1
|
Xu S, Jia J, Mao R, Cao X, Xu Y. Mitophagy in acute central nervous system injuries: regulatory mechanisms and therapeutic potentials. Neural Regen Res 2025; 20:2437-2453. [PMID: 39248161 PMCID: PMC11801284 DOI: 10.4103/nrr.nrr-d-24-00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Acute central nervous system injuries, including ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury, are a major global health challenge. Identifying optimal therapies and improving the long-term neurological functions of patients with acute central nervous system injuries are urgent priorities. Mitochondria are susceptible to damage after acute central nervous system injury, and this leads to the release of toxic levels of reactive oxygen species, which induce cell death. Mitophagy, a selective form of autophagy, is crucial in eliminating redundant or damaged mitochondria during these events. Recent evidence has highlighted the significant role of mitophagy in acute central nervous system injuries. In this review, we provide a comprehensive overview of the process, classification, and related mechanisms of mitophagy. We also highlight the recent developments in research into the role of mitophagy in various acute central nervous system injuries and drug therapies that regulate mitophagy. In the final section of this review, we emphasize the potential for treating these disorders by focusing on mitophagy and suggest future research paths in this area.
Collapse
Affiliation(s)
- Siyi Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
| | - Junqiu Jia
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu Province, China
| | - Rui Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu Province, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Morioka K, Tazoe T, Huie JR, Hayakawa K, Okazaki R, Guandique CF, Almeida CA, Haefeli J, Hamanoue M, Endoh T, Tanaka S, Bresnahan JC, Beattie MS, Ogata T, Ferguson AR. Disuse plasticity limits spinal cord injury recovery. iScience 2025; 28:112180. [PMID: 40224010 PMCID: PMC11987634 DOI: 10.1016/j.isci.2025.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 04/15/2025] Open
Abstract
Use-dependent plasticity after spinal cord injury (SCI) enhances neuromotor function, however, the optimal timing to initiate rehabilitation remains controversial. To test impacts of early disuse, we established a rodent model of transient hindlimb suspension in acute phase SCI. Early disuse in the first 2-week after SCI undermined recovery on open-field locomotion, kinematics, and swim tests even after 6-week of normal gravity reloading. Early disuse produced chronic spinal circuit hyper-excitability in H-reflex and interlimb reflex tests. Quantitative synaptoneurosome analysis of lumboventral spinal cords revealed shifts in AMPA receptor (AMPAR) subunit GluA1 localization and serine 881 phosphorylation, reflecting enduring synaptic memories of early disuse stored in the spinal cord. Automated confocal analysis of motoneurons revealed persistent shifts toward GluA2-lacking, calcium-permeable AMPARs in disuse subjects. Unsupervised machine learning associated multidimensional synaptic changes with persistent recovery deficits in SCI. The results argue for early aggressive rehabilitation to prevent disuse plasticity that limits SCI recovery.
Collapse
Affiliation(s)
- Kazuhito Morioka
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute (OTI), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Toshiki Tazoe
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Neural Prosthesis Project, Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - J. Russell Huie
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Kentaro Hayakawa
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Department of Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Orthopaedic and Spine Surgery, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Rentaro Okazaki
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Department of Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Orthopaedic Surgery, Saitama Red Cross Hospital, Saitama, Japan
| | - Cristian F. Guandique
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Carlos A. Almeida
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Jenny Haefeli
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Makoto Hamanoue
- Department of Physiology, Advanced Medical Research Center, Toho University School of Medicine, Tokyo, Japan
| | - Takashi Endoh
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Faculty of Development and Education, Uekusa Gakuen University, Chiba, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jacqueline C. Bresnahan
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Michael S. Beattie
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Department of Rehabilitation Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Adam R. Ferguson
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
- San Francisco Veterans Affairs Healthcare System (SFVAHCS), San Francisco, CA, USA
| |
Collapse
|
3
|
Sun X, Li L, Huang L, Li Y, Wang L, Wei Q. Harnessing spinal circuit reorganization for targeted functional recovery after spinal cord injury. Neurobiol Dis 2025; 207:106854. [PMID: 40010611 DOI: 10.1016/j.nbd.2025.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025] Open
Abstract
Spinal cord injury (SCI) disrupts the communication between the brain and spinal cord, resulting in the loss of motor function below the injury site. However, spontaneous structural and functional plasticity occurs in neural circuits after SCI, with unaffected synaptic inputs forming new connections and detour pathways to support recovery. The review discusses various mechanisms of circuit reorganization post-SCI, including supraspinal pathways, spinal interneurons, and spinal central pattern generators. Functional recovery may rely on maintaining a balance between excitatory and inhibitory neural activity, as well as enhancing proprioceptive input, which plays a key role in limb stability. The review emphasizes the importance of endogenous neuronal regeneration, neuromodulation therapies (such as electrical stimulation) and proprioception in SCI treatment. Future research should integrate advanced technologies such as gene targeting, imaging, and single-cell mapping to better understand the mechanisms underpinning SCI recovery, aiming to identify key neuronal subpopulations for targeted reconstruction and enhanced functional recovery. By harnessing spinal circuit reorganization, these efforts hold the potential to pave the way for more precise and effective strategies for functional recovery after SCI.
Collapse
Affiliation(s)
- Xin Sun
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Lijuan Li
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Liyi Huang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Yangan Li
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Lu Wang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Quan Wei
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China.
| |
Collapse
|
4
|
Kaneda K, Maeda N, Nagao T, Ishida A, Tashiro T, Tsutsumi S, Arima S, Komiya M, Urabe Y. Health-related outcomes of different levels of physical activity among individuals with spinal cord injuries: An exploratory cross-sectional study. J Spinal Cord Med 2025:1-7. [PMID: 40167242 DOI: 10.1080/10790268.2025.2460302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND The necessary and optimal physical activity for individuals with spinal cord injury remains unclear, and the development of interventions adapted to the needs of individuals with spinal cord injury is inadequate. OBJECTIVE To investigate the implications and health-related outcomes of different levels of physical activity on individuals with spinal cord injuries. METHODS The participants comprised 67 individuals, aged 18-65 years, with spinal cord injuries, who resided in Japan. Participants' demographic information was obtained, and their activities of daily living independence, physical activity level, mental health status, lifestyle, and social capital were assessed using online questionnaires. Participants were divided into three groups, based on their level of physical activity. Outcome measures were compared among the participants for different PA levels using one-way ANOVA. And, Pearson's product-moment correlation coefficient was used to examine the relationships between different levels of PA and the other outcome measures. RESULTS A one-way analysis of variance demonstrated a significant interaction between sports time, exercise time, the International Physical Activity Questionnaire-Short Form score, and Health-Related Social Capital among the groups. Participants with low activity correlated negatively with sports time and health practice index, and positively with exercise time and psychological distress. Participants with moderate activity also showed a positive correlation with exercise time and distress. CONCLUSIONS The differences observed in the sports time emphasize the potential benefits of higher physical activity levels among individuals with spinal cord injuries and the existence of challenges associated with different levels of physical activity.
Collapse
Affiliation(s)
- Kazuki Kaneda
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Health and Sports Sciences, Kyoto University of Advanced Sciences, Kyoto, Japan
| | - Noriaki Maeda
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takumi Nagao
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ayano Ishida
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tsubasa Tashiro
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shogo Tsutsumi
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Orthopedic Surgery, Kagoshima University, Kagoshima, Japan
| | - Satoshi Arima
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Makoto Komiya
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Yukio Urabe
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Johnson TC, Hagen C, Coffman DL, Nunn M, Schmidt-Read M, Heath KM, Marino RJ, Hiremath SV. Assessing Sensor-Derived Features From a Wrist-Worn Wearable Device as Indicators of Upper Extremity Function in Individuals With Cervical Spinal Cord Injury. Arch Phys Med Rehabil 2025:S0003-9993(25)00547-7. [PMID: 40089051 DOI: 10.1016/j.apmr.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/31/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
OBJECTIVE To assess the relationship between sensor-derived features and upper extremity function in individuals with acute and chronic cervical spinal cord injury (cSCI) and to assess the reproducibility of these features in chronic cSCI. DESIGN Prospective, longitudinal study. Participants completed the Capabilities of Upper Extremity Test (CUE-T)-a measure of upper extremity function-at 2 time points, 4 weeks apart, while wearing a wrist-worn inertial measurement unit device on their most-used upper extremity. The device recorded 3-axis accelerometer and gyroscope data from which metrics (features) were derived. Distance correlations (dCorr) assessed associations between features and CUE-T hand and arm function scores. Intraclass correlation coefficients (ICCs) assessed the reproducibility of CUE-T scores and features in the chronic subgroup. SETTING Inpatient rehabilitation facility (acute cSCI) and community (chronic cSCI). PARTICIPANTS Forty adults (N=40) with cSCI were enrolled, and 33 provided data. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Correlations between CUE-T scores and features; ICCs of CUE-T scores and features (chronic group). RESULTS At Time 1, 2 features showed strong correlations with CUE-T hand score (dCorr, 0.53-0.58), while 9 showed strong correlations with CUE-T arm score (dCorr, 0.54-0.62). At Time 2, 3 features showed strong correlations with CUE-T hand score (dCorr, 0.53-0.57), while 29 showed strong correlations with CUE-T arm score (dCorr, 0.50-0.72). Types of features were distinct for hand and arm conditions. For the chronic subgroup, CUE-T scores showed excellent reproducibility (ICC, 0.94-0.99), and 16 features demonstrated moderate to good reproducibility (ICC, 0.50-0.77). CONCLUSIONS Sensor-derived features can indicate upper extremity function in cSCI, supporting their use for monitoring recovery and functional outcomes. Future research should focus on validating features of upper extremity function to support digital biomarker development and clinical adoption.
Collapse
Affiliation(s)
- Tessa C Johnson
- Department of Health and Rehabilitation Sciences, College of Public Health, Temple University, Philadelphia, PA
| | - Cole Hagen
- Department of Health and Rehabilitation Sciences, College of Public Health, Temple University, Philadelphia, PA
| | - Donna L Coffman
- Department of Psychology, College of Arts and Sciences, University of South Carolina, Columbia, SC
| | - Melissa Nunn
- Department of Health and Rehabilitation Sciences, College of Public Health, Temple University, Philadelphia, PA
| | - Mary Schmidt-Read
- Jefferson Moss-Magee Rehabilitation Hospital, Jefferson Health, Philadelphia, PA
| | - Kelly M Heath
- Corporal Michael J. Crescenz, Department of Veterans Affairs Medical Center, Philadelphia, PA
| | - Ralph J Marino
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Shivayogi V Hiremath
- Department of Health and Rehabilitation Sciences, College of Public Health, Temple University, Philadelphia, PA.
| |
Collapse
|
6
|
Hankov N, Caban M, Demesmaeker R, Roulet M, Komi S, Xiloyannis M, Gehrig A, Varescon C, Spiess MR, Maggioni S, Basla C, Koginov G, Haufe F, D'Ercole M, Harte C, Hernandez-Charpak SD, Paley A, Tschopp M, Herrmann N, Intering N, Baaklini E, Acquati F, Jacquet C, Watrin A, Ravier J, Merlos F, Eberlé G, Van den Keybus K, Lambert H, Lorach H, Buschman R, Buse N, Denison T, De Bon D, Duarte JE, Riener R, Ijspeert A, Wagner F, Tobler S, Asboth L, von Zitzewitz J, Bloch J, Courtine G. Augmenting rehabilitation robotics with spinal cord neuromodulation: A proof of concept. Sci Robot 2025; 10:eadn5564. [PMID: 40073082 DOI: 10.1126/scirobotics.adn5564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/11/2025] [Indexed: 03/14/2025]
Abstract
Rehabilitation robotics aims to promote activity-dependent reorganization of the nervous system. However, people with paralysis cannot generate sufficient activity during robot-assisted rehabilitation and, consequently, do not benefit from these therapies. Here, we developed an implantable spinal cord neuroprosthesis operating in a closed loop to promote robust activity during walking and cycling assisted by robotic devices. This neuroprosthesis is device agnostic and designed for seamless implementation by nonexpert users. Preliminary evaluations in participants with paralysis showed that the neuroprosthesis enabled well-organized patterns of muscle activity during robot-assisted walking and cycling. A proof-of-concept study suggested that robot-assisted rehabilitation augmented by the neuroprosthesis promoted sustained neurological improvements. Moreover, the neuroprosthesis augmented recreational walking and cycling activities outdoors. Future clinical trials will have to confirm these findings in a broader population.
