1
|
Xu T, Deng Z, Yu Y, Duan W, Ma Z, Liu H, Li L, Zhang M, Zhou S, Yang P, Qin X, Zhang Z, Meng F, Ji Y. Changes of brain structure and structural covariance networks in Parkinson's disease with different sides of onset. Front Aging Neurosci 2025; 17:1564754. [PMID: 40303467 PMCID: PMC12037599 DOI: 10.3389/fnagi.2025.1564754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Background Parkinson's disease (PD) typically presents with unilateral symptoms in early stages, starting on one side and progressing, with the onset side showing more severe motor symptoms even after bilateralization. This asymmetry may reflect complex interactions among multiple brain regions and their network connections. In this study, we aimed to use surface-based morphometry (SBM) and structural covariance networks (SCNs) to investigate the differences in brain structure and network characteristics between patients with left-onset PD (LPD) and right-onset PD (RPD). Methods A total of 51 LPD and 49 RPD patients were recruited. Clinical assessments included the Unified Parkinson's Disease Rating Scale motor section, Hoehn and Yahr stage, Mini-Mental State Examination, Parkinson's Disease Questionnaire, and Beck Depression Inventory. All participants underwent 3 T structural MRI. FreeSurfer was used to perform vertex-wise comparisons of cortical surface area (CSA) and cortical thickness (CT), whereas the Brain Connectivity Toolbox was implemented to construct and analyze the structural covariance networks. Results In patients with LPD, we found reduced CSA in the right supramarginal gyrus (SMG), right precuneus (PCUN), left inferior parietal lobule (IPL), and left lingual gyrus (LING) compared to RPD, while no significant differences in CT were found between the two groups. The CSA of the right PCUN showed a significant positive correlation with MMSE score in LPD patients. In our SCNs analysis, LPD patients exhibited increased normalized characteristic path length and decreased small-world index in CSA-based networks, while in CT-based networks, they showed increased small-world index and global efficiency compared to RPD. No significant differences in nodal characteristics were observed in either CSA-based or CT-based networks between the two groups. Conclusion In patients with LPD, reductions in CSA observed in the right PCUN, right SMG, left IPL, and left LING may be associated with cognitive impairments and hallucinations among non-motor symptoms of PD. Additionally, the SCNs of LPD and RPD patients show significant differences in global topology, but regional node characteristics do not reflect lateralization differences. These findings offer new insights into the mechanisms of symptom lateralization in PD from the perspective of brain regional structure and network topology.
Collapse
Affiliation(s)
- Tianqi Xu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihuai Deng
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yinhui Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenchao Duan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zeyu Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoran Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lianling Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Moxuan Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Siyu Zhou
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Pengda Yang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xueyan Qin
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fangang Meng
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuchen Ji
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Ignatavicius A, Matar E, Lewis SJG. Visual hallucinations in Parkinson's disease: spotlight on central cholinergic dysfunction. Brain 2025; 148:376-393. [PMID: 39252645 PMCID: PMC11788216 DOI: 10.1093/brain/awae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Visual hallucinations are a common non-motor feature of Parkinson's disease and have been associated with accelerated cognitive decline, increased mortality and early institutionalization. Despite their prevalence and negative impact on patient outcomes, the repertoire of treatments aimed at addressing this troubling symptom is limited. Over the past two decades, significant contributions have been made in uncovering the pathological and functional mechanisms of visual hallucinations, bringing us closer to the development of a comprehensive neurobiological framework. Convergent evidence now suggests that degeneration within the central cholinergic system may play a significant role in the genesis and progression of visual hallucinations. Here, we outline how cholinergic dysfunction may serve as a potential unifying neurobiological substrate underlying the multifactorial and dynamic nature of visual hallucinations. Drawing upon previous theoretical models, we explore the impact that alterations in cholinergic neurotransmission has on the core cognitive processes pertinent to abnormal perceptual experiences. We conclude by highlighting that a deeper understanding of cholinergic neurobiology and individual pathophysiology may help to improve established and emerging treatment strategies for the management of visual hallucinations and psychotic symptoms in Parkinson's disease.
Collapse
Affiliation(s)
- Anna Ignatavicius
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Elie Matar
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2050, Australia
- Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Simon J G Lewis
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University Centre for Parkinson’s Disease Research, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
3
|
Hamedani AG, Willis AW, Ying GS. Self-reported Visual Difficulty, Age-related Eye Disease, and Neuropsychiatric Outcomes in Older Adults. Ophthalmic Epidemiol 2025; 32:103-111. [PMID: 38718102 PMCID: PMC11543918 DOI: 10.1080/09286586.2024.2343725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/03/2024] [Accepted: 04/10/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE Self-reported visual difficulty is consistently associated with dementia and other neuropsychiatric outcomes, but studies of specific age-related eye diseases have yielded conflicting results. METHODS We conducted a retrospective cohort study using data from The National Health and Aging Trends Study, an ongoing nationally representative survey of older U.S. adults (n = 10,089). All subjects are screened for self-reported visual difficulty annually. Using linked Medicare claims data, we identified subjects with age-related macular degeneration (AMD), primary open-angle glaucoma (POAG), diabetic retinopathy, and cataract. For each condition, controls with complete Medicare eligibility and at least one eye care encounter were selected. We used semiparametric discrete time proportional hazards models to measure associations with incident dementia, and generalized estimating equations to examine longitudinal associations with depression, anxiety, and hallucinations, adjusting for baseline demographics and time-varying comorbidities. RESULTS Self-reported visual difficulty was associated with dementia (HR 1.16, 95% CI: 1.00-1.34), depression (OR 1.14, 95% CI: 1.04-1.26), anxiety (OR 1.17, 95% CI: 1.06-1.29), and hallucinations (OR 1.54, 95% CI: 1.29-1.84). Diabetic retinopathy was associated with depression (OR 1.31, 95% CI: 1.05-1.64), and cataracts were associated with a lower risk of depression (OR 0.84, 95% CI: 0.74-0.95) and anxiety (OR 0.86, 95% CI: 0.75-0.99). There were no other associations between age-related eye disease and neuropsychiatric outcomes. CONCLUSION Self-reported visual difficulty is associated with dementia and other neuropsychiatric outcomes to a greater degree than age-related eye disease. These findings highlight the distinction between self-reported vision and clinically diagnosed eye disease with regard to health outcomes in older adults.
