1
|
Deng Z, Wang H, Zhong K, Li Y, Deng H, Gao B, Huang K, Tong A, Zhou L. The Role of Choroid Plexus in Hydrocephalus from the Perspective of Structure and Function: a Therapeutic Target. Mol Neurobiol 2025:10.1007/s12035-025-04823-7. [PMID: 40085357 DOI: 10.1007/s12035-025-04823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Hydrocephalus is one of the most common neurological diseases, characterized by abnormal excessive accumulation of cerebrospinal fluid (CSF) in the ventricular system. Its pathophysiological mechanism is believed to be related to the imbalance of CSF circulation and homeostasis. As the main source of CSF secretion, the choroid plexus is closely related to hydrocephalus. The choroid plexus is a specialized vascularized tissue located within the cerebral ventricles. It has multiple physiological functions including regulating CSF, immune response, endocrine metabolism, etc. Strategies that reduce choroid plexus CSF secretion have been shown to be effective in the treatment of hydrocephalus. However, the role of other physiological functions of the choroid plexus in hydrocephalus is still unclear. Recent studies on the choroid plexus and the blood-CSF barrier have deepened our understanding of the structure and function of the choroid plexus. The idea of targeting the choroid plexus to treat hydrocephalus has spawned many branches: choroid plexus epithelial cells, choroid plexus immune cells, choroid plexus peptides, and choroid plexus cilia, etc. This review introduces the basic structure and function of the choroid plexus, summarizes their changes in hydrocephalus, and analyzes the possibility of the choroid plexus as a therapeutic target for hydrocephalus.
Collapse
Affiliation(s)
- Ziang Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxiang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kunhong Zhong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyou Li
- Department of Pediatric Neurosurgery, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Huajiang Deng
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Sichuan Province, Luzhou City, China
| | - Baocheng Gao
- Department of Neurosurgery, The First People'S Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology) Kunming, Yunan, China
| | - Keru Huang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China.
- Department of Neurosurgery, The Fifth People's Hospital of Ningxia, Shizuishan, China.
| |
Collapse
|
2
|
Schulz LN, Varghese A, Michenkova M, Wedemeyer M, Pindrik JA, Leonard JR, Garcia-Bonilla M, McAllister JP, Cassady K, Wilson RK, Mardis ER, Limbrick DD, Isaacs AM. Neuroinflammatory pathways and potential therapeutic targets in neonatal post-hemorrhagic hydrocephalus. Pediatr Res 2024:10.1038/s41390-024-03733-z. [PMID: 39725707 DOI: 10.1038/s41390-024-03733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Post-hemorrhagic hydrocephalus (PHH) is a severe complication in premature infants following intraventricular hemorrhage (IVH). It is characterized by abnormal cerebrospinal fluid (CSF) accumulation, disrupted CSF dynamics, and elevated intracranial pressure (ICP), leading to significant neurological impairments. OBJECTIVE This review provides an overview of recent molecular insights into the pathophysiology of PHH and evaluates emerging therapeutic approaches aimed at addressing its underlying mechanisms. METHODS Recent studies were reviewed, focusing on molecular and cellular mechanisms implicated in PHH, including neuroinflammatory pathways, immune mediators, and regulatory genes. The potential of advanced technologies such as whole genome/exome sequencing, proteomics, epigenetics, and single-cell transcriptomics to identify key molecular targets was also analyzed. RESULTS PHH has been strongly linked to neuroinflammatory processes triggered by the degradation of blood byproducts. These processes involve cytokines, chemokines, the complement system, and other immune mediators, as well as regulatory genes and epigenetic mechanisms. Current treatments, primarily surgical CSF diversion, do not address the underlying molecular pathology. Emerging therapies, such as mesenchymal stem cell-based interventions, show promise in modulating immune responses and mitigating neurological damage. However, concerns about the safety of these novel approaches in neonatal populations and their potential effects on brain development remain unresolved. CONCLUSIONS Advanced molecular tools and emerging therapies have the potential to transform the treatment of PHH by targeting its underlying pathophysiology. Further research is needed to validate these approaches, enhance their safety profiles, and improve outcomes for infants with PHH. IMPACT STATEMENT 1. This review elucidates the molecular complexities of post-hemorrhagic hydrocephalus (PHH) by examining specific immune pathways and their impact on disease pathogenesis and progression. 2. It outlines the application of genomic, epigenomic, and proteomic technologies to identify critical molecular targets in PHH, setting the stage for innovative, targeted therapeutic approaches that could improve the outcomes of neonates affected by PHH. 3. It discusses the potential of gene and stem cell therapies in treating PHH, offering non-surgical alternatives and focusing on the underlying neuroinflammatory mechanisms.
Collapse
Affiliation(s)
- Lauren N Schulz
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
| | - Aaron Varghese
- Department of Undergraduate Studies, Miami University, Oxford, OH, USA
| | - Marie Michenkova
- Medical Scientist Training Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Michelle Wedemeyer
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jonathan A Pindrik
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jeffrey R Leonard
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Maria Garcia-Bonilla
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - James Pat McAllister
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin Cassady
- Division of Infectious Disease, Nationwide Children's Hospital, Columbus, OH, USA
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Richard K Wilson
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Elaine R Mardis
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - David D Limbrick
- Medical Scientist Training Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Albert M Isaacs
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA.
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA.
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
3
|
Duy PQ, Mehta NH, Kahle KT. Biomechanical instability of the brain-CSF interface in hydrocephalus. Brain 2024; 147:3274-3285. [PMID: 38798141 PMCID: PMC11449143 DOI: 10.1093/brain/awae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/15/2024] [Accepted: 05/05/2024] [Indexed: 05/29/2024] Open
Abstract
Hydrocephalus, characterized by progressive expansion of the CSF-filled ventricles (ventriculomegaly), is the most common reason for brain surgery. 'Communicating' (i.e. non-obstructive) hydrocephalus is classically attributed to a primary derangement in CSF homeostasis, such as choroid plexus-dependent CSF hypersecretion, impaired cilia-mediated CSF flow currents, or decreased CSF reabsorption via the arachnoid granulations or other pathways. Emerging data suggest that abnormal biomechanical properties of the brain parenchyma are an under-appreciated driver of ventriculomegaly in multiple forms of communicating hydrocephalus across the lifespan. We discuss recent evidence from human and animal studies that suggests impaired neurodevelopment in congenital hydrocephalus, neurodegeneration in elderly normal pressure hydrocephalus and, in all age groups, inflammation-related neural injury in post-infectious and post-haemorrhagic hydrocephalus, can result in loss of stiffness and viscoelasticity of the brain parenchyma. Abnormal brain biomechanics create barrier alterations at the brain-CSF interface that pathologically facilitates secondary enlargement of the ventricles, even at normal or low intracranial pressures. This 'brain-centric' paradigm has implications for the diagnosis, treatment and study of hydrocephalus from womb to tomb.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Neel H Mehta
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02115, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02115, USA
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Developmental Brain and CSF Disorders Program, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Neuroscience, Harvard University, Cambridge, MA 02142, USA
| |
Collapse
|
4
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Castaneyra-Ruiz L, Ledbetter J, Lee S, Rangel A, Torres E, Romero B, Muhonen M. Intraventricular dimethyl sulfoxide (DMSO) induces hydrocephalus in a dose-dependent pattern. Heliyon 2024; 10:e27295. [PMID: 38486744 PMCID: PMC10937698 DOI: 10.1016/j.heliyon.2024.e27295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Dimethyl sulfoxide (DMSO), a widely utilized solvent in the medical industry, has been associated with various adverse effects, even at low concentrations, including damage to mitochondrial integrity, altered membrane potentials, caspase activation, and apoptosis. Notably, therapeutic molecules for central nervous system treatments, such as embolic agents or some chemotherapy drugs that are dissolved in DMSO, have been associated with hydrocephalus as a secondary complication. Our study investigated the potential adverse effects of DMSO on the brain, specifically focusing on the development of hydrocephalus and the effect on astrocytes. Methods Varied concentrations of DMSO were intraventricularly injected into 3-day-old mice, and astrocyte cultures were exposed to similar concentrations of DMSO. After 14 days of injection, magnetic resonance imaging (MRI) was employed to quantify the brain ventricular volumes in mice. Immunofluorescence analysis was conducted to delineate DMSO-dependent effects in the brain. Additionally, astrocyte cultures were utilized to assess astrocyte viability and the effects of cellular apoptosis. Results Our findings revealed a dose-dependent induction of ventriculomegaly in mice with 2%, 10%, and 100% DMSO injections (p < 0.001). The ciliated cells of the ventricles were also proportionally affected by DMSO concentration (p < 0.0001). Furthermore, cultured astrocytes exhibited increased apoptosis after DMSO exposure (p < 0.001). Conclusion Our study establishes that intraventricular administration of DMSO induces hydrocephalus in a dose-dependent manner. This observation sheds light on a potential explanation for the occurrence of hydrocephalus as a secondary complication in intracranial treatments utilizing DMSO as a solvent.
Collapse
Affiliation(s)
| | | | - Seunghyun Lee
- CHOC Children's Research Institute, Orange, CA, 92868, USA
| | - Anthony Rangel
- CHOC Children's Research Institute, Orange, CA, 92868, USA
| | - Evelyn Torres
- CHOC Children's Research Institute, Orange, CA, 92868, USA
| | - Bianca Romero
- Neurosurgery Department at CHOC Children's Hospital, Orange, CA, 92868, USA
| | - Michael Muhonen
- Neurosurgery Department at CHOC Children's Hospital, Orange, CA, 92868, USA
| |
Collapse
|
6
|
Pan S, Koleske JP, Koller GM, Halupnik GL, Alli AHO, Koneru S, DeFreitas D, Ramagiri S, Strahle JM. Postnatal meningeal CSF transport is primarily mediated by the arachnoid and pia maters and is not altered after intraventricular hemorrhage-posthemorrhagic hydrocephalus. Fluids Barriers CNS 2024; 21:4. [PMID: 38191402 PMCID: PMC10773070 DOI: 10.1186/s12987-023-00503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND CSF has long been accepted to circulate throughout the subarachnoid space, which lies between the arachnoid and pia maters of the meninges. How the CSF interacts with the cellular components of the developing postnatal meninges including the dura, arachnoid, and pia of both the meninges at the surface of the brain and the intracranial meninges, prior to its eventual efflux from the cranium and spine, is less understood. Here, we characterize small and large CSF solute distribution patterns along the intracranial and surface meninges in neonatal rodents and compare our findings to meningeal CSF solute distribution in a rodent model of intraventricular hemorrhage-posthemorrhagic hydrocephalus. We also examine CSF solute interactions with the tela choroidea and its pial invaginations into the choroid plexuses of the lateral, third, and fourth ventricles. METHODS 1.9-nm gold nanoparticles, 15-nm gold nanoparticles, or 3 kDa Red Dextran Tetramethylrhodamine constituted in aCSF were infused into the right lateral ventricle of P7 rats to track CSF circulation. 10 min post-1.9-nm gold nanoparticle and Red Dextran Tetramethylrhodamine injection and 4 h post-15-nm gold nanoparticle injection, animals were sacrificed and brains harvested for histologic analysis to identify CSF tracer localization in the cranial and spine meninges and choroid plexus. Spinal dura and leptomeninges (arachnoid and pia) wholemounts were also evaluated. RESULTS There was significantly less CSF tracer distribution in the dura compared to the arachnoid and pia maters in neonatal rodents. Both small and large CSF tracers were transported intracranially to the arachnoid and pia mater of the perimesencephalic cisterns and tela choroidea, but not the falx cerebri. CSF tracers followed a similar distribution pattern in the spinal meninges. In the choroid plexus, there was large CSF tracer distribution in the apical surface of epithelial cells, and small CSF tracer along the basolateral surface. There were no significant differences in tracer intensity in the intracranial meninges of control vs. intraventricular hemorrhage-posthemorrhagic hydrocephalus (PHH) rodents, indicating preserved meningeal transport in the setting of PHH. CONCLUSIONS Differential CSF tracer handling by the meninges suggests that there are distinct roles for CSF handling between the arachnoid-pia and dura maters in the developing brain. Similarly, differences in apical vs. luminal choroid plexus CSF handling may provide insight into particle-size dependent CSF transport at the CSF-choroid plexus border.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Joshua P Koleske
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Gretchen M Koller
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Grace L Halupnik
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Abdul-Haq O Alli
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Shriya Koneru
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Dakota DeFreitas
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Sruthi Ramagiri
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Jennifer M Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Brown FN, Iwasawa E, Shula C, Fugate EM, Lindquist DM, Mangano FT, Goto J. Early postnatal microglial ablation in the Ccdc39 mouse model reveals adverse effects on brain development and in neonatal hydrocephalus. Fluids Barriers CNS 2023; 20:42. [PMID: 37296418 DOI: 10.1186/s12987-023-00433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/19/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Neonatal hydrocephalus is a congenital abnormality resulting in an inflammatory response and microglial cell activation both clinically and in animal models. Previously, we reported a mutation in a motile cilia gene, Ccdc39 that develops neonatal progressive hydrocephalus (prh) with inflammatory microglia. We discovered significantly increased amoeboid-shaped activated microglia in periventricular white matter edema, reduced mature homeostatic microglia in grey matter, and reduced myelination in the prh model. Recently, the role of microglia in animal models of adult brain disorders was examined using cell type-specific ablation by colony-stimulating factor-1 receptor (CSF1R) inhibitor, however, little information exists regarding the role of microglia in neonatal brain disorders such as hydrocephalus. Therefore, we aim to see if ablating pro-inflammatory microglia, and thus suppressing the inflammatory response, in a neonatal hydrocephalic mouse line could have beneficial effects. METHODS In this study, Plexxikon 5622 (PLX5622), a CSF1R inhibitor, was subcutaneously administered to wild-type (WT) and prh mutant mice daily from postnatal day (P) 3 to P7. MRI-estimated brain volume was compared with untreated WT and prh mutants P7-9 and immunohistochemistry of the brain sections was performed at P8 and P18-21. RESULTS PLX5622 injections successfully ablated IBA1-positive microglia in both the WT and prh mutants at P8. Of the microglia that are resistant to PLX5622 treatment, there was a higher percentage of amoeboid-shaped microglia, identified by morphology with retracted processes. In PLX-treated prh mutants, there was increased ventriculomegaly and no change in the total brain volume was observed. Also, the PLX5622 treatment significantly reduced myelination in WT mice at P8, although this was recovered after full microglia repopulation by P20. Microglia repopulation in the mutants worsened hypomyelination at P20. CONCLUSIONS Microglia ablation in the neonatal hydrocephalic brain does not improve white matter edema, and actually worsens ventricular enlargement and hypomyelination, suggesting critical functions of homeostatic ramified microglia to better improve brain development with neonatal hydrocephalus. Future studies with detailed examination of microglial development and status may provide a clarification of the need for microglia in neonatal brain development.