Collapse
Affiliation(s)
- Nicolas Hankov
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Miroslav Caban
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- ONWARD Medical, Lausanne, Switzerland
| | - Robin Demesmaeker
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Margaux Roulet
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Salif Komi
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Michele Xiloyannis
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Anne Gehrig
- VAMED Management and Service Switzerland AG, Zurich, Switzerland
| | - Camille Varescon
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Martina Rebeka Spiess
- Hocoma AG, Volketswil, Switzerland
- ZHAW, Zurich University of Applied Sciences, School of Health Sciences, Institute of Occupational Therapy, Zurich, Switzerland
| | - Serena Maggioni
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
- Hocoma AG, Volketswil, Switzerland
| | - Chiara Basla
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Gleb Koginov
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Myoswiss AG, Zurich, Switzerland
| | - Florian Haufe
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | | | - Cathal Harte
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Sergio D Hernandez-Charpak
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Aurelie Paley
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Manon Tschopp
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Natacha Herrmann
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Nadine Intering
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Edeny Baaklini
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Francesco Acquati
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- ONWARD Medical, Lausanne, Switzerland
| | | | | | - Jimmy Ravier
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Frédéric Merlos
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Grégoire Eberlé
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Katrien Van den Keybus
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | | | - Henri Lorach
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | | | | | | | - Dino De Bon
- VAMED Management and Service Switzerland AG, Zurich, Switzerland
| | | | - Robert Riener
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Auke Ijspeert
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fabien Wagner
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
- Institut des Maladies Neurodégénératives (CNRS UMR 5293), Université de Bordeaux, Bordeaux, France
| | - Sebastian Tobler
- Bern University of Applied Science, SCI Mobility Lab, University of Bern, Bienne, Switzerland
- GBY (Go-by-Yourself) SA, Vuisternens-en-Ogoz, Switzerland
| | - Léonie Asboth
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | | | - Jocelyne Bloch
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Grégoire Courtine
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
7
|
Liu P, Cheng Y, Xu Z, Li X, Chen Z, Duan W. Spatiotemporal spinal cord stimulation with real-time triggering exoskeleton restores walking capability: a case report. Ann Clin Transl Neurol 2025; 12:659-665. [PMID: 39675019 PMCID: PMC11920746 DOI: 10.1002/acn3.52281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024] Open
Abstract
OBJECTIVE Motor recovery is challenging for spinal cord injury (SCI), especially in low-level SCI. METHODS A 16-year-old patient with complete SCI at T12 presented flaccid paralysis and inability to control defecation and was scored as ASIA A at admission. The patient underwent spinal cord stimulation (SCS) implantation at the T11-L1, followed by an innovative algorithm combining spatiotemporal SCS with real-time triggered exoskeleton training (EXS-SCS). RESULTS After 1 month of treatment, she gained substantial improvement in her iliopsoas and quadriceps femoris muscle strength to grade 3-4 as well as percutaneous EMG, allowing for assisted standing and walking, and was reassessed as ASIA C. INTERPRETATION This case reveals the potential of SCS-EXS regimen in restoring walking capability of SCI patients.
Collapse
Affiliation(s)
- Penghao Liu
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHNA‐INI)BeijingChina
| | - Yuanchen Cheng
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHNA‐INI)BeijingChina
| | - Zhuofan Xu
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHNA‐INI)BeijingChina
| | - Xiaoyu Li
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHNA‐INI)BeijingChina
| | - Zan Chen
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHNA‐INI)BeijingChina
| | - Wanru Duan
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHNA‐INI)BeijingChina
| |
Collapse
|
8
|
Yoshikawa K, Mutsuzaki H, Koseki K, Iwai K, Takeuchi R, Kohno Y. Gait training using a wearable robotic hip device for incomplete spinal cord injury: A preliminary study. J Spinal Cord Med 2025; 48:208-220. [PMID: 37934493 PMCID: PMC11864017 DOI: 10.1080/10790268.2023.2273587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
CONTEXT/OBJECTIVE To explore changes in gait functions for patients with chronic spinal cord injury (SCI) before and after standard rehabilitation and rehabilitation with a wearable hip device, explore the utility of robot-assisted gait training (RAGT), and evaluate the safety and dose of RAGT. DESIGN Single-arm, open-label, observational study. SETTING A rehabilitation hospital. PARTICIPANTS Twelve patients with SCI. INTERVENTIONS Standard rehabilitation after admission in the first phase. RAGT for two weeks in the second phase. OUTCOME MEASURES Self-selected walking speed (SWS), step length, cadence, and the 6-minute walking distance were the primary outcomes. Walking Index for SCI score, lower extremity motor score, and spasticity were measured. Walking abilities were compared between the two periods using a generalized linear mixed model (GLMM). Correlations between assessments and changes in walking abilities during each period were analyzed. RESULTS After standard rehabilitation for 66.1 ± 36.9 days, a period of 17.6 ± 3.3 days of RAGT was safely performed. SWS increased during both periods. GLMM showed that the increase in cadence was influenced by standard rehabilitation, whereas the limited step length increase was influenced by RAGT. During RAGT, the increase in step length was related to an increase in hip flexor function. CONCLUSIONS Gait speed in patients with SCI increased after rehabilitation, including RAGT, in the short-term. This increase was associated with improved muscle function in hip flexion at the start of RAGT.Trial Registration: This study was registered with the UMIN Clinical Trials Registry (UMIN-CTR; UMIN000042025).
Collapse
Affiliation(s)
- Kenichi Yoshikawa
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan
| | - Hirotaka Mutsuzaki
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
- Department of Orthopedic Surgery, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan
| | - Kazunori Koseki
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan
| | - Koichi Iwai
- Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Ryoko Takeuchi
- Department of Orthopedic Surgery, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan
| | - Yutaka Kohno
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
- Department of Neurology, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan
| |
Collapse
|
9
|
OuYang Z, Yang R, Wang Y. Hotspots and Trends in Spinal Cord Stimulation Research for Spinal Cord Injury: A Bibliometric Analysis with Emphasis on Motor Recovery (2014-2024). World Neurosurg 2025; 197:123832. [PMID: 40010602 DOI: 10.1016/j.wneu.2025.123832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Spinal cord stimulation (SCS) has emerged as a key therapeutic strategy for enhancing motor recovery in spinal cord injury (SCI). This study employs bibliometric analysis to explore research trends and hotspots in SCS for motor recovery, highlighting advances and emerging directions over the past decade. METHODS This cross-sectional bibliometric study retrieved publications on SCS for motor recovery from the Web of Science Core Collection database (2014-2024). Key information, including annual publication trends, contributing countries, institutions, authors, journals, keywords, and highly cited references, was analyzed using CiteSpace and VOSviewer. RESULTS A total of 1033 publications were analyzed, demonstrating exponential growth in SCS research since 2014. The United States and Switzerland were identified as leading contributors, with prominent institutions such as the Swiss Federal Institute of Technology and the University of California System driving advancements. Key authors included Grégoire Courtine and Susan J. Harkema. Research themes have evolved through four phases: foundational studies on spinal cord mechanisms, exploration of neural circuits, application of electrical stimulation for motor recovery, and advancements in noninvasive therapies such as transcutaneous SCS. Highly cited journals, including Nature and Lancet, have published transformative studies, underscoring the field's clinical and academic significance. CONCLUSIONS This bibliometric analysis provides a comprehensive overview of SCS research for motor recovery post-SCI over the past decade. Interdisciplinary collaboration and technological innovation have positioned SCS as a cornerstone of SCI rehabilitation. Future efforts should focus on optimizing approaches, leveraging advanced imaging and artificial intelligence technologies, and broadening rehabilitation goals to improve outcomes for SCI patients.
Collapse
Affiliation(s)
- ZengQiang OuYang
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Rui Yang
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yue Wang
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Sato H, Miyata K, Yoshikawa K, Chiba S, Mizukami M. Responsiveness and minimal clinically important differences of the Trunk Assessment Scale for Spinal Cord injury (TASS). J Spinal Cord Med 2025; 48:22-30. [PMID: 35776096 PMCID: PMC11748867 DOI: 10.1080/10790268.2022.2087138] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVE To confirm the responsiveness and minimal clinically important differences (MCIDs) of the Trunk Assessment Scale for Spinal Cord Injury (TASS). PARTICIPANTS AND METHODS We evaluated 48 Japanese individuals with spinal cord injury (SCI) (age 64.1 ± 10.4 yrs, 28 with tetraplegia) admitted to two institutions at admission, at 1 month of hospitalization, and at discharge with the TASS, the Trunk Control Test in individuals with an SCI (TCT-SCI) motor score, the Functional Independence Measure motor score (mFIM), and the Global Rating of Change Scale (GRCS). We assessed the TASS responsiveness by determining the correlation coefficients for the changes in the TASS' and other assessments' scores. We calculated the MCIDs by five anchor-based methods. RESULTS The changes in the TASS and those in the other assessments were weakly correlated at 1 month and moderately correlated at discharge. The TASS MCIDs were observed at 1 month and at discharge. CONCLUSION Our findings confirmed that the change in TASS scores had weak-to-moderate correlations with the changes in the participants' upper- and lower-limb function and activities of daily living. Using the MCID for the TASS determined by anchor-based methods may lead to a better interpretation of changes in the trunk function of individuals with SCIs.
Collapse
Affiliation(s)
- Hiroki Sato
- Graduate School of Health Sciences, Ibaraki Prefectural University of Health Sciences, Ami, Japan
- Department of Rehabilitation, Iwate Prefectural Central Hospital, Morioka, Japan
| | - Kazuhiro Miyata
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ami, Japan
| | - Kenichi Yoshikawa
- Department of Rehabilitation, Ibaraki Prefectural University of Health Sciences Hospital, Ami, Japan
| | - Shuhei Chiba
- Department of Rehabilitation, Iwate Rehabilitation Center, Shizukuishi, Japan
| | - Masafumi Mizukami
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ami, Japan
| |
Collapse
|
11
|
Yang H, Liang C, Luo J, Liu X, Wang W, Zheng K, Luo D, Hou Y, Guo D, Lin D, Zheng X, Li X. Transplantation of Wnt5a-modified Bone Marrow Mesenchymal Stem Cells Promotes Recovery After Spinal Cord Injury via the PI3K/AKT Pathway. Mol Neurobiol 2024; 61:10830-10844. [PMID: 38795301 PMCID: PMC11584464 DOI: 10.1007/s12035-024-04248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/16/2024] [Indexed: 05/27/2024]
Abstract
Spinal cord injury (SCI) is a severe neurological condition that can lead to paralysis or even death. This study explored the potential benefits of bone marrow mesenchymal stem cell (BMSC) transplantation for repairing SCI. BMSCs also differentiate into astrocytes within damaged spinal cord tissues hindering the cell transplantation efficacy, therefore it is crucial to enhance their neuronal differentiation rate to facilitate spinal cord repair. Wnt5a, an upstream protein in the non-classical Wnt signaling pathway, has been implicated in stem cell migration, differentiation, and neurite formation but its role in the neuronal differentiation of BMSCs remains unclear. Thus, this study investigated the role and underlying mechanisms of Wnt5a in promoting neuronal differentiation of BMSCs both in vivo and in vitro. Wnt5a enhanced neuronal differentiation of BMSCs in vitro while reducing astrocyte differentiation. Additionally, high-throughput RNA sequencing revealed a correlation between Wnt5a and phosphoinositide 3-kinase (PI3K)/protein kinase B(AKT) signaling, which was confirmed by the use of the PI3K inhibitor LY294002 to reverse the effects of Wnt5a on BMSC neuronal differentiation. Furthermore, transplantation of Wnt5a-modified BMSCs into SCI rats effectively improved the histomorphology (Hematoxylin and eosin [H&E], Nissl and Luxol Fast Blue [LFB] staining), motor function scores (Footprint test and Basso-Beattie-Bresnahan [BBB]scores)and promoted neuron production, axonal formation, and remodeling of myelin sheaths (microtubule associated protein-2 [MAP-2], growth-associated protein 43 [GAP43], myelin basic protein [MBP]), while reducing astrocyte production (glial fibrillary acidic protein [GFAP]). Therefore, targeting the Wnt5a/PI3K/AKT pathway could enhance BMSC transplantation for SCI treatment.
Collapse
Affiliation(s)
- Haimei Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Chaolun Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Department of Orthopedics (Joint Surgery), Guangdong Province Hospital of Chinese Medicine, Zhuhai, 519015, Guangdong, China
| | - Junhua Luo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xiuzhen Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Wanshun Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Kunrui Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Dan Luo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Yu Hou
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Da Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Dingkun Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xiasheng Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Xing Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
12
|
Sho KY, Mun C, Lim JC, Kim O, Lee JW. Long-Term Pulmonary Function Postspinal Cord Injury. Arch Phys Med Rehabil 2024; 105:2142-2149. [PMID: 39047856 DOI: 10.1016/j.apmr.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/21/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To investigate mean values of pulmonary function tests (PFT) at specific time points to assess long-term progression in patients with spinal cord injury (SCI). DESIGN Retrospective cohort study from 1997-2022. SETTING National rehabilitation hospital, providing scheduled admission for potential SCI-related issues. Follow-up assessments are recommended annually, guiding the observation period into consecutive 1-year intervals. PARTICIPANTS This study included 1394 adult patients who were admitted at least twice to the National Rehabilitation Center between 1997 and 2022, selected from an initial pool of 1510. Overall, 116 patients were excluded owing to the absence of any PFT results. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Changes in PFT values over time, specifically assessing for a potential 2-phase pattern after injury. The hypothesis that PFT values would initially improve before declining was formulated based on existing literature. RESULTS Significant changes in pulmonary function were noted among 1394 adults with SCI. Forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) initially increased within the first 1-2 years after injury but declined to below baseline levels after 6 years. Pronounced changes occurred between <1 year and 1-2 years after injury (FVC: Δ=4.89, SE=0.87, P<.001; FEV1: Δ=4.28, SE=1.09, P=.002) and 1-2 years to >6 years (FVC: Δ= -5.83, SE=0.94, P<.001; FEV1: Δ= -6.49, SE=1.18, P<.001). No significant changes in the FEV1/FVC ratio. Motor completeness was significantly associated with the increase and decline phase, showing a steeper increase and less decline compared with the motor-incomplete group. CONCLUSIONS Pulmonary function in SCI initially increases but declines over time, falling below initial levels by 6 years. Further evaluation with more complete datasets is warranted to elucidate the factors influencing these changes.