Collapse
Affiliation(s)
- Ali G. Hamedani
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Leonard Davis Institute for Health Economics, University of Pennsylvania, Philadelphia, PA
| | - Allison W. Willis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Leonard Davis Institute for Health Economics, University of Pennsylvania, Philadelphia, PA
| | - Gui-shuang Ying
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
4
|
Alotaibi AM, Alosaimi MH, Alshammari NS, Orfali RS, Alwatban AZ, Alsharif RA, Meyer GF, Bentall RP. Exploring the relationship between hallucination proneness and brain morphology. Neuroimage 2024; 304:120942. [PMID: 39586342 DOI: 10.1016/j.neuroimage.2024.120942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Hallucinations, including both auditory and visual forms, are often associated with alterations in brain structure, particularly in specific language-related cortical areas. Existing models propose different frameworks for understanding the relationship between brain volume and hallucination proneness, but practical evidence supporting these models is limited. METHODS This study investigated the relationship between hallucination proneness and brain volume in language-related cortical regions, specifically the superior temporal gyrus and Broca's area. A total of 68 participants, primarily university students, completed the Launay-Slade Hallucination Scale (LSHS) to assess hallucination proneness for both auditory and visual experiences. Structural MRI scans were used to measure brain volume in the targeted regions. RESULTS The results indicated significant positive correlations between LSHS scores and brain volume in the superior temporal gyrus and Broca's area regions previously linked to volume reductions in patients with clinically diagnosed hallucinations. Participants reporting high hallucination proneness for both auditory and visual hallucinations exhibited higher brain volumes in these language areas compared to those experiencing hallucinations rarely or never. CONCLUSIONS These findings challenge existing models by suggesting that higher brain volumes in language-related cortical areas may be associated with increased proneness to both auditory and visual hallucinations in non-clinical populations. This contrasts with the volume reductions seen in patients with clinical hallucinations and highlights the need for further research into the complex interplay between brain structure and hallucinatory experiences.
Collapse
Affiliation(s)
- Abdullah M Alotaibi
- Research Centre, King Fahad Medical City, Riyadh, 12231, Saudi Arabia; Clinical and Cognitive Neuroscience Group, Department of Experimental Psychology, Liverpool University, L69 7ZA, Liverpool, L69 7ZX, UK.
| | - Manal H Alosaimi
- Radiological Science Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Razan S Orfali
- Research Centre, King Fahad Medical City, Riyadh, 12231, Saudi Arabia
| | - Adnan Z Alwatban
- Research Centre, King Fahad Medical City, Riyadh, 12231, Saudi Arabia
| | - Roaa A Alsharif
- Research Centre, King Fahad Medical City, Riyadh, 12231, Saudi Arabia
| | - Georg F Meyer
- Clinical and Cognitive Neuroscience Group, Department of Experimental Psychology, Liverpool University, L69 7ZA, Liverpool, L69 7ZX, UK.
| | - Richard P Bentall
- Department of Psychology, University of Sheffield, Cathedral Court, 1 Vicar Lane, Sheffield, S1 2LT, UK.
| |
Collapse
|
5
|
Stamenović J, Živadinović B, Đurić V. Clinical characteristics and treatment of psychosis in Parkinson's disease: A narrative review. J Chin Med Assoc 2024; 87:972-979. [PMID: 39118220 DOI: 10.1097/jcma.0000000000001146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Parkinson's disease (PD) is a chronic, progressive, neurodegenerative disorder whose clinical presentation consists of motor and non-motor signs and symptoms. Among the non-motor symptoms, psychosis can occur in the later stages of the disease. Psychosis in PD (PDP) is a common, complex, and significantly disabling disorder associated with poorer quality of life, accelerated cognitive decline, need for hospitalization or institutionalization, and mortality. Hallucinations are a significant symptom of PDP, sporadic at first but more frequent in the later course of the disease, and significantly disrupt daily activities. Appropriate and timely screening of psychotic manifestations is necessary for adequate therapeutic procedures. After the exclusion of comorbid conditions as a possible cause of psychosis, correction of antiparkinsonian therapy may be required, and if necessary, the introduction of antipsychotics. The latest therapeutic recommendations include the use of pimavanserin, if available, otherwise second-generation or atypical antipsychotics. Although PDP has long been recognized as a possible complication in the course of the disease, further clinical studies are needed to fully understand its etiopathogenesis and pathophysiological mechanisms.
Collapse
Affiliation(s)
- Jelena Stamenović
- Medical Faculty, Department of Neurology, University of Niš, Niš, Serbia
- Clinic of Neurology, University Clinical Center of Niš, Niš, Serbia
| | - Biljana Živadinović
- Medical Faculty, Department of Neurology, University of Niš, Niš, Serbia
- Clinic of Neurology, University Clinical Center of Niš, Niš, Serbia
| | | |
Collapse
|
6
|
Lu Q, Zhu Z, Zhang H, Gan C, Shan A, Gao M, Sun H, Cao X, Yuan Y, Tracy JI, Zhang Q, Zhang K. Shared and distinct cortical morphometric alterations in five neuropsychiatric symptoms of Parkinson's disease. Transl Psychiatry 2024; 14:347. [PMID: 39214962 PMCID: PMC11364691 DOI: 10.1038/s41398-024-03070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Neuropsychiatric symptoms (including anxiety, depression, apathy, impulse-compulsive behaviors and hallucinations) are among the most common non-motor features of Parkinson's disease. Whether these symptoms should be considered as a direct consequence of the pathophysiologic mechanisms of Parkinson's disease is controversial. Morphometric similarity network analysis and epicenter mapping approach were performed on T1-weighted images of 505 patients with Parkinson's disease and 167 age- and sex-matched healthy participants from Parkinson's Progression Markers Initiative database to reveal the commonalities and specificities of distinct neuropsychiatric symptoms. Abnormal cortical co-alteration pattern in patients with neuropsychiatric symptoms was in somatomotor, vision and frontoparietal regions, with epicenters in somatomotor regions. Apathy, impulse-compulsive behaviors and hallucinations shares structural abnormalities in somatomotor and vision regions, with epicenters in somatomotor regions. In contrast, the cortical abnormalities and epicenters of anxiety and depression were prominent in the default mode network regions. By embedding each symptom within their co-alteration space, we observed a cluster composed of apathy, impulse-compulsive behaviors and hallucinations, while anxiety and depression remained separate. Our findings indicate different structural mechanisms underlie the occurrence and progression of different neuropsychiatric symptoms. Based upon these results, we propose that apathy, impulse-compulsive behaviors and hallucinations are directly related to damage of motor circuit, while anxiety and depression may be the combination effects of primary pathophysiology of Parkinson's disease and psychosocial causes.