Collapse
Affiliation(s)
- Farrah N Brown
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eri Iwasawa
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Crystal Shula
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elizabeth M Fugate
- Department of Radiology, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Diana M Lindquist
- Department of Radiology, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
8
|
García-Bonilla M, Ojeda-Pérez B, Shumilov K, Rodríguez-Pérez LM, Domínguez-Pinos D, Vitorica J, Jiménez S, Ramírez-Lorca R, Echevarría M, Cárdenas-García C, Iglesias T, Gutiérrez A, McAllister JP, Limbrick DD, Páez-González P, Jiménez AJ. Generation of Periventricular Reactive Astrocytes Overexpressing Aquaporin 4 Is Stimulated by Mesenchymal Stem Cell Therapy. Int J Mol Sci 2023; 24:5640. [PMID: 36982724 PMCID: PMC10057840 DOI: 10.3390/ijms24065640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Aquaporin-4 (AQP4) plays a crucial role in brain water circulation and is considered a therapeutic target in hydrocephalus. Congenital hydrocephalus is associated with a reaction of astrocytes in the periventricular white matter both in experimental models and human cases. A previous report showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) transplanted into the lateral ventricles of hyh mice exhibiting severe congenital hydrocephalus are attracted by the periventricular astrocyte reaction, and the cerebral tissue displays recovery. The present investigation aimed to test the effect of BM-MSC treatment on astrocyte reaction formation. BM-MSCs were injected into the lateral ventricles of four-day-old hyh mice, and the periventricular reaction was detected two weeks later. A protein expression analysis of the cerebral tissue differentiated the BM-MSC-treated mice from the controls and revealed effects on neural development. In in vivo and in vitro experiments, BM-MSCs stimulated the generation of periventricular reactive astrocytes overexpressing AQP4 and its regulatory protein kinase D-interacting substrate of 220 kDa (Kidins220). In the cerebral tissue, mRNA overexpression of nerve growth factor (NGF), vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 (HIF1α), and transforming growth factor beta 1 (TGFβ1) could be related to the regulation of the astrocyte reaction and AQP4 expression. In conclusion, BM-MSC treatment in hydrocephalus can stimulate a key developmental process such as the periventricular astrocyte reaction, where AQP4 overexpression could be implicated in tissue recovery.
Collapse
Affiliation(s)
- María García-Bonilla
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| | - Betsaida Ojeda-Pérez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| | - Kirill Shumilov
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Luis-Manuel Rodríguez-Pérez
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, University of Malaga, 29010 Malaga, Spain
| | | | - Javier Vitorica
- Department of Molecular Biology and Biochemistry, University of Seville, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
| | - Sebastián Jiménez
- Department of Molecular Biology and Biochemistry, University of Seville, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
| | - Reposo Ramírez-Lorca
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
- Department of Physiology and Biophysics, University of Seville, 41009 Seville, Spain
| | - Miriam Echevarría
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
- Department of Physiology and Biophysics, University of Seville, 41009 Seville, Spain
| | - Casimiro Cárdenas-García
- Servicios Centrales de Apoyo a la Investigación (SCAI), University of Malaga, 29010 Malaga, Spain
| | - Teresa Iglesias
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain
| | - Antonia Gutiérrez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
| | - James P. McAllister
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - David D. Limbrick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Patricia Páez-González
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| | - Antonio J. Jiménez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| |
Collapse
|
9
|
Dündar A, Arıkanoğlu A, Özdemir HH, Aslanhan H, Çevik MU. Cerebrospinal fluid levels of sortilin-1, lipocalin-2, autotaxin, decorin and interleukin-33 in patients with idiopathic intracranial hypertension. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:1011-1016. [PMID: 36535285 PMCID: PMC9770083 DOI: 10.1055/s-0042-1758559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Idiopathic intracranial hypertension (IIH) is characterized by increased cerebrospinal fluid (CSF) pressure of unknown cause. It has been suggested that the inflammatory process plays a role in the pathophysiology of the disease. Sortilin-1, lipocalin-2, autotaxin, decorin, and interleukin-33 (IL-33) are among the factors involved in inflammatory processes. OBJECTIVE To investigate the CSF levels of sortilin-1, lipocalin-2, autotaxin, decorin, and IL-33 in patients with IIH. METHODS A total of 24 IIH patients and 21 healthy controls were included in the study. Demographic characteristics of the patients and of the control group as well as CSF pressures were evaluated. Sortilin-1, lipocalin-2, autotaxin, decorin and IL-33 levels in the CSF were measured. RESULTS The CSF levels lipocalin-2, sortilin-1, autotaxin, IL-33 and CSF pressure were significantly higher in the patients group compared with the control group (p < 0.001). Decorin levels were reduced in patients (p < 0.05). There was no correlation between the autotaxin and IL-33 levels and age, gender, CSF pressure, and body mass index. The results of our study showed that inflammatory activation plays an important role in the development of the pathophysiology of IIH. In addition, the fact that the markers used in our study have never been studied in the etiopathogenesis of IIH is important in explaining the molecular mechanism of this disease. CONCLUSION Studies are needed to evaluate the role of these cytokines in the pathophysiology of the disease. It is necessary to evaluate the effects of these molecules on this process.
Collapse
Affiliation(s)
- Ahmet Dündar
- Mardin Artuklu University, Vocational School of Health Services, Department of Medical Laboratory, Mardin, Turkey.,Address for correspondence Ahmet Dündar
| | - Adalet Arıkanoğlu
- Dicle University, Faculty of Medicine, Department of Neurology, Diyarbakır, Turkey.
| | | | - Hamza Aslanhan
- Dicle University, Faculty of Medicine, Department of Family Medicine, Diyarbakır, Turkey.
| | - Mehmet Uğur Çevik
- Dicle University, Faculty of Medicine, Department of Neurology, Diyarbakır, Turkey.
| |
Collapse
|
10
|
Chen LJ, Chen JR, Tseng GF. Modulation of striatal glutamatergic, dopaminergic and cholinergic neurotransmission pathways concomitant with motor disturbance in rats with kaolin-induced hydrocephalus. Fluids Barriers CNS 2022; 19:95. [PMID: 36437472 PMCID: PMC9701403 DOI: 10.1186/s12987-022-00393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Hydrocephalus is characterized by abnormal accumulation of cerebrospinal fluid in the cerebral ventricles and causes motor impairments. The mechanisms underlying the motor changes remain elusive. Enlargement of ventricles compresses the striatum of the basal ganglia, a group of nuclei involved in the subcortical motor circuit. Here, we used a kaolin-injection juvenile rat model to explore the effects of acute and chronic hydrocephalus, 1 and 5 weeks post-treatment, respectively on the three major neurotransmission pathways (glutamatergic, dopaminergic and cholinergic) in the striatum. METHODS Rats were evaluated for motor impairments. Expressions of presynaptic and postsynaptic protein markers related to the glutamatergic, dopaminergic, and cholinergic connections in the striatum were evaluated. Combined intracellular dye injection and substance P immunohistochemistry were used to distinguish between direct and indirect pathway striatal medium spiny neurons (d and i-MSNs) for the analysis of their dendritic spine density changes. RESULTS Hydrocephalic rats showed compromised open-field gait behavior. However, male but not female rats displayed stereotypic movements and compromised rotarod performance. Morphologically, the increase in lateral ventricle sizes was greater in the chronic than acute hydrocephalus conditions. Biochemically, hydrocephalic rats had significantly decreased striatal levels of synaptophysin, vesicular glutamate transporter 1, and glutamatergic postsynaptic density protein 95, suggesting a reduction of corticostriatal excitation. The expression of GluR2/3 was also reduced suggesting glutamate receptor compositional changes. The densities of dendritic spines, morphological correlates of excitatory synaptic foci, on both d and i-MSNs were also reduced. Hydrocephalus altered type 1 (DR1) and 2 (DR2) dopamine receptor expressions without affecting tyrosine hydroxylase level. DR1 was decreased in acute and chronic hydrocephalus, while DR2 only started to decrease later during chronic hydrocephalus. Since dopamine excites d-MSNs through DR1 and inhibits i-MSNs via DR2, our findings suggest that hydrocephalus downregulated the direct basal ganglia neural pathway persistently and disinhibited the indirect pathway late during chronic hydrocephalus. Hydrocephalus also persistently reduced the striatal choline acetyltransferase level, suggesting a reduction of cholinergic modulation. CONCLUSIONS Hydrocephalus altered striatal glutamatergic, dopaminergic, and cholinergic neurotransmission pathways and tipped the balance between the direct and indirect basal ganglia circuits, which could have contributed to the motor impairments in hydrocephalus.
Collapse
Affiliation(s)
- Li-Jin Chen
- grid.411824.a0000 0004 0622 7222Department of Anatomy, College of Medicine, Tzu Chi University, No. 701, Section 3, Jhongyang Rd., Hualien, 97004 Taiwan
| | - Jeng-Rung Chen
- grid.260542.70000 0004 0532 3749Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Guo-Fang Tseng
- grid.411824.a0000 0004 0622 7222Department of Anatomy, College of Medicine, Tzu Chi University, No. 701, Section 3, Jhongyang Rd., Hualien, 97004 Taiwan
| |
Collapse
|
11
|
da Silva Beggiora P, da Silva SC, Rodrigues KP, Almeida TADL, Botelho GS, Silva GAPDM, Machado HR, da Silva Lopes L. Memantine associated with ventricular-subcutaneous shunt promotes behavioral improvement, reduces reactive astrogliosis and cell death in juvenile hydrocephalic rats. J Chem Neuroanat 2022; 125:102165. [PMID: 36152798 DOI: 10.1016/j.jchemneu.2022.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Abstract
Hydrocephalus is defined as the accumulation of cerebrospinal fluid in the brain ventricles. The usual treatment of hydrocephalus is surgical (shunt), but not all patients can undergo treatment immediately after diagnosis. Thus, neuroprotective measures were tested to minimize the tissue damage involved. Memantine is a non-competitive antagonist of the N-methyl-D-aspartate (NMDA) receptor, which has shown a neuroprotective action in neurodegenerative diseases. This study aimed to evaluate the neuroprotective response of memantine in animals treated with or without a ventricular-subcutaneous shunt. Seven-day-old male Wistar rats induced by intracisternal injection of kaolin were used, divided into five groups: intact control (n=10), hydrocephalic (n=10), hydrocephalic treated with memantine (20mg/kg/day) (n=10), hydrocephalic treated with shunt (n=10), hydrocephalic treated with shunt and memantine (20mg/kg/day) (n=10). Memantine administration was started on the day after hydrocephalus induction and continued until the last day of the experimental period, totaling 21 consecutive days of drug application. The CSF shunt surgery was performed seven days after hydrocephalus induction. Behavioral tests (open field, and modified Morris water maze), histological, and immunohistochemical evaluations were performed. Treatment with memantine resulted in significant improvement (p<0.05) in sensorimotor development, preservation of spatial memory, reduction of astrocytic reaction in the corpus callosum, cortex, and germinal matrix. When associated with the shunt, it has also been shown to reduce the cell death cascade. It is concluded that memantine is a promising adjuvant drug with beneficial potential for the treatment of lesions secondary to hydrocephalus.