Collapse
Affiliation(s)
- Keun Young Sho
- Department of Rehabilitation Medicine, National Rehabilitation Center, Ministry of Health and Welfare, Gangbuk-gu, Seoul
| | - Chaeun Mun
- Department of Rehabilitation Medicine, National Rehabilitation Center, Ministry of Health and Welfare, Gangbuk-gu, Seoul
| | - Jin-Cheol Lim
- Department of Education Measurement and Evaluation, Sungkyunkwan University, Seoul
| | - Onyoo Kim
- Department of Rehabilitation Medicine, National Rehabilitation Center, Ministry of Health and Welfare, Gangbuk-gu, Seoul.
| | - Jang Woo Lee
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea.
| |
Collapse
|
13
|
Kaneda K, Maeda N, Nagao T, Ishida A, Tashiro T, Komiya M, Urabe Y. Exploring the Impact of Sports Participation on Social Capital and Health-related Factors in Individuals with Spinal Cord Injury: A Cross-sectional Study. Phys Ther Res 2024; 27:128-135. [PMID: 39866394 PMCID: PMC11756564 DOI: 10.1298/ptr.e10295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/07/2024] [Indexed: 01/28/2025]
Abstract
OBJECTIVE This study examined the impact of sports participation on the health status of individuals with spinal cord injuries (SCI), with emphasis on the role of health-related social capital (HRSC). METHODS This study included 65 individuals with SCI (42 who participated in sports and 23 who did not). The following information was obtained from the participants through an online questionnaire: their basic information, information regarding activities of daily life independence, physical activity, mental health, lifestyle, insomnia, and social capital. We compared the outcomes between participants with and without sports participation and examined their correlations. Multiple regression analysis with forced entry was performed to determine the association between HRSC and health outcomes. RESULTS Physical activity, mental health, and HRSC were significantly higher in individuals with SCI who participated in sports (p <0.01 or p <0.05) than in individuals with SCI who did not participate in sports. The HRSC of individuals with SCI with sports participation showed a significant positive correlation with lifestyle and a significant negative correlation with insomnia score (p <0.05). Multiple regression analysis revealed that higher HRSC was associated with lifestyle in individuals with SCI who participated in sports (p <0.05) compared with individuals with SCI who did not participate in sports. CONCLUSION The study findings underscore the potential benefits of sports participation in individuals with SCI, including increased physical activity and development of HRSC. However, it is essential to consider the implications of sports involvement on the psychological well-being of individuals with disabilities and provide appropriate support.
Collapse
Affiliation(s)
- Kazuki Kaneda
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Noriaki Maeda
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Takumi Nagao
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Ayano Ishida
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Tsubasa Tashiro
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Makoto Komiya
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yukio Urabe
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| |
Collapse
|
14
|
Baram A, Capo G, Riva M, Brembilla C, Rosellini E, De Robertis M, Servadei F, Pessina F, Fornari M. Monocentric Retrospective Analysis of Clinical Outcomes, Complications, and Adjacent Segment Disease in 507 Patients Undergoing Anterior Cervical Discectomy and Fusion for Degenerative Cervical Myelopathy. World Neurosurg 2024; 189:e1049-e1056. [PMID: 39019433 DOI: 10.1016/j.wneu.2024.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Degenerative cervical myelopathy (DCM) is a leading cause of nontraumatic spinal cord injury. Surgery aims to arrest neurological decline and improve conditions, but controversies surround risks and benefits in elderly patients, outcomes in mild myelopathy, and the risk of adjacent segment disease (ASD). METHODS Retrospective data of patients who underwent anterior cervical discectomy and fusion for DCM in our hospital were collected. Patients were stratified by preoperative modified Japanese Orthopaedic Association (mJOA) (mild, moderate, severe) and age (under 70, over 70). Clinical outcomes, complications, and ASD rate were analyzed. We evaluated the relationship between mJOA recovery rate and the risk of complications and various preoperative parameters. RESULTS Five hundred seven consecutive patients were included in the study, with a mean follow-up of 43.52 months (12-71). Improvement in all outcome variables was observed in mild, moderate, and severe myelopathy categories, with elderly patients showing a lower improvement. Except for age, no other variable correlated with mJOA recovery rate. We observed 45 complications (11.1% of patients), with 14 in the U70 group and 31 in the O70 group (P value < 0.001). Age, Charlson comorbidity index, and ASA score were found to be predictors of complications. Fourteen patients (2.8% of total), mean age 54.2, developed radiological and clinical ASD. Most had cranial-level ASD with Pfirmann grade ≥ 2 before index surgery. CONCLUSIONS Most myelopathic patients improve after anterior cervical discectomy and fusion. Elderly patients show a lower improvement and higher complication rates than their younger counterparts. ASD rates are low, and younger patients with preexisting cranial level alterations are more susceptible.
Collapse
Affiliation(s)
- Ali Baram
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| | - Gabriele Capo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marco Riva
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Department of Neurosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Carlo Brembilla
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elena Rosellini
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Department of Neurosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Mario De Robertis
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Department of Neurosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Franco Servadei
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Department of Neurosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Maurizio Fornari
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
15
|
Sun Y, Zhang J, Gu Y, Liu T, Chen L. Biomineralized MnO 2 Nanoparticle-Constituted Hydrogels Promote Spinal Cord Injury Repair by Modulating Redox Microenvironment and Inhibiting Ferroptosis. Pharmaceutics 2024; 16:1057. [PMID: 39204402 PMCID: PMC11359041 DOI: 10.3390/pharmaceutics16081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Spinal cord injury (SCI) is one of the most severe injuries, characterized by multiple positive feedback regulatory signaling networks formed by oxidative stress and inflammation in the injury microenvironment, leading to neuronal cell damage and even death. Here, astragaloside IV (AS), known for its regulatory role in ferroptosis, was encapsulated in the cavity of apoferritin (HFn) after an in situ biomineralization process involving MnO2, resulting in the synthesis of HFn@MnO2/AS nanoparticles. These nanoparticles were then dispersed in chitosan/polyvinyl alcohol/glutaraldehyde/sodium β-glycerophosphate (CGPG) hydrogels to form CGPG-HFn@MnO2/AS injectable thermosensitive hydrogels that can scavenge reactive oxygen species (ROS) in the microenvironment. Our findings indicated that the prepared CGPG-HFn@MnO2/AS hydrogel exhibited remarkable efficacy in scavenging ROS in vitro, effectively ameliorating the oxidative stress microenvironment post-SCI. Furthermore, it inhibited oxidative stress-induced ferroptosis in vitro and in vivo by regulating SIRT1 signaling, thereby promoting neuronal cell migration and repair. Hence, the developed hydrogel combining MnO2 and AS exhibited multifaceted abilities to modulate the pathological microenvironment, providing a promising therapeutic strategy for central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Yuyu Sun
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou 215031, China; (Y.S.); (J.Z.)
- Department of Orthopedic, Nantong Third People’s Hospital of Nantong University and Affiliated Nantong Hospital 3 of Nantong University, 60 Qingnian Rd, Nantong 226001, China
| | - Jinlong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou 215031, China; (Y.S.); (J.Z.)
- Department of Spine Surgery, Nantong City No.1 People’s Hospital and The Affiliated Hospital 2 of Nantong University, 666 Shengli Rd, Nantong 226014, China
| | - Yong Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou 215031, China; (Y.S.); (J.Z.)
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Liang Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou 215031, China; (Y.S.); (J.Z.)
| |
Collapse
|
16
|
Kang D, Eun SD, Park J. Pilot Study of Home-Based Virtual Reality Fitness Training in Post-Discharge Rehabilitation for Patients with Spinal Cord Injury: A Randomized Double-Blind Multicenter Trial. Life (Basel) 2024; 14:859. [PMID: 39063613 PMCID: PMC11278213 DOI: 10.3390/life14070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Spinal cord injury (SCI) patients require continuous rehabilitation post-discharge to ensure optimal recovery. This study investigates the effectiveness of home-based virtual reality fitness training (VRFT) as a convenient and accessible rehabilitation method for SCI patients. This randomized, double-blind, multicenter trial will enroll 120 participants, assigning them to either an 8-week VRFT program (exercise group) or a control group engaging in regular daily activities. The outcomes measured include muscle function, cardiopulmonary fitness, body composition, and physical performance. Our study will determine the safety and feasibility of VRFT in a home setting for SCI patients and evaluate whether these patients can effectively participate in such a program post-discharge. The results of this study are expected to inform future exercise protocols for SCI rehabilitation, offering valuable insights into the utility of VRFT as a therapeutic tool.
Collapse
Affiliation(s)
- Dongheon Kang
- Department of Healthcare and Public Health Research, National Rehabilitation Center, Ministry of Health and Welfare, Seoul 01022, Republic of Korea;
| | - Seon-Deok Eun
- Department of Healthcare and Public Health Research, National Rehabilitation Center, Ministry of Health and Welfare, Seoul 01022, Republic of Korea;
| | - Jiyoung Park
- Department of Safety and Health, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
17
|
Liu FS, Huang HL, Deng LX, Zhang QS, Wang XB, Li J, Liu FB. Identification and bioinformatics analysis of genes associated with pyroptosis in spinal cord injury of rat and mouse. Sci Rep 2024; 14:14023. [PMID: 38890348 PMCID: PMC11189416 DOI: 10.1038/s41598-024-64843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
The mechanism of spinal cord injury (SCI) is highly complex, and an increasing number of studies have indicated the involvement of pyroptosis in the physiological and pathological processes of secondary SCI. However, there is limited bioinformatics research on pyroptosis-related genes (PRGs) in SCI. This study aims to identify and validate differentially expressed PRGs in the GEO database, perform bioinformatics analysis, and construct regulatory networks to explore potential regulatory mechanisms and therapeutic targets for SCI. We obtained high-throughput sequencing datasets of SCI in rats and mice from the GEO database. Differential analysis was conducted using the "limma" package in R to identify differentially expressed genes (DEGs). These genes were then intersected with previously reported PRGs, resulting in a set of PRGs in SCI. GO and KEGG enrichment analyses, as well as correlation analysis, were performed on the PRGs in both rat and mouse models of SCI. Additionally, a protein-protein interaction (PPI) network was constructed using the STRING website to examine the relationships between proteins. Hub genes were identified using Cytoscape software, and the intersection of the top 5 hub genes in rats and mice were selected for subsequent experimentally validated. Furthermore, a competing endogenous RNA (ceRNA) network was constructed to explore potential regulatory mechanisms. The gene expression profiles of GSE93249, GSE133093, GSE138637, GSE174549, GSE45376, GSE171441_3d and GSE171441_35d were selected in this study. We identified 10 and 12 PRGs in rats and mice datasets respectively. Six common DEGs were identified in the intersection of rats and mice PRGs. Enrichment analysis of these DEGs indicated that GO analysis was mainly focused on inflammation-related factors, while KEGG analysis showed that the most genes were enriched on the NOD-like receptor signaling pathway. We constructed a ceRNA regulatory network that consisted of five important PRGs, as well as 24 miRNAs and 34 lncRNAs. This network revealed potential regulatory mechanisms. Additionally, the three hub genes obtained from the intersection were validated in the rat model, showing high expression of PRGs in SCI. Pyroptosis is involved in secondary SCI and may play a significant role in its pathogenesis. The regulatory mechanisms associated with pyroptosis deserve further in-depth research.
Collapse
Affiliation(s)
- Fu-Sheng Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Hai-Long Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lin-Xia Deng
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qian-Shi Zhang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Xiao-Bin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Fu-Bing Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
18
|
Shen W, Li C, Liu Q, Cai J, Wang Z, Pang Y, Ning G, Yao X, Kong X, Feng S. Celastrol inhibits oligodendrocyte and neuron ferroptosis to promote spinal cord injury recovery. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155380. [PMID: 38507854 DOI: 10.1016/j.phymed.2024.155380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) is a traumatic injury to the central nervous system and can cause lipid peroxidation in the spinal cord. Ferroptosis, an iron-dependent programmed cell death, plays a key role in the pathophysiology progression of SCI. Celastrol, a widely used antioxidant drug, has potential therapeutic value for nervous system. PURPOSE To investigate whether celastrol can be a reliable candidate for ferroptosis inhibitor and the molecular mechanism of celastrol in repairing SCI by inhibiting ferroptosis. METHODS First, a rat SCI model was constructed, and the recovery of motor function was observed after treatment with celastrol. The regulatory effect of celastrol on ferroptosis pathway Nrf2-xCT-GPX4 was detected by Western blot and immunofluorescence. Finally, the ferroptosis model of neurons and oligodendrocytes was constructed in vitro to further verify the mechanism of inhibiting ferroptosis by celastrol. RESULTS Our results demonstrated that celastrol promoted the recovery of spinal cord tissue and motor function in SCI rats. Further in vitro and in vivo studies showed that celastrol significantly inhibited ferroptosis in neurons and oligodendrocytes and reduced the accumulation of ROS. Finally, we found that celastrol could inhibit ferroptosis by up-regulating the Nrf2-xCT-GPX4 axis to repair SCI. CONCLUSION Celastrol effectively inhibits ferroptosis after SCI by upregulating the Nrf2-xCT-GPX4 axis, reducing the production of lipid ROS, protecting the survival of neurons and oligodendrocytes, and improving the functional recovery.