Collapse
Affiliation(s)
- Qianling Lu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhuang Zhu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Heng Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caiting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aidi Shan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengxi Gao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huimin Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingyue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongsheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Joseph I Tracy
- Farber Institute for Neuroscience, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qirui Zhang
- Farber Institute for Neuroscience, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
D'Antonio F, Teghil A, Boccia M, Bechi Gabrielli G, Giulietti G, Conti D, Suppa A, Fabbrini A, Fiorelli M, Caramia F, Bruno G, Guariglia C, Aarsland D, Ffytche D. Distinct grey and white matter changes are associated with the phenomenology of visual hallucinations in Lewy Body Disease. Sci Rep 2024; 14:14748. [PMID: 38926597 PMCID: PMC11208453 DOI: 10.1038/s41598-024-65536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Visual hallucinations in Lewy body disease (LBD) can be differentiated based on phenomenology into minor phenomena (MVH) and complex hallucinations (CVH). MVH include a variety of phenomena, such as illusions, presence and passage hallucinations occurring at early stages of LBD. The neural mechanisms of visual hallucinations are largely unknown. The hodotopic model posits that the hallucination state is due to abnormal activity in specialized visual areas, that occurs in the context of wider network connectivity alterations and that phenomenology of VH, including content and temporal characteristics, may help identify brain regions underpinning these phenomena. Here we investigated both the topological and hodological neural basis of visual hallucinations integrating grey and white matter imaging analyses. We studied LBD patients with VH and age matched healthy controls (HC). VH were assessed using a North-East-Visual-Hallucinations-Interview that captures phenomenological detail. Then we applied voxel-based morphometry and tract based spatial statistics approaches to identify grey and white matter changes. First, we compared LBD patients and HC. We found a reduced grey matter volume and a widespread damage of white tracts in LBD compared to HC. Then we tested the association between CVH and MVH and grey and white matter indices. We found that CVH duration was associated with decreased grey matter volume in the fusiform gyrus suggesting that LBD neurodegeneration-related abnormal activity in this area is responsible for CVH. An unexpected finding was that MVH severity was associated with a greater integrity of white matter tracts, specifically those connecting dorsal, ventral attention networks and visual areas. Our results suggest that networks underlying MVH need to be partly intact and functional for MVH experiences to occur, while CVH occur when cortical areas are damaged. The findings support the hodotopic view and the hypothesis that MVH and CVH relate to different neural mechanisms, with wider implications for the treatment of these symptoms in a clinical context.
Collapse
Affiliation(s)
- Fabrizia D'Antonio
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy.
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Alice Teghil
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Maddalena Boccia
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Giulia Bechi Gabrielli
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
| | | | - Desirée Conti
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Antonio Suppa
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, IS, Italy
| | - Andrea Fabbrini
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
| | - Marco Fiorelli
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
| | - Francesca Caramia
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Cecilia Guariglia
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Dag Aarsland
- Department of Old Age Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, IOPPN, London, UK
| | - Dominic Ffytche
- Department of Old Age Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, IOPPN, London, UK
| |
Collapse
|
8
|
Huang YC, Hong CT, Chi WC, Yen CF, Fang Liao H, Liou TH, Chan L. Deterioration of fine motor skills and functional disability in patients with moderate-to-advanced Parkinson disease: A longitudinal follow-up study. Arch Gerontol Geriatr 2024; 121:105366. [PMID: 38341958 DOI: 10.1016/j.archger.2024.105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
INTRODUCTION Parkinson disease (PD) caused substantially disability. The impairment of fine motor skills (FMSs) is correlated with the severity of functional disability (FD) cross-sectionally in people with PD (PwP). The present study investigated the decline in FMSs and the predictive value of baseline FMSs for the progression of FD. METHODS People with moderate-to-advanced PD who received two evaluations within 1-5 years were identified from the Taiwan Data Bank of Persons with Disability database. The World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0) was used to evaluate FD, and FMSs including pen-holding, buttoning, and knotting were assessed. RESULTS Our study included 2,271 people with moderate-to-advanced PD. We observed annual progression of FD in each domain of the WHODAS 2.0, with no difference between the sexes. The most significant correlation between FD and FMSs was that of decline in buttoning ability and deterioration of summary WHODAS 2.0 scores. Deterioration in FD across all domains of WHODAS 2.0 was associated with at least one FMS. The extent of disability in all three types of FMS at baseline was also correlated with deterioration of motility. Additionally, baseline disability in buttoning was significantly correlated with cognitive decline, and disability in knotting was significantly associated with the progression of FD. CONCLUSION FMSs may be reliable markers for further FD, particularly in the areas of cognition, motility, and life activity. Because of the significant FD observed in people with moderate-to-advanced PD, the availability of predictors is essential for applying precautionary measures and providing appropriate treatment.
Collapse
Affiliation(s)
- Yin-Chia Huang
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, 11031, Taiwan
| | - Wen-Chou Chi
- Taiwan Society of International Classification of Functioning, Disability and Health, TSICF, New Taipei City, 23561, Taiwan; Department of Occupational Therapy, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Chia-Feng Yen
- Taiwan Society of International Classification of Functioning, Disability and Health, TSICF, New Taipei City, 23561, Taiwan; Department of Public Health, Tzu Chi University, Hualien City, 97004, Taiwan
| | - Hua- Fang Liao
- Taiwan Society of International Classification of Functioning, Disability and Health, TSICF, New Taipei City, 23561, Taiwan; School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Tsan-Hon Liou
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, 11031, Taiwan; Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Rd., Zhonghe District, New Taipei City, 23561, Taiwan.
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, 11031, Taiwan; Department of Neurology, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Rd., Zhonghe District, New Taipei City, 23561, Taiwan.
| |
Collapse
|
9
|
Pagonabarraga J, Bejr-Kasem H, Martinez-Horta S, Kulisevsky J. Parkinson disease psychosis: from phenomenology to neurobiological mechanisms. Nat Rev Neurol 2024; 20:135-150. [PMID: 38225264 DOI: 10.1038/s41582-023-00918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
Parkinson disease (PD) psychosis (PDP) is a spectrum of illusions, hallucinations and delusions that are associated with PD throughout its disease course. Psychotic phenomena can manifest from the earliest stages of PD and might follow a continuum from minor hallucinations to structured hallucinations and delusions. Initially, PDP was considered to be a complication associated with dopaminergic drug use. However, subsequent research has provided evidence that PDP arises from the progression of brain alterations caused by PD itself, coupled with the use of dopaminergic drugs. The combined dysfunction of attentional control systems, sensory processing, limbic structures, the default mode network and thalamocortical connections provides a conceptual framework to explain how new incoming stimuli are incorrectly categorized, and how aberrant hierarchical predictive processing can produce false percepts that intrude into the stream of consciousness. The past decade has seen the publication of new data on the phenomenology and neurobiological basis of PDP from the initial stages of the disease, as well as the neurotransmitter systems involved in PDP initiation and progression. In this Review, we discuss the latest clinical, neuroimaging and neurochemical evidence that could aid early identification of psychotic phenomena in PD and inform the discovery of new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Javier Pagonabarraga
- Movement Disorder Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain.
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.