Collapse
Affiliation(s)
- Pâmella da Silva Beggiora
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av, 3900, Ribeirão Preto, SP, 14040-900, Brazil.
| | - Stephanya Covas da Silva
- Department of Morphology and Pathology, Federal University of São Carlos, Washington Luiz, Monjolinho, São Carlos - SP, 13565-905, Brazil.
| | - Karine Pereira Rodrigues
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av, 3900, Ribeirão Preto, SP, 14040-900, Brazil.
| | - Timóteo Abrantes de Lacerda Almeida
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av, 3900, Ribeirão Preto, SP, 14040-900, Brazil.
| | - Gustavo Sampaio Botelho
- Department of Pediatric Neurosurgery, Children's and Maternity Hospital of São José do Rio Preto. Jamil Ferreira Kfouri Av, 3355, São José do Rio Preto, SP, 15091-240, Brazil.
| | - Gabriel Aparecido Pinto de Moura Silva
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av, 3900, Ribeirão Preto, SP, 14040-900, Brazil.
| | - Hélio Rubens Machado
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av, 3900, Ribeirão Preto, SP, 14040-900, Brazil.
| | - Luiza da Silva Lopes
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av, 3900, Ribeirão Preto, SP, 14040-900, Brazil.
| |
Collapse
|
12
|
Castañeyra-Ruiz L, González-Marrero I, Hernández-Abad LG, Lee S, Castañeyra-Perdomo A, Muhonen M. AQP4, Astrogenesis, and Hydrocephalus: A New Neurological Perspective. Int J Mol Sci 2022; 23:10438. [PMID: 36142348 PMCID: PMC9498986 DOI: 10.3390/ijms231810438] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Aquaporin 4 (AQP4) is a cerebral glial marker that labels ependymal cells and astrocytes' endfeet and is the main water channel responsible for the parenchymal fluid balance. However, in brain development, AQP4 is a marker of glial stem cells and plays a crucial role in the pathophysiology of pediatric hydrocephalus. Gliogenesis characterization has been hampered by a lack of biomarkers for precursor and intermediate stages and a deeper understanding of hydrocephalus etiology is needed. This manuscript is a focused review of the current research landscape on AQP4 as a possible biomarker for gliogenesis and its influence in pediatric hydrocephalus, emphasizing reactive astrogliosis. The goal is to understand brain development under hydrocephalic and normal physiologic conditions.
Collapse
Affiliation(s)
| | - Ibrahim González-Marrero
- Departamento de Ciencias Médicas Basicas, Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Spain
| | - Luis G. Hernández-Abad
- Departamento de Ciencias Médicas Basicas, Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Spain
| | - Seunghyun Lee
- CHOC Children’s Research Institute, 1201 W, La Veta Avenue, Orange, CA 92868, USA
| | - Agustín Castañeyra-Perdomo
- Departamento de Ciencias Médicas Basicas, Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Spain
- Instituto de Investigación y Ciencias de Puerto del Rosario, 35600 Puerto del Rosario, Spain
| | - Michael Muhonen
- Neurosurgery Department at CHOC Children’s Hospital, 505 S Main St., Orange, CA 92868, USA
| |
Collapse
|
13
|
Metformin Alleviates Delayed Hydrocephalus after Intraventricular Hemorrhage by Inhibiting Inflammation and Fibrosis. Transl Stroke Res 2022; 14:364-382. [PMID: 35852765 DOI: 10.1007/s12975-022-01026-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 01/22/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022]
Abstract
Intraventricular hemorrhage (IVH) is a subtype of intracerebral hemorrhage (ICH) with high morbidity and mortality. Posthemorrhagic hydrocephalus (PHH) is a common and major complication that affects prognosis, but the mechanism is still unclear. Inflammation and fibrosis have been well established as the major causes of PHH after IVH. In this study, we aimed to investigate the effects of metformin on IVH in adult male mice and further explored the underlying molecular mechanisms of these effects. In the acute phase, metformin treatment exerted dose-dependent neuroprotective effects by reducing periependymal apoptosis and neuronal degeneration and decreasing brain edema. Moreover, high-dose metformin reduced inflammatory cell infiltration and the release of proinflammatory factors, thus protecting ependymal structure integrity and subependymal neurons. In the chronic phase, metformin administration improved neurocognitive function and reduced delayed hydrocephalus. Additionally, metformin significantly inhibited basal subarachnoid fibrosis and ependymal glial scarring. The ependymal structures partially restored. Mechanically, IVH reduced phospho-AMPK (p-AMPK) and SIRT1 expression and activated the phospho-NF-κB (p-NF-κB) inflammatory signaling pathway. However, metformin treatment increased AMPK/SIRT1 expression and lowered the protein expression of p-NF-κB and its downstream inflammation. Compound C and EX527 administration reversed the anti-inflammatory effect of metformin. In conclusion, metformin attenuated neuroinflammation and subsequent fibrosis after IVH by regulating AMPK /SIRT1/ NF-κB pathways, thereby reducing delayed hydrocephalus. Metformin may be a promising therapeutic agent to prevent delayed hydrocephalus following IVH.
Collapse
|
14
|
Juhler M, Hansen TS, Novrup HVG, MacAulay N, Munch TN. Hydrocephalus Study Design: Testing New Hypotheses in Clinical Studies and Bench-to-Bedside Research. World Neurosurg 2022; 161:424-431. [PMID: 35505563 DOI: 10.1016/j.wneu.2021.12.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 10/18/2022]
Abstract
In this article, we aimed to describe some of the currently most challenging problems in neurosurgical management of hydrocephalus and how these can be reasons for inspiration for and development of research. We chose 4 areas of focus: 2 dedicated to improvement of current treatments (shunt implant surgery and endoscopic hydrocephalus surgery) and 2 dedicated to emerging future treatment principles (molecular mechanisms of cerebrospinal fluid secretion and hydrocephalus genetics).
Collapse
Affiliation(s)
- Marianne Juhler
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | | - Hans V G Novrup
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Tina Nørgaard Munch
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
15
|
Castañeyra-Ruiz L, González-Marrero I, Hernández-Abad LG, Carmona-Calero EM, Pardo MR, Baz-Davila R, Lee S, Muhonen M, Borges R, Castañeyra-Perdomo A. AQP4 labels a subpopulation of white matter-dependent glial radial cells affected by pediatric hydrocephalus, and its expression increased in glial microvesicles released to the cerebrospinal fluid in obstructive hydrocephalus. Acta Neuropathol Commun 2022; 10:41. [PMID: 35346374 PMCID: PMC8962176 DOI: 10.1186/s40478-022-01345-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/11/2022] [Indexed: 01/16/2023] Open
Abstract
Hydrocephalus is a distension of the ventricular system associated with ventricular zone disruption, reactive astrogliosis, periventricular white matter ischemia, axonal impairment, and corpus callosum alterations. The condition's etiology is typically attributed to a malfunction in classical cerebrospinal fluid (CSF) bulk flow; however, this approach does not consider the unique physiology of CSF in fetal and perinatal patients. The parenchymal fluid contributes to the glymphatic system, and plays a fundamental role in pediatric hydrocephalus, with aquaporin 4 (AQP4) as the primary facilitator of these fluid movements. Despite the importance of AQP4 in the pathophysiology of hydrocephalus, it’s expression in human fetal life is not well-studied. This manuscript systematically defines the brain expression of AQP4 in human brain development under control (n = 13) and hydrocephalic conditions (n = 3). Brains from 8 postconceptional weeks (PCW) onward and perinatal CSF from control (n = 2), obstructive (n = 6) and communicating (n = 6) hydrocephalic samples were analyzed through immunohistochemistry, immunofluorescence, western blot, and flow cytometry. Our results indicate that AQP4 expression is observed first in the archicortex, followed by the ganglionic eminences and then the neocortex. In the neocortex, it is initially at the perisylvian regions, and lastly at the occipital and prefrontal zones. Characteristic astrocyte end-feet labeling surrounding the vascular system was not established until 25 PCW. We also found AQP4 expression in a subpopulation of glial radial cells with processes that do not progress radially but, rather, curve following white matter tracts (corpus callosum and fornix), which were considered as glial stem cells (GSC). Under hydrocephalic conditions, GSC adjacent to characteristic ventricular zone disruption showed signs of early differentiation into astrocytes which may affect normal gliogenesis and contribute to the white matter dysgenesis. Finally, we found that AQP4 is expressed in the microvesicle fraction (p < 0.01) of CSF from patients with obstructive hydrocephalus. These findings suggest the potential use of AQP4 as a diagnostic and prognostic marker of pediatric hydrocephalus and as gliogenesis biomarker.
Collapse
|
16
|
Iwasawa E, Brown FN, Shula C, Kahn F, Lee SH, Berta T, Ladle DR, Campbell K, Mangano FT, Goto J. The Anti-Inflammatory Agent Bindarit Attenuates the Impairment of Neural Development through Suppression of Microglial Activation in a Neonatal Hydrocephalus Mouse Model. J Neurosci 2022; 42:1820-1844. [PMID: 34992132 PMCID: PMC8896558 DOI: 10.1523/jneurosci.1160-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Neonatal hydrocephalus presents with various degrees of neuroinflammation and long-term neurologic deficits in surgically treated patients, provoking a need for additional medical treatment. We previously reported elevated neuroinflammation and severe periventricular white matter damage in the progressive hydrocephalus (prh) mutant which contains a point mutation in the Ccdc39 gene, causing loss of cilia-mediated unidirectional CSF flow. In this study, we identified cortical neuropil maturation defects such as impaired excitatory synapse maturation and loss of homeostatic microglia, and swimming locomotor defects in early postnatal prh mutant mice. Strikingly, systemic application of the anti-inflammatory small molecule bindarit significantly supports healthy postnatal cerebral cortical development in the prh mutant. While bindarit only mildly reduced the ventricular volume, it significantly improved the edematous appearance and myelination of the corpus callosum. Moreover, the treatment attenuated thinning in cortical Layers II-IV, excitatory synapse formation, and interneuron morphogenesis, by supporting the ramified-shaped homeostatic microglia from excessive cell death. Also, the therapeutic effect led to the alleviation of a spastic locomotor phenotype of the mutant. We found that microglia, but not peripheral monocytes, contribute to amoeboid-shaped activated myeloid cells in prh mutants' corpus callosum and the proinflammatory cytokines expression. Bindarit blocks nuclear factor (NF)-kB activation and its downstream proinflammatory cytokines, including monocyte chemoattractant protein-1, in the prh mutant. Collectively, we revealed that amelioration of neuroinflammation is crucial for white matter and neuronal maturation in neonatal hydrocephalus. Future studies of bindarit treatment combined with CSF diversion surgery may provide long-term benefits supporting neuronal development in neonatal hydrocephalus.SIGNIFICANCE STATEMENT In neonatal hydrocephalus, little is known about the signaling cascades of neuroinflammation or the impact of such inflammatory insults on neural cell development within the perinatal cerebral cortex. Here, we report that proinflammatory activation of myeloid cells, the majority of which are derived from microglia, impairs periventricular myelination and cortical neuronal maturation using the mouse prh genetic model of neonatal hydrocephalus. Administration of bindarit, an anti-inflammatory small molecule that blocks nuclear factor (NF)-kB activation, restored the cortical thinning and synaptic maturation defects in the prh mutant brain through suppression of microglial activation. These data indicate the potential therapeutic use of anti-inflammatory reagents targeting neuroinflammation in the treatment of neonatal hydrocephalus.