Collapse
Affiliation(s)
- Wenyuan Shen
- Spine Surgery Department of the Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, PR China; Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Orthopedic Research Center of Shandong University & Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250063, PR China
| | - Chuanhao Li
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Quan Liu
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Jun Cai
- Tianjin Medicine and Health Research Center, Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, 300020, PR China
| | - Zhishuo Wang
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Yilin Pang
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Guangzhi Ning
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Xue Yao
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Orthopedic Research Center of Shandong University & Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250063, PR China.
| | - Xiaohong Kong
- Orthopedic Research Center of Shandong University & Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250063, PR China.
| | - Shiqing Feng
- Spine Surgery Department of the Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, PR China; Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Orthopedic Research Center of Shandong University & Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250063, PR China.
| |
Collapse
|
19
|
Villar Ortega E, Buetler KA, Aksöz EA, Marchal-Crespo L. Enhancing touch sensibility with sensory electrical stimulation and sensory retraining. J Neuroeng Rehabil 2024; 21:79. [PMID: 38750521 PMCID: PMC11096118 DOI: 10.1186/s12984-024-01371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
A large proportion of stroke survivors suffer from sensory loss, negatively impacting their independence, quality of life, and neurorehabilitation prognosis. Despite the high prevalence of somatosensory impairments, our understanding of somatosensory interventions such as sensory electrical stimulation (SES) in neurorehabilitation is limited. We aimed to study the effectiveness of SES combined with a sensory discrimination task in a well-controlled virtual environment in healthy participants, setting a foundation for its potential application in stroke rehabilitation. We employed electroencephalography (EEG) to gain a better understanding of the underlying neural mechanisms and dynamics associated with sensory training and SES. We conducted a single-session experiment with 26 healthy participants who explored a set of three visually identical virtual textures-haptically rendered by a robotic device and that differed in their spatial period-while physically guided by the robot to identify the odd texture. The experiment consisted of three phases: pre-intervention, intervention, and post-intervention. Half the participants received subthreshold whole-hand SES during the intervention, while the other half received sham stimulation. We evaluated changes in task performance-assessed by the probability of correct responses-before and after intervention and between groups. We also evaluated differences in the exploration behavior, e.g., scanning speed. EEG was employed to examine the effects of the intervention on brain activity, particularly in the alpha frequency band (8-13 Hz) associated with sensory processing. We found that participants in the SES group improved their task performance after intervention and their scanning speed during and after intervention, while the sham group did not improve their task performance. However, the differences in task performance improvements between groups only approached significance. Furthermore, we found that alpha power was sensitive to the effects of SES; participants in the stimulation group exhibited enhanced brain signals associated with improved touch sensitivity likely due to the effects of SES on the central nervous system, while the increase in alpha power for the sham group was less pronounced. Our findings suggest that SES enhances texture discrimination after training and has a positive effect on sensory-related brain areas. Further research involving brain-injured patients is needed to confirm the potential benefit of our solution in neurorehabilitation.
Collapse
Affiliation(s)
- Eduardo Villar Ortega
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Karin A Buetler
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Efe Anil Aksöz
- rehaLab-The Laboratory for Rehabilitation Engineering, Institute for Human Centred Engineering HuCE, Division of Mechatronics and Systems Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences, Biel, Switzerland
| | - Laura Marchal-Crespo
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.
- Department of Cognitive Robotics, Delft University of Technology, Delft, The Netherlands.
- Department of Rehabilitation Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
20
|
Morgan DW, Stevens SL. Use of water- and land-based gait training to improve walking capacity in adults with complete spinal cord injury: A pilot study. J Spinal Cord Med 2024; 47:404-411. [PMID: 35796664 PMCID: PMC11044748 DOI: 10.1080/10790268.2022.2088507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVE Little is known regarding the extent to which mobility can be improved using gait-based therapies in individuals with complete spinal cord injury (cSCI). Against this backdrop, the purpose of our study was to document changes in walking capacity following an extended period of underwater treadmill training (UTT) and supplemental overground walk training (OWT) in persons with cSCI. DESIGN Longitudinal design. SETTING University research center. PARTICIPANTS Five adults (mean age = 41.2 ± 5.9 years) with motor-complete (AIS A), chronic (mean years post-injury = 3.2 ± 1.6 years) cSCI who had not received epidural spinal cord stimulation (eSCS). INTERVENTION Participants underwent one year of UTT (3 walking bouts per day; 2-3 days per week). Once independent stepping activity in the water was observed, OWT, as tolerated, was performed prior to UTT. OUTCOME MEASURE Walking capacity was evaluated using the Walking Index for Spinal Cord Injury (WISCI-II) prior to UTT (Time 1: T1), six months after the start of UTT (Time 2: T2), and following completion of UTT (Time 3: T3). RESULTS Non-parametric analyses revealed a significant time effect (P < .05) for WISCI-II. Pre-planned comparisons revealed no difference in WISCI-II levels measured at T1 (0.20 ± 0.45) and T2 (4.80 ± 4.55) and at T2 (4.80 ± 4.55) and T3 (8.40 ± 1.34). However, the WISCI-II level obtained at T3 (8.40 ± 1.34) was significantly higher compared to the T1 value. CONCLUSION Our preliminary findings demonstrate that in the absence of eSCS, combined UTT and supplemental OWT can improve functional walking capacity in adults with cSCI.
Collapse
Affiliation(s)
- Don W. Morgan
- Department of Health and Human Performance, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Sandra L. Stevens
- Department of Health and Human Performance, Middle Tennessee State University, Murfreesboro, TN, USA
| |
Collapse
|
21
|
Poutanen J, Savolainen S, Shulga A, Arokoski J, Hiekkala S. ICF-linking and psychometric properties of upper extremity mobility outcome measures in spinal cord injury - a scoping review. J Spinal Cord Med 2024; 47:201-213. [PMID: 36622355 PMCID: PMC10885769 DOI: 10.1080/10790268.2022.2161867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE The purpose of this study was to explore the outcome measures used in upper extremity rehabilitation and research in spinal cord injury and to investigate their psychometry. DESIGN Scoping review. DATA SOURCES PubMed, the Cochrane library, PEDro, Medline (Ovid). ELIGIBILITY CRITERIA FOR SELECTING STUDIES The search process and study selection was carried out as follows: Firstly, a systematic search was carried out for articles on upper extremity rehabilitation after SCI. Performance or observational outcome measures which were designed for a clinical setting were collected from selected studies. Secondly, eligible outcome measures were linked to the ICF. The ICF-linked outcome measures were further screened for inclusion according to how comprehensively they covered ICF categories. Finally, a search of the selected outcome measures was performed to investigate their psychometry. RESULTS A total of four outcome measures and nine psychometric studies were selected for the scoping review; six studies addressed GRASSP, one addressed AuSpinal, one addressed SHFT and one addressed TRI-HFT. Of the 13 COSMIN measurement properties, studies of GRASSP covered seven, AuSpinal covered five and both SHFT and TRI-HFT covered three properties. CONCLUSIONS The psychometric properties of GRASSP were most extensively studied showing eligible reliability and validity. Although there are still some measurement properties to be explored, GRASSP can be recommended for use in the evaluation of upper extremity mobility in the SCI rehabilitation and research. More research is needed on the psychometrics of other outcome measures in people with spinal cord injuries before the outcome measures can be unconditionally recommended.
Collapse
Affiliation(s)
- Joonas Poutanen
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sarianna Savolainen
- BioMag Laboratory, Helsinki University Hospital, Helsinki, Finland
- Validia Ltd., Helsinki, Finland
| | - Anastasia Shulga
- BioMag Laboratory, Helsinki University Hospital, Helsinki, Finland
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital, Helsinki, Finland
- Department of Surgery, University of Helsinki, Helsinki, Finland
| | - Jari Arokoski
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital, Helsinki, Finland
- Clinical Neurosciences, Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Sinikka Hiekkala
- Validia Ltd., Helsinki, Finland
- The Finnish Association of People with Physical Disabilities, Helsinki, Finland
| |
Collapse
|
22
|
Chen W, Gao X, Yang W, Xiao X, Pan X, Li H. Htr2b Promotes M1 Microglia Polarization and Neuroinflammation after Spinal Cord Injury via Inhibition of Neuregulin-1/ErbB Signaling. Mol Neurobiol 2024; 61:1643-1654. [PMID: 37747614 DOI: 10.1007/s12035-023-03656-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
The secondary injury of spinal cord injury (SCI) is dominated by neuroinflammation, which was caused by microglia M1 polarization. This study aimed to investigate the role and mechanism of Htr2b on neuroinflammation of SCI. The BV2 and HMC3 microglia were treated with lipopolysaccharide (LPS) or interferon (IFN)-γ to simulate in vitro models of SCI. Sprague-Dawley rats were subjected to the T10 laminectomy to induce animal model of SCI. Htr2b mRNA expression was measured by qRT-PCR. The expression of Htr2b and Iba-1 was detected by western blot and immunofluorescence. The expression of inflammatory cytokines in vitro and in vivo was also measured. Kyoto Encyclopedia of Genes and Genomes (KEGG) was employed to analyze Htr2b-regulated signaling pathways. Rat behavior was analyzed by the Basso, Beattie, and Bresnahan (BBB) and inclined plane test. Rat dorsal horn tissues were stained by hematoxylin-eosin (H&E) and Nissl to measure neuron loss. Htr2b was highly expressed in LPS- and IFN-γ-treated microglia and SCI rats. SCI modeling promoted M1 microglia polarization and increased levels of inflammatory cytokines. Inhibition of Htr2b by Htr2b shRNA or RS-127445 reduced the expression of Htr2b, Iba-1, and iNOS and suppressed cytokine levels. KEGG showed that Htr2b inhibited ErbB signaling pathway. Inhibition of Htr2b increased protein expression of neuregulin-1 (Nrg-1) and p-ErbB4. Inhibition of the ErbB signaling pathway markedly reversed the effect of Htr2b shRNA on M1 microglia polarization and inflammatory cytokines. Htr2b promotes M1 microglia polarization and neuroinflammation after SCI by inhibiting Nrg-1/ErbB signaling pathway.
Collapse
Affiliation(s)
- Wenhao Chen
- Department of Orthopaedics, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Lixia District, 250012, Jinan, Shandong, People's Republic of China
- Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, People's Republic of China
| | - Xianlei Gao
- Department of Orthopaedics, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Lixia District, 250012, Jinan, Shandong, People's Republic of China
| | - Wanliang Yang
- Department of Orthopaedics, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Lixia District, 250012, Jinan, Shandong, People's Republic of China
- Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, People's Republic of China
| | - Xun Xiao
- Department of Orthopaedics, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Lixia District, 250012, Jinan, Shandong, People's Republic of China
- Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, People's Republic of China
| | - Xin Pan
- Department of Orthopaedics, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Lixia District, 250012, Jinan, Shandong, People's Republic of China
| | - Hao Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Lixia District, 250012, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
23
|
Willi R, Werner C, Demkó L, de Bie R, Filli L, Zörner B, Curt A, Bolliger M. Reliability of patient-specific gait profiles with inertial measurement units during the 2-min walk test in incomplete spinal cord injury. Sci Rep 2024; 14:3049. [PMID: 38321085 PMCID: PMC10847409 DOI: 10.1038/s41598-024-53301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024] Open
Abstract
Most established clinical walking tests assess specific aspects of movement function (velocity, endurance, etc.) but are generally unable to determine specific biomechanical or neurological deficits that limit an individual's ability to walk. Recently, inertial measurement units (IMU) have been used to collect objective kinematic data for gait analysis and could be a valuable extension for clinical assessments (e.g., functional walking measures). This study assesses the reliability of an IMU-based overground gait analysis during the 2-min walk test (2mWT) in individuals with spinal cord injury (SCI). Furthermore, the study elaborates on the capability of IMUs to distinguish between different gait characteristics in individuals with SCI. Twenty-six individuals (aged 22-79) with acute or chronic SCI (AIS: C and D) completed the 2mWT with IMUs attached above each ankle on 2 test days, separated by 1 to 7 days. The IMU-based gait analysis showed good to excellent test-retest reliability (ICC: 0.77-0.99) for all gait parameters. Gait profiles remained stable between two measurements. Sensor-based gait profiling was able to reveal patient-specific gait impairments even in individuals with the same walking performance in the 2mWT. IMUs are a valuable add-on to clinical gait assessments and deliver reliable information on detailed gait pathologies in individuals with SCI.Trial registration: NCT04555759.
Collapse
Affiliation(s)
- Romina Willi
- Spinal Cord Injury Centre Balgrist, University Hospital, Zurich, Switzerland
| | - Charlotte Werner
- Spinal Cord Injury Centre Balgrist, University Hospital, Zurich, Switzerland
| | - László Demkó
- Spinal Cord Injury Centre Balgrist, University Hospital, Zurich, Switzerland
| | - Rob de Bie
- Department of Epidemiology, Maastricht University, Maastricht, The Netherlands
| | - Linard Filli
- Spinal Cord Injury Centre Balgrist, University Hospital, Zurich, Switzerland
- Swiss Center for Movement Analysis (SCMA), Balgrist Campus AG, Zurich, Switzerland
| | - Björn Zörner
- Spinal Cord Injury Centre Balgrist, University Hospital, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Centre Balgrist, University Hospital, Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Centre Balgrist, University Hospital, Zurich, Switzerland.
| |
Collapse
|
24
|
Lin BS, Zhang Z, Peng CW, Chen SH, Chan WP, Lai CH. Effectiveness of Repetitive Transcranial Magnetic Stimulation Combined With Transspinal Electrical Stimulation on Corticospinal Excitability for Individuals With Incomplete Spinal Cord Injury: A Pilot Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4790-4800. [PMID: 38032783 DOI: 10.1109/tnsre.2023.3338226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) and transspinal electrical stimulation (tsES) have been proposed as a novel neurostimulation modality for individuals with incomplete spinal cord injury (iSCI). In this study, we integrated magnetic and electrical stimulators to provide neuromodulation therapy to individuals with incomplete spinal cord injury (iSCI). We designed a clinical trial comprising an 8-week treatment period and a 4-week treatment-free observation period. Cortical excitability, clinical features, inertial measurement unit and surface electromyography were assessed every 4 weeks. Twelve individuals with iSCI were recruited and randomly divided into a combined therapy group, a magnetic stimulation group, an electrical stimulation group, or a sham stimulation group. The magnetic and electric stimulations provided in this study were intermittent theta-burst stimulation (iTBS) and 2.5-mA direct current (DC) stimulation, respectively. Combined therapy, which involves iTBS and transspinal DC stimulation (tsDCS), was more effective than was iTBS alone or tsDCS alone in terms of increasing corticospinal excitability. In conclusion, the effectiveness of 8-week combined therapy in increasing corticospinal excitability faded 4 weeks after the cessation of treatment. According to the results, combination of iTBS rTMS and tsDCS treatment was more effective than was iTBS rTMS alone or tsDCS alone in enhancing corticospinal excitability. Although promising, the results of this study must be validated by studies with longer interventions and larger sample sizes.
Collapse
|
25
|
Qin C, Qi Z, Pan S, Xia P, Kong W, Sun B, Du H, Zhang R, Zhu L, Zhou D, Yang X. Advances in Conductive Hydrogel for Spinal Cord Injury Repair and Regeneration. Int J Nanomedicine 2023; 18:7305-7333. [PMID: 38084124 PMCID: PMC10710813 DOI: 10.2147/ijn.s436111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Spinal cord injury (SCI) treatment represents a major challenge in clinical practice. In recent years, the rapid development of neural tissue engineering technology has provided a new therapeutic approach for spinal cord injury repair. Implanting functionalized electroconductive hydrogels (ECH) in the injury area has been shown to promote axonal regeneration and facilitate the generation of neuronal circuits by reshaping the microenvironment of SCI. ECH not only facilitate intercellular electrical signaling but, when combined with electrical stimulation, enable the transmission of electrical signals to electroactive tissue and activate bioelectric signaling pathways, thereby promoting neural tissue repair. Therefore, the implantation of ECH into damaged tissues can effectively restore physiological functions related to electrical conduction. This article focuses on the dynamic pathophysiological changes in the SCI microenvironment and discusses the mechanisms of electrical stimulation/signal in the process of SCI repair. By examining electrical activity during nerve repair, we provide insights into the mechanisms behind electrical stimulation and signaling during SCI repair. We classify conductive biomaterials, and offer an overview of the current applications and research progress of conductive hydrogels in spinal cord repair and regeneration, aiming to provide a reference for future explorations and developments in spinal cord regeneration strategies.
Collapse
Affiliation(s)
- Cheng Qin
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Zhiping Qi
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Su Pan
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Peng Xia
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Weijian Kong
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Bin Sun
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Haorui Du
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Renfeng Zhang
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Longchuan Zhu
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Dinghai Zhou
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| |
Collapse
|
26
|
Zhu B, Gu G, Ren J, Song X, Li J, Wang C, Zhang W, Huo Y, Wang H, Jin L, Feng S, Wei Z. Schwann Cell-Derived Exosomes and Methylprednisolone Composite Patch for Spinal Cord Injury Repair. ACS NANO 2023; 17:22928-22943. [PMID: 37948097 DOI: 10.1021/acsnano.3c08046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Spinal cord injury (SCI) can cause permanent loss of sensory and motor function, and there is no effective clinical treatment, to date. Due to the complex pathological process involved after injury, synergistic treatments are very urgently needed in clinical practice. We designed a nanofiber scaffold hyaluronic acid hydrogel patch to release both exosomes and methylprednisolone to the injured spinal cord in a non-invasive manner. This composite patch showed good biocompatibility in the stabilization of exosome morphology and toxicity to nerve cells. Meanwhile, the composite patch increased the proportion of M2-type macrophages and reduced neuronal apoptosis in an in vitro study. In vivo, the functional and electrophysiological performance of rats with SCI was significantly improved when the composite patch covered the surface of the hematoma. The composite patch inhibited the inflammatory response through macrophage polarization from M1 type to M2 type and increased the survival of neurons by inhibition neuronal of apoptosis after SCI. The therapeutic effects of this composite patch can be attributed to TLR4/NF-κB, MAPK, and Akt/mTOR pathways. Thus, the composite patch provides a medicine-exosomes dual-release system and may provide a non-invasive method for clinical treatment for individuals with SCI.
Collapse
Affiliation(s)
- Bin Zhu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Guangjin Gu
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250033, China
| | - Jie Ren
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xiaomeng Song
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Junjin Li
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Chunyan Wang
- Department of Rehabilitation Medicine, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Wencan Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250033, China
| | - Yanqing Huo
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Haifeng Wang
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Shiqing Feng
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Department of Orthopaedics, Qilu Hospital of Shandong University, The Second Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250033, China
| | - Zhijian Wei
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Department of Orthopaedics, Qilu Hospital of Shandong University, The Second Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250033, China
| |
Collapse
|
27
|
Colamarino E, Lorusso M, Pichiorri F, Toppi J, Tamburella F, Serratore G, Riccio A, Tomaiuolo F, Bigioni A, Giove F, Scivoletto G, Cincotti F, Mattia D. DiSCIoser: unlocking recovery potential of arm sensorimotor functions after spinal cord injury by promoting activity-dependent brain plasticity by means of brain-computer interface technology: a randomized controlled trial to test efficacy. BMC Neurol 2023; 23:414. [PMID: 37990160 PMCID: PMC10662594 DOI: 10.1186/s12883-023-03442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Traumatic cervical spinal cord injury (SCI) results in reduced sensorimotor abilities that strongly impact on the achievement of daily living activities involving hand/arm function. Among several technology-based rehabilitative approaches, Brain-Computer Interfaces (BCIs) which enable the modulation of electroencephalographic sensorimotor rhythms, are promising tools to promote the recovery of hand function after SCI. The "DiSCIoser" study proposes a BCI-supported motor imagery (MI) training to engage the sensorimotor system and thus facilitate the neuroplasticity to eventually optimize upper limb sensorimotor functional recovery in patients with SCI during the subacute phase, at the peak of brain and spinal plasticity. To this purpose, we have designed a BCI system fully compatible with a clinical setting whose efficacy in improving hand sensorimotor function outcomes in patients with traumatic cervical SCI will be assessed and compared to the hand MI training not supported by BCI. METHODS This randomized controlled trial will include 30 participants with traumatic cervical SCI in the subacute phase randomly assigned to 2 intervention groups: the BCI-assisted hand MI training and the hand MI training not supported by BCI. Both interventions are delivered (3 weekly sessions; 12 weeks) as add-on to standard rehabilitation care. A multidimensional assessment will be performed at: randomization/pre-intervention and post-intervention. Primary outcome measure is the Graded Redefined Assessment of Strength, Sensibility and Prehension (GRASSP) somatosensory sub-score. Secondary outcome measures include the motor and functional scores of the GRASSP and other clinical, neuropsychological, neurophysiological and neuroimaging measures. DISCUSSION We expect the BCI-based intervention to promote meaningful cortical sensorimotor plasticity and eventually maximize recovery of arm functions in traumatic cervical subacute SCI. This study will generate a body of knowledge that is fundamental to drive optimization of BCI application in SCI as a top-down therapeutic intervention, thus beyond the canonical use of BCI as assistive tool. TRIAL REGISTRATION Name of registry: DiSCIoser: improving arm sensorimotor functions after spinal cord injury via brain-computer interface training (DiSCIoser). TRIAL REGISTRATION NUMBER NCT05637775; registration date on the ClinicalTrial.gov platform: 05-12-2022.
Collapse
Affiliation(s)
- Emma Colamarino
- Department of Computer, Control, and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Via Ariosto, 25, 00185, Rome, Italy.
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306, 00179, Rome, Italy.
| | - Matteo Lorusso
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306, 00179, Rome, Italy
| | | | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Via Ariosto, 25, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306, 00179, Rome, Italy
| | | | - Giada Serratore
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306, 00179, Rome, Italy
| | - Angela Riccio
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306, 00179, Rome, Italy
| | - Francesco Tomaiuolo
- Department of Clinical and Experimental Medicine, University of Messina, Piazza Pugliatti, 1, 98122, Messina, Italy
| | | | - Federico Giove
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306, 00179, Rome, Italy
- Museo Storico Della Fisica E Centro Studi E Ricerche Enrico Fermi, Via Panisperna, 89a, 00184, Rome, Italy
| | | | - Febo Cincotti
- Department of Computer, Control, and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Via Ariosto, 25, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306, 00179, Rome, Italy
| | - Donatella Mattia
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306, 00179, Rome, Italy
| |
Collapse
|
28
|
Warner FM, Tong B, McDougall J, Martin Ginis KA, Rabchevsky AG, Cragg JJ, Kramer JL. Perspectives on Data Sharing in Persons With Spinal Cord Injury. Neurotrauma Rep 2023; 4:781-789. [PMID: 38028277 PMCID: PMC10659015 DOI: 10.1089/neur.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Open data sharing of clinical research aims to improve transparency and support novel scientific discoveries. There are also risks, including participant identification and the potential for stigmatization. The perspectives of persons participating in research are needed to inform open data-sharing policies. The aim of the current study was to determine perspectives on data sharing in persons with spinal cord injury (SCI), including risks and benefits, and types of data people are most willing to share. A secondary aim was to examine predictors of willingness to share data. Persons with SCIs in the United States and Canada completed a survey developed and disseminated through various channels, including our community partner, the North American Spinal Cord Injury Consortium. The study collected data from 232 participants, with 52.2% from Canada and 42.2% from the United States, and the majority completed the survey in English. Most participants had previously participated in research and had been living with an SCI for ≥5 years. Overall, most participants reported that the potential benefits of data sharing outweighed the negatives, with persons with SCI seen as the most trustworthy partners for data sharing. The highest levels of concern were that information could be stolen and companies might use the information for marketing purposes. Persons with SCI were generally supportive of data sharing for research purposes. Clinical trials should consider including a statement on open data sharing in informed consents to better acknowledge the contribution of research participants in future studies.
Collapse
Affiliation(s)
- Freda M. Warner
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bobo Tong
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessie McDougall
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathleen A. Martin Ginis
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Kelowna, British Columbia, Canada
- School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia, Kelowna, British Columbia, Canada
| | - Alexander G. Rabchevsky
- Department of Physiology and Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky, USA
| | - Jacquelyn J. Cragg
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - John L.K. Kramer
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Abbasimoshaei A, Chinnakkonda Ravi AK, Kern TA. Development of a New Control System for a Rehabilitation Robot Using Electrical Impedance Tomography and Artificial Intelligence. Biomimetics (Basel) 2023; 8:420. [PMID: 37754171 PMCID: PMC10526263 DOI: 10.3390/biomimetics8050420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
In this study, we present a tomography-based control system for a rehabilitation robot using a novel approach to assess advancement and a dynamic model of the system. In this model, the torque generated by the robot and the impedance of the patient's hand are used to determine each step of the rehabilitation. In the proposed control architecture, a regression model is developed and implemented based on the extraction of tomography signals to estimate the muscles state. During the rehabilitation session, the torque applied by the patient is adjusted according to this estimation. The first step of this protocol is to calculate the subject-specific parameters. These include the axis offset, inertia parameters, passive damping and stiffness. The second step involves identifying the other elements of the model, such as the torque resulting from interaction. In this case, the robot will calculate the torque generated by the patient. The developed robot-based solution and the suggested protocol were tested on different participants and showed promising results. First, the prediction of the impedance-position relationship was evaluated, and the prediction was below 2% error. Then, different participants with different impedances were tested, and the results showed that the control system controlled the force and position for each participant individually.
Collapse
Affiliation(s)
- Alireza Abbasimoshaei
- Institute for Mechatronics in Mechanics, Hamburg University of Technology, Eissendorferstr. 38, 21073 Hamburg, Germany; (A.K.C.R.); (T.A.K.)
| | | | | |
Collapse
|
30
|
Nam SM, Koo DK, Kwon JW. Efficacy of Wheelchair Skills Training Program in Enhancing Sitting Balance and Pulmonary Function in Chronic Tetraplegic Patients: A Randomized Controlled Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1610. [PMID: 37763730 PMCID: PMC10536794 DOI: 10.3390/medicina59091610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: This study aimed to evaluate the effectiveness of a wheelchair skills training program (WSTP) in improving sitting balance and pulmonary function in patients with chronic tetraplegia resulting from cervical spinal cord injury (cSCI). Materials and Methods: Twenty-four patients were randomly divided into WSTP and control groups. The WSTP group participated in the WSTP for eight weeks, while the control group underwent conventional physical therapy for the same eight-week period. Sitting balance was evaluated using the activity-based balance level evaluation (ABLE) scale, and pulmonary function was evaluated using forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and peak expiratory flow (PEF). Results: The WSTP group showed significant improvements in both sitting balance and pulmonary function during the intervention period (p < 0.05), whereas the control group did not show any significant changes. A strong positive correlation was found between ABLE scores and all three pulmonary function parameters across all time points. Conclusions: Our results suggest that the WSTP significantly improves sitting balance and specific aspects of lung function in patients with tetraplegia.
Collapse
Affiliation(s)
- Seung-Min Nam
- Department of Sports Rehabilitation and Exercise Management, Yeungnam University College, Daegu 42415, Republic of Korea;
| | - Dong-Kyun Koo
- Department of Public Health Sciences, Graduate School, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
| | - Jung-Won Kwon
- Department of Physical Therapy, College of Health Sciences, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
31
|
Bin L, Wang X, Jiatong H, Donghua F, Qiang W, Yingchao S, Yiming M, Yong M. The effect of robot-assisted gait training for patients with spinal cord injury: a systematic review and meta-analysis. Front Neurosci 2023; 17:1252651. [PMID: 37680972 PMCID: PMC10482434 DOI: 10.3389/fnins.2023.1252651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
Background With the aging of the global population, Spinal injuries are often prone to occur and affect human health. The development of technology has put robots on the stage to assist in the treatment of spinal injuries. Methods A comprehensive literature search were carried out in multiple databases, including PubMed, Medline (Ovid), Web of Science, Cochrane, Embase, Scopus, CKNI, Wang fang, VIP database, Sino Med, Clinical Trails until 20th, June, 2023 to collect effect of robot-assisted gait training for patients with spinal cord injury patients. Primary outcome includes any changes of gait distance and gait speed. Secondary outcomes include any changes in functions (Such as TUG, Leg strength, 10 MWT) and any advent events. Data were extracted from two independent individuals and Cochrane Risk of Bias tool version 2.0 was assessed for the included studies. Systematic review and meta-analysis were performed by RevMan 5.3 software. Results 11 studies were included in meta-analysis. The result showed that gait distance [WMD = 16.05, 95% CI (-15.73, 47.83), I2 = 69%], gait speed (RAGT vs. regular treatment) [WMD = 0.01, 95% CI (-0.04, 0.05), I2 = 43%], gait speed (RAGT vs. no intervention) [WMD = 0.07, 95% CI (0.01, 0.12), I2 = 0%], leg strength [WMD = 0.59, 95% CI (-1.22, 2.40), I2 = 29%], TUG [WMD = 9.25, 95% CI (2.76, 15.73), I2 = 74%], 10 MWT [WMD = 0.01, 95% CI (-0.15, 0.16), I2 = 0%], and 6 MWT [WMD = 1.79, 95% CI (-21.32, 24.90), I2 = 0%]. Conclusion Robot-assisted gait training seems to be helpful for patients with spinal cord to improve TUG. It may not affect gait distance, gait speed, leg strength, 10 MWT, and 6 MWT.
Collapse
Affiliation(s)
- Luo Bin
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Xiaoping Wang
- Department of Orthopedics, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Hu Jiatong
- Department of Acupuncture and Moxibustion, Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Donghua
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Wang Qiang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Shen Yingchao
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Miao Yiming
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Ma Yong
- Institute of Traumatology & Orthopedics and Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traumatology & Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
32
|
Mundra A, Varma Kalidindi K, Chhabra HS, Manghwani J. Spinal cord stimulation for spinal cord injury - Where do we stand? A narrative review. J Clin Orthop Trauma 2023; 43:102210. [PMID: 37663171 PMCID: PMC10470322 DOI: 10.1016/j.jcot.2023.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/14/2023] [Accepted: 06/29/2023] [Indexed: 09/05/2023] Open
Abstract
Recovery of function following a complete spinal cord injury (SCI) or an incomplete SCI where recovery has plateaued still eludes us despite extensive research. Epidural spinal cord stimulation (SCS) was initially used for managing neuropathic pain. It has subsequently demonstrated improvement in motor function in otherwise non-recovering chronic spinal cord injury in animal and human trials. The mechanisms of how it is precisely effective in doing so will need further research, which would help refine the technology for broader application. Transcutaneous spinal cord stimulation (TSCS) is also emerging as a modality to improve the functional outcome in SCI individuals, especially when coupled with appropriate rehabilitation. Apart from motor recovery, ESCS and TSCS have also shown improvement in autonomic, metabolic, genitourinary, and pulmonary function. Since the literature on this is still in its infancy, with no large-scale randomised trials and different studies using different protocols in a wide range of patients, a review of the present literature is imperative to better understand the latest developments in this field. This article examines the existing literature on the use of SCS for SCI individuals with the purpose of enabling functional recovery. It also examines the voids in the present research, thus providing future directions.
Collapse
Affiliation(s)
- Anuj Mundra
- Department of Spine and Rehabilitation, Sri Balaji Action Medical Institute, New Delhi, 110063, India
| | | | - Harvinder Singh Chhabra
- Department of Spine and Rehabilitation, Sri Balaji Action Medical Institute, New Delhi, 110063, India
| | - Jitesh Manghwani
- Indian Spinal Injuries Centre, Vasant Kunj, New Delhi, 110070, India
| |
Collapse
|
33
|
Shahemi NH, Mahat MM, Asri NAN, Amir MA, Ab Rahim S, Kasri MA. Application of Conductive Hydrogels on Spinal Cord Injury Repair: A Review. ACS Biomater Sci Eng 2023. [PMID: 37364251 DOI: 10.1021/acsbiomaterials.3c00194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Spinal cord injury (SCI) causes severe motor or sensory damage that leads to long-term disabilities due to disruption of electrical conduction in neuronal pathways. Despite current clinical therapies being used to limit the propagation of cell or tissue damage, the need for neuroregenerative therapies remains. Conductive hydrogels have been considered a promising neuroregenerative therapy due to their ability to provide a pro-regenerative microenvironment and flexible structure, which conforms to a complex SCI lesion. Furthermore, their conductivity can be utilized for noninvasive electrical signaling in dictating neuronal cell behavior. However, the ability of hydrogels to guide directional axon growth to reach the distal end for complete nerve reconnection remains a critical challenge. In this Review, we highlight recent advances in conductive hydrogels, including the incorporation of conductive materials, fabrication techniques, and cross-linking interactions. We also discuss important characteristics for designing conductive hydrogels for directional growth and regenerative therapy. We propose insights into electrical conductivity properties in a hydrogel that could be implemented as guidance for directional cell growth for SCI applications. Specifically, we highlight the practical implications of recent findings in the field, including the potential for conductive hydrogels to be used in clinical applications. We conclude that conductive hydrogels are a promising neuroregenerative therapy for SCI and that further research is needed to optimize their design and application.
Collapse
Affiliation(s)
- Nur Hidayah Shahemi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Mohd Muzamir Mahat
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Nurul Ain Najihah Asri
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Muhammad Abid Amir
- Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Sharaniza Ab Rahim
- Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Mohamad Arif Kasri
- Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
34
|
Pradat PF, Hayon D, Blancho S, Neveu P, Khamaysa M, Guerout N. Advances in Spinal Cord Neuromodulation: The Integration of Neuroengineering, Computational Approaches, and Innovative Conceptual Frameworks. J Pers Med 2023; 13:993. [PMID: 37373982 DOI: 10.3390/jpm13060993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Spinal cord stimulation (SCS) is an approved treatment for intractable pain and has recently emerged as a promising area of research for restoring function after spinal cord lesion. This review will focus on the historical evolution of this transition and the path that remains to be taken for these methods to be rigorously evaluated for application in clinical practice. New developments in SCS are being driven by advances in the understanding of spinal cord lesions at the molecular, cellular, and neuronal levels, as well as the understanding of compensatory mechanisms. Advances in neuroengineering and the computational neurosciences have enabled the development of new conceptual SCS strategies, such as spatiotemporal neuromodulation, which allows spatially selective stimulation at precise time points during anticipated movement. It has also become increasingly clear that these methods are only effective when combined with intensive rehabilitation techniques, such as new task-oriented methods and robotic aids. The emergence of innovative approaches to spinal cord neuromodulation has sparked significant enthusiasm among patients and in the media. Non-invasive methods are perceived to offer improved safety, patient acceptance, and cost-effectiveness. There is an immediate need for well-designed clinical trials involving consumer or advocacy groups to evaluate and compare the effectiveness of various treatment modalities, assess safety considerations, and establish outcome priorities.
Collapse
Affiliation(s)
- Pierre-François Pradat
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, 75013 Paris, France
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, 75013 Paris, France
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry BT47 6SB, UK
- Institut Pour la Recherche Sur la Moelle Epiniere et l'Encéphale (IRME), 25 Rue Duranton, 75015 Paris, France
| | - David Hayon
- Clinique Saint-Roch, Service d'Anesthésie, 56 Rue de Lille, 59223 Roncq, France
| | - Sophie Blancho
- Institut Pour la Recherche Sur la Moelle Epiniere et l'Encéphale (IRME), 25 Rue Duranton, 75015 Paris, France
| | - Pauline Neveu
- Saints Pères Paris Institute for the Neurosciences, Université Paris Cité, CNRS UMR8003, 75006 Paris, France
| | - Mohammed Khamaysa
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, 75013 Paris, France
| | - Nicolas Guerout
- Saints Pères Paris Institute for the Neurosciences, Université Paris Cité, CNRS UMR8003, 75006 Paris, France
| |
Collapse
|
35
|
Ma J, Li J, Wang X, Li M, Teng W, Tao Z, Xie J, Ma Y, Shi Q, Li B, Saijilafu. GDNF-Loaded Polydopamine Nanoparticles-Based Anisotropic Scaffolds Promote Spinal Cord Repair by Modulating Inhibitory Microenvironment. Adv Healthc Mater 2023; 12:e2202377. [PMID: 36549669 DOI: 10.1002/adhm.202202377] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Spinal cord injury (SCI) is a devastating injury that causes permanent loss of sensation and motor function. SCI repair is a significant challenge due to the limited regenerating ability of adult neurons and the complex inflammatory microenvironment. After SCI, the oxidative stress induced by excessive reactive oxygen species (ROS) often leads to prolonged neuroinflammation that results in sustained damage to the spinal cord tissue. Polydopamine (PDA) shows remarkable capability in scavenging ROS to treat numerous inflammatory diseases. In this study, glial cell-derived neurotrophic factor (GDNF)-loaded PDA nanoparticle-based anisotropic scaffolds for spinal cord repair are developed. It is found that mesoporous PDA nanoparticles (mPDA NPs) in the scaffolds efficiently scavenge ROS and promote microglia M2 polarization, thereby inhibiting inflammatory response at the injury site and providing a favorable microenvironment for nerve cell survival. Furthermore, the GDNF encapsulated in mPDA NPs promotes corticospinal tract motor axon regeneration and its locomotor functional recovery. Together, findings from this study reveal that the GDNF-loaded PDA/Gelatin scaffolds hold potential as an effective artificial transplantation material for SCI treatment.
Collapse
Affiliation(s)
- Jinjin Ma
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jiaying Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xingran Wang
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Meimei Li
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Wenwen Teng
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zihan Tao
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jile Xie
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yanxia Ma
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Qin Shi
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Li
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, 310015, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Saijilafu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, 310015, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| |
Collapse
|
36
|
Koseki K, Takahashi K, Yamamoto S, Yoshikawa K, Abe A, Mutsuzaki H. Use of Robot-Assisted Ankle Training in a Patient with an Incomplete Spinal Cord Injury: A Case Report. J Funct Morphol Kinesiol 2023; 8:jfmk8010031. [PMID: 36976128 PMCID: PMC10054573 DOI: 10.3390/jfmk8010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Rehabilitation interventions are crucial in promoting neuroplasticity after spinal cord injury (SCI). We provided rehabilitation with a single-joint hybrid assistive limb (HAL-SJ) ankle joint unit (HAL-T) in a patient with incomplete SCI. The patient had incomplete paraplegia and SCI (neurological injury height: L1, ASIA Impairment Scale: C, ASIA motor score (R/L) L4:0/0, S1:1/0) following a rupture fracture of the first lumbar vertebra. The HAL-T consisted of a combination of ankle plantar dorsiflexion exercises in the sitting position, knee flexion, and extension exercises in the standing position, and stepping exercises in the standing position with HAL assistance. The plantar dorsiflexion angles of the left and right ankle joints and electromyograms of the tibialis anterior and gastrocnemius muscles were measured and compared using a three-dimensional motion analyzer and surface electromyography before and after HAL-T intervention. Phasic electromyographic activity was developed in the left tibialis anterior muscle during plantar dorsiflexion of the ankle joint after the intervention. No changes were observed in the left and right ankle joint angles. We experienced a case in which intervention using HAL-SJ induced muscle potentials in a patient with a spinal cord injury who was unable to perform voluntary ankle movements due to severe motor-sensory dysfunction.
Collapse
Affiliation(s)
- Kazunori Koseki
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, 4733 Ami, Inashiki-gun, Ibaraki 300-0331, Japan
| | - Kazushi Takahashi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, 4733 Ami, Inashiki-gun, Ibaraki 300-0331, Japan
| | - Satoshi Yamamoto
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Inashiki-gun, Ibaraki 300-0394, Japan
| | - Kenichi Yoshikawa
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, 4733 Ami, Inashiki-gun, Ibaraki 300-0331, Japan
| | - Atsushi Abe
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, 4733 Ami, Inashiki-gun, Ibaraki 300-0331, Japan
| | - Hirotaka Mutsuzaki
- Department of Orthopaedic Surgery, Ibaraki Prefectural University of Health Sciences Hospital, 4733 Ami, Inashiki-gun, Ibaraki 300-0331, Japan
| |
Collapse
|
37
|
Neuromodulation with transcutaneous spinal stimulation reveals different groups of motor profiles during robot-guided stepping in humans with incomplete spinal cord injury. Exp Brain Res 2023; 241:365-382. [PMID: 36534141 PMCID: PMC10278039 DOI: 10.1007/s00221-022-06521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Neuromodulation via spinal stimulation has been investigated for improving motor function and reducing spasticity after spinal cord injury (SCI) in humans. Despite the reported heterogeneity of outcomes, few investigations have attempted to discern commonalities among individual responses to neuromodulation, especially the impact of stimulation frequencies. Here, we examined how exposure to continuous lumbosacral transcutaneous spinal stimulation (TSS) across a range of frequencies affects robotic torques and EMG patterns during stepping in a robotic gait orthosis on a motorized treadmill. We studied nine chronic motor-incomplete SCI individuals (8/1 AIS-C/D, 8 men) during robot-guided stepping with body-weight support without and with TSS applied at random frequencies between 1 and up to 100 Hz at a constant, individually selected stimulation intensity below the common motor threshold for posterior root reflexes. The hip and knee robotic torques needed to maintain the predefined stepping trajectory and EMG in eight bilateral leg muscles were recorded. We calculated the standardized mean difference between the stimulation conditions grouped into frequency bins and the no stimulation condition to determine changes in the normalized torques and the average EMG envelopes. We found heterogeneous changes in robotic torques across individuals. Agglomerative clustering of robotic torques identified four groups wherein the patterns of changes differed in magnitude and direction depending mainly on the stimulation frequency and stance/swing phase. On one end of the spectrum, the changes in robotic torques were greater with increasing stimulation frequencies (four participants), which coincided with a decrease in EMG, mainly due to the reduction of clonogenic motor output in the lower leg muscles. On the other end, we found an inverted u-shape change in torque over the mid-frequency range along with an increase in EMG, reflecting the augmentation of gait-related physiological (two participants) or pathophysiological (one participant) output. We conclude that TSS during robot-guided stepping reveals different frequency-dependent motor profiles among individuals with chronic motor incomplete SCI. This suggests the need for a better understanding and characterization of motor control profiles in SCI when applying TSS as a therapeutic intervention for improving gait.