- Centro de Investigación en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Helena Bejr-Kasem
- Movement Disorder Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Saul Martinez-Horta
- Movement Disorder Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorder Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
10
|
Pisani S, Gosse L, Wieretilo R, Ffytche D, Velayudhan L, Bhattacharyya S. Cognitive and executive impairments in Parkinson's disease psychosis: a Bayesian meta-analysis. J Neurol Neurosurg Psychiatry 2024; 95:277-287. [PMID: 37468306 DOI: 10.1136/jnnp-2022-331028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/31/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Cognitive and executive deficits lead to worsening of quality of life and are a risk factor for developing dementia in people with Parkinson's disease (PD) with psychosis (PDP). However, which key cognitive domains are differentially affected in PDP compared with those without (PDnP), remains unclear. Here, we examined this using a Bayesian meta-analytical approach. METHODS Searches were conducted on PubMed, Web of Science, SCOPUS, Medline and PsycINFO. Hedges' g effect-size estimates were extracted from eligible studies as a measure of standard mean differences between PDP and PDnP participants. Meta-analyses were conducted separately for each cognitive domain and subdomain, we examined the effect of age, PD medications, PD duration and severity, depression and psychosis severity for all major domains with meta-regressions. RESULTS Effect-size estimates suggest worse performance on all major domains (k=105 studies) in PDP compared with PDnP participants, with global cognition (k=103 studies, g=-0.57), processing speed (k=29 studies, g=-0.58), executive functions (k=33, g=-0.56), episodic memory (k=30 studies, g=-0.58) and perception (k=34 studies, g=-0.55) as the most likely affected domains. Age, depression and PD duration had moderating effects on task-related performance across most of the major nine domains. CONCLUSIONS We report extensive deficits across nine domains as well as subdomains in PD psychosis, with global cognition, processing speed and executive functions as the most likely impaired. The presence of depression may influence task-related performance in PDP, alongside age and PD duration, but not dose of dopamine replacement treatments.
Collapse
Affiliation(s)
- Sara Pisani
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Luca Gosse
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Faculty of Medicine, Dentistry and Health, Medical School, The University of Sheffield, Sheffield, UK
| | - Rita Wieretilo
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dominic Ffytche
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Latha Velayudhan
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
11
|
Batzu L, Podlewska A, Gibson L, Chaudhuri KR, Aarsland D. A general clinical overview of the non-motor symptoms in Parkinson's disease: Neuropsychiatric symptoms. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 174:59-97. [PMID: 38341232 DOI: 10.1016/bs.irn.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The heterogeneity of non-motor features observed in people with Parkinson's disease (PD) is often dominated by one or more symptoms belonging to the neuropsychiatric spectrum, such as cognitive impairment, psychosis, depression, anxiety, and apathy. Due to their high prevalence in people with PD (PwP) and their occurrence in every stage of the disease, from the prodromal to the advanced stage, it is not surprising that PD can be conceptualised as a complex neuropsychiatric disorder. Despite progress in understanding the pathophysiological mechanisms underlying the neuropsychiatric signs and symptoms in PD, and better identification and diagnosis of these symptoms, effective treatments are still a major unmet need. The impact of these symptoms on the quality of life of PwP and caregivers, as well as their contribution to the overall non-motor symptom burden can be greater than that of motor symptoms and require a personalised, holistic approach. In this chapter, we provide a general clinical overview of the major neuropsychiatric symptoms of PD.
Collapse
Affiliation(s)
- Lucia Batzu
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Aleksandra Podlewska
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Lucy Gibson
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
12
|
Marques A, Macias E, Pereira B, Durand E, Chassain C, Vidal T, Defebvre L, Carriere N, Fraix V, Moro E, Thobois S, Metereau E, Mangone G, Vidailhet M, Corvol JC, Lehéricy S, Menjot de Champfleur N, Geny C, Spampinato U, Meissner WG, Frismand S, Schmitt E, Doé de Maindreville A, Portefaix C, Remy P, Fénelon G, Houeto JL, Colin O, Rascol O, Peran P, Bonny JM, Fantini ML, Durif F. Volumetric changes and clinical trajectories in Parkinson's disease: a prospective multicentric study. J Neurol 2023; 270:6033-6043. [PMID: 37648911 DOI: 10.1007/s00415-023-11947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Longitudinal measures of structural brain changes using MRI in relation to clinical features and progression patterns in PD have been assessed in previous studies, but few were conducted in well-defined and large cohorts, including prospective clinical assessments of both motor and non-motor symptoms. OBJECTIVE We aimed to identify brain volumetric changes characterizing PD patients, and determine whether regional brain volumetric characteristics at baseline can predict motor, psycho-behavioral and cognitive evolution at one year in a prospective cohort of PD patients. METHODS In this multicentric 1 year longitudinal study, PD patients and healthy controls from the MPI-R2* cohort were assessed for demographical, clinical and brain volumetric characteristics. Distinct subgroups of PD patients according to motor, cognitive and psycho-behavioral evolution were identified at the end of follow-up. RESULTS One hundred and fifty PD patients and 73 control subjects were included in our analysis. Over one year, there was no significant difference in volume variations between PD and control subjects, regardless of the brain region considered. However, we observed a reduction in posterior cingulate cortex volume at baseline in PD patients with motor deterioration at one year (p = 0.017). We also observed a bilateral reduction of the volume of the amygdala (p = 0.015 and p = 0.041) and hippocampus (p = 0.015 and p = 0.053) at baseline in patients with psycho-behavioral deterioration, regardless of age, dopaminergic treatment and center. CONCLUSION Brain volumetric characteristics at baseline may predict clinical trajectories at 1 year in PD as posterior cingulate cortex atrophy was associated with motor decline, while amygdala and hippocampus atrophy were associated with psycho-behavioral decline.
Collapse
Affiliation(s)
- Ana Marques
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France.
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France.