Collapse
Affiliation(s)
- Eri Iwasawa
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45242
| | - Farrah N Brown
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45242
| | - Crystal Shula
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45242
| | - Fatima Kahn
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45242
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, 45242
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, 45242
| | - David R Ladle
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio, 45435
| | - Kenneth Campbell
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45242
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45242
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45242
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45242
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45242
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45242
| |
Collapse
|
17
|
Hao X, Ye F, Holste KG, Hua Y, Garton HJL, Keep RF, Xi G. Delayed Minocycline Treatment Ameliorates Hydrocephalus Development and Choroid Plexus Inflammation in Spontaneously Hypertensive Rats. Int J Mol Sci 2022; 23:2306. [PMID: 35216420 PMCID: PMC8874790 DOI: 10.3390/ijms23042306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Hydrocephalus is a complicated disorder that affects both adult and pediatric populations. The mechanism of hydrocephalus development, especially when there is no mass lesion present causing an obstructive, is poorly understood. Prior studies have demonstrated that spontaneously hypertensive rats (SHRs) develop hydrocephalus by week 7, which was attenuated with minocycline. The aim of this study was to determine sex differences in hydrocephalus development and to examine the effect of minocycline administration after hydrocephalus onset. Male and female Wistar-Kyoto rats (WKYs) and SHRs underwent magnetic resonance imaging at weeks 7 and 9 to determine ventricular volume. Choroid plexus epiplexus cell activation, cognitive deficits, white matter atrophy, and hippocampal neuronal loss were examined at week 9. In the second phase of the experiment, male SHRs (7 weeks old) were treated with either saline or minocycline (20 mg/kg) for 14 days, and similar radiologic, histologic, and behavior tests were performed. Hydrocephalus was present at week 7 and increased at week 9 in both male and female SHRs, which was associated with greater epiplexus cell activation than WKYs. Male SHRs had greater ventricular volume and epiplexus cell activation compared to female SHRs. Minocycline administration improved cognitive function, white matter atrophy, and hippocampal neuronal cell loss. In conclusion, while both male and female SHRs developed hydrocephalus and epiplexus cell activation by week 9, it was more severe in males. Delayed minocycline treatment alleviated hydrocephalus, epiplexus macrophage activation, brain pathology, and cognitive impairment in male SHRs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; (X.H.); (F.Y.); (K.G.H.); (Y.H.); (H.J.L.G.); (R.F.K.)
| |
Collapse
|
18
|
Lin T, Ding L, Lin Y, Liu C, Wang C, Wu D, Li Z, Li M, Sun J. Pharmacological inhibition of TLR4-NF-κB signaling by TAK-242 attenuates hydrocephalus after intraventricular hemorrhage. Int Immunopharmacol 2022; 103:108486. [PMID: 34973529 DOI: 10.1016/j.intimp.2021.108486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022]
Abstract
Compelling evidence has confirmed that inflammatory pathways involving TLR4-regulated cytokines and immune cells are vitallyimportant for the pathogenesis of posthemorrhagic hydrocephalus (PHH), hinting that pharmacological prevention of PHH is feasible. TAK-242, as a toll-like receptor 4 (TLR4) inhibitor, downregulates TLR4-induced inflammatory responses and becomes a potent and noveltherapeuticdrugcandidatefor PHH. In the present study, we investigate whether TAK-242 protects against hydrocephalus and improves the prognosis of intraventricular hemorrhage (IVH). We also explore the possible role of TAK-242 for the regulation of TLR4-NF-κB signaling pathway. A model of PHH was conducted in 6-week-old Male Sprague-Dawley (SD) rats. The rats were divided into four main groups, including the sham, IVH + vehicle, IVH + TAK-242 and IVH groups. Magnetic resonance imaging (MRI) was applied to measure the lateral ventricle volume. Western blot (WB) and immunofluorescence (IF) were applied to detect the expression of TLR4, NF-κB, fibronectin and laminin. A combined scoring system and Morris water maze were employed to evaluate neurological functions after IVH. We found that IVH induced heightened activation of TLR4-NF-κB signaling pathway. We observed the increased lateral ventricular volume, elevation of NF-κB in choroidplexus, as well as fibronectin and laminin in the subarachnoid space (SAS) and ventricular wall after IVH. Obviously, TAK-242 treatment effectively inhibited the up-regulation of NF-κB, fibronectin, laminin and significantly alleviated ventriculomegaly after IVH. Importantly, TAK-242 improved neurocognitive deficits after PHH. In conclusion, TAK-242 attenuated IVH-induced hydrocephalus and improved the prognosis of PHH. The underlying mechanism involved the TAK-242-mediated downregulation of TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tao Lin
- Department of Neurosurgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Neurosurgery, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China
| | - Ling Ding
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong 250001, China
| | - Yicheng Lin
- Department of Neurology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chunbo Liu
- Department of Neurosurgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Changzhen Wang
- Department of Neurosurgery, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China
| | - Dahao Wu
- Department of Neurosurgery, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China
| | - Zhe Li
- Department of Neurosurgery, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China
| | - Meng Li
- Department of Neurosurgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Jinlong Sun
- Department of Neurosurgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
19
|
Yuan L, Zou D, Yang X, Chen X, Lu Y, Zhang A, Zhang P, Wei F. Proteomics and functional study reveal kallikrein-6 enhances communicating hydrocephalus. Clin Proteomics 2021; 18:30. [PMID: 34915845 PMCID: PMC8903716 DOI: 10.1186/s12014-021-09335-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/07/2021] [Indexed: 01/22/2023] Open
Abstract
Background Communicating hydrocephalus (CH) is a common neurological disorder caused by a blockage of cerebrospinal fluid. In this study, we aimed to explore the potential molecular mechanism underlying CH development. Methods Quantitative proteomic analysis was performed to screen the differentially expressed proteins (DEPs) between patients with and without CH. A CH rat model was verified by Hoechst staining, and the co-localization of the target protein and neuron was detected using immunofluorescence staining. Loss-of-function experiments were performed to examine the effect of KLK6 on the synapse structure. Results A total of 11 DEPs were identified, and kallikrein 6 (KLK6) expression was found to be significantly upregulated in patients with CH compared with that in patients without CH. The CH rat model was successfully constructed, and KLK6 was found to be co-localized with neuronal nuclei in brain tissue. The expression level of IL-1β, TNF-α, and KLK6 in the CH group was higher than that in the control group. After knockdown of KLK6 expression using small-interfering RNA (siRNA), the expression levels of synapsin-1 and PSD95 in neuronal cells were increased, and the length, number, and structure of synapses were significantly improved. Following siRNA interference KLK6 expression, 5681 differentially expressed genes (DEGs) were identified in transcriptome profile. The upregulated DEGs of Appl2, Nav2, and Nrn1 may be involved in the recovery of synaptic structures after the interference of KLK6 expression. Conclusions Collectively, KLK6 participates in the development of CH and might provide a new target for CH treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09335-9.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Dongdong Zou
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Xia Yang
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Xin Chen
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China.
| | - Youming Lu
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Aijun Zhang
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Pengqi Zhang
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Fance Wei
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
20
|
The association of Edaravone with shunt surgery improves behavioral performance, reduces astrocyte reaction and apoptosis, and promotes neuroprotection in young hydrocephalic rats. J Chem Neuroanat 2021; 119:102059. [PMID: 34896559 DOI: 10.1016/j.jchemneu.2021.102059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/24/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
The neuroprotective effect of Edaravone in young hydrocephalic rats associated with a CSF derivation system was evaluated. The drug has already been shown to be beneficial in experimental hydrocephalus, but the combination of this drug with shunt surgery has not yet been investigated. Fifty-seven-day-old Wistar rats submitted to hydrocephalus by injection of kaolin in the cisterna magna were used and divided into five groups: control (n = 10), hydrocephalic (n = 10), hydrocephalic treated with Edaravone (20 mg/kg/day) (n = 10), hydrocephalic treated with shunt (n = 10) and hydrocephalic treated with shunt and Edaravone (n = 10). Administration of the Edaravone was started 24 h after hydrocephalus induction (P1) and continued until the experimental endpoint (P21). The CSF shunt surgery was performed seven days after hydrocephalus induction (P7). Open-field tests, histological evaluation by hematoxylin and eosin, immunohistochemistry by Caspase-3 and GFAP, and ELISA biochemistry by GFAP were performed. Edaravone reduced reactive astrogliosis in the corpus callosum and germinal matrix (p < 0.05). When used alone or associated with CSF shunt surgery, the drug decreased the cell death process (p < 0.0001) and improved the morphological aspect of the astroglia (p < 0.05). The results showed that Edaravone associated with CSF bypass surgery promotes neuroprotection in young hydrocephalic rats by reducing reactive astrogliosis and decreasing cell death.
Collapse
|
21
|
Wang C, Wang X, Tan C, Wang Y, Tang Z, Zhang Z, Liu J, Xiao G. Novel therapeutics for hydrocephalus: Insights from animal models. CNS Neurosci Ther 2021; 27:1012-1022. [PMID: 34151523 PMCID: PMC8339528 DOI: 10.1111/cns.13695] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Hydrocephalus is a cerebrospinal fluid physiological disorder that causes ventricular dilation with normal or high intracranial pressure. The current regular treatment for hydrocephalus is cerebrospinal fluid shunting, which is frequently related to failure and complications. Meanwhile, considering that the current nonsurgical treatments of hydrocephalus can only relieve the symptoms but cannot eliminate this complication caused by primary brain injuries, the exploration of more effective therapies has become the focus for many researchers. In this article, the current research status and progress of nonsurgical treatment in animal models of hydrocephalus are reviewed to provide new orientations for animal research and clinical practice.
Collapse
Affiliation(s)
- Chuansen Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaoqiang Wang
- Department of Pediatric NeurosurgeryXinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Changwu Tan
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yuchang Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhi Tang
- Department of NeurosurgeryHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Zhiping Zhang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jingping Liu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Gelei Xiao
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
22
|
Stokum JA, Cannarsa GJ, Wessell AP, Shea P, Wenger N, Simard JM. When the Blood Hits Your Brain: The Neurotoxicity of Extravasated Blood. Int J Mol Sci 2021; 22:5132. [PMID: 34066240 PMCID: PMC8151992 DOI: 10.3390/ijms22105132] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Hemorrhage in the central nervous system (CNS), including intracerebral hemorrhage (ICH), intraventricular hemorrhage (IVH), and aneurysmal subarachnoid hemorrhage (aSAH), remains highly morbid. Trials of medical management for these conditions over recent decades have been largely unsuccessful in improving outcome and reducing mortality. Beyond its role in creating mass effect, the presence of extravasated blood in patients with CNS hemorrhage is generally overlooked. Since trials of surgical intervention to remove CNS hemorrhage have been generally unsuccessful, the potent neurotoxicity of blood is generally viewed as a basic scientific curiosity rather than a clinically meaningful factor. In this review, we evaluate the direct role of blood as a neurotoxin and its subsequent clinical relevance. We first describe the molecular mechanisms of blood neurotoxicity. We then evaluate the clinical literature that directly relates to the evacuation of CNS hemorrhage. We posit that the efficacy of clot removal is a critical factor in outcome following surgical intervention. Future interventions for CNS hemorrhage should be guided by the principle that blood is exquisitely toxic to the brain.
Collapse
Affiliation(s)
- Jesse A. Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Gregory J. Cannarsa
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Aaron P. Wessell
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Phelan Shea
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Nicole Wenger
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
- Departments of Pathology and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
23
|
Leary OP, Svokos KA, Klinge PM. Reappraisal of Pediatric Normal-Pressure Hydrocephalus. J Clin Med 2021; 10:jcm10092026. [PMID: 34065105 PMCID: PMC8125971 DOI: 10.3390/jcm10092026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
While normal-pressure hydrocephalus (NPH) is most commonly diagnosed in older adulthood, a significant body of literature has accumulated over half a century documenting the clinical phenomenon of an NPH-like syndrome in pediatric patients. As in adult NPH, it is likely that pediatric NPH occurs due to a heterogeneous array of developmental, structural, and neurodegenerative pathologies, ultimately resulting in aberrant cerebrospinal fluid (CSF) flow and distribution within and around the brain. In this review, we aimed to systematically survey the existing clinical evidence supporting the existence of a pediatric form of NPH, dating back to the original recognition of NPH as a clinically significant subtype of communicating hydrocephalus. Leveraging emergent trends from the old and more recent published literature, we then present a modern characterization of pediatric NPH as a disorder firmly within the same disease spectrum as adult NPH, likely with overlapping etiology and pathophysiological mechanisms. Exemplary cases consistent with the diagnosis of pediatric NPH selected from the senior author’s neurosurgical practice are then presented alongside the systematic review to aid in discussion of the typical clinical and radiographic manifestations of pediatric NPH. Common co-morbidities and modern surgical treatment options are also described.
Collapse
Affiliation(s)
- Owen P. Leary
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (O.P.L.); (K.A.S.)
| | - Konstantina A. Svokos
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (O.P.L.); (K.A.S.)
| | - Petra M. Klinge
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (O.P.L.); (K.A.S.)
- Rhode Island Hospital, APC Building 6th Floor, 593 Eddy Street, Providence, RI 02903, USA
- Correspondence:
| |
Collapse
|
24
|
Ma T, Wang F, Xu S, Huang JH. Meningeal immunity: Structure, function and a potential therapeutic target of neurodegenerative diseases. Brain Behav Immun 2021; 93:264-276. [PMID: 33548498 DOI: 10.1016/j.bbi.2021.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 12/25/2022] Open
Abstract
Meningeal immunity refers to immune surveillance and immune defense in the meningeal immune compartment, which depends on the unique position, structural composition of the meninges and functional characteristics of the meningeal immune cells. Recent research advances in meningeal immunity have demonstrated many new ways in which a sophisticated immune landscape affects central nervous system (CNS) function under physiological or pathological conditions. The proper function of the meningeal compartment might protect the CNS from pathogens or contribute to neurological disorders. Since the concept of meningeal immunity, especially the meningeal lymphatic system and the glymphatic system, is relatively new, we will provide a general review of the meninges' basic structural elements, organization, regulation, and functions with regards to meningeal immunity. At the same time, we will emphasize recent evidence for the role of meningeal immunity in neurodegenerative diseases. More importantly, we will speculate about the feasibility of the meningeal immune region as a drug target to provide some insights for future research of meningeal immunity.
Collapse
Affiliation(s)
- Tengyun Ma
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610060, PR China.
| | - Shijun Xu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health Center, Temple, TX 76502, United States; Department of Surgery, Texas A&M University College of Medicine, Temple, TX 76502, United States
| |
Collapse
|
25
|
Hill LJ, Botfield HF, Begum G, Qureshi O, Vigneswara V, Masood I, Barnes NM, Bruce L, Logan A. ILB ® resolves inflammatory scarring and promotes functional tissue repair. NPJ Regen Med 2021; 6:3. [PMID: 33414477 PMCID: PMC7791102 DOI: 10.1038/s41536-020-00110-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 11/13/2020] [Indexed: 11/09/2022] Open
Abstract
Fibrotic disease is a major cause of mortality worldwide, with fibrosis arising from prolonged inflammation and aberrant extracellular matrix dynamics. Compromised cellular and tissue repair processes following injury, infection, metabolic dysfunction, autoimmune conditions and vascular diseases leave tissues susceptible to unresolved inflammation, fibrogenesis, loss of function and scarring. There has been limited clinical success with therapies for inflammatory and fibrotic diseases such that there remains a large unmet therapeutic need to restore normal tissue homoeostasis without detrimental side effects. We investigated the effects of a newly formulated low molecular weight dextran sulfate (LMW-DS), termed ILB®, to resolve inflammation and activate matrix remodelling in rodent and human disease models. We demonstrated modulation of the expression of multiple pro-inflammatory cytokines and chemokines in vitro together with scar resolution and improved matrix remodelling in vivo. Of particular relevance, we demonstrated that ILB® acts, in part, by downregulating transforming growth factor (TGF)β signalling genes and by altering gene expression relating to extracellular matrix dynamics, leading to tissue remodelling, reduced fibrosis and functional tissue regeneration. These observations indicate the potential of ILB® to alleviate fibrotic diseases.
Collapse
Affiliation(s)
- Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Hannah F Botfield
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ghazala Begum
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Omar Qureshi
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Vasanthy Vigneswara
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Imran Masood
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nicholas M Barnes
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lars Bruce
- TikoMed AB, P.O. Box 81, 263 03, Viken, Sweden
| | - Ann Logan
- Axolotl Consulting Ltd., Droitwich, Worcestershire, WR9 0JS, UK. .,Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
26
|
McKnight I, Hart C, Park IH, Shim JW. Genes causing congenital hydrocephalus: Their chromosomal characteristics of telomere proximity and DNA compositions. Exp Neurol 2021; 335:113523. [PMID: 33157092 PMCID: PMC7750280 DOI: 10.1016/j.expneurol.2020.113523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/10/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023]
Abstract
Congenital hydrocephalus (CH) is caused by genetic mutations, but whether factors impacting human genetic mutations are disease-specific remains elusive. Given two factors associated with high mutation rates, we reviewed how many disease-susceptible genes match with (i) proximity to telomeres or (ii) high adenine and thymine (A + T) content in human CH as compared to other disorders of the central nervous system (CNS). We extracted genomic information using a genome data viewer. Importantly, 98 of 108 genes causing CH satisfied (i) or (ii), resulting in >90% matching rate. However, such a high accordance no longer sustained as we checked two factors in Alzheimer's disease (AD) and/or familial Parkinson's disease (fPD), resulting in 84% and 59% matching, respectively. A disease-specific matching of telomere proximity or high A + T content predicts causative genes of CH much better than neurodegenerative diseases and other CNS conditions, likely due to sufficient number of known causative genes (n = 108) and precise determination and classification of the genotype and phenotype. Our analysis suggests a need for identifying genetic basis of both factors before human clinical studies, to prioritize putative genes found in preclinical models into the likely (meeting at least one) and more likely candidate (meeting both), which predisposes human genes to mutations.
Collapse
Affiliation(s)
- Ian McKnight
- Department of Biomedical Engineering, Marshall University, Huntington, WV 25755, USA
| | - Christoph Hart
- Department of Biomedical Engineering, Marshall University, Huntington, WV 25755, USA
| | - In-Hyun Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Joon W Shim
- Department of Biomedical Engineering, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
27
|
Yao Z, Xue T, Xiong H, Cai C, Liu X, Wu F, Liu S, Fan C. Promotion of collagen deposition during skin healing through Smad3/mTOR pathway by parathyroid hormone-loaded microneedle. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111446. [PMID: 33321586 DOI: 10.1016/j.msec.2020.111446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 01/13/2023]
Abstract
Skin wounds are associated with huge economic and emotional burdens for millions of people annually and are a challenge for health workers worldwide. At present, for skin defects after traumatic accidents, especially large-area skin defects, newly developed strategies such as the use of emerging biomaterials and cell therapy could be considered as options besides classic skin grafts. However, the new strategies have to deal with problems such as immune rejection and high costs for patients. An insufficient understanding of the mechanisms of skin wound healing further hinders the development of innovative treatment approaches. In this study, we developed a parathyroid hormone (PTH)-loaded phase-transition microneedle (PTMN) patch to deliver PTH subcutaneously in an efficient manner and change microneedle patch daily to achieve intermittent and systematic drug administration. By evaluating wound closure, re-epithelialization, collagen deposition, and extracellular matrix (ECM) expression in a Sprague-Dawley rat model of traumatic skin wounds, we demonstrated that intermittent systemic administration of PTH using our PTMN patches accelerated skin wound healing. Further, we demonstrated that the use of the patch may accelerate skin wound healing depending on the activation of the transforming growth factor (TGF)-β/Smad3/mammalian target of rapamycin (mTOR) cascade pathway. Our results suggest that the PTH-loaded PTMN patch may be a novel therapeutic strategy for treating skin wounds.
Collapse
Affiliation(s)
- Zhixiao Yao
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Tong Xue
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hao Xiong
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chuandong Cai
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xudong Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Fei Wu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
28
|
Wang Z, Zhang Y, Hu F, Ding J, Wang X. Pathogenesis and pathophysiology of idiopathic normal pressure hydrocephalus. CNS Neurosci Ther 2020; 26:1230-1240. [PMID: 33242372 PMCID: PMC7702234 DOI: 10.1111/cns.13526] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH), the most common type of adult-onset hydrocephalus, is a potentially reversible neuropsychiatric entity characterized by dilated ventricles, cognitive deficit, gait apraxia, and urinary incontinence. Despite its relatively typical imaging features and clinical symptoms, the pathogenesis and pathophysiology of iNPH remain unclear. In this review, we summarize current pathogenetic conceptions of iNPH and its pathophysiological features that lead to neurological deficits. The common consensus is that ventriculomegaly resulting from cerebrospinal fluid (CSF) dynamics could initiate a vicious cycle of neurological damages in iNPH. Pathophysiological factors including hypoperfusion, glymphatic impairment, disturbance of metabolism, astrogliosis, neuroinflammation, and blood-brain barrier disruption jointly cause white matter and gray matter lesions, and eventually lead to various iNPH symptoms. Also, we review the current treatment options and discuss the prospective treatment strategies for iNPH. CSF diversion with ventriculoperitoneal or lumboperitonealshunts remains as the standard therapy, while its complications prompt attempts to refine shunt insertion and develop new therapeutic procedures. Recent progress on advanced biomaterials and improved understanding of pathogenesis offers new avenues to treat iNPH.
Collapse
Affiliation(s)
- Zhangyang Wang
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yiying Zhang
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Fan Hu
- Department of NeurosugeryZhongshan Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Jing Ding
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Xin Wang
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
- Department of The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
29
|
Romantsik O, Bruschettini M, Ley D. Intraventricular Hemorrhage and White Matter Injury in Preclinical and Clinical Studies. Neoreviews 2020; 20:e636-e652. [PMID: 31676738 DOI: 10.1542/neo.20-11-e636] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Germinal matrix-intraventricular hemorrhage (IVH) occurs in nearly half of infants born at less than 26 weeks' gestation. Up to 50% of survivors with IVH develop cerebral palsy, cognitive deficits, behavioral disorders, posthemorrhagic ventricular dilatation, or a combination of these sequelae. After the initial bleeding and the primary brain injury, inflammation and secondary brain injury might lead to periventricular leukomalacia or diffuse white matter injury. Potential factors that are involved include microglia and astrocyte activation, degradation of blood components with release of "toxic" products, infiltration of the brain by systemic immune cells, death of neuronal and glial cells, and arrest of preoligodendrocyte maturation. In addition, impairment of the blood-brain barrier may play a major role in the pathophysiology. A wide range of animal models has been used to explore causes and mechanisms leading to IVH-induced brain injury. Preclinical studies have identified potential targets for enhancing brain repair. However, little has been elucidated about the effectiveness of potential interventions in clinical studies. A systematic review of available preclinical and clinical studies might help identify research gaps and which types of interventions may be prioritized. Future trials should report clinically robust and long-term outcomes after IVH.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Skane University Hospital, Lund, Sweden
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Skane University Hospital, Lund, Sweden
| | - David Ley
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
30
|
Alimajstorovic Z, Westgate CSJ, Jensen RH, Eftekhari S, Mitchell J, Vijay V, Seneviratne SY, Mollan SP, Sinclair AJ. Guide to preclinical models used to study the pathophysiology of idiopathic intracranial hypertension. Eye (Lond) 2020; 34:1321-1333. [PMID: 31896803 PMCID: PMC7376028 DOI: 10.1038/s41433-019-0751-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/24/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Idiopathic intracranial hypertension (IIH) is characterised by raised intracranial pressure (ICP) and papilloedema in the absence of an identifiable secondary cause typically occurring in young women with obesity. The impact is considerable with the potential for blindness, chronic disabling headaches, future risk of cardiovascular disease and marked healthcare utilisation. There have been marked advances in our understanding the pathophysiology of IIH including the role of androgen excess. Insight into pathophysiological underpinnings has arisen from astute clinical observations, studies, and an array of preclinical models. This article summarises the current literature pertaining to the pathophysiology of IIH. The current preclinical models relevant to gaining mechanistic insights into IIH are then discussed. In vitro and in vivo models which study CSF secretion and the effect of potentially pathogenic molecules have started to glean important mechanistic insights. These models are also useful to evaluate novel therapeutic targets to abrogate CSF secretion. Importantly, in vitro CSF secretion assays translate into relevant changes in ICP in vivo. Models of CSF absorption pertinent to IIH, are less well established but highly relevant and of future interest. There is no fully developed in vivo model of IIH but this remains an area of importance. Progress is being made to improve our understanding of the underlying aetiology in IIH including the characterisation of disease biomarkers and their mechanistic role in driving disease pathology. Preclinical models, used to evaluate IIH mechanisms are yielding important mechanistic insights. Further work to refine these techniques will provide translatable insights into disease aetiology.
Collapse
Affiliation(s)
- Zerin Alimajstorovic
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Connar S J Westgate
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Neurology, Danish Headache Centre, Rigshospitalet-Glostrup, Glostrup Research Institute, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark
| | - Rigmor H Jensen
- Department of Neurology, Danish Headache Centre, Rigshospitalet-Glostrup, Glostrup Research Institute, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark
| | - Sajedeh Eftekhari
- Department of Neurology, Danish Headache Centre, Rigshospitalet-Glostrup, Glostrup Research Institute, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark
| | - James Mitchell
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Vivek Vijay
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Senali Y Seneviratne
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Susan P Mollan
- Birmingham Neuro-Ophthalmology, Queen Elizabeth Hospital, Birmingham, UK
| | - Alexandra J Sinclair
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
- Birmingham Neuro-Ophthalmology, Queen Elizabeth Hospital, Birmingham, UK.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK.
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK.
| |
Collapse
|
31
|
Feng Z, Liu S, Chen Q, Tan Q, Xian J, Feng H, Chen Z, Li G. uPA alleviates kaolin-induced hydrocephalus by promoting the release and activation of hepatocyte growth factor in rats. Neurosci Lett 2020; 731:135011. [PMID: 32497735 DOI: 10.1016/j.neulet.2020.135011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/05/2023]
Abstract
Urokinase-type plasminogen activator (uPA) was demonstrated to alleviate kaolin-induced communicating hydrocephalus via inhibiting subarachnoid space fibrosis, but the exact mechanism remains elusive. Thus, this study was designed to investigate if hepatocyte growth factor (HGF), which plays a vital role in uPA-triggered inhibiting of fibrosis in multiple systems, is involved in this process in hydrocephalus. There were 2 parts in this study. First, hydrocephalus was induced in rats by basal cistern injection of kaolin. Then rats were treated with saline or uPA and brain tissue and CSF were collected for Western blot and enzyme-linked immuno sorbent assay (ELISA) four days later. Second, kaolin-induced hydrocephalus rats were treated with saline, uPA, uPA + PHA665752 (antagonist of HGF) or PHA665752. Some animals received MRI four weeks later and brains were used for immunofluorescence. The others were euthanized four days later for ELISA. Both levels of total and activated HGF in the CSF was increased after uPA injections, but related mRNA expression of HGF showed no statistical significance when compared with the control group. Further, the effects of uPA that alleviating ventricular enlargement, subarachnoid fibrosis and reactive astrocytosis were partially reversed by PHA665752. Moreover, PHA665752 partially abolished uPA-induced reduction of transforming growth factor- β1(TGF- β1) level in CSF. Our data suggest that uPA effectively inhibited subarachnoid fibrosis and restricted the development of communicating hydrocephalus in rats in part by promoting HGF release and activation, which may further regulate the TGF-β1 expression in CSF.
Collapse
Affiliation(s)
- Zhou Feng
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Shengyan Liu
- Chongqing Mental Health Center, Chongqing, 4001147, PR China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Qiang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jishu Xian
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Gang Li
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Guizhou, 563003, PR China.
| |
Collapse
|
32
|
Sun T, Li X, Zhang Q, Zhou Y, Guan J. Efficacy and Safety of Lumboperitoneal Shunt in the Treatment of All-Cause Communicating Hydrocephalus: Analysis of Risk Factors of Shunt Failure. World Neurosurg 2019; 132:e956-e962. [DOI: 10.1016/j.wneu.2019.06.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 11/30/2022]
|
33
|
Emmert AS, Iwasawa E, Shula C, Schultz P, Lindquist D, Dunn RS, Fugate EM, Hu YC, Mangano FT, Goto J. Impaired neural differentiation and glymphatic CSF flow in the Ccdc39 rat model of neonatal hydrocephalus: genetic interaction with L1cam. Dis Model Mech 2019; 12:12/11/dmm040972. [PMID: 31771992 PMCID: PMC6898999 DOI: 10.1242/dmm.040972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/14/2019] [Indexed: 01/07/2023] Open
Abstract
Neonatal hydrocephalus affects about one child per 1000 births and is a major congenital brain abnormality. We previously discovered a gene mutation within the coiled-coil domain-containing 39 (Ccdc39) gene, which causes the progressive hydrocephalus (prh) phenotype in mice due to lack of ependymal-cilia-mediated cerebrospinal fluid (CSF) flow. In this study, we used CRISPR/Cas9 to introduce the Ccdc39 gene mutation into rats, which are more suitable for imaging and surgical experiments. The Ccdc39prh/prh mutants exhibited mild ventriculomegaly at postnatal day (P)5 that progressed into severe hydrocephalus by P11 (P<0.001). After P11, macrophage and neutrophil invasion along with subarachnoid hemorrhage were observed in mutant brains showing reduced neurofilament density, hypomyelination and increased cell death signals compared with wild-type brains. Significantly more macrophages entered the brain parenchyma at P5 before hemorrhaging was noted and increased expression of a pro-inflammatory factor (monocyte chemoattractant protein-1) was found in the cortical neural and endothelial cells in the mutant brains at P11. Glymphatic-mediated CSF circulation was progressively impaired along the middle cerebral artery from P11 as mutants developed severe hydrocephalus (P<0.001). In addition, Ccdc39prh/prh mutants with L1 cell adhesion molecule (L1cam) gene mutation, which causes X-linked human congenital hydrocephalus, showed an accelerated early hydrocephalus phenotype (P<0.05-0.01). Our findings in Ccdc39prh/prh mutant rats demonstrate a possible causal role of neuroinflammation in neonatal hydrocephalus development, which involves impaired cortical development and glymphatic CSF flow. Improved understanding of inflammatory responses and the glymphatic system in neonatal hydrocephalus could lead to new therapeutic strategies for this condition. This article has an associated First Person interview with the joint first authors of the paper. Summary: Glymphatic CSF circulation and development of the cerebral cortex are impaired in our new genetic rat model of neonatal hydrocephalus with the onset of parenchymal inflammation and hemorrhage.
Collapse
Affiliation(s)
- A Scott Emmert
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eri Iwasawa
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Crystal Shula
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Preston Schultz
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Diana Lindquist
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - R Scott Dunn
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elizabeth M Fugate
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yueh-Chiang Hu
- Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
34
|
Begum G, O'Neill J, Chaudhary R, Blachford K, Snead DRJ, Berry M, Scott RAH, Logan A, Blanch RJ. Altered Decorin Biology in Proliferative Vitreoretinopathy: A Mechanistic and Cohort Study. Invest Ophthalmol Vis Sci 2019; 59:4929-4936. [PMID: 30347087 DOI: 10.1167/iovs.18-24299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine if vitreous levels of the pro-fibrotic cytokine transforming growth factor beta2 (TGF-β2) and its opposing regulator decorin predict subsequent proliferative vitreoretinopathy (PVR) development in patients with rhegmatogenous retinal detachment (RRD). Methods We examined the effect of TGF-β2 and decorin on epithelial-mesenchymal transition (EMT) and collagen expression in vitro using ARPE-19 cells, and we analyzed extracellular matrix marker expression in PVR membrane and internal limiting membrane patient samples. We performed a prospective noninterventional cohort study, recruiting 125 patients undergoing vitrectomy for RRD and macular hole surgery, measured vitreous levels of TGF-β2 and decorin by ELISA, and followed them up for 6 months. Patients who did not develop PVR were compared to those who did, in order to determine whether vitreous TGF-β2 and decorin levels predicted PVR development. Results In vitro, TGF-β2 induced EMT and collagen production. Decorin strongly inhibited EMT and collagen production at high levels. PVR membranes expressed high levels of fibrosis-associated proteins, consistent with EMT. Vitreous TGF-β2 levels were unchanged between patients with macular holes and RRD who did or did not subsequently develop PVR. Average decorin levels were higher in the vitreous of RRD patients who subsequently developed PVR compared to those who did not, but at the measured vitreous concentrations (1-2 μg/mL), decorin did not demonstrate an in vitro inhibitory effect on EMT. Conclusions In vitro, high concentrations of decorin inhibited EMT and fibrosis. At the levels seen in human vitreous, decorin did not prevent fibrosis or EMT in vitro, and higher initial vitreous decorin levels were associated with the development of postoperative PVR after vitrectomy to treat RRD, but did not reliably predict the outcome.
Collapse
Affiliation(s)
- Ghazala Begum
- Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,NIHR Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Jenna O'Neill
- Ridgeway Research Ltd., St. Briavels, Gloucestershire, United Kingdom
| | - Rishika Chaudhary
- Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,NIHR Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Birmingham, United Kingdom.,Ophthalmology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Karen Blachford
- Academic Unit of Ophthalmology, Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - David R J Snead
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, Warwickshire, United Kingdom
| | - Martin Berry
- Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Robert A H Scott
- Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,NIHR Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Birmingham, United Kingdom.,SpaMedica, Birmingham, United Kingdom
| | - Ann Logan
- Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,NIHR Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Richard J Blanch
- Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,NIHR Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Birmingham, United Kingdom.,Academic Unit of Ophthalmology, Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom.,Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, United Kingdom
| |
Collapse
|
35
|
A self-healing hydrogel eye drop for the sustained delivery of decorin to prevent corneal scarring. Biomaterials 2019; 210:41-50. [PMID: 31055049 DOI: 10.1016/j.biomaterials.2019.04.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
Scarring/Opacity on the surface of the eye and vascularisation following infectious diseases, inflammation and corneal trauma are often a leading cause of blindness. The 'gold standard' treatment to prevent corneal scarring is the application of amniotic membrane (AM) to the ocular surface in the acute stage of injury. Although clinically effective, the use of the AM is associated with biological variability and unpredictable responses. Potential health risks including disease transmission, significant ethical issues surrounding the tissue donation process and stringent regulations/storage conditions, preclude widespread use. Consequently, there is a demand for the development of a new, synthetic alternative, that is stable at room temperature, capable of protecting the wound and has the capacity to deliver anti-scarring and anti-inflammatory mediators. Here we have developed a micro-structured fluid gel eye drop, to deliver a potent anti-scarring molecule, decorin. We have compared the release of decorin from the formulated dressing to a typical gel film, demonstrating enhanced release for the fluid gel eye-drops. Therefore, we have investigated the effect of the fluid gel system in 2D human corneal fibroblast culture models, as well as shown the retention of the gellan fluid gel in an in vivo rat model. At the same time the efficacy of the fluid gel eye drop was studied in an organ culture model, whereby the fluid gel containing decorin, significantly (P < 0.05) increased re-epithelialisation within 4 days of treatment.
Collapse
|
36
|
Thorsdottir S, Henriques-Normark B, Iovino F. The Role of Microglia in Bacterial Meningitis: Inflammatory Response, Experimental Models and New Neuroprotective Therapeutic Strategies. Front Microbiol 2019; 10:576. [PMID: 30967852 PMCID: PMC6442515 DOI: 10.3389/fmicb.2019.00576] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
Microglia have a pivotal role in the pathophysiology of bacterial meningitis. The goal of this review is to provide an overview on how microglia respond to bacterial pathogens targeting the brain, how the interplay between microglia and bacteria can be studied experimentally, and possible ways to use gained knowledge to identify novel preventive and therapeutic strategies. We discuss the dual role of microglia in disease development, the beneficial functions crucial for bacterial clearing, and the destructive properties through triggering neuroinflammation, characterized by cytokine and chemokine release which leads to leukocyte trafficking through the brain vascular endothelium and breakdown of the blood-brain barrier integrity. Due to intrinsic complexity of microglia and up until recently lack of specific markers, the study of microglial response to bacterial pathogens is challenging. New experimental models and techniques open up possibilities to accelerate progress in the field. We review existing models and discuss possibilities and limitations. Finally, we summarize recent findings where bacterial virulence factors are identified to be important for the microglial response, and how manipulation of evoked responses could be used for therapeutic or preventive purposes. Among promising approaches are: modulations of microglia phenotype switching toward anti-inflammatory and phagocytic functions, the use of non-bacterolytic antimicrobials, preventing release of bacterial components into the neural milieu and consequential amplification of immune activation, and protection of the blood-brain barrier integrity.
Collapse
Affiliation(s)
- Sigrun Thorsdottir
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| | - Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Zhang L, Hussain Z, Ren Z. Recent Advances in Rational Diagnosis and Treatment of Normal Pressure Hydrocephalus: A Critical Appraisal on Novel Diagnostic, Therapy Monitoring and Treatment Modalities. Curr Drug Targets 2019; 20:1041-1057. [PMID: 30767741 DOI: 10.2174/1389450120666190214121342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/02/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Normal pressure hydrocephalus (NPH) is a critical brain disorder in which excess Cerebrospinal Fluid (CSF) is accumulated in the brain's ventricles causing damage or disruption of the brain tissues. Amongst various signs and symptoms, difficulty in walking, slurred speech, impaired decision making and critical thinking, and loss of bladder and bowl control are considered the hallmark features of NPH. OBJECTIVE The current review was aimed to present a comprehensive overview and critical appraisal of majorly employed neuroimaging techniques for rational diagnosis and effective monitoring of the effectiveness of the employed therapeutic intervention for NPH. Moreover, a critical overview of recent developments and utilization of pharmacological agents for the treatment of hydrocephalus has also been appraised. RESULTS Considering the complications associated with the shunt-based surgical operations, consistent monitoring of shunting via neuroimaging techniques hold greater clinical significance. Despite having extensive applicability of MRI and CT scan, these conventional neuroimaging techniques are associated with misdiagnosis or several health risks to patients. Recent advances in MRI (i.e., Sagittal-MRI, coronal-MRI, Time-SLIP (time-spatial-labeling-inversion-pulse), PC-MRI and diffusion-tensor-imaging (DTI)) have shown promising applicability in the diagnosis of NPH. Having associated with several adverse effects with surgical interventions, non-invasive approaches (pharmacological agents) have earned greater interest of scientists, medical professional, and healthcare providers. Amongst pharmacological agents, diuretics, isosorbide, osmotic agents, carbonic anhydrase inhibitors, glucocorticoids, NSAIDs, digoxin, and gold-198 have been employed for the management of NPH and prevention of secondary sensory/intellectual complications. CONCLUSION Employment of rational diagnostic tool and therapeutic modalities avoids misleading diagnosis and sophisticated management of hydrocephalus by efficient reduction of Cerebrospinal Fluid (CSF) production, reduction of fibrotic and inflammatory cascades secondary to meningitis and hemorrhage, and protection of brain from further deterioration.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Radiology, Baoji Center Hospital, Baoji, Shaanxi, China
| | - Zahid Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Zhuanqin Ren
- Department of Radiology, Baoji Center Hospital, No. 8 Jiang Tan Road, Baoji 721008, Shaanxi, China
| |
Collapse
|
38
|
Sustained release of decorin to the surface of the eye enables scarless corneal regeneration. NPJ Regen Med 2018; 3:23. [PMID: 30588331 PMCID: PMC6303295 DOI: 10.1038/s41536-018-0061-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/15/2018] [Indexed: 11/25/2022] Open
Abstract
Disorganization of the transparent collagenous matrix in the cornea, as a consequence of a variety of infections and inflammatory conditions, leads to corneal opacity and sight-loss. Such corneal opacities are a leading cause of blindness, according to the WHO. Public health programs target prevention of corneal scarring, but the only curative treatment of established scarring is through transplantation. Although attempts to minimize corneal scarring through aggressive control of infection and inflammation are made, there has been little progress in the development of anti-scarring therapies. This is owing to eye drop formulations using low viscosity or weak gelling materials having short retention times on the ocular surface. In this study, we report an innovative eye drop formulation that has the ability to provide sustained delivery of decorin, an anti-scarring agent. The novelty of this eye drop lies in the method of structuring during manufacture, which creates a material that can transition between solid and liquid states, allowing retention in a dynamic environment being slowly removed through blinking. In a murine model of Pseudomonaskeratitis, applying the eye drop resulted in reductions of corneal opacity within 16 days. More remarkably, the addition of hrDecorin resulted in restoration of corneal epithelial integrity with minimal stromal opacity endorsed by reduced α-smooth muscle actin (αSMA), fibronectin, and laminin levels. We believe that this drug delivery system is an ideal non-invasive anti-fibrotic treatment for patients with microbial keratitis, potentially without recourse to surgery, saving the sight of many in the developing world, where corneal transplantation may not be available. An eye drop formulation that applies anti-scarring drugs to the surface of the eye helps reverse infection-induced corneal damage in mice. Hill et al. from the University of Birmingham, UK, formulated a fluid gel loaded with a wound-healing protein called decorin that conforms to the ocular surface and is cleared gradually through blinking. With colleagues in California, they applied the therapeutic eye drop to mice with bacterial eye infections that trigger sight-threatening corneal scarring. Within a matter of days, the team saw improvements in corneal transparency, with reductions in scar tissue and reconstitution of healthy cells. Such a drug delivery system, if successful in humans, could help save many people’s sight and reduce the need for corneal transplantation.
Collapse
|
39
|
Sun S, Zhou H, Ding ZZ, Shi H. Risk Factors Associated with the Outcome of Post-Traumatic Hydrocephalus. Scand J Surg 2018; 108:265-270. [PMID: 30428813 DOI: 10.1177/1457496918812210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background and Aim:Post-traumatic hydrocephalus is a common complication that arises after head injury. However, risk factors associated with the outcome of post-traumatic hydrocephalus have seldom been addressed. Therefore, we performed this clinical study to analyze the risk factors affecting the outcome of post-traumatic hydrocephalus in patients with head injuries.Methods:A total of 116 post-traumatic hydrocephalus patients, admitted in our hospital between March 2012 and October 2017 were reviewed. The related factors assessed were age, gender, Glasgow Coma Score on admission, platelet count, plasma fibrinogen levels, D-dimer concentration, subarachnoid hemorrhage, subdural hygroma, cerebral hernia, cisterna ambiens, decompressive craniectomy, cranioplasty, ventriculoperitoneal shunt implantation, intracranial infection, and duration of comatous state. The patient outcomes after 6 months of treatment were evaluated by the Glasgow Outcome Scale. Risk factors for the outcome of post-traumatic hydrocephalus were evaluated by applying logistic regression analysis.Results:Poor outcome was observed in 66.4% of the patients (77/116). Univariate and multivariate analyses revealed that the disappearance of cisterna ambiens, the long duration of comatous state (>2 months), the high levels of plasma fibrinogen, and the ventriculoperitoneal shunt implantation were related to adverse outcomes (p < 0.05).Conclusion:The disappearance of cisterna ambiens, the prolonged duration of comatous state (>2 months), the high plasma fibrinogen levels are the most important factors affecting the outcome of post-traumatic hydrocephalus, and the ventriculoperitoneal shunt implantation is the most critical predictor of the outcome of post-traumatic hydrocephalus.
Collapse
Affiliation(s)
- S. Sun
- Department of Neurosurgery, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, China
| | - H. Zhou
- Department of Neurosurgery, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, China
| | - Z.-Z. Ding
- Department of Neurosurgery, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, China
| | - H. Shi
- Department of Neurosurgery, The Second Peopleʼs Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
40
|
Characterization of spontaneous hydrocephalus development in the young atherosclerosis-prone mice. Neuroreport 2018; 28:1108-1114. [PMID: 28926478 DOI: 10.1097/wnr.0000000000000904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Little has been reported on whether abnormal lipid metabolism affects hydrocephalus, although congenital malformations and infectious diseases are major causal factors for hydrocephalus development. In a study on the pathogenesis of atherogenesis in mice, we unexpectedly discovered that hydrocephalus occurred in partial apolipoptotein E (apoE) and low-density lipoprotein receptor (LDLR) double-knockout (apoE/LDLR) mice fed either chow or a high-fat and high-cholesterol diet between the ages of 4 and 12 weeks. In the 12-week-old high-fat and high-cholesterol group, the incidence rate was as high as 15%. Transcription levels of transforming growth factor-β1 (TGF-β1), Smad3, Smad4, and Smad7 in the cortex of the hydrocephalic cerebrum were significant downregulated in 4-week-old mice, but were increased in the 8 and 12-week-old groups compared with that of age-matched nonhydrocephalic mice. The mRNA level of tissue inhibitor of metalloproteinases 1 was significantly increased, whereas matrix metalloproteinase-9 was lower in hydrocephalic mice of all ages. The translation level of TGF-β1 increased in the hydrocephalic brains of 8 and 12-week-old mice. This study provides primary evidence for the connection between lipid metabolic disorder and hydrocephalus development. This may suggest that both hyperglyceridemia and hypercholesterolemia are harmful factors in hydrocephalus development because of adverse effects on TGF-β1/Smad signaling in the brain.
Collapse
|
41
|
Koschnitzky JE, Keep RF, Limbrick DD, McAllister JP, Morris JA, Strahle J, Yung YC. Opportunities in posthemorrhagic hydrocephalus research: outcomes of the Hydrocephalus Association Posthemorrhagic Hydrocephalus Workshop. Fluids Barriers CNS 2018; 15:11. [PMID: 29587767 PMCID: PMC5870202 DOI: 10.1186/s12987-018-0096-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/09/2018] [Indexed: 12/19/2022] Open
Abstract
The Hydrocephalus Association Posthemorrhagic Hydrocephalus Workshop was held on July 25 and 26, 2016 at the National Institutes of Health. The workshop brought together a diverse group of researchers including pediatric neurosurgeons, neurologists, and neuropsychologists with scientists in the fields of brain injury and development, cerebrospinal and interstitial fluid dynamics, and the blood-brain and blood-CSF barriers. The goals of the workshop were to identify areas of opportunity in posthemorrhagic hydrocephalus research and encourage scientific collaboration across a diverse set of fields. This report details the major themes discussed during the workshop and research opportunities identified for posthemorrhagic hydrocephalus. The primary areas include (1) preventing intraventricular hemorrhage, (2) stopping primary and secondary brain damage, (3) preventing hydrocephalus, (4) repairing brain damage, and (5) improving neurodevelopment outcomes in posthemorrhagic hydrocephalus.
Collapse
Affiliation(s)
| | - Richard F. Keep
- University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109 USA
| | - David D. Limbrick
- Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110 USA
| | - James P. McAllister
- Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110 USA
| | - Jill A. Morris
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Neuroscience Center, 6001 Executive Blvd, NSC Rm 2112, Bethesda, MD 20892 USA
| | - Jennifer Strahle
- Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110 USA
| | - Yun C. Yung
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd., Building 7, La Jolla, CA 92037 USA
| |
Collapse
|
42
|
Habiyaremye G, Morales DM, Morgan CD, McAllister JP, CreveCoeur TS, Han RH, Gabir M, Baksh B, Mercer D, Limbrick DD. Chemokine and cytokine levels in the lumbar cerebrospinal fluid of preterm infants with post-hemorrhagic hydrocephalus. Fluids Barriers CNS 2017; 14:35. [PMID: 29228970 PMCID: PMC5725948 DOI: 10.1186/s12987-017-0083-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 11/12/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Neuroinflammation has been implicated in the pathophysiology of post-hemorrhagic hydrocephalus (PHH) of prematurity, but no comprehensive analysis of signaling molecules has been performed using human cerebrospinal fluid (CSF). METHODS Lumbar CSF levels of key cytokines (IL-1α, IL-1β, IL-4, IL-6, IL-8, IL-10, IL-12, TNF-α, TGF-β1, IFN-γ) and chemokines (XCL-1, CCL-2, CCL-3, CCL-19, CXCL-10, CXCL-11, CXCL-12) were measured using conventional and multiplexed Enzyme-linked Immunosorbent Assays and compared between preterm infants with PHH and those with no known neurological injury. The relationships between individual biomarker levels and specific CSF cell counts were examined. RESULTS Total protein (TP) CSF levels were elevated in the PHH subjects compared to controls. CSF levels of IL-1α, IL-4, IL-6, IL-12, TNF-α, CCL-3, CCL-19, and CXCL-10 were significantly increased in PHH whereas XCL-1 was significantly decreased in PHH. When normalizing by TP, IL-1α, IL-1β, IL-10, IL-12, CCL-3, and CCL-19 levels were significantly elevated compared to controls, while XCL-1 levels remained significantly decreased. Among those with significantly different levels in both absolute and normalized levels, only absolute CCL-19 levels showed a significant correlation with CSF nucleated cells, neutrophils, and lymphocytes. IL-1β and CXCL-10 also were correlated with total cell count, nucleated cells, red blood cells, and neutrophils. CONCLUSIONS Neuroinflammation is likely to be an important process in the pathophysiology of PHH. To our knowledge, this is the first study to investigate CSF levels of chemokines in PHH as well as the only one to show XCL-1 selectively decreased in a diseased state. Additionally, CCL-19 was the only analyte studied that showed significant differences between groups and had significant correlation with cell count analysis. The selectivity of CCL-19 and XCL-1 should be further investigated. Future studies will further delineate the role of these cytokines and chemokines in PHH.
Collapse
Affiliation(s)
- Gakwaya Habiyaremye
- Department of Neurological Surgery, Washington University in St. Louis School of Medicine, One Children's Way, 4S20, St. Louis, MO, 63110, USA
| | - Diego M Morales
- Department of Neurological Surgery, Washington University in St. Louis School of Medicine, One Children's Way, 4S20, St. Louis, MO, 63110, USA.
| | - Clinton D Morgan
- Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ, 85013, USA
| | - James P McAllister
- Department of Neurological Surgery, Washington University in St. Louis School of Medicine, One Children's Way, 4S20, St. Louis, MO, 63110, USA
| | - Travis S CreveCoeur
- Department of Neurological Surgery, Washington University in St. Louis School of Medicine, One Children's Way, 4S20, St. Louis, MO, 63110, USA
| | - Rowland H Han
- Department of Neurological Surgery, Washington University in St. Louis School of Medicine, One Children's Way, 4S20, St. Louis, MO, 63110, USA
| | - Mohamed Gabir
- Department of Neurological Surgery, Washington University in St. Louis School of Medicine, One Children's Way, 4S20, St. Louis, MO, 63110, USA
| | - Brandon Baksh
- Department of Neurological Surgery, Washington University in St. Louis School of Medicine, One Children's Way, 4S20, St. Louis, MO, 63110, USA
| | - Deanna Mercer
- Department of Neurological Surgery, Washington University in St. Louis School of Medicine, One Children's Way, 4S20, St. Louis, MO, 63110, USA
| | - David D Limbrick
- Department of Neurological Surgery and Pediatrics, Washington University in St. Louis School of Medicine, One Children's Way, 4S20, St. Louis, MO, 63110, USA
| |
Collapse
|
43
|
Garton T, Hua Y, Xiang J, Xi G, Keep RF. Challenges for intraventricular hemorrhage research and emerging therapeutic targets. Expert Opin Ther Targets 2017; 21:1111-1122. [PMID: 29067856 PMCID: PMC6097191 DOI: 10.1080/14728222.2017.1397628] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Intraventricular hemorrhage (IVH) affects both premature infants and adults. In both demographics, it has high mortality and morbidity. There is no FDA approved therapy that improves neurological outcome in either population highlighting the need for additional focus on therapeutic targets and treatments emerging from preclinical studies. Areas covered: IVH induces both initial injury linked to the physical effects of the blood (mass effect) and secondary injury linked to the brain response to the hemorrhage. Preclinical studies have identified multiple secondary injury mechanisms following IVH, and particularly the role of blood components (e.g. hemoglobin, iron, thrombin). This review, with an emphasis on pre-clinical IVH research, highlights therapeutic targets and treatments that may be of use in prevention, acute care, or repair of damage. Expert opinion: An IVH is a potentially devastating event. Progress has been made in elucidating injury mechanisms, but this has still to translate to the clinic. Some pathways involved in injury also have beneficial effects (coagulation cascade/inflammation). A greater understanding of the downstream pathways involved in those pathways may allow therapeutic development. Iron chelation (deferoxamine) is in clinical trial for intracerebral hemorrhage and preclinical data suggest it may be a potential treatment for IVH.
Collapse
Affiliation(s)
- Thomas Garton
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| | - Ya Hua
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| | - Jianming Xiang
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| | - Guohua Xi
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| | - Richard F Keep
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
44
|
Uyanıkgil Y, Turgut M, Baka M. Effects of Melatonin on the Cerebellum of Infant Rat Following Kaolin-Induced Hydrocephalus: a Histochemical and Immunohistochemical Study. THE CEREBELLUM 2017; 16:142-150. [PMID: 27113349 DOI: 10.1007/s12311-016-0778-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrocephalus is a developmental disorder causing abnormally collected cerebrospinal fluid within the cerebral ventricles. It leads to bigger skulls and many dysfunctions related to the nervous system. Here, we addressed whether exogenous melatonin administration could reverse the clinical features of kaolin-induced hydrocephalus in infantile rats. A controlled double-blinded study was conducted in 2-week-old 45 Wistar albino rats, which were divided into three groups: Group A, the control group, received intracisternal sham injection with solely the needle insertion; group B, the hydrocephalus group, was treated with isotonic NaCl after kaolin injection; and group C, the hydrocephalus + melatonin group, was given i.p. exogenous melatonin at a dose of 0.5 mg/100 g body weight after kaolin injection. Histological and immunohistochemical analyses were performed after the induction of hydrocephalus and melatonin administration. Glial fibrillary acidic protein was stained by immunohistochemical method. TUNEL method was used to define and quantitate apoptosis in the cerebellar tissues. Statistical analysis was performed by nonparametric Kruskal-Wallis H test, and once significance was determined among means, post hoc pairwise comparisons were carried out using Mann-Whitney U test. We found that melatonin administration significantly ameliorated ratio of substantia grisea area/substantia alba area in the cerebellum of infantile rats. Histologically, there was a significant reduction in the number of cerebellar apoptotic cells after the hydrocephalus induced by kaolin (P < 0.05). Our results clearly revealed that the histopathological changes in the cerebellum were reversed by systemic melatonin administration in infantile rats with kaolin-induced hydrocephalus. Nevertheless, further studies are needed to suggest melatonin as a candidate protective drug in children with hydrocephalus.
Collapse
Affiliation(s)
- Yiğit Uyanıkgil
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey.,Cord Blood, Cell-Tissue Research and Application Center, Ege University, Izmir, Turkey
| | - Mehmet Turgut
- Department of Neurosurgery, Adnan Menderes University School of Medicine, Aydın, Turkey. .,, Cumhuriyet Mahallesi, Adnan Menderes Bulvarı, Haltur Apartmanı, No: 6 Daire: 7, TR-09020, Aydın, Turkey.
| | - Meral Baka
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey.,Cord Blood, Cell-Tissue Research and Application Center, Ege University, Izmir, Turkey
| |
Collapse
|
45
|
Feng Z, Chen Z. Letter: A Novel Experimental Animal Model of Adult Chronic Hydrocephalus. Neurosurgery 2017; 81:E24. [DOI: 10.1093/neuros/nyx150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Abstract
Posthemorrhagic hydrocephalus is a severe complication following intracranial hemorrhage. Posthemorrhagic hydrocephalus is often associated with high morbidity and mortality and serves as an important clinical predictor of adverse outcomes after intracranial hemorrhage. Currently, no effective medical intervention exists to improve functional outcomes in posthemorrhagic hydrocephalus patients because little is still known about the mechanisms of posthemorrhagic hydrocephalus pathogenesis. Because a better understanding of the posthemorrhagic hydrocephalus pathogenesis would facilitate development of clinical treatments, this is an active research area. The purpose of this review is to describe recent progress in elucidation of molecular mechanisms that cause posthemorrhagic hydrocephalus. What we are certain of is that the entry of blood into the ventricular system and subarachnoid space results in release of lytic blood products which cause a series of physiological and pathological changes in the brain. Blood components that can be linked to pathology would serve as disease biomarkers. From studies of posthemorrhagic hydrocephalus, such biomarkers are known to mutually synergize to initiate and promote posthemorrhagic hydrocephalus progression. These findings suggest that modulation of biomarker expression or function may benefit posthemorrhagic hydrocephalus patients.
Collapse
Affiliation(s)
- Cong Hua
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China
| |
Collapse
|
47
|
Garcia CAB, Catalão CHR, Machado HR, Júnior IM, Romeiro TH, Peixoto-Santos JE, Santos MV, da Silva Lopes L. Edaravone reduces astrogliosis and apoptosis in young rats with kaolin-induced hydrocephalus. Childs Nerv Syst 2017; 33:419-428. [PMID: 27988876 DOI: 10.1007/s00381-016-3313-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 12/01/2016] [Indexed: 01/17/2023]
Abstract
PURPOSE We investigated the possible neuroprotective effects of the free radical scavenger edaravone in experimental hydrocephalus. METHODS Seven-day-old Wistar rats were divided into three groups: control group (C), untreated hydrocephalic (H), and hydrocephalic treated with edaravone (EH). The H and EH groups were subjected to hydrocephalus induction by 20% kaolin intracisternal injection. The edaravone (20 mg/kg) was administered daily for 14 days from the induction of hydrocephalus. All animals were daily weighed and submitted to behavioral test and assessment by magnetic resonance imaging. After 14 days, the animals were sacrificed and the brain was removed for histological, immunohistochemical, and biochemical studies. RESULTS The gain weight was similar between groups from the ninth post-induction day. The open field test performance of EH group was better (p < 0.05) as compared to untreated hydrocephalic animals. Hydrocephalic animals (H and EH) showed ventricular ratio values were higher (p < 0.05), whereas magnetization transfer values were lower (p < 0.05), as compared to control animals. Astrocyte activity (glial fibrillary acidic protein) and apoptotic cells (caspase-3) of EH group were decreased on the corpus callosum (p > 0.01), germinal matrix (p > 0.05), and cerebral cortex (p > 0.05), as compared to H group. CONCLUSIONS We have demonstrated that administration of edaravone for 14 consecutive days after induction of hydrocephalus reduced astrocyte activity and that it has some beneficial effects over apoptotic cell death.
Collapse
Affiliation(s)
- Camila Araújo Bernardino Garcia
- Department of Surgery and Anatomy, Division of Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, 3900 Av. dos Bandeirantes, Ribeirao Preto, SP, 14049-900, Brazil
| | - Carlos Henrique Rocha Catalão
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Hélio Rubens Machado
- Department of Surgery and Anatomy, Division of Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, 3900 Av. dos Bandeirantes, Ribeirao Preto, SP, 14049-900, Brazil
| | - Ivair Matias Júnior
- Department of Surgery and Anatomy, Division of Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, 3900 Av. dos Bandeirantes, Ribeirao Preto, SP, 14049-900, Brazil
| | - Thais Helena Romeiro
- Department of Surgery and Anatomy, Division of Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, 3900 Av. dos Bandeirantes, Ribeirao Preto, SP, 14049-900, Brazil
| | - José Eduardo Peixoto-Santos
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo Volpon Santos
- Department of Surgery and Anatomy, Division of Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, 3900 Av. dos Bandeirantes, Ribeirao Preto, SP, 14049-900, Brazil
| | - Luiza da Silva Lopes
- Department of Surgery and Anatomy, Division of Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, 3900 Av. dos Bandeirantes, Ribeirao Preto, SP, 14049-900, Brazil.
| |
Collapse
|
48
|
Comprehensive Proteomic Characterization of the Human Colorectal Carcinoma Reveals Signature Proteins and Perturbed Pathways. Sci Rep 2017; 7:42436. [PMID: 28181595 PMCID: PMC5299448 DOI: 10.1038/srep42436] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/10/2017] [Indexed: 02/07/2023] Open
Abstract
The global change in protein abundance in colorectal cancer (CRC) and its contribution to tumorigenesis have not been comprehensively analyzed. In this study, we conducted a comprehensive proteomic analysis of paired tumors and adjacent tissues (AT) using high-resolution Fourier-transform mass spectrometry and a novel algorithm of quantitative pathway analysis. 12380 proteins were identified and 740 proteins that presented a 4-fold change were considered a CRC proteomic signature. A significant pattern of changes in protein abundance was uncovered which consisted of an imbalance in protein abundance of inhibitory and activating regulators in key signal pathways, a significant elevation of proteins in chromatin modification, gene expression and DNA replication and damage repair, and a decreased expression of proteins responsible for core extracellular matrix architectures. Specifically, based on the relative abundance, we identified a panel of 11 proteins to distinguish CRC from AT. The protein that showed the greatest degree of overexpression in CRC compared to AT was Dipeptidase 1 (DPEP1). Knockdown of DPEP1 in SW480 and HCT116 cells significantly increased cell apoptosis and attenuated cell proliferation and invasion. Together, our results show one of largest dataset in CRC proteomic research and provide a molecular link from genomic abnormalities to the tumor phenotype.
Collapse
|
49
|
Feng Z, Tan Q, Tang J, Li L, Tao Y, Chen Y, Yang Y, Luo C, Feng H, Zhu G, Chen Q, Chen Z. Intraventricular administration of urokinase as a novel therapeutic approach for communicating hydrocephalus. Transl Res 2017; 180:77-90.e2. [PMID: 27614013 DOI: 10.1016/j.trsl.2016.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/18/2016] [Accepted: 08/13/2016] [Indexed: 01/10/2023]
Abstract
Fibrosis of the subarachnoid space (SAS) after infection, inflammation, or hemorrhage can impair cerebrospinal fluid absorption and circulation, causing diffuse ventricular dilatation. In the present study, we tested the hypothesis that urokinase (also known as urokinase-type plasminogen activator [uPA]), a fibrinolytic agent, attenuates fibrosis and ventriculomegaly in a rat model of kaolin-induced communicating hydrocephalus and thus may have potential as a therapy for these conditions. Thirty microliters of sterile 25% kaolin suspension was injected into the basal cisterns of adult Sprague-Dawley rats to induce hydrocephalus, and 2 intraventricular injections of either uPA or vehicle (saline) were administered immediately and 3 days thereafter. Ventricular volumes were measured by magnetic resonance imaging (MRI) on days 3, 14, and 28 after kaolin injection. Fibrosis and reactive astrogliosis were evaluated on day 28 by immunofluorescence and Western blotting. Neurocognitive features were tested using the Morris water maze from days 23 to 28. MRI analysis demonstrated that kaolin administration successfully induced hydrocephalus in rats and that uPA treatment significantly attenuated ventricular enlargement. In addition, uPA inhibited the deposition of laminin and fibronectin, extracellular matrix molecules, in the SAS, attenuated gliosis, and improved learning and memory in kaolin-treated rats. Therefore, we concluded that uPA prevents the development of kaolin-induced communicating hydrocephalus by preventing the development of subarachnoid fibrosis and by eliciting improvements in neurocognition. The results of this study indicate that uPA may be a novel clinical therapy for communicating hydrocephalus.
Collapse
Affiliation(s)
- Zhou Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Qiang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Lin Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yihao Tao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yunfeng Yang
- Department of Neurosurgery, Sichuan Provincial Corps Hospital, Chinese People's Armed Police Forces, Leshan, People's Republic of China
| | - Chunxia Luo
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
50
|
Cannabinoid receptor 2 activation restricts fibrosis and alleviates hydrocephalus after intraventricular hemorrhage. Brain Res 2017; 1654:24-33. [DOI: 10.1016/j.brainres.2016.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/29/2016] [Accepted: 10/17/2016] [Indexed: 01/31/2023]
|