Collapse
|
38
|
Zhang H, Wu C, Yu DD, Su H, Chen Y, Ni W. Piperine attenuates the inflammation, oxidative stress, and pyroptosis to facilitate recovery from spinal cord injury via autophagy enhancement. Phytother Res 2023; 37:438-451. [PMID: 36114802 DOI: 10.1002/ptr.7625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Spinal cord injury (SCI) is a serious injury that can lead to irreversible motor dysfunction. Due to its complicated pathogenic mechanism, there are no effective drug treatments. Piperine, a natural active alkaloid extracted from black pepper, has been reported to influence neurogenesis and exert a neuroprotective effect in traumatic brain injury. The aim of this study was to investigate the therapeutic effect of piperine in an SCI model. SCI was induced in mice by clamping the spinal cord with a vascular clip for 1 min. Before SCI and every 2 days post-SCI, evaluations using the Basso mouse scale and inclined plane tests were performed. On day 28 after SCI, footprint analyses, and HE/Masson staining of tissues were performed. On a postoperative Day 3, the spinal cord was harvested to assess the levels of pyroptosis, reactive oxygen species (ROS), inflammation, and autophagy. Piperine enhanced functional recovery after SCI. Additionally, piperine reduced inflammation, oxidative stress, pyroptosis, and activated autophagy. However, the effects of piperine on functional recovery after SCI were reversed by autophagy inhibition. The study demonstrated that piperine facilitated functional recovery after SCI by inhibiting inflammatory, oxidative stress, and pyroptosis, mediated by the activation of autophagy.
Collapse
Affiliation(s)
- Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Dong-Dong Yu
- Department of Urology, Huzhou Central Hospital, Huzhou, People's Republic of China
| | - Haohan Su
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanlin Chen
- Spinal Surgery Department, The Central Hospital of Lishui City, Lishui, People's Republic of China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
39
|
Wu C, Su B, Xin N, Tang J, Xiao J, Luo H, Wei D, Luo F, Sun J, Fan H. An upconversion nanoparticle-integrated fibrillar scaffold combined with a NIR-optogenetic strategy to regulate neural cell performance. J Mater Chem B 2023; 11:430-440. [PMID: 36524427 DOI: 10.1039/d2tb02327j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Optogenetics using light-sensitive proteins such as calcium transport channel rhodopsin (CatCh) opens up new possibilities for non-invasive remote manipulation of neural function. However, current optogenetic approaches for neurological disorder therapies rely on visible light excitation and are rarely applied to neurogenesis and nerve regeneration. Herein, we propose a new strategy for tissue engineering which combines optogenetic technology and biomimetic nerve scaffolds. Upconversion nanoparticles (UCNPs) were synthesized and integrated with oriented fibrillar PCL membranes with a collagen coating to establish neuro-matrix interfaces. Benefiting from the excellent bioactivity, oriented fibrillation and NIR-photoresponsivity, the CatCh-transfected PC12 cells on these interfaces exhibited enhanced cell elongation and neurite extension, as well as upregulated neurogenesis upon NIR excitation. Furthermore, a UCNP-integrated scaffold as an optogenetic actuator allowed NIR to penetrate dermal tissues to mediate neural activation, with an efficiency comparable to that of a 470 nm blue light. Compared with current visible light-excited optogenetics, our composite scaffold-mediated NIR stimulation addresses the problem of tissue penetration and will enable less-invasive neurofunctional manipulation, with the potential for remote therapy.
Collapse
Affiliation(s)
- Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China. .,Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Borui Su
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Nini Xin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Jiajia Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Jiamei Xiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Fang Luo
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
40
|
Boato F, Guan X, Zhu Y, Ryu Y, Voutounou M, Rynne C, Freschlin CR, Zumbo P, Betel D, Matho K, Makarov SN, Wu Z, Son YJ, Nummenmaa A, Huang JZ, Edwards DJ, Zhong J. Activation of MAP2K signaling by genetic engineering or HF-rTMS promotes corticospinal axon sprouting and functional regeneration. Sci Transl Med 2023; 15:eabq6885. [PMID: 36599003 DOI: 10.1126/scitranslmed.abq6885] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Facilitating axon regeneration in the injured central nervous system remains a challenging task. RAF-MAP2K signaling plays a key role in axon elongation during nervous system development. Here, we show that conditional expression of a constitutively kinase-activated BRAF in mature corticospinal neurons elicited the expression of a set of transcription factors previously implicated in the regeneration of zebrafish retinal ganglion cell axons and promoted regeneration and sprouting of corticospinal tract (CST) axons after spinal cord injury in mice. Newly sprouting axon collaterals formed synaptic connections with spinal interneurons, resulting in improved recovery of motor function. Noninvasive suprathreshold high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) activated the BRAF canonical downstream effectors MAP2K1/2 and modulated the expression of a set of regeneration-related transcription factors in a pattern consistent with that induced by BRAF activation. HF-rTMS enabled CST axon regeneration and sprouting, which was abolished in MAP2K1/2 conditional null mice. These data collectively demonstrate a central role of MAP2K signaling in augmenting the growth capacity of mature corticospinal neurons and suggest that HF-rTMS might have potential for treating spinal cord injury by modulating MAP2K signaling.
Collapse
Affiliation(s)
- Francesco Boato
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xiaofei Guan
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yanjie Zhu
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Youngjae Ryu
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mariel Voutounou
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Christopher Rynne
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chase R Freschlin
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Doron Betel
- Applied Bioinformatics Core, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Katie Matho
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sergey N Makarov
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Electrical and Computer Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Zhuhao Wu
- Icahn School of Medicine at Mount Sinai, New York, NY 10065, USA
| | - Young-Jin Son
- Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, PA 19140, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Josh Z Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dylan J Edwards
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA.,Thomas Jefferson University, Philadelphia, PA 19108, USA.,Exercise Medicine Research Institute, School of Biomedical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Jian Zhong
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
41
|
Lemos N, Fernandes GL, Ribeiro AM, Maia-Lemos PS, Contiero W, Croos-Bezerra V, Tomlison G, Faber J, Oliveira ASB, Girão MJBC. Rehabilitation of People With Chronic Spinal Cord Injury Using a Laparoscopically Implanted Neurostimulator: Impact on Mobility and Urinary, Anorectal, and Sexual Functions. Neuromodulation 2023; 26:233-245. [PMID: 35248460 DOI: 10.1016/j.neurom.2022.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study aimed to assess the impact of the laparoscopic implantation of neuromodulation electrodes (Possover-LION procedure) on mobility and on sexual, urinary, and anorectal functions of people with chronic spinal cord injury (SCI). MATERIAL AND METHODS Longitudinal analysis of 30 patients with chronic SCI (21 ASIA impairment scale (AIS) A, eight AIS B, and one AIS C) submitted to the Possover-LION procedure for bilateral neuromodulation of femoral, sciatic, and pudendal nerves. Assessments were performed before the surgical procedure and at 3, 6, and 12 months postoperatively. The primary outcome was evolution in walking, measured by the Walking Index for Spinal Cord Injury score, preoperatively and at 12 months. Secondary outcomes were changes in overall mobility (Mobility Assessment Tool for Evaluation of Rehabilitation score), urinary function and quality of life (Qualiveen questionnaire), and bowel (time for bowel emptying proceedings and Wexner's Fecal Incontinence Severity Index [FISI]) and sexual functions (International Index of Erectile Function for men and Female Sexual Function Index for women). Surgical time, intraoperative bleeding, and perioperative complications were also recorded. RESULTS Qualitatively, 18 of 25 (72%) patients with thoracic injury and 3 of 5 (60%) patients with cervical injury managed to establish a walker-assisted gait at one-year follow-up (p < 0.0001). A total of 11 (47.8%) have improved in their urinary incontinence (p < 0.0001), and seven (30.4%) improved their enuresis (p = 0.0156). The FISI improved from a median of 9 points preoperatively to 5.5 at 12 months (p = 0.0056). Of note, 20 of 28 (71.4%) patients reported an improvement on genital sensitivity at 12 months postoperatively (p < 0.0001), but this was not reflected in sexual quality-of-life questionnaires. CONCLUSIONS Patients experienced improved mobility and genital sensitivity and a reduction in the number of urinary and fecal incontinence episodes. By demonstrating reproducible outcomes and safety, this study helps establish the Possover-LION procedure as an addition to the therapeutic armamentarium for the rehabilitation of patients with chronic SCI. CLINICAL TRIAL REGISTRATION This study was registered at the WHO Clinical Trials Database through the Brazilian Registry of Clinical Trials-REBEC (Universal Tracking Number: U1111-1261-4428).
Collapse
Affiliation(s)
- Nucelio Lemos
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil; Department of Gynecology and Neuropelveology, Increasing-Institute of Care and Rehabilitation in Neuropelveology and Gynecology, São Paulo, Brazil.
| | - Gustavo L Fernandes
- Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil; Department of Gynecology and Neuropelveology, Increasing-Institute of Care and Rehabilitation in Neuropelveology and Gynecology, São Paulo, Brazil; Department of Obstetrics and Gynecology, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Augusta M Ribeiro
- Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil; Department of Gynecology and Neuropelveology, Increasing-Institute of Care and Rehabilitation in Neuropelveology and Gynecology, São Paulo, Brazil
| | - Priscila S Maia-Lemos
- Department of Gynecology and Neuropelveology, Increasing-Institute of Care and Rehabilitation in Neuropelveology and Gynecology, São Paulo, Brazil
| | - Wellington Contiero
- Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil; Department of Gynecology and Neuropelveology, Increasing-Institute of Care and Rehabilitation in Neuropelveology and Gynecology, São Paulo, Brazil
| | - Victor Croos-Bezerra
- Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil; Department of Gynecology and Neuropelveology, Increasing-Institute of Care and Rehabilitation in Neuropelveology and Gynecology, São Paulo, Brazil
| | - George Tomlison
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Canada
| | - Jean Faber
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Acary S B Oliveira
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Manoel J B C Girão
- Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Yin ZS, Kang Y, Zhu R, Li S, Qin KP, Tang H, Shan WS. Erythropoietin inhibits ferroptosis and ameliorates neurological function after spinal cord injury. Neural Regen Res 2023; 18:881-888. [DOI: 10.4103/1673-5374.353496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
43
|
Calabrò RS, Portaro S, Tomasello P, Porcari B, Balletta T, Naro A. Paving the way for a better management of pain in patients with spinal cord injury: An exploratory study on the use of Functional Electric Stimulation(FES)-cycling. J Spinal Cord Med 2023; 46:107-117. [PMID: 34369852 PMCID: PMC9897777 DOI: 10.1080/10790268.2021.1961050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CONTEXT/OBJECTIVE Chronic pain is common in patients with spinal cord injury (SCI), for whom it negatively affects quality of life, and its treatment requires an integrated approach. To this end, lower limb functional electrical stimulation (FES) cycling holds promise. OBJECTIVE To investigate pain reduction in a sample of patients with SCI by means of lower limb rehabilitation using FES cycling. DESIGN, SETTING AND PARTICIPANTS Sixteen patients with incomplete and complete SCIs, attending the Neurorobotic Unit of our research institute and reporting pain at or below the level of their SCI were recruited to this exploratory study. INTERVENTIONS Patients undertook two daily sessions of FES cycling, six times weekly, for 6 weeks. OUTCOME MEASURES Pain outcomes were measured using the 0-10 numerical rating scale (NRS), the Multidimensional Pain Inventory for SCI (MPI-SCI), and the 36-Item Short Form Survey (SF-36). Finally, we assessed the features of dorsal laser-evoked potentials (LEPs) to objectively evaluate Aδ fiber pathways. RESULTS All participants tolerated the intervention well, and completed the training without side effects. Statistically significant changes were found in pain-NRS, MPI-SCI, and SF-36 scores, and LEP amplitudes. Following treatment, we found that three patients experienced high pain relief (an NRS decrease of at least 80%), six individuals achieved moderate pain relief (an NRS decrease of about 30-70%), and five participants had mild pain relief (an NRS decrease of less than 30%). CONCLUSION Our preliminary results suggest that FES cycling training is capable of reducing the pain reported by patients with SCI, regardless of American Spinal Injury Association scoring, pain level, or the neurological level of injury. The neurophysiological mechanisms underlying such effects are likely to be both spinal and supraspinal.