- Neurology Department, Parkinson Expert Center, CHRU Gabriel Montpied, 63000, Clermont-Ferrand, France.
| | - Elise Macias
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Bruno Pereira
- Clermont-Ferrand University Hospital, Biostatistics Unit (DRCI), Clermont-Ferrand, France
| | - Elodie Durand
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Carine Chassain
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Tiphaine Vidal
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Luc Defebvre
- Department of Movement Disorder and NS-PARK/FCRIN Network, Inserm 1172, University of Lille, Lille, France
| | - Nicolas Carriere
- Department of Movement Disorder and NS-PARK/FCRIN Network, Inserm 1172, University of Lille, Lille, France
| | - Valerie Fraix
- Université Grenoble Alpes, CHU de Grenoble, Service de Neurologie, Grenoble Institute of Neuroscience, and NS-PARK/FCRIN Network, Grenoble, France
| | - Elena Moro
- Université Grenoble Alpes, CHU de Grenoble, Service de Neurologie, Grenoble Institute of Neuroscience, and NS-PARK/FCRIN Network, Grenoble, France
| | - Stéphane Thobois
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS, Lyon, France
- Université Claude Bernard, Lyon I, Lyon, France
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C and NS-PARK/FCRIN Network, Lyon, France
| | - Elise Metereau
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS, Lyon, France
- Université Claude Bernard, Lyon I, Lyon, France
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C and NS-PARK/FCRIN Network, Lyon, France
| | - Graziella Mangone
- Département de Neurologie and NS-PARK/FCRIN Network, Sorbonne Université; Institut du Cerveau-ICM, Assistance Publique Hôpitaux de Paris; Inserm 1127, CNRS 7225, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marie Vidailhet
- Département de Neurologie and NS-PARK/FCRIN Network, Sorbonne Université; Institut du Cerveau-ICM, Assistance Publique Hôpitaux de Paris; Inserm 1127, CNRS 7225, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Christophe Corvol
- Département de Neurologie and NS-PARK/FCRIN Network, Sorbonne Université; Institut du Cerveau-ICM, Assistance Publique Hôpitaux de Paris; Inserm 1127, CNRS 7225, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Lehéricy
- Département de Neuroradiologie and NS-PARK/FCRIN Network, Sorbonne Université; Institut du Cerveau-ICM, Assistance Publique Hôpitaux de Paris; Inserm 1127, CNRS 7225; Hôpital Pitié-Salpêtrière, Paris, France
| | - Nicolas Menjot de Champfleur
- Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier, France
- I2FH, Institut d'Imagerie Fonctionnelle Humaine, Hôpital Gui de Chauliac, CHRU de Montpellier, Montpellier, France
| | - Christian Geny
- Department of Geriatrics and NS-PARK/FCRIN Network, Montpellier University Hospital, Montpellier University, Montpellier, France
| | - Umberto Spampinato
- Service de Neurologie-Maladies Neurodégénératives and NS-PARK/FCRIN Network, CHU Bordeaux, 33000, Bordeaux, France
- INCIA-UMR 5287, Team P3TN, CNRS/Université de Bordeaux, Bordeaux, France
| | - Wassilios G Meissner
- Service de Neurologie-Maladies Neurodégénératives and NS-PARK/FCRIN Network, CHU Bordeaux, 33000, Bordeaux, France
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, 33000, Bordeaux, France
- Dept. Medicine, University of Otago, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Solène Frismand
- Department of Neurology and NS-PARK/FCRIN Network, Nancy University Hospital Center, Nancy, France
| | - Emmanuelle Schmitt
- Department of Neuroradiology, Nancy University Hospital Center, Nancy, France
| | | | - Christophe Portefaix
- Department of Radiology, Hôpital Maison Blanche, Reims, France
- CReSTIC Laboratory, University of Reims Champagne-Ardenne, Reims, France
| | - Philippe Remy
- Centre Expert Parkinson and NS-PARK/FCRIN Network, CHU Henri Mondor; AP-HP et Equipe Neuropsychologie Interventionnelle, INSERM-IMRB, Faculté de Santé, Université Paris-Est Créteil et Ecole Normale Supérieure Paris Sorbonne Université, Créteil, France
| | - Gilles Fénelon
- Centre Expert Parkinson and NS-PARK/FCRIN Network, CHU Henri Mondor; AP-HP et Equipe Neuropsychologie Interventionnelle, INSERM-IMRB, Faculté de Santé, Université Paris-Est Créteil et Ecole Normale Supérieure Paris Sorbonne Université, Créteil, France
| | - Jean Luc Houeto
- INSERM, CHU de Poitiers, Université de Poitiers, Centre d'Investigation Clinique CIC1402; Service de Neurologie and NS-PARK/FCRIN Network, Poitiers, France
- CHU-Centre Expert Parkinson de Limoges, Limoges, France
| | - Olivier Colin
- INSERM, CHU de Poitiers, Université de Poitiers, Centre d'Investigation Clinique CIC1402; Service de Neurologie and NS-PARK/FCRIN Network, CH Brive la Gaillarde, Poitiers, France
| | - Olivier Rascol
- Centre Expert Parkinson, Départements de Pharmacologie Clinique et Neurosciences, Centre d'Investigation Clinique CIC 1436, UMR 1214 TONIC, NeuroToul and NS-PARK/FCRIN Network, INSERM, CHU de Toulouse et Université de Toulouse3, Toulouse, France
| | - Patrice Peran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Jean-Marie Bonny
- INRAE, UR QuaPA, 63122, Saint-Genès-Champanelle, France
- Nuclear Magnetic Resonance Facility for Agronomy, Food and Health, AgroResonance, INRAE, 2018, Saint-Genès-Champanelle, France
| | - Maria Livia Fantini
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Franck Durif
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| |
Collapse
|
13
|
Nieto-Escamez F, Obrero-Gaitán E, Cortés-Pérez I. Visual Dysfunction in Parkinson's Disease. Brain Sci 2023; 13:1173. [PMID: 37626529 PMCID: PMC10452537 DOI: 10.3390/brainsci13081173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Non-motor symptoms in Parkinson's disease (PD) include ocular, visuoperceptive, and visuospatial impairments, which can occur as a result of the underlying neurodegenerative process. Ocular impairments can affect various aspects of vision and eye movement. Thus, patients can show dry eyes, blepharospasm, reduced blink rate, saccadic eye movement abnormalities, smooth pursuit deficits, and impaired voluntary and reflexive eye movements. Furthermore, visuoperceptive impairments affect the ability to perceive and recognize visual stimuli accurately, including impaired contrast sensitivity and reduced visual acuity, color discrimination, and object recognition. Visuospatial impairments are also remarkable, including difficulties perceiving and interpreting spatial relationships between objects and difficulties judging distances or navigating through the environment. Moreover, PD patients can present visuospatial attention problems, with difficulties attending to visual stimuli in a spatially organized manner. Moreover, PD patients also show perceptual disturbances affecting their ability to interpret and determine meaning from visual stimuli. And, for instance, visual hallucinations are common in PD patients. Nevertheless, the neurobiological bases of visual-related disorders in PD are complex and not fully understood. This review intends to provide a comprehensive description of visual disturbances in PD, from sensory to perceptual alterations, addressing their neuroanatomical, functional, and neurochemical correlates. Structural changes, particularly in posterior cortical regions, are described, as well as functional alterations, both in cortical and subcortical regions, which are shown in relation to specific neuropsychological results. Similarly, although the involvement of different neurotransmitter systems is controversial, data about neurochemical alterations related to visual impairments are presented, especially dopaminergic, cholinergic, and serotoninergic systems.
Collapse
Affiliation(s)
- Francisco Nieto-Escamez
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Center for Neuropsychological Assessment and Rehabilitation (CERNEP), 04120 Almeria, Spain
| | - Esteban Obrero-Gaitán
- Department of Health Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23071 Jaen, Spain;
| | - Irene Cortés-Pérez
- Department of Health Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23071 Jaen, Spain;
| |
Collapse
|
14
|
Li G, Zhu J, Wu X, Liu T, Hu P, Tian Y, Wang K. Baseline free water within the visual processing system predicts future psychosis in Parkinson disease. Eur J Neurol 2023; 30:892-901. [PMID: 36583634 DOI: 10.1111/ene.15668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE As psychosis is associated with decreased quality of life, increased institutionalization, and mortality in Parkinson disease (PD), it is essential to identify individuals at risk for future psychosis. This longitudinal study aimed to investigate whether diffusion tensor imaging (DTI) metrics of white matter hold independent utility for predicting future psychosis in PD, and whether they could be combined with clinical predictors to improve the prognostication of PD psychosis. METHODS This study included 123 newly diagnosed PD patients collected in the Parkinson's Progression Markers Initiative. Tract-based spatial statistics were used to compare baseline DTI metrics between PD patients who developed psychosis and those who did not during follow-up. Binary logistic regression analyses were performed to identify the clinical and white matter markers predictive of psychosis. RESULTS Among DTI measures, both higher baseline whole brain (odds ratio [OR] = 1.711, p = 0.016) free water (FW) and visual processing system (OR = 1.680, p < 0.001) FW were associated with an increased risk of future psychosis. Baseline FW remained a significant indicator of future psychosis in PD after controlling for clinical predictors. Moreover, the accuracy of prediction of psychosis using clinical predictors alone (area under the curve [AUC] = 0.742, 95% confidence interval [CI] = 0.655-0.816) was significantly improved by the addition of the visual processing system FW (AUC = 0.856, 95% CI = 0.781-0.912; Delong method, p = 0.022). CONCLUSIONS Baseline FW of the visual processing system incurs an independent risk of future psychosis in PD, thus providing an opportunity for multiple-modality marker models to include a white matter marker.
Collapse
Affiliation(s)
- Guanglu Li
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xingqi Wu
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tingting Liu
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Panpan Hu
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Yanghua Tian
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorder and Mental Health, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Department of Psychology and Sleep Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kai Wang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorder and Mental Health, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
15
|
Pisani S, Gunasekera B, Lu Y, Vignando M, Ffytche D, Aarsland D, Chaudhuri KR, Ballard C, Lee JY, Kim YK, Velayudhan L, Bhattacharyya S. Grey matter volume loss in Parkinson's disease psychosis and its relationship with serotonergic gene expression: A meta-analysis. Neurosci Biobehav Rev 2023; 147:105081. [PMID: 36775084 DOI: 10.1016/j.neubiorev.2023.105081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Neuroanatomical alterations underlying psychosis in Parkinson's Disease (PDP) remain unclear. We carried out a meta-analysis of MRI studies investigating the neural correlates of PDP and examined its relation with dopaminergic and serotonergic receptor gene expression. METHODS PubMed, Web of Science and Embase were searched for MRI studies (k studies = 10) of PDP compared to PD patients without psychosis (PDnP). Seed-based d Mapping with Permutation of Subject Images and multiple linear regression analyses was used to examine the relationship between pooled estimates of grey matter volume (GMV) loss in PDP and D1/D2 and 5-HT1a/5-HT2a receptor gene expression estimates from Allen Human Brain Atlas. RESULTS We observed lower grey matter volume in parietal-temporo-occipital regions (PDP n = 211, PDnP, n = 298). GMV loss in PDP was associated with local expression of 5-HT1a (b = 0.109, p = 0.012) and 5-HT2a receptors (b= -0.106, p = 0.002) but not dopaminergic receptors. CONCLUSION Widespread GMV loss in the parieto-temporo-occipital regions may underlie PDP. Association between grey matter volume and local expression of serotonergic receptor genes may suggest a role for serotonergic receptors in PDP.
Collapse
Affiliation(s)
- Sara Pisani
- Division of Academic Psychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Brandon Gunasekera
- Division of Academic Psychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Yining Lu
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Miriam Vignando
- Centre for Neuroimaging Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Dominic Ffytche
- Division of Academic Psychiatry, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Dag Aarsland
- Division of Academic Psychiatry, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway.
| | - K Ray Chaudhuri
- Department of Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, and Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom.
| | - Clive Ballard
- Medical School, Medical School Building, St Luke's Campus, Magdalen Road, University of Exeter, Exeter EX1 2LU, United Kingdom.
| | - Jee-Young Lee
- Department of Neurology, Seoul National University-Seoul Metropolitan Government, Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, Republic of Korea.
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government, Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, Republic of Korea.
| | - Latha Velayudhan
- Division of Academic Psychiatry, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Population Health Sciences, University of Leicester, United Kingdom.
| | - Sagnik Bhattacharyya
- Division of Academic Psychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| |
Collapse
|
16
|
Diez-Cirarda M, Cabrera-Zubizarreta A, Murueta-Goyena A, Strafella AP, Del Pino R, Acera M, Lucas-Jiménez O, Ibarretxe-Bilbao N, Tijero B, Gómez-Esteban JC, Gabilondo I. Multimodal visual system analysis as a biomarker of visual hallucinations in Parkinson's disease. J Neurol 2023; 270:519-529. [PMID: 36348068 DOI: 10.1007/s00415-022-11427-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Visual hallucinations (VH) are present in up to 75% of Parkinson's disease (PD) patients. However, their neural bases and participation of the visual system in VH are not well-understood in PD. Seventy-four participants, 12 PD with VH (PDVH), 35 PD without VH (PDnoVH) and 27 controls underwent a battery of primary visual function and visual cognition tests, retinal optical coherence tomography and structural and resting-state functional brain MRI. We quantified cortical thickness with Freesurfer and functional connectivity (FC) of Visual (VIS), Fronto-Parietal (FP), Ventral Attention (VAN) and Dorsal Attention (DAN) networks with CONN toolbox. Group comparisons were performed with MANCOVA. Area Under the Curve (AUC) was computed to assess the ability of visual variables to differentiate PDVH and PDnoVH. There were no significant PDVH vs PDnoVH differences in disease duration, motor manifestations, general cognition or dopamine agonist therapy (DA) use. Compared to PDnoVH and HC, and regardless of DA use, PDVH showed significantly reduced contrast sensitivity, visuoperceptive and visuospatial abilities, increased retina photoreceptor layer thickness, reduced cortical thickness mostly in right visual associative areas, decreased between-network VIS-VAN and VAN-DAN connectivity and increased within-network DAN connectivity. The combination of clinical and imaging variables that best discriminated PDVH and PDnoVH (highest AUC), where within-network DAN FC, photoreceptor layer thickness and cube analysis test from Visual Object and Space Perception Battery (accuracy of 81.8%). Compared to PDnoVH, PDVH have specific functional and structural abnormalities within the visual system, which can be quantified non-invasively and could potentially constitute biomarkers for VH in PD.
Collapse
Affiliation(s)
- Maria Diez-Cirarda
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces Plaza S/N, 48903, Barakaldo, Vizcaya, Spain.
| | | | - Ane Murueta-Goyena
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces Plaza S/N, 48903, Barakaldo, Vizcaya, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Antonio P Strafella
- Krembil Brain Institute, UHN & Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Canada
| | - Rocio Del Pino
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces Plaza S/N, 48903, Barakaldo, Vizcaya, Spain
| | - Marian Acera
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces Plaza S/N, 48903, Barakaldo, Vizcaya, Spain
| | - Olaia Lucas-Jiménez
- Department of Psychology, Faculty of Health Sciences, Univesity of Deusto, Bilbao, Spain
| | - Naroa Ibarretxe-Bilbao
- Department of Psychology, Faculty of Health Sciences, Univesity of Deusto, Bilbao, Spain
| | - Beatriz Tijero
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces Plaza S/N, 48903, Barakaldo, Vizcaya, Spain
- Department of Neurology, Cruces University Hospital, Barakaldo, Spain
| | - Juan Carlos Gómez-Esteban
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces Plaza S/N, 48903, Barakaldo, Vizcaya, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neurology, Cruces University Hospital, Barakaldo, Spain
| | - Iñigo Gabilondo
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces Plaza S/N, 48903, Barakaldo, Vizcaya, Spain.
- Department of Neurology, Cruces University Hospital, Barakaldo, Spain.
- IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
17
|
Peng Z, Zhang HT, Wang G, Zhang J, Qian S, Zhao Y, Zhang R, Wang W. Cerebral neurovascular alterations in stable chronic obstructive pulmonary disease: a preliminary fMRI study. PeerJ 2022; 10:e14249. [PMID: 36405017 PMCID: PMC9671032 DOI: 10.7717/peerj.14249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Cognitive impairment (CI) is very common in patients with chronic obstructive pulmonary disease (COPD). Cerebral structural and functional abnormalities have been reported in cognitively impaired patients with COPD, and the neurovascular coupling changes are rarely investigated. To address this issue, arterial spin labeling (ASL) and resting-state blood oxygenation level dependent (BOLD) fMRI techniques were used to determine whether any neurovascular changes in COPD patients. Methods Forty-five stable COPD patients and forty gender- and age-matched healthy controls were recruited. Furthermore, resting-state BOLD fMRI and ASL were acquired to calculate degree centrality (DC) and cerebral blood flow (CBF) respectively. The CBF-DC coupling and CBF/DC ratio were compared between the two groups. Results COPD patients showed abnormal CBF, DC and CBF/DC ratio in several regions. Moreover, lower CBF/DC ratio in the left lingual gyrus negatively correlated with naming scores, lower CBF/DC ratio in medial frontal cortex/temporal gyrus positively correlated with the Montreal Cognitive Assessment (MoCA), visuospatial/executive and delayed recall scores. Conclusion These findings may provide new potential insights into neuropathogenesis of cognition decline in stable COPD patients.
Collapse
Affiliation(s)
- Zhaohui Peng
- Department of Nuclear Medicine, Central Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China,Department of Medical Imaging, Changzheng Hospital, Shanghai, China
| | - Hong Tao Zhang
- Institute of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Gang Wang
- The Second Community Healthcare Service Center of Zhengzhou Road, Luoyang, Henan, China
| | - Juntao Zhang
- GE Healthcare, Precision Health Institution, Shanghai, China
| | - Shaowen Qian
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, China
| | - Yajun Zhao
- Department of Medical Imaging, 71282 Hospital, Baoding, Hebei province, China
| | - Ruijie Zhang
- Department of Radiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong Province, China
| | - Wei Wang
- Department of Medical Imaging, Changzheng Hospital, Shanghai, China,Department of Medical Imaging, 71282 Hospital, Baoding, Hebei province, China
| |
Collapse
|
18
|
Weintraub D, Aarsland D, Biundo R, Dobkin R, Goldman J, Lewis S. Management of psychiatric and cognitive complications in Parkinson's disease. BMJ 2022; 379:e068718. [PMID: 36280256 DOI: 10.1136/bmj-2021-068718] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Neuropsychiatric symptoms (NPSs) such as affective disorders, psychosis, behavioral changes, and cognitive impairment are common in Parkinson's disease (PD). However, NPSs remain under-recognized and under-treated, often leading to adverse outcomes. Their epidemiology, presentation, risk factors, neural substrate, and management strategies are incompletely understood. While psychological and psychosocial factors may contribute, hallmark PD neuropathophysiological changes, plus the associations between exposure to dopaminergic medications and occurrence of some symptoms, suggest a neurobiological basis for many NPSs. A range of psychotropic medications, psychotherapeutic techniques, stimulation therapies, and other non-pharmacological treatments have been studied, are used clinically, and are beneficial for managing NPSs in PD. Appropriate management of NPSs is critical for comprehensive PD care, from recognizing their presentations and timing throughout the disease course, to the incorporation of different therapeutic strategies (ie, pharmacological and non-pharmacological) that utilize a multidisciplinary approach.
Collapse
Affiliation(s)
- Daniel Weintraub
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Parkinson's Disease Research, Education and Clinical Center (PADRECC), Philadelphia Veterans Affairs Medical Center, Philadelphia, PA
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, England
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Roberta Biundo
- Department of General Psychology, University of Padua, Padua, Italy
- Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
| | - Roseanne Dobkin
- Department of Psychiatry, Rutgers-The State University of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Jennifer Goldman
- Shirley Ryan AbilityLab, Parkinson's Disease and Movement Disorders, Chicago, IL
- Departments of Physical Medicine and Rehabilitation and Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Simon Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Zhang S, Ma Y. Emerging role of psychosis in Parkinson's disease: From clinical relevance to molecular mechanisms. World J Psychiatry 2022; 12:1127-1140. [PMID: 36186499 PMCID: PMC9521528 DOI: 10.5498/wjp.v12.i9.1127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/12/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Psychosis is one of the common psychiatric presentations in the natural course of PD. PD psychosis is an important non-motor symptom, which is strongly correlated with a poor prognosis. Increasing attention is being given to PD psychosis. In this opinion review, we summarized and analyzed the identification, screening, epidemiology, mechanisms, risk factors, and therapeutic approaches of PD psychosis based on the current clinical evidence. PD psychosis tends to have a negative effect on patients' quality of life and increases the burden of family caregiving. Screening and identification in the early stage of disease is crucial for establishing tailored therapeutic strategies and predicting the long-term outcome. Development of PD psychosis is believed to involve a combination of exogenous and endogenous mechanisms including imbalance of neurotransmitters, structural and network changes, genetic profiles, cognitive impairment, and antiparkinsonian medications. The therapeutic strategy for PD psychosis includes reducing or ceasing the use of dopaminergic drug, antipsychotics, cholinesterase inhibitors, and non-pharmacological interventions. Ongoing clinical trials are expected to provide new insights for tailoring therapy for PD psychosis. Future research based on novel biomarkers and genetic factors may help inform individualized therapeutic strategies.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yan Ma
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
20
|
Zhong M, Li C, Lu H, Xue D, Wang Y, Jiang Y, Zhu S, Gu R, Jiang X, Shen B, Zhu J, Zhang W, Pan Y, Yan J, Zhang L. Aberrant gray matter volume and functional connectivity in Parkinson’s disease with minor hallucination. Front Aging Neurosci 2022; 14:923560. [PMID: 36185475 PMCID: PMC9522711 DOI: 10.3389/fnagi.2022.923560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMinor hallucination (MH) is the most common psychotic symptom in Parkinson’s disease (PD); it can develop into well-structured visual hallucination (VH), suggesting that MH may be a staccato form of well-structured VH. However, it remains unclear whether the pathogenesis is the same. Therefore, the aim of this study was to investigate the altered gray matter volume (GMV) and functional connectivity (FC) of MH in PD to further understand the complex mechanisms.Materials and methodsWe included 67 PD patients who attended the outpatient clinic of Nanjing Medical University Affiliated Brain Hospital and recruited 31 healthy controls (HC). Demographic data and clinical characteristics of all subjects were recorded, and cranial structural magnetic resonance imaging (MRI) and resting-state functional MRI data were acquired. Patients were classified into the PD with MH (PD-MH) group and PD without hallucinations or delusions (PD-NH) group. Voxel-based morphometry was used to analyze the differences in GMV in the structural pattern. Seed-based FC was used to analyze the functional pattern. Gaussian random field correction was used, with voxel level P < 0.001 and cluster level P < 0.05 representing statistically significant differences. Finally, the correlation between FC values and scores on the clinical characteristics assessment scale was analyzed.ResultsIn the GMV analysis, compared to the PD-NH group, the PD-MH group had reduced GMV in the medial superior frontal gyrus (SFGmed). In the FC analysis, the FC between the SFGmed and the left middle occipital gyrus and right calcarine sulcus decreased in the PD-MH group compared with the PD-NH group, while the FC between SFGmed and the left middle temporal gyrus increased. Correlation analysis revealed that the FC values of the SFGmed and right calcarine sulcus were correlated with the assessment scores for anxiety and sleep symptoms. The FC values of the SFGmed and left middle occipital gyrus were correlated with assessment scores for rapid eye movement disorder.ConclusionThe aberrant structure and function of the default mode network and visual processing areas seems to facilitate the generation of MH in PD, as the alteration was previously found in well-structured VH, suggesting that the two hallucinations have similar pathophysiological mechanisms.
Collapse
Affiliation(s)
- Min Zhong
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chenglin Li
- Department of Radiology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongquan Lu
- Department of Radiology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Donghui Xue
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yaxi Wang
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yinyin Jiang
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Sha Zhu
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ruxin Gu
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Jiang
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Zhu
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Pan
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Yan
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Institute of Neuropsychiatric Diseases, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Li Zhang,
| |
Collapse
|
21
|
Bejr-Kasem H, Martínez-Horta S, Pagonabarraga J, Marín-Lahoz J, Horta-Barba A, Sampedro F, Aracil-Bolaños I, Pérez-Pérez J, Campolongo A, Izquierdo C, Pascual-Sedano B, Kulisevsky J. The role of attentional control over interference in minor hallucinations in Parkinson's disease. Parkinsonism Relat Disord 2022; 102:101-107. [PMID: 35987038 DOI: 10.1016/j.parkreldis.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/10/2022] [Accepted: 07/16/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Minor hallucinations in Parkinson's disease are associated with connectivity changes in attentional networks and increased risk of structured hallucinations. However, the clinical translation of these abnormalities in attention processes is not well-defined, and commonly used neuropsychological tests are not able to detect significant deficits in Parkinson's disease patients with isolated minor hallucinations. OBJECTIVES To analyze the behavioral and electrophysiological correlates of minor hallucinations in Parkinson's disease during an attentional task assessing response inhibition and interference control. METHODS Fifty-five non-demented Parkinson's disease patients with (PD-mH; n = 27) and without minor hallucinations (PD-NH; n = 28) were included in the analysis. An Ericksen flanker task was performed to compare the effect of presenting congruent and incongruent stimuli on accuracy, reaction times and stimulus-locked event-related potentials morphology. RESULTS Although both groups showed equivalent performance in a standard neuropsychological assessment, in the flanker task accuracy rates were lower in the PD-mH group in incongruent trials (p = 0.005). In the event-related potentials, PD-mH patients showed increased amplitude of the N2 at Fz [t(53); p < 0.05] and decreased amplitude of the P300 at Pz [t(53); p < 0.05] for the incongruent trials. CONCLUSIONS Parkinson's disease patients with isolated minor hallucinations were more susceptible to interference mediated by irrelevant stimuli and had less cognitive control for suppressing these interferences. The failure of these systems could precipitate the intrusion and overrepresentation of peripheral irrelevant stimuli perceived as minor hallucinations. The Ericksen flanker task could be used as a sensitive clinical marker of the attentional defects leading to hallucinations in Parkinson's disease.
Collapse
Affiliation(s)
- Helena Bejr-Kasem
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain; Hospital Universitari de Vic, Barcelona, Spain
| | - Saül Martínez-Horta
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | - Juan Marín-Lahoz
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Neurology Department, Miguel Servet University Hospital, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ignacio Aracil-Bolaños
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Jesús Pérez-Pérez
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Cristina Izquierdo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Berta Pascual-Sedano
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| |
Collapse
|
22
|
Veréb D, Kovács MA, Antal S, Kocsis K, Szabó N, Kincses B, Bozsik B, Faragó P, Tóth E, Király A, Klivényi P, Zádori D, Kincses ZT. Modulation of cortical resting state functional connectivity during a visuospatial attention task in Parkinson's disease. Front Neurol 2022; 13:927481. [PMID: 36016543 PMCID: PMC9396258 DOI: 10.3389/fneur.2022.927481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Visual dysfunction is a recognized early symptom of Parkinson's disease (PD) that partly scales motor symptoms, yet its background is heterogeneