DOI: 10.1186/s12883-023-03081-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the fastest growing neurological condition worldwide. Recent theories suggest that symptoms of PD may arise due to spread of Lewy-body pathology where the process begins in the gut and propagate transynaptically via the vagus nerve to the central nervous system. In PD, gait impairments are common motor manifestations that are progressive and can appear early in the disease course. As therapies to mitigate gait impairments are limited, novel interventions targeting these and their consequences, i.e., reducing the risk of falls, are urgently needed. Non-invasive vagus nerve stimulation (nVNS) is a neuromodulation technique targeting the vagus nerve. We recently showed in a small pilot trial that a single dose of nVNS improved (decreased) discrete gait variability characteristics in those receiving active stimulation relative to those receiving sham stimulation. Further multi-dose, multi-session studies are needed to assess the safety and tolerability of the stimulation and if improvement in gait is sustained over time. DESIGN This will be an investigator-initiated, single-site, proof-of-concept, double-blind sham-controlled randomised pilot trial in 40 people with PD. Participants will be randomly assigned on a 1:1 ratio to receive either active or sham transcutaneous cervical VNS. All participants will undergo comprehensive cognitive, autonomic and gait assessments during three sessions over 24 weeks, in addition to remote monitoring of ambulatory activity and falls, and exploratory analyses of cholinergic peripheral plasma markers. The primary outcome measure is the safety and tolerability of multi-dose nVNS in PD. Secondary outcomes include improvements in gait, cognition and autonomic function that will be summarised using descriptive statistics. DISCUSSION This study will report on the proportion of eligible and enrolled patients, rates of eligibility and reasons for ineligibility. Adverse events will be recorded informing on the safety and device tolerability in PD. This study will additionally provide us with information for sample size calculations for future studies and evidence whether improvement in gait control is enhanced when nVNS is delivered repeatedly and sustained over time. TRIAL REGISTRATION This trial is prospectively registered at www.isrctn.com/ISRCTN19394828 . Registered August 23, 2021.
Collapse
Affiliation(s)
- Hilmar P. Sigurdsson
- grid.1006.70000 0001 0462 7212Clinical Ageing Research Unit, Campus for Aging and Vitality, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL Tyne and Wear UK
| | - Heather Hunter
- grid.1006.70000 0001 0462 7212Clinical Ageing Research Unit, Campus for Aging and Vitality, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL Tyne and Wear UK ,grid.420004.20000 0004 0444 2244The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Lisa Alcock
- grid.1006.70000 0001 0462 7212Clinical Ageing Research Unit, Campus for Aging and Vitality, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL Tyne and Wear UK
| | - Ross Wilson
- grid.1006.70000 0001 0462 7212Clinical Ageing Research Unit, Campus for Aging and Vitality, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL Tyne and Wear UK
| | - Ilse Pienaar
- grid.6572.60000 0004 1936 7486Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B12 2TT UK
| | - Elizabeth Want
- grid.7445.20000 0001 2113 8111Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Mark R. Baker
- grid.1006.70000 0001 0462 7212Clinical Ageing Research Unit, Campus for Aging and Vitality, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL Tyne and Wear UK
| | - John-Paul Taylor
- grid.1006.70000 0001 0462 7212Clinical Ageing Research Unit, Campus for Aging and Vitality, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL Tyne and Wear UK
| | - Lynn Rochester
- grid.1006.70000 0001 0462 7212Clinical Ageing Research Unit, Campus for Aging and Vitality, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL Tyne and Wear UK
| | - Alison J. Yarnall
- grid.1006.70000 0001 0462 7212Clinical Ageing Research Unit, Campus for Aging and Vitality, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL Tyne and Wear UK ,grid.420004.20000 0004 0444 2244The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
23
|
Tactile sensorimotor training does not alter short- and long-latency afferent inhibition. Neuroreport 2023; 34:123-127. [PMID: 36719836 DOI: 10.1097/wnr.0000000000001866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sensorimotor integration refers to the process of combining incoming sensory information with outgoing motor commands to control movement. Short-latency afferent inhibition (SAI), and long-latency afferent inhibition (LAI) are neurophysiological measures of sensorimotor integration collected using transcranial magnetic stimulation. No studies to date have investigated the influence of tactile discrimination training on these measures. This study aimed to determine whether SAI and LAI are modulated following training on a custom-designed tactile discrimination maze task. Participants performed a 'high difficulty' and 'low difficulty' maze training condition on separate visits. On an additional visit, no maze training was performed to serve as a control condition. Despite evidence of performance improvements during training, there were no significant changes in SAI or LAI following training in either condition. The total number of errors during maze training was significantly greater in the high-difficulty condition compared with the low-difficulty condition. These findings suggest that sensorimotor maze training for 30 min is insufficient to modify the magnitude of SAI and LAI.
Collapse
|
24
|
Martini DN, Morris R, Harker G, Kelly VE, Nutt JG, Horak FB. Exploring the effects of dopamine on sensorimotor inhibition and mobility in older adults. Exp Brain Res 2023; 241:127-133. [PMID: 36394592 PMCID: PMC9870938 DOI: 10.1007/s00221-022-06509-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
Dopaminergic activity decreases in older adults (OAs) with normal aging and is further reduced in Parkinson's disease (PD), affecting cortical motor and sensorimotor pathways. Levodopa is the prevailing therapy to counter dopamine loss in PD, though not all PD motor signs improve with levodopa. The purpose of this preliminary study was to explore the effects of levodopa on sensorimotor inhibition, gait and quiet standing in OAs and to investigate the relationships between sensorimotor inhibition and both gait and standing balance both OFF- and ON-levodopa. Fifteen OA males completed a gait, balance and sensorimotor assessments before and 1 h after they were given a 100 mg dose of levodopa. Short-latency afferent inhibition quantified sensorimotor inhibition. Wearable sensors characterized gait (two-minute walk) and standing balance (1-min stance). No sensorimotor inhibition, gait, or standing balance measures changed from OFF- to ON-levodopa. When OFF-levodopa, worse inhibition significantly related to increased double stance (r = 0.62; p = 0.01), increased jerkiness of sway (r = 0.57; p = 0.03) and sway area (r = 0.58; p = 0.02). While ON-levodopa, worse inhibition related to increased arm swing range of motion (r = 0.63; p = 0.01) and jerkiness of sway (r = 0.53; p = 0.04). The relationship between SAI and arm swing excursion significantly changed from OFF- to ON-levodopa (z = - 3.05; p = 0.002; 95% confidence interval = - 0.95, - 0.21). Sensorimotor inhibition relationships to both gait and balance may be affected by dopamine in OAs. Cortical restructuring due to the loss of dopamine may be responsible for the heterogeneity of levodopa effect in people with PD and OAs.
Collapse
Affiliation(s)
- Douglas N Martini
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA.
- Department of Kinesiology, University of Massachusetts Amherst, 30 Eastman Lane, Amherst, MA, 01003, USA.
| | - Rosie Morris
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Sport, Exercise, and Rehabilitation, Northumbria University, Newcastle, UK
| | - Graham Harker
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Valerie E Kelly
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - John G Nutt
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Fay B Horak
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
25
|
Onset of Postural Instability in Parkinson's Disease Depends on Age rather than Disease Duration. PARKINSON'S DISEASE 2022; 2022:6233835. [PMID: 36506486 PMCID: PMC9734006 DOI: 10.1155/2022/6233835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Background Postural instability and falls are considered a major factor of impaired quality of life in patients with advanced Parkinson's disease (PD). The knowledge of the time at which postural instability occurs will help to provide the evidence required to introduce fall-prevention strategies at the right time in PD. Objective To investigate whether postural instability of patients with different age at disease onset is associated with age or with disease duration of PD. Methods Patients diagnosed with sporadic PD between 1991 and 2017 and postural instability (according to the International Parkinson and Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III, item 3.12 postural instability) were included, with strict inclusion criteria including regular follow-ups, agreement on data use, and exclusion of comorbidities affecting the free stand. Results Applying these strict inclusion criteria, we included 106 patients. Those younger than 50 years at PD onset took significantly longer to develop postural instability (n = 23 patients, median: 18.4 years) compared with patients with later onset of PD (50-70 years, n = 66, median: 14.2 years, p < 0.001; and >70 years, n = 17, median: 5.7 years, p < 0.001, Kruskal-Wallis test followed by Dunn's multiple comparisons test). There was no association between total MDS-UPDRS III (as a measure of motor symptom severity) at onset of postural instability. Conclusions In PD, postural instability is primarily associated with the age of the patient and not with disease duration.
Collapse
|
26
|
Chen MJ, Lu JY, Li XY, Jiao FY, Zuo CT, Wang J, Liu FT, Yang YJ. Striatal dopaminergic lesions contributed to the disease severity in progressive supranuclear palsy. Front Aging Neurosci 2022; 14:998255. [PMID: 36092815 PMCID: PMC9454812 DOI: 10.3389/fnagi.2022.998255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundReduced dopamine transporter (DAT) binding in the striatum has been reported in patients with progressive supranuclear palsy (PSP). However, the relationship between striatal dopaminergic lesions and the disease severity of PSP remains to be explored.ObjectiveTo investigate the contributions of striatal dopaminergic lesions to the disease severity of PSP.MethodsOne hundred patients with clinically diagnosed PSP were consecutively enrolled in this study. The disease severity was systemically assessed using the PSP rating scale (PSPrs), and the dopaminergic lesions were assessed using the 11C-N-2-carbomethoxy-3-(4-fluorophenyl)-tropane positron emission tomography (11C-CFT PET) imaging. To explore the correlations between striatal DAT bindings and the disease severity, both the region-wise and voxel-wise analysis were adopted. Partial correlations and multiple linear regressions were performed to investigate the contribution of striatal dopaminergic lesions to the disease severity in PSP.ResultsSixty-three patients of PSP with Richardson’s syndrome (PSP-RS) and 37 patients with PSP-non-RS were finally included. The disease severity in PSP-RS was much heavier than that in the PSP-non-RS. The DAT bindings in the caudate and anterior putamen correlated significantly with the PSPrs total scores, mainly in the domains of history, mentation, bulbar, and ocular motor symptoms. The striatal DAT bindings (caudate) contributed significantly to the disease severity of PSP, independent of the motor, cognition, emotion and behavioral dysfunctions.ConclusionOur study highlighted the independent contribution of striatal dopaminergic lesions to the disease severity in PSP.
Collapse
Affiliation(s)
- Ming-Jia Chen
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Ying Lu
- PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin-Yi Li
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang-Yang Jiao
- PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan-Tao Zuo
- PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Feng-Tao Liu,
| | - Yu-Jie Yang
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, Department of Medical Genetics, Shanghai East Hospital, School of Medicine, Tonji University, Shanghai, China
- Yu-Jie Yang,
| |
Collapse
|
27
|
Joza S, Camicioli R, Martin WRW, Wieler M, Gee M, Ba F. Pedunculopontine Nucleus Dysconnectivity Correlates With Gait Impairment in Parkinson’s Disease: An Exploratory Study. Front Aging Neurosci 2022; 14:874692. [PMID: 35875799 PMCID: PMC9304714 DOI: 10.3389/fnagi.2022.874692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background Gait impairment is a debilitating and progressive feature of Parkinson’s disease (PD). Increasing evidence suggests that gait control is partly mediated by cholinergic signaling from the pedunculopontine nucleus (PPN). Objective We investigated whether PPN structural connectivity correlated with quantitative gait measures in PD. Methods Twenty PD patients and 15 controls underwent diffusion tensor imaging to quantify structural connectivity of the PPN. Whole brain analysis using tract-based spatial statistics and probabilistic tractography were performed using the PPN as a seed region of interest for cortical and subcortical target structures. Gait metrics were recorded in subjects’ medication ON and OFF states, and were used to determine if specific features of gait dysfunction in PD were related to PPN structural connectivity. Results Tract-based spatial statistics revealed reduced structural connectivity involving the corpus callosum and right superior corona radiata, but did not correlate with gait measures. Abnormalities in PPN structural connectivity in PD were lateralized to the right hemisphere, with pathways involving the right caudate nucleus, amygdala, pre-supplementary motor area, and primary somatosensory cortex. Altered connectivity of the right PPN-caudate nucleus was associated with worsened cadence, stride time, and velocity while in the ON state; altered connectivity of the right PPN-amygdala was associated with reduced stride length in the OFF state. Conclusion Our exploratory analysis detects a potential correlation between gait dysfunction in PD and a characteristic pattern of connectivity deficits in the PPN network involving the right caudate nucleus and amygdala, which may be investigated in future larger studies.
Collapse
Affiliation(s)
- Stephen Joza
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Richard Camicioli
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Marguerite Wieler
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Myrlene Gee
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Fang Ba
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Fang Ba,
| |
Collapse
|
28
|
Short latency afferent inhibition correlates with stage of disease in Parkinson's patients. Can J Neurol Sci 2022:1-5. [PMID: 35684949 DOI: 10.1017/cjn.2022.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Russo M, Amboni M, Volzone A, Ricciardelli G, Cesarelli G, Ponsiglione AM, Barone P, Romano M, Ricciardi C. Interplay between gait and neuropsychiatric symptoms in Parkinson’s Disease. Eur J Transl Myol 2022; 32. [PMID: 35678506 PMCID: PMC9295172 DOI: 10.4081/ejtm.2022.10463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s Disease (PD) is a neurodegenerative disease which involves both motor and non-motor symptoms. Non-motor mental symptoms are very common among patients with PD since the earliest stage. In this context, gait analysis allows to detect quantitative gait variables to distinguish patients affected by non-motor mental symptoms from patients without these symptoms. A cohort of 68 PD subjects (divided in two groups) was acquired through gait analysis (single and double task) and spatial temporal parameters were analysed; first with a statistical analysis and then with a machine learning (ML) approach. Single-task variables showed that 9 out of 16 spatial temporal features were statistically significant for the univariate statistical analysis (p-value< 0.05). Indeed, a statistically significant difference was found in stance phase (p-value=0.032), swing phase (p-value=0.042) and cycle length (p-value=0.03) of the dual task. The ML results confirmed the statistical analysis, in particular, the Decision Tree classifier showed the highest accuracy (80.9%) and also the highest scores in terms of specificity and precision. Our findings indicate that patients with non-motor mental symptoms display a worse gait pattern, mainly dominated by increased slowness and dynamic instability.
Collapse
|
30
|
Parkinson's Disease Symptoms Associated with Developing On-State Axial Symptoms Early after Subthalamic Deep Brain Stimulation. Diagnostics (Basel) 2022; 12:diagnostics12041001. [PMID: 35454049 PMCID: PMC9027591 DOI: 10.3390/diagnostics12041001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The relationship between axial symptoms in Parkinson’s disease (PD) and subthalamic deep brain stimulation (STN-DBS) is still unclear. Purpose: We searched for particular clinical characteristics before STN-DBS linked to on-state axial problems after surgery. Methods: We retrospectively analyzed baseline motor, emotional and cognitive features from PD patients with early axial symptoms (within 4 years after STN-DBS) and late axial symptoms (after 4 years). We also considered a group of PD patients without axial symptoms for at least 4 years after surgery. Results: At baseline, early-axial PD patients (n = 28) had a higher on-state Unified Parkinson’s Disease Rating Scale III (15.0 ± 5.6 to 11.6 ± 6.2, p = 0.020), higher axial score (2.4 ± 1.8 to 0.7 ± 1.0, p < 0.001) and worse dopaminergic response (0.62 ± 0.12 to 0.70 ± 0.11, p = 0.005), than non-axial PD patients (n = 51). Early-axial PD patients had short-term recall impairment, not seen in non-axial PD (36.3 ± 7.6 to 40.3 ± 9.3, p = 0.041). These variables were similar between late-axial PD (n = 18) and non-axial PD, but late-axial PD showed worse frontal dysfunction. Conclusions: PD patients with early axial symptoms after DBS may have a significantly worse presurgical motor phenotype, poorer dopaminergic response and memory impairment. This may correspond to a more severe form of PD.
Collapse
|
31
|
Kose Y, Hatamoto Y, Tomiga-Takae R, Kimuro Y, Aoyagi R, Kawasaki H, Komiyama T, Ichikawa M, Fujiyama K, Murata Y, Ikenaga M, Higaki Y. Olfaction, ability to identify particular olfactory clusters and odors, and physical performance in community-dwelling older adults: The Yanai Study. Exp Gerontol 2022; 163:111793. [PMID: 35367594 DOI: 10.1016/j.exger.2022.111793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Olfactory dysfunction is associated with poor physical performance in older adults. However, it remains unknown whether the ability to identify particular olfactory clusters and/or odors is associated with physical performance in physically independent community-dwelling older adults. METHODS This cross-sectional study included 130 community-dwelling older adults (70.1 ± 5.5 years). The Odor Stick Identification Test for Japanese people, consisting of 12 odors in four clusters (wood, grass, herb; sweet; spices; foul-smelling), was used to examine olfaction. Participants also completed physical performance tests (one leg standing with open eyes; aerobic capacity; lower muscle function: five-times chair stand [CS] and vertical jump; mobility: star walking and timed up and go [TUG]) and cognitive function tests. RESULTS Worse overall olfaction was not significantly associated with any physical performance measure. Worse performance for identifying sweet odors and an inability to identify some specific odors (menthol and rose) were associated with worse mobility and/or lower muscle function-adjusted covariates. Moreover, an inability to identify menthol and rose was associated with worse TUG (odds ratio [OR]: 0.424; 95% confidence interval [CI]: 0.215-0.836), star walking (OR: 0.714; 95% CI: 0.506-0.976), CS (OR: 0.638; 95% CI: 0.470-0.864), and vertical jump (OR: 1.12; 95% CI: 1.001-1.24) performance, even when the analysis was adjusted to exclude menthol and rose score from the overall olfaction score (p < .05 for all). CONCLUSIONS The current study may help to increase awareness of olfactory and physical dysfunction at an earlier stage among physically independent community-dwelling older adults.
Collapse
Affiliation(s)
- Yujiro Kose
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; Fukuoka University Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Yoichi Hatamoto
- Fukuoka University Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; Department of Nutrition and Metabolism, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | - Rie Tomiga-Takae
- Fukuoka University Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; Faculty of Nursing and Nutrition, University of Nagasaki, 1-1-1 Manabino, Nagayo-cho, Nishisonogi-gun, Nagasaki 851-2195, Japan
| | - Yukari Kimuro
- Department of Nursing, Fukuoka International University of Health and Welfare, 3-6-40 Momochihama, Sawara-ku, Fukuoka 814-0001, Japan
| | - Ryo Aoyagi
- Graduate School of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Hikaru Kawasaki
- Graduate School of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Takaaki Komiyama
- Center for Education in Liberal Arts and Sciences, Osaka University, 1-17 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Mamiko Ichikawa
- Department of Sport and Medical Science, Teikyo University, 359 Otsuka, Hachioji, Tokyo 192-0395, Japan
| | | | - Yoshiro Murata
- Emu Kankyo Design System Co., Ltd., 5-28-23 Chayama, Jonan-ku, Fukuoka 814-0111, Japan
| | - Masahiro Ikenaga
- Fukuoka University Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yasuki Higaki
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; Fukuoka University Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| |
Collapse
|
32
|
Oh E, Park J, Youn J, Jang W. Anodal Transcranial Direct Current Stimulation Could Modulate Cortical Excitability and the Central Cholinergic System in Akinetic Rigid-Type Parkinson's Disease: Pilot Study. Front Neurol 2022; 13:830976. [PMID: 35401397 PMCID: PMC8987019 DOI: 10.3389/fneur.2022.830976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been widely studied as an alternative treatment for Parkinson's disease (PD). However, its clinical benefit remains unclear. In this study, we aimed to investigate the effect of tDCS on the central cholinergic system and cortical excitability in mainly akinetic rigid-type patients with PD. Methods In total, 18 patients with PD were prospectively enrolled and underwent 5 sessions of anodal tDCS on the M1 area, which is on the contralateral side of the dominant hand. We excluded patients with PD who had evident resting tremor of the hand to reduce the artifact of electrophysiologic findings. We compared clinical scales reflecting motor, cognitive, and mood symptoms between pre- and post-tDCS. Additionally, we investigated the changes in electrophysiologic parameters, such as short latency afferent inhibition (SAI) (%), which reflects the central cholinergic system. Results The United Parkinson's Disease Rating Scale Part 3 (UPDRS-III), the Korean-Montreal Cognitive Assessment (MoCA-K), and Beck Depression Inventory (BDI) scores were significantly improved after anodal tDCS (p < 0.01, p < 0.01, and p < 0.01). Moreover, motor evoked potential amplitude ratio (MEPAR) (%) and integrated SAI showed significant improvement after tDCS (p < 0.01 and p < 0.01). The mean values of the change in integrated SAI (%) were significantly correlated with the changes in UPDRS-III scores; however, the MoCA-K and BDI scores did not show differences. Conclusions Anodal tDCS could influence the central cholinergic system, such as frontal cortical excitability and depression in PD. This mechanism could underlie the clinical benefit of tDCS in patients with PD.
Collapse
Affiliation(s)
- Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Jinse Park
- Department of Neurology, Haeundae Paik Hospital, Inje University, Busan, South Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Seoul, South Korea
| | - Wooyoung Jang
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
- *Correspondence: Wooyoung Jang
| |
Collapse
|
33
|
Sigurdsson HP, Yarnall AJ, Galna B, Lord S, Alcock L, Lawson RA, Colloby SJ, Firbank MJ, Taylor J, Pavese N, Brooks DJ, O'Brien JT, Burn DJ, Rochester L. Gait‐Related Metabolic Covariance Networks at Rest in Parkinson's Disease. Mov Disord 2022; 37:1222-1234. [PMID: 35285068 PMCID: PMC9314598 DOI: 10.1002/mds.28977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/09/2022] Open
Abstract
Background Gait impairments are characteristic motor manifestations and significant predictors of poor quality of life in Parkinson's disease (PD). Neuroimaging biomarkers for gait impairments in PD could facilitate effective interventions to improve these symptoms and are highly warranted. Objective The aim of this study was to identify neural networks of discrete gait impairments in PD. Methods Fifty‐five participants with early‐stage PD and 20 age‐matched healthy volunteers underwent quantitative gait assessment deriving 12 discrete spatiotemporal gait characteristics and [18F]‐2‐fluoro‐2‐deoxyglucose‐positron emission tomography measuring resting cerebral glucose metabolism. A multivariate spatial covariance approach was used to identify metabolic brain networks that were related to discrete gait characteristics in PD. Results In PD, we identified two metabolic gait‐related covariance networks. The first correlated with mean step velocity and mean step length (pace gait network), which involved relatively increased and decreased metabolism in frontal cortices, including the dorsolateral prefrontal and orbital frontal, insula, supplementary motor area, ventrolateral thalamus, cerebellum, and cuneus. The second correlated with swing time variability and step time variability (temporal variability gait network), which included relatively increased and decreased metabolism in sensorimotor, superior parietal cortex, basal ganglia, insula, hippocampus, red nucleus, and mediodorsal thalamus. Expression of both networks was significantly elevated in participants with PD relative to healthy volunteers and were not related to levodopa dosage or motor severity. Conclusions We have identified two novel gait‐related brain networks of altered glucose metabolism at rest. These gait networks could serve as a potential neuroimaging biomarker of gait impairments in PD and facilitate development of therapeutic strategies for these disabling symptoms. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Hilmar P. Sigurdsson
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Alison J. Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Brook Galna
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
- Health Futures Institute Murdoch University Perth Australia
| | - Sue Lord
- Auckland University of Technology Auckland New Zealand
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Rachael A. Lawson
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Sean J. Colloby
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Michael J. Firbank
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - John‐Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Nicola Pavese
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
- Department of Nuclear Medicine and PET Aarhus University Hospital Aarhus Denmark
| | - David J. Brooks
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
- Department of Nuclear Medicine and PET Aarhus University Hospital Aarhus Denmark
| | - John T. O'Brien
- Department of Psychiatry University of Cambridge Cambridge United Kingdom
| | - David J. Burn
- Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| |
Collapse
|
34
|
Cholinergic systems, attentional-motor integration, and cognitive control in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:345-371. [PMID: 35248201 PMCID: PMC8957710 DOI: 10.1016/bs.pbr.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dysfunction and degeneration of CNS cholinergic systems is a significant component of multi-system pathology in Parkinson's disease (PD). We review the basic architecture of human CNS cholinergic systems and the tools available for studying changes in human cholinergic systems. Earlier post-mortem studies implicated abnormalities of basal forebrain corticopetal cholinergic (BFCC) and pedunculopontine-laterodorsal tegmental (PPN-LDT) cholinergic projections in cognitive deficits and gait-balance deficits, respectively. Recent application of imaging methods, particularly molecular imaging, allowed more sophisticated correlation of clinical features with regional cholinergic deficits. BFCC projection deficits correlate with general and domain specific cognitive deficits, particularly for attentional and executive functions. Detailed analyses suggest that cholinergic deficits within the salience and cingulo-opercular task control networks, including both neocortical, thalamic, and striatal nodes, are a significant component of cognitive deficits in non-demented PD subjects. Both BFCC and PPN-LDT cholinergic projection systems, and striatal cholinergic interneuron (SChI), abnormalities are implicated in PD gait-balance disorders. In the context of experimental studies, these results indicate that disrupted attentional functions of BFCC and PPN-LDT cholinergic systems underlie impaired gait-balance functions. SChI dysfunction likely impairs intra-striatal integration of attentional and motor information. Thalamic and entorhinal cortex cholinergic deficits may impair multi-sensory integration. Overt degeneration of CNS systems may be preceded by increased activity of cholinergic neurons compensating for nigrostriatal dopaminergic deficits. Subsequent dysfunction and degeneration of cholinergic systems unmasks and exacerbates functional deficits secondary to dopaminergic denervation. Research on CNS cholinergic systems dysfunctions in PD requires a systems-level approach to understanding PD pathophysiology.
Collapse
|
35
|
Cui CK, Lewis SJG. Future Therapeutic Strategies for Freezing of Gait in Parkinson's Disease. Front Hum Neurosci 2021; 15:741918. [PMID: 34795568 PMCID: PMC8592896 DOI: 10.3389/fnhum.2021.741918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
Freezing of gait (FOG) is a common and challenging clinical symptom in Parkinson’s disease. In this review, we summarise the recent insights into freezing of gait and highlight the strategies that should be considered to improve future treatment. There is a need to develop individualised and on-demand therapies, through improved detection and wearable technologies. Whilst there already exist a number of pharmacological (e.g., dopaminergic and beyond dopamine), non-pharmacological (physiotherapy and cueing, cognitive training, and non-invasive brain stimulation) and surgical approaches to freezing (i.e., dual-site deep brain stimulation, closed-loop programming), an integrated collaborative approach to future research in this complex area will be necessary to systematically investigate new therapeutic avenues. A review of the literature suggests standardising how gait freezing is measured, enriching patient cohorts for preventative studies, and harnessing the power of existing data, could help lead to more effective treatments for freezing of gait and offer relief to many patients.
Collapse
Affiliation(s)
- Cathy K Cui
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
36
|
Nazmuddin M, van Dalen JW, Borra RJH, Stormezand GN, van der Horn HJ, van der Zee S, Boertien J, van Laar T. Postural and gait symptoms in de novo Parkinson's disease patients correlate with cholinergic white matter pathology. Parkinsonism Relat Disord 2021; 93:43-49. [PMID: 34784526 DOI: 10.1016/j.parkreldis.2021.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The postural instability gait difficulty motor subtype of patients with Parkinson's disease (PIGD-PD) has been associated with more severe cognitive pathology and a higher risk on dementia compared to the tremor-dominant subtype (TD-PD). Here, we investigated whether the microstructural integrity of the cholinergic projections from the nucleus basalis of Meynert (NBM) was different between these clinical subtypes. METHODS Diffusion-weighted imaging data of 98 newly-diagnosed unmedicated PD patients (44 TD-PD and 54 PIGD-PD subjects) and 10 healthy controls, were analysed using diffusion tensor imaging, focusing on the white matter tracts associated with cholinergic projections from the NBM (NBM-WM) as the tract-of-interest. Quantitative tract-based and voxel-based analyses were performed using FA and MD as the estimates of white matter integrity. RESULTS Voxel-based analyses indicated significantly lower FA in the frontal part of the medial and lateral NBM-WM tract of both hemispheres of PIGD-PD compared to TD-PD. Relative to healthy control, several clusters with significantly lower FA were observed in the frontolateral NBM-WM tract of both disease groups. Furthermore, significant correlations between the severity of the axial and gait impairment and NBM-WM FA and MD were found, which were partially mediated by NBM-WM state on subjects' attentional performance. CONCLUSIONS The PIGD-PD subtype shows a loss of microstructural integrity of the NBM-WM tract, which suggests that a loss of cholinergic projections in this PD subtype already presents in de novo PD patients.
Collapse
Affiliation(s)
- Muhammad Nazmuddin
- Department of Neurology, Parkinson Expertise Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Jan-Willem van Dalen
- Department of Neurology, Donders Institute for Brain, Behaviour, and Cognition, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Ronald J H Borra
- Department of Radiology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Gilles N Stormezand
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Harm Jan van der Horn
- Department of Neurology, Parkinson Expertise Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sygrid van der Zee
- Department of Neurology, Parkinson Expertise Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jeffrey Boertien
- Department of Neurology, Parkinson Expertise Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Teus van Laar
- Department of Neurology, Parkinson Expertise Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
37
|
Biological sex differences in afferent-mediated inhibition of motor responses evoked by TMS. Brain Res 2021; 1771:147657. [PMID: 34509460 DOI: 10.1016/j.brainres.2021.147657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Sensorimotor integration can be assessed by pairing electrical peripheral nerve stimulation with transcranial magnetic stimulation (TMS). The resulting afferent inhibition is observed when TMS precedes nerve stimulation by ∼ 20-25 ms, termed short-latency afferent inhibition (SAI), or by 200 ms, termed long-latency afferent inhibition (LAI). The purpose of this study was to determine whether biological sex influences the magnitude of SAI or LAI. SAI and LAI were assessed in fifteen males (21.5 ± 2.7 years) and fifteen females (20.2 ± 2.3 years). TMS was delivered to the primary motor cortex (M1) following stimulation of the contralateral median nerve at the wrist or digital nerve of the index finger, and motor-evoked potentials (MEPs) were obtained from the right first dorsal interosseous (FDI) muscle. SAI evoked by median and digital nerve stimulation, and LAI evoked by median nerve stimulation, were not different between males and females. LAI evoked by digital nerve stimulation was increased in females compared to males, but this difference between sexes was no longer present following the removal of datapoints where inhibition was not observed. This study is the first to investigate biological sex differences in afferent inhibition.
Collapse
|
38
|
Interval timing and midfrontal delta oscillations are impaired in Parkinson's disease patients with freezing of gait. J Neurol 2021; 269:2599-2609. [PMID: 34674006 DOI: 10.1007/s00415-021-10843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Gait abnormalities and cognitive dysfunction are common in patients with Parkinson's disease (PD) and get worse with disease progression. Recent evidence has suggested a strong relationship between gait abnormalities and cognitive dysfunction in PD patients and impaired cognitive control could be one of the causes for abnormal gait patterns. However, the pathophysiological mechanisms of cognitive dysfunction in PD patients with gait problems are unclear. Here, we collected scalp electroencephalography (EEG) signals during a 7-s interval timing task to investigate the cortical mechanisms of cognitive dysfunction in PD patients with (PDFOG +, n = 34) and without (PDFOG-, n = 37) freezing of gait, as well as control subjects (n = 37). Results showed that the PDFOG + group exhibited the lowest maximum response density at around 7 s compared to PDFOG- and control groups, and this response density peak correlated with gait abnormalities as measured by FOG scores. EEG data demonstrated that PDFOG + had decreased midfrontal delta-band power at the onset of the target cue, which was also correlated with maximum response density and FOG scores. In addition, our classifier performed better at discriminating PDFOG + from PDFOG- and controls with an area under the curve of 0.93 when midfrontal delta power was chosen as a feature. These findings suggest that abnormal midfrontal activity in PDFOG + is related to cognitive dysfunction and describe the mechanistic relationship between cognitive and gait functions in PDFOG + . Overall, these results could advance the development of novel biosignatures and brain stimulation approaches for PDFOG + .
Collapse
|
39
|
Pasquini J, Brooks DJ, Pavese N. The Cholinergic Brain in Parkinson's Disease. Mov Disord Clin Pract 2021; 8:1012-1026. [PMID: 34631936 DOI: 10.1002/mdc3.13319] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The central cholinergic system includes the basal forebrain nuclei, mainly projecting to the cortex, the mesopontine tegmental nuclei, mainly projecting to the thalamus and subcortical structures, and other groups of projecting neurons and interneurons. This system regulates many functions of human behavior such as cognition, locomotion, and sleep. In Parkinson's disease (PD), disruption of central cholinergic transmission has been associated with cognitive decline, gait problems, freezing of gait (FOG), falls, REM sleep behavior disorder (RBD), neuropsychiatric manifestations, and olfactory dysfunction. Neuropathological and neuroimaging evidence suggests that basal forebrain pathology occurs simultaneously with nigrostriatal denervation, whereas pathology in the pontine nuclei may occur before the onset of motor symptoms. These studies have also detailed the clinical implications of cholinergic dysfunction in PD. Degeneration of basal forebrain nuclei and consequential cortical cholinergic denervation are associated with and may predict the subsequent development of cognitive decline and neuropsychiatric symptoms. Gait problems, FOG, and falls are associated with a complex dysfunction of both pontine and basal forebrain nuclei. Olfactory impairment is associated with cholinergic denervation of the limbic archicortex, specifically hippocampus and amygdala. Available evidence suggests that cholinergic dysfunction, alongside failure of the dopaminergic and other neurotransmitters systems, contributes to the generation of a specific set of clinical manifestations. Therefore, a "cholinergic phenotype" can be identified in people presenting with cognitive decline, falls, and RBD. In this review, we will summarize the organization of the central cholinergic system and the clinical correlates of cholinergic dysfunction in PD.
Collapse
Affiliation(s)
- Jacopo Pasquini
- Department of Pathophysiology and Transplantation University of Milan Milan Italy.,Clinical Ageing Research Unit Newcastle University Newcastle upon Tyne United Kingdom
| | - David J Brooks
- Positron Emission Tomography Centre Newcastle University Newcastle upon Tyne United Kingdom.,Department of Nuclear Medicine and PET Centre Aarhus University Hospital Aarhus Denmark
| | - Nicola Pavese
- Clinical Ageing Research Unit Newcastle University Newcastle upon Tyne United Kingdom.,Department of Nuclear Medicine and PET Centre Aarhus University Hospital Aarhus Denmark
| |
Collapse
|
40
|
Sheng W, Guo T, Zhou C, Wu J, Gao T, Pu J, Zhang B, Zhang M, Yang Y, Guan X, Xu X. Altered Cortical Cholinergic Network in Parkinson's Disease at Different Stage: A Resting-State fMRI Study. Front Aging Neurosci 2021; 13:723948. [PMID: 34566625 PMCID: PMC8461333 DOI: 10.3389/fnagi.2021.723948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
The cholinergic system is critical in Parkinson’s disease (PD) pathology, which accounts for various clinical symptoms in PD patients. The substantia innominata (SI) provides the main source of cortical cholinergic innervation. Previous studies revealed cholinergic-related dysfunction in PD pathology at early stage. Since PD is a progressive disorder, alterations of cholinergic system function along with the PD progression have yet to be elucidated. Seventy-nine PD patients, including thirty-five early-stage PD patients (PD-E) and forty-four middle-to-late stage PD patients (PD-M), and sixty-four healthy controls (HC) underwent brain magnetic resonance imaging and clinical assessments. We employed seed-based resting-state functional connectivity analysis to explore the cholinergic-related functional alterations. Correlation analysis was used to investigate the relationship between altered functional connectivity and the severity of motor symptoms in PD patients. Results showed that both PD-E and PD-M groups exhibited decreased functional connectivity between left SI and left frontal inferior opercularis areas and increased functional connectivity between left SI and left cingulum middle area as well as right primary motor and sensory areas when comparing with HC. At advanced stages of PD, functional connectivity in the right primary motor and sensory areas was further increased. These altered functional connectivity were also significantly correlated with the Unified Parkinson’s Disease Rating Scale motor scores. In conclusion, this study illustrated that altered cholinergic function plays an important role in the motor disruptions in PD patients both in early stage as well as during the progression of the disease.
Collapse
Affiliation(s)
- Wenshuang Sheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
41
|
Sigurdsson HP, Raw R, Hunter H, Baker MR, Taylor JP, Rochester L, Yarnall AJ. Noninvasive vagus nerve stimulation in Parkinson's disease: current status and future prospects. Expert Rev Med Devices 2021; 18:971-984. [PMID: 34461787 DOI: 10.1080/17434440.2021.1969913] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is a common progressive neurodegenerative disorder with multifactorial etiology. While dopaminergic medication is the standard therapy in PD, it provides limited symptomatic treatment and non-pharmacological interventions are currently being trialed. AREAS COVERED Recent pathophysiological theories of Parkinson's suggest that aggregated α-synuclein form in the gut and spread to nuclei in the brainstem via autonomic connections. In this paper, we review the novel hypothesis that noninvasive vagus nerve stimulation (nVNS), targeting efferent and afferent vagal projections, is a promising therapeutic tool to improve gait and cognitive control and ameliorate non-motor symptoms in people with Parkinson's. We conducted an unstructured search of the literature for any studies employing nVNS in PD as well as for studies examining the efficacy of nVNS on improving cognitive function and where nVNS has been applied to co-occurring conditions in PD. EXPERT OPINION Evidence of nVNS as a novel therapeutic to improve gait in PD is preliminary, but early signs indicate the possibility that nVNS may be useful to target dopa-resistant gait characteristics in early PD. The evidence for nVNS as a therapeutic tool is, however, limited and further studies are needed in both brain health and disease.
Collapse
Affiliation(s)
- Hilmar P Sigurdsson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rachael Raw
- Department of General Internal Medicine, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Heather Hunter
- Department of Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mark R Baker
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Clinical Neurophysiology, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Neurosciences, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Older People's Medicine, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
42
|
Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in their Pathogenesis. Int J Mol Sci 2021; 22:9290. [PMID: 34502198 PMCID: PMC8430571 DOI: 10.3390/ijms22179290] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Acetylcholinesterase (AChE) plays an important role in the pathogenesis of neurodegenerative diseases by influencing the inflammatory response, apoptosis, oxidative stress and aggregation of pathological proteins. There is a search for new compounds that can prevent the occurrence of neurodegenerative diseases and slow down their course. The aim of this review is to present the role of AChE in the pathomechanism of neurodegenerative diseases. In addition, this review aims to reveal the benefits of using AChE inhibitors to treat these diseases. The selected new AChE inhibitors were also assessed in terms of their potential use in the described disease entities. Designing and searching for new drugs targeting AChE may in the future allow the discovery of therapies that will be effective in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8bStreet, 20-090 Lublin, Poland;
| |
Collapse
|
43
|
Yuan Y, Li C, Luo Z, Simonsick EM, Shiroma EJ, Chen H. Olfaction and Physical Functioning in Older Adults: A Longitudinal Study. J Gerontol A Biol Sci Med Sci 2021; 77:1612-1619. [PMID: 34379770 DOI: 10.1093/gerona/glab233] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Poor olfaction is associated with worse functional performance in older adults, but longitudinal evidence is lacking. We investigated poor olfaction in relation to longitudinal changes in physical functioning among community-dwelling older adults. METHODS The analysis included 2,319 participants from the Health, Aging and Body Composition Study (aged 71-82 years, 47·9% men, and 37·3% blacks) who completed the Brief Smell Identification Test in 1999-2000. Olfaction was defined as good (test score 11-12), moderate (9-10), or poor (0-8). Physical functioning was assessed up to four times over 8 years, using the Short Physical Performance Battery (SPPB) and the Health ABC Physical Performance Battery (HABCPPB). We conducted joint model analyses and reported the differences in annual declines across olfaction groups. RESULTS During the follow-up, compared to those with good olfaction, older adults with poor olfaction had greater annual declines in both the SPPB score (-0.137, 95%CI: -0.186, -0.088) and all its subscales: standing balance (-0.068, 95%CI:-0.091, -0.044), chair stand (-0.046, 95%CI: -0.070, -0.022), and gait speed (-0.022, 95%CI: -0.042, -0.001). A similar observation was made for the HABCPPB score (difference in annual decline: -0.032, 95%CI:-0.042, -0.021). These findings are robust and cannot be explained by measured confounding from demographics, lifestyle factors, chronic diseases, nor by potential biases due to death and loss of follow-up. Similar associations were observed across subgroups of sex, race, and self-reported general health status. CONCLUSION This study provides the first epidemiological evidence that poor olfaction predicts a faster decline in physical functioning. Future studies should investigate potential mechanisms.
Collapse
Affiliation(s)
- Yaqun Yuan
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Chenxi Li
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Zhehui Luo
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Eleanor M Simonsick
- Laboratory of Epidemiology and Population Science, Intramural Research Program of the National Institutes of Health, National Institute on Aging, Bethesda, MD, United States
| | - Eric J Shiroma
- Laboratory of Epidemiology and Population Science, Intramural Research Program of the National Institutes of Health, National Institute on Aging, Bethesda, MD, United States
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
44
|
Martini DN, Morris R, Madhyastha TM, Grabowski TJ, Oakley J, Hu SC, Zabetian CP, Edwards KL, Hiller A, Chung K, Ramsey K, Lapidus JA, Cholerton B, Montine TJ, Quinn JF, Horak FB. Relationships Between Sensorimotor Inhibition and Mobility in Older Adults With and Without Parkinson's Disease. J Gerontol A Biol Sci Med Sci 2021; 76:630-637. [PMID: 33252618 DOI: 10.1093/gerona/glaa300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Reduced cortical sensorimotor inhibition is associated with mobility and cognitive impairments in people with Parkinson's disease (PD) and older adults (OAs). However, there is a lack of clarity regarding the relationships among sensorimotor, cognitive, and mobility impairments. The purpose of this study was to determine how cortical sensorimotor inhibition relates to impairments in mobility and cognition in people with PD and OAs. METHOD Cortical sensorimotor inhibition was characterized with short-latency afferent inhibition (SAI) in 81 people with PD and 69 OAs. Six inertial sensors recorded single- and dual-task gait and postural sway characteristics during a 2-minute walk and a 1-minute quiet stance. Cognition was assessed across the memory, visuospatial, executive function, attention, and language domains. RESULTS SAI was significantly impaired in the PD compared to the OA group. The PD group preformed significantly worse across all gait and postural sway tasks. In PD, SAI significantly correlated with single-task foot strike angle and stride length variability, sway area, and jerkiness of sway in the coronal and sagittal planes. In OAs, SAI significantly related to single-task gait speed and stride length, dual-task stride length, and immediate recall (memory domain). No relationship among mobility, cognition, and SAI was observed. CONCLUSIONS Impaired SAI related to slower gait in OA and to increased gait variability and postural sway in people with PD, all of which have been shown to be related to increased fall risk.
Collapse
Affiliation(s)
- Douglas N Martini
- Department of Neurology, Oregon Health and Science University, Portland.,Department of Kinesiology, University of Massachusetts Amherst
| | - Rosie Morris
- Department of Neurology, Oregon Health and Science University, Portland
| | - Tara M Madhyastha
- Department of Radiology, University of Washington School of Medicine, Seattle
| | - Thomas J Grabowski
- Department of Radiology, University of Washington School of Medicine, Seattle
| | - John Oakley
- Department of Neurology, University of Washington School of Medicine, Seattle
| | - Shu-Ching Hu
- Department of Neurology, University of Washington School of Medicine, Seattle.,Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - Cyrus P Zabetian
- Department of Neurology, University of Washington School of Medicine, Seattle.,Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - Karen L Edwards
- Department of Epidemiology, University of California, Irvine
| | - Amie Hiller
- Department of Neurology, Oregon Health and Science University, Portland.,Portland Veterans Affairs Health Care System, Oregon
| | - Kathryn Chung
- Department of Neurology, Oregon Health and Science University, Portland.,Portland Veterans Affairs Health Care System, Oregon
| | - Katrina Ramsey
- Biostatistics & Design Program, Oregon Health and Science University, Portland
| | - Jodi A Lapidus
- Biostatistics & Design Program, Oregon Health and Science University, Portland.,School of Public Health, Oregon Health and Science University, Portland
| | - Brenna Cholerton
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - Thomas J Montine
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland.,Portland Veterans Affairs Health Care System, Oregon
| | - Fay B Horak
- Department of Neurology, Oregon Health and Science University, Portland.,Portland Veterans Affairs Health Care System, Oregon
| |
Collapse
|
45
|
Association between the inability to identify particular odors and physical performance, cognitive function, and/or brain atrophy in community-dwelling older adults from the Fukuoka Island City study. BMC Geriatr 2021; 21:421. [PMID: 34247577 PMCID: PMC8274001 DOI: 10.1186/s12877-021-02363-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background Olfactory dysfunction is associated with severe brain atrophy and cognitive impairment in Parkinson’s disease. However, it remains unknown whether an inability to identify particular odors is associated with physical performance, cognitive function, and/or brain atrophy in community-dwelling older adults. Methods In this cross-sectional study, 44 community-dwelling older adults were included (14 males, 30 females; mean age: 72.4 ± 5.7 years, range: 63–85 years). The Odor Stick Identification Test for Japanese, consisting of 12 odors, was used to examine olfaction. Subjects also completed physical performance (lower limb function, balance, and gait speed) and cognitive function (global cognition, logical memory, and the Trail Making Tests). Additionally, magnetic resonance imaging was used to investigate brain atrophy in the bilateral medial temporal area (MTA) and whole gray matter using the voxel-based specific regional analysis system for Alzheimer’s disease. Results Total olfaction was not significantly associated with physical performance, cognitive function, or brain atrophy. However, MTA atrophy was associated with an inability to identify Japanese orange (B: − 0.293; β: − 0.347; p < .05) after adjusting for age and sex (R2: 0.328; adjusted R2: 0.277). Subjects who were unable to identify Japanese orange (n = 30) had worse MTA atrophy than those who were able to identify Japanese orange (n = 14), even after adjusting for covariates (p < .05). Conclusions Total olfaction was not associated with physical performance, cognitive function, or brain atrophy. However, an inability to identify Japanese orange odor was independently associated with mild MTA atrophy among community-dwelling older adults.
Collapse
|
46
|
Saravanamuttu J, Radhu N, Udupa K, Baarbé J, Gunraj C, Chen R. Impaired motor cortical facilitatory-inhibitory circuit interaction in Parkinson's disease. Clin Neurophysiol 2021; 132:2685-2692. [PMID: 34284974 DOI: 10.1016/j.clinph.2021.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Motor cortical (M1) inhibition and facilitation can be studied with short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF). These circuits are altered in Parkinson's disease (PD). The sensorimotor measure short latency afferent inhibition (SAI) is possibly altered in PD. The aim was to determine if the manner in which these circuits interact with each other is abnormal in PD. METHODS Fifteen PD patients were studied at rest in ON and OFF medication states, and were compared to 16 age-matched controls. A triple-stimulus transcranial magnetic stimulation paradigm was used to elicit a circuit of interest in the presence of another circuit. RESULTS SICF was increased in PD OFF and PD ON conditions compared to controls. SICI facilitated SICF in controls and PD ON, but not in PD OFF. SICF in the presence of SICI negatively correlated with UPDRS-III scores in OFF and ON medication conditions. SAI showed similar inhibition of SICI in controls, PD OFF and PD ON conditions. CONCLUSIONS The facilitatory effect of SICI on SICF is absent in PD OFF, but is restored with dopaminergic medication. SIGNIFICANCE Impaired interaction between M1 circuits is a pathophysiological feature of PD.
Collapse
Affiliation(s)
- James Saravanamuttu
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - Natasha Radhu
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - Kaviraja Udupa
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada; Department of Neurophysiology, National Institute of Mental Health and NeuroSciences, Hosur Road, Bangalore, India
| | - Julianne Baarbé
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - Carolyn Gunraj
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada.
| |
Collapse
|
47
|
Mondal B, Choudhury S, Banerjee R, Roy A, Chatterjee K, Basu P, Singh R, Halder S, Shubham S, Baker SN, Baker MR, Kumar H. Non-invasive vagus nerve stimulation improves clinical and molecular biomarkers of Parkinson's disease in patients with freezing of gait. NPJ PARKINSONS DISEASE 2021; 7:46. [PMID: 34045464 PMCID: PMC8160211 DOI: 10.1038/s41531-021-00190-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/21/2021] [Indexed: 12/19/2022]
Abstract
Non-invasive vagus nerve stimulation (nVNS) is an established neurostimulation therapy used in the treatment of epilepsy, migraine and cluster headache. In this randomized, double-blind, sham-controlled crossover trial we explored the role of nVNS in the treatment of gait and other motor symptoms in Parkinson’s disease (PD) patients. In a subgroup of patients, we measured selected neurotrophin levels and markers of inflammation and oxidative stress in serum, before and after the experimental intervention. Thirty-three PD patients with associated freezing of gait were randomised to either nVNS or sham. After baseline assessments, patients were instructed to deliver 6 two-minute stimulations (total 12 min/day) of the nVNS/sham device (electroCore, Inc. USA) for one month at home. Patients were then re-assessed. After a washout period of one month, the same patients were allocated to the alternate treatment arm and the same process was followed. Significant improvements in key gait parameters were observed with nVNS, including walking speed, stance time and step length, compared to sham. Similarly, overall motor function (MDS-UPDRS III) also improved significantly following nVNS stimulation. Serum Tumor Necrosis Factor (TNF)-α and glutathione levels decreased and brain-derived neurotrophic factor (BDNF) levels increased significantly (p < 0.05) after treatment with nVNS. Here we present the first double-blind sham-controlled trial evidence of the efficacy and safety of nVNS in the treatment of gait and motor function in patients with PD.
Collapse
Affiliation(s)
| | | | | | - Akash Roy
- Institute of Neurosciences Kolkata, Kolkata, India
| | | | - Purba Basu
- Institute of Neurosciences Kolkata, Kolkata, India
| | - Ravi Singh
- Institute of Neurosciences Kolkata, Kolkata, India
| | | | | | - Stuart N Baker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mark R Baker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK.,Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle, UK
| | | |
Collapse
|
48
|
Albin RL, Müller MLTM, Bohnen NI, Spino C, Sarter M, Koeppe RA, Szpara A, Kim K, Lustig C, Dauer WT. α4β2 * Nicotinic Cholinergic Receptor Target Engagement in Parkinson Disease Gait-Balance Disorders. Ann Neurol 2021; 90:130-142. [PMID: 33977560 DOI: 10.1002/ana.26102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Attentional deficits following degeneration of brain cholinergic systems contribute to gait-balance deficits in Parkinson disease (PD). As a step toward assessing whether α4β2* nicotinic acetylcholine receptor (nAChR) stimulation improves gait-balance function, we assessed target engagement of the α4β2* nAChR partial agonist varenicline. METHODS Nondemented PD participants with cholinergic deficits were identified with [18 F]fluoroethoxybenzovesamicol positron emission tomography (PET). α4β2* nAChR occupancy after subacute oral varenicline treatment was measured with [18 F]flubatine PET. With a dose selected from the nAChR occupancy experiment, varenicline effects on gait, balance, and cognition were assessed in a double-masked placebo-controlled crossover study. Primary endpoints were normal pace gait speed and a measure of postural stability. RESULTS Varenicline doses (0.25mg per day, 0.25mg twice daily [b.i.d.], 0.5mg b.i.d., and 1.0mg b.i.d.) produced 60 to 70% receptor occupancy. We selected 0.5mg orally b.i.d for the crossover study. Thirty-three participants completed the crossover study with excellent tolerability. Varenicline had no significant impact on the postural stability measure and caused slower normal pace gait speed. Varenicline narrowed the difference in normal pace gait speed between dual task and no dual task gait conditions, reduced dual task cost, and improved sustained attention test performance. We obtained identical conclusions in 28 participants with treatment compliance confirmed by plasma varenicline measurements. INTERPRETATION Varenicline occupied α4β2* nicotinic acetylcholine receptors, was tolerated well, enhanced attention, and altered gait performance. These results are consistent with target engagement. α4β2* agonists may be worth further evaluation for mitigation of gait and balance disorders in PD. ANN NEUROL 2021;90:130-142.
Collapse
Affiliation(s)
- Roger L Albin
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI.,Department of Neurology, University of Michigan, Ann Arbor, MI.,University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, MI
| | - Martijn L T M Müller
- University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, MI.,Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Nicolaas I Bohnen
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI.,Department of Neurology, University of Michigan, Ann Arbor, MI.,University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, MI.,Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Cathie Spino
- University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Martin Sarter
- University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,Department of Psychology, University of Michigan, Ann Arbor, MI
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Ashley Szpara
- Department of Neurology, University of Michigan, Ann Arbor, MI.,University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI
| | - Kamin Kim
- Department of Psychology, University of Michigan, Ann Arbor, MI
| | - Cindy Lustig
- University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, MI.,Department of Psychology, University of Michigan, Ann Arbor, MI
| | - William T Dauer
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI.,Department of Neurology, University of Michigan, Ann Arbor, MI.,University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX.,Peter J. O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
49
|
Wood AN. New roles for dopamine in motor skill acquisition: lessons from primates, rodents, and songbirds. J Neurophysiol 2021; 125:2361-2374. [PMID: 33978497 DOI: 10.1152/jn.00648.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor learning is a core aspect of human life and appears to be ubiquitous throughout the animal kingdom. Dopamine, a neuromodulator with a multifaceted role in synaptic plasticity, may be a key signaling molecule for motor skill learning. Though typically studied in the context of reward-based associative learning, dopamine appears to be necessary for some types of motor learning. Mesencephalic dopamine structures are highly conserved among vertebrates, as are some of their primary targets within the basal ganglia, a subcortical circuit important for motor learning and motor control. With a focus on the benefits of cross-species comparisons, this review examines how "model-free" and "model-based" computational frameworks for understanding dopamine's role in associative learning may be applied to motor learning. The hypotheses that dopamine could drive motor learning either by functioning as a reward prediction error, through passive facilitating of normal basal ganglia activity, or through other mechanisms are examined in light of new studies using humans, rodents, and songbirds. Additionally, new paradigms that could enhance our understanding of dopamine's role in motor learning by bridging the gap between the theoretical literature on motor learning in humans and other species are discussed.
Collapse
Affiliation(s)
- A N Wood
- Department of Biology and Graduate Program in Neuroscience, Emory University, Atlanta, Georgia
| |
Collapse
|
50
|
Colloby SJ, Nathan PJ, Bakker G, Lawson RA, Yarnall AJ, Burn DJ, O'Brien JT, Taylor JP. Spatial Covariance of Cholinergic Muscarinic M 1 /M 4 Receptors in Parkinson's Disease. Mov Disord 2021; 36:1879-1888. [PMID: 33973693 DOI: 10.1002/mds.28564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/01/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is associated with cholinergic dysfunction, although the role of M1 and M4 receptors remains unclear. OBJECTIVE To investigate spatial covariance patterns of cholinergic muscarinic M1 /M4 receptors in PD and their relationship with cognition and motor symptoms. METHODS Some 19 PD and 24 older adult controls underwent 123 I-iodo-quinuclidinyl-benzilate (QNB) (M1 /M4 receptor) and 99m Tc-exametazime (perfusion) single-photon emission computed tomography (SPECT) scanning. We implemented voxel principal components analysis, producing a series of images representing patterns of intercorrelated voxels across individuals. Linear regression analyses derived specific M1 /M4 spatial covariance patterns associated with PD. RESULTS A cholinergic M1 /M4 pattern that converged onto key hubs of the default, auditory-visual, salience, and sensorimotor networks fully discriminated PD patients from controls (F1,41 = 135.4, P < 0.001). In PD, we derived M1 /M4 patterns that correlated with global cognition (r = -0.62, P = 0.008) and motor severity (r = 0.53, P = 0.02). Both patterns emerged with a shared topography implicating the basal forebrain as well as visual, frontal executive, and salience circuits. Further, we found a M1 /M4 pattern that predicted global cognitive decline (r = 0.46, P = 0.04) comprising relative decreased binding within default and frontal executive networks. CONCLUSIONS Cholinergic muscarinic M1 /M4 modulation within key brain networks were apparent in PD. Cognition and motor severity were associated with a similar topography, inferring both phenotypes possibly rely on related cholinergic mechanisms. Relative decreased M1 /M4 binding within default and frontal executive networks could be an indicator of future cognitive decline. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sean J Colloby
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Pradeep J Nathan
- Department of Psychiatry, University of Cambridge, Herschel Smith Building for Brain & Mind Sciences, Cambridge, United Kingdom
| | - Geor Bakker
- Experimental Medicine, Sosei Heptares, Cambridge, United Kingdom
| | - Rachael A Lawson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - David J Burn
- Population Health Science Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Herschel Smith Building for Brain & Mind Sciences, Cambridge, United Kingdom
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| |
Collapse
|