Collapse
Affiliation(s)
- Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy,Correspondence to: Rocco Salvatore Calabrò, IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS 113, Ctr. Casazza, Messina98124, Italy; Ph: +3909060128166.
| | | | | | - Bruno Porcari
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Tina Balletta
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| |
Collapse
|
44
|
Bigford GE, Garshick E. Systemic inflammation after spinal cord injury: A review of biological evidence, related health risks, and potential therapies. Curr Opin Pharmacol 2022; 67:102303. [PMID: 36206621 PMCID: PMC9929918 DOI: 10.1016/j.coph.2022.102303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
Individuals with chronic traumatic spinal cord injury (SCI) develop progressive multi-system health problems that result in clinical illness and disability. Systemic inflammation is associated with many of the common medical complications and acquired diseases that accompany chronic SCI, suggesting that it contributes to a number of comorbid pathological conditions. However, many of the mechanisms that promote persistent systemic inflammation and its consequences remain ill-defined. This review describes the significant biological factors that contribute to systemic inflammation, major organ systems affected, health risks, and the potential treatment strategies. We aim to highlight the need for a better understanding of inflammatory processes, and to establish appropriate strategies to address inflammation in SCI.
Collapse
Affiliation(s)
- Gregory E Bigford
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Eric Garshick
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, VA Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Chang SH, Tseng SC, Su H, Francisco GE. Editorial: How can wearable robotic and sensor technology advance neurorehabilitation? Front Neurorobot 2022; 16:1033516. [PMID: 36304781 PMCID: PMC9594539 DOI: 10.3389/fnbot.2022.1033516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 04/01/2025] Open
Affiliation(s)
- Shuo-Hsiu Chang
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX, United States
- Neurorecovery Research Center, TIRR Memorial Hermann, Houston, TX, United States
| | - Shih-Chiao Tseng
- Department of Physical Therapy, University of Texas Medical Branch, Galveston, TX, United States
| | - Hao Su
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Gerard E. Francisco
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX, United States
- Neurorecovery Research Center, TIRR Memorial Hermann, Houston, TX, United States
| |
Collapse
|
46
|
Li Q, Guo Y, Xu C, Sun J, Zeng F, Lin S, Yuan Y. Therapy of spinal cord injury by folic acid polyethylene glycol amine-modified zeolitic imidazole framework-8 nanoparticles targeted activated M/Ms. Front Bioeng Biotechnol 2022; 10:959324. [PMID: 36185443 PMCID: PMC9519986 DOI: 10.3389/fbioe.2022.959324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Excessively activated microglia/macrophages (M/Ms) re-establish the proinflammatory microenvironment that exacerbates motor and/or sensory dysfunction after spinal cord injury (SCI). Thus, proinflammatory M/Ms-suppressed treatments may be effective strategies for SCI. However, the utilization of anti-inflammatory drugs for clinical approaches and biomedical research has side effects, such as nephrotoxicity and hepatotoxicity. In this study, we fabricated folic acid-polyethylene glycol (FA-PEG) amine-modified zeolitic imidazole framework-8 (ZIF-8) nanoparticles (FA-PEG/ZIF-8) and found that it effectively restored function in vivo. FA-PEG/ZIF-8 treatment significantly eliminated proinflammatory M/Ms without targeting other nerve cells and downregulated inflammation in the injured lesion. Furthermore, FA-PEG/ZIF-8 caused little toxicity in SCI mice compared to normal mice. These results suggest that FA-PEG/ZIF-8 has the potential to help recover from early-stage SCI by suppressing proinflammatory M/Ms.
Collapse
Affiliation(s)
- Qi Li
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yue Guo
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chang Xu
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jiachen Sun
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Fanzhuo Zeng
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Sen Lin
- Key Laboratory of Medical Tissue Engineering, Jinzhou Medical University, Jinzhou, China
- *Correspondence: Sen Lin, ; Yajiang Yuan,
| | - Yajiang Yuan
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- Key Laboratory of Medical Tissue Engineering, Jinzhou Medical University, Jinzhou, China
- *Correspondence: Sen Lin, ; Yajiang Yuan,
| |
Collapse
|
47
|
Hou Y, Luo D, Hou Y, Luan J, Zhan J, Chen Z, E S, Xu L, Lin D. Bu Shen Huo Xue decoction promotes functional recovery in spinal cord injury mice by improving the microenvironment to promote axonal regeneration. Chin Med 2022; 17:85. [PMID: 35820953 PMCID: PMC9277908 DOI: 10.1186/s13020-022-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bu-Shen-Huo-Xue (BSHX) decoction has been used in the postoperative rehabilitation of patients with spinal cord injury in China. In the present study, we aim to reveal the bioactive compounds in BSHX decoction and comprehensively explore the effects of BSHX decoction and the underlying mechanism in spinal cord injury recovery. METHODS The main chemical constituents in BSHX decoction were determined by UPLC-MS/MS. SCI mice were induced by a pneumatic impact device at T9-T10 level of the vertebra, and treated with BSHX decoction. Basso-Beattie-Bresnahan (BBB) score, footprint analysis, hematoxylin-eosin (H&E) staining, Nissl staining and a series of immunofluorescence staining were performed to investigate the functional recovery, glial scar formation and axon regeneration after BSHX treatment. Immunofluorescent staining of bromodeoxyuridine (BrdU), neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) was performed to evaluate the effect of BSHX decoction on neural stem cells (NSCs) proliferation and differentiation. RESULTS We found that the main compounds in BSHX decoction were Gallic acid, 3,4-Dihydroxybenzaldehyde, (+)-Catechin, Paeoniflorin, Rosmarinic acid, and Diosmetin. BSHX decoction improved the pathological findings in SCI mice through invigorating blood circulation and cleaning blood stasis in the lesion site. In addition, it reduced tissue damage and neuron loss by inhibiting astrocytes activation, and promoting the polarization of microglia towards M2 phenotype. The functional recovery test revealed that BSHX treatment improved the motor function recovery post SCI. CONCLUSIONS Our study provided evidence that BSHX treatment could improve the microenvironment of the injured spinal cord to promote axonal regeneration and functional recovery in SCI mice.
Collapse
Affiliation(s)
- Yonghui Hou
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Dan Luo
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Yu Hou
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Jiyao Luan
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Jiheng Zhan
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Zepeng Chen
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Shunmei E
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 55 Neihuan Xi Road, Panyu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Liangliang Xu
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China. .,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China. .,Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
| | - Dingkun Lin
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China. .,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.
| |
Collapse
|
48
|
Analysis of temperaturepain sensitivity in patients with consequences of the cervical spinal cord injury. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.3.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. The standard neurological assessment in patients with long-term consequences of spine-and-spinal cord injury and severe neurological deficit does not allow to accurately identify changes in sensitivity that determine the level, degree and nature of spinal cord injury, as well as to evaluate the minimal dynamics of these disorders with different treatment options. As a result, an objective instrumental assessment of the sensory sphere in the long-term period of spinal cord injury has not lost its relevance.The aim. To conduct an instrumental study of the temperature-pain sensitivity condition in patients with partial gross damage to the cervical spinal cord in the long-term period of the disease (type B on the ASIA scale).Methods. We examined 23 patients with consequences of vertebral fractures of the cervical spine in the late period of traumatic spinal cord disease, Grade B on the ASIA scale ASIA. The clinical analysis of sensitive disorders was performed according to ISNCSCI and ASIA scales. While studying the temperature-pain sensitivity the threshold of thermal sensitivity and the threshold of pain from hot were determined in СIV–SI dermatomes on the right and on the left using an electricesthesiometer.Results. The examined patients had hypesthesia of heat and pain sensitivity, hyperesthesia of pain sensitivity, thermoanesthesia and thermoanalgesia. The degree of changes in the temperature-pain sensitivity depended on the topographic localization of dermatomes. The more distally the study area was located from the level of damage, the more pronounced the disorders were. In 30.4 % of patients, the pain sensitivity from hot in the chain of dermatomes from CIV to SI was preserved on at least one side. The combination of thermoanesthesia with thermoanalgesia was observed in 69.6 % of cases in dermatomes with ThVII and distally.Conclusions. The instrumentally registered level of the temperature-pain sensitivity disorder did not correspond to clinically determined localization of sensory disorders. The range of discrepancy ranged from 2 to 12 dermatomes, with defining the sensitivity subclinical deficit over the area of clinical sensory disorders.
Collapse
|
49
|
Phenotypes of Motor Deficit and Pain after Experimental Spinal Cord Injury. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9060262. [PMID: 35735505 PMCID: PMC9220047 DOI: 10.3390/bioengineering9060262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022]
Abstract
Motor disability is a common outcome of spinal cord injury (SCI). The recovery of motor function after injury depends on the severity of neurotrauma; motor deficit can be reversible, at least partially, due to the innate tissue capability to recover, which, however, deteriorates with age. Pain is often a comorbidity of injury, although its prediction remains poor. It is largely unknown whether pain can attend motor dysfunction. Here, we implemented SCI for modelling severe and moderate neurotrauma and monitored SCI rats for up to 5 months post-injury to determine the profiles of both motor deficit and nociceptive sensitivity. Our data showed that motor dysfunction remained persistent after a moderate SCI in older animals (5-month-old); however, there were two populations among young SCI rats (1 month-old) whose motor deficit either declined or exacerbated even more over 4–5 weeks after identical injury. All young SCI rats displayed changed nociceptive sensitivity in thermal and mechanical modalities. The regression analysis of the changes revealed a population trend with respect to hyper- or hyposensitivity/motor deficit. Together, our data describe the phenotypes of motor deficit and pain, the two severe complications of neurotrauma. Our findings also suggest the predictability of motor dysfunction and pain syndromes following SCI that can be a hallmark for long-term rehabilitation and recovery after injury.
Collapse
|
50
|
Bourguignon L, Tong B, Geisler F, Schubert M, Röhrich F, Saur M, Weidner N, Rupp R, Kalke YBB, Abel R, Maier D, Grassner L, Chhabra HS, Liebscher T, Cragg JJ, Kramer J, Curt A, Jutzeler CR. International surveillance study in acute spinal cord injury confirms viability of multinational clinical trials. BMC Med 2022; 20:225. [PMID: 35705947 PMCID: PMC9202190 DOI: 10.1186/s12916-022-02395-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The epidemiological international landscape of traumatic spinal cord injury (SCI) has evolved over the last decades along with given inherent differences in acute care and rehabilitation across countries and jurisdictions. However, to what extent these differences may influence neurological and functional recovery as well as the integrity of international trials is unclear. The latter also relates to historical clinical data that are exploited to inform clinical trial design and as potential comparative data. METHODS Epidemiological and clinical data of individuals with traumatic and ischemic SCI enrolled in the European Multi-Center Study about Spinal Cord Injury (EMSCI) were analyzed. Mixed-effect models were employed to account for the longitudinal nature of the data, efficiently handle missing data, and adjust for covariates. The primary outcomes comprised demographics/injury characteristics and standard scores to quantify neurological (i.e., motor and sensory scores examined according to the International Standards for the Neurological Classification of Spinal Cord Injury) and functional recovery (walking function). We externally validated our findings leveraging data from a completed North American landmark clinical trial. RESULTS A total of 4601 patients with acute SCI were included. Over the course of 20 years, the ratio of male to female patients remained stable at 3:1, while the distribution of age at injury significantly shifted from unimodal (2001/02) to bimodal distribution (2019). The proportional distribution of injury severities and levels remained stable with the largest percentages of motor complete injuries. Both, the rate and pattern of neurological and functional recovery, remained unchanged throughout the surveillance period despite the increasing age at injury. The findings related to recovery profiles were confirmed by an external validation cohort (n=791). Lastly, we built an open-access and online surveillance platform ("Neurosurveillance") to interactively exploit the study results and beyond. CONCLUSIONS Despite some epidemiological changes and considerable advances in clinical management and rehabilitation, the neurological and functional recovery following SCI has remained stable over the last two decades. Our study, including a newly created open-access and online surveillance tool, constitutes an unparalleled resource to inform clinical practice and implementation of forthcoming clinical trials targeting neural repair and plasticity in acute spinal cord injury.
Collapse
Affiliation(s)
- Lucie Bourguignon
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zürich, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bobo Tong
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Fred Geisler
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Martin Schubert
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Lengghalde 2, 8006, Zürich, Switzerland
| | - Frank Röhrich
- Berufsgenossenschaftliche Klinik Bergmanstrost of Halle, Halle, Germany
| | - Marion Saur
- Orthopädische Klinik, Hessisch Lichtenau, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Rüdiger Rupp
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Rainer Abel
- Spinal Cord Injury Center, Bayreuth, Germany
| | - Doris Maier
- Spinal Cord Injury Center, Trauma Center Murnau, Murnau, Germany
| | - Lukas Grassner
- Spinal Cord Injury Center, Trauma Center Murnau, Murnau, Germany.,Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - Harvinder S Chhabra
- Spine Service, Indian Spinal Injuries Centre, Sector C, Vasant Kunj, New Delhi, India
| | - Thomas Liebscher
- Treatment Centre for Spinal Cord Injuries, Trauma Hospital Berlin, Berlin, Germany
| | - Jacquelyn J Cragg
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada.,Collaboration for Outcomes Research and Evaluation (CORE), Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | - John Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.,Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Lengghalde 2, 8006, Zürich, Switzerland
| | - Catherine R Jutzeler
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zürich, Switzerland. .,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland. .,Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Lengghalde 2, 8006, Zürich, Switzerland.
| |
Collapse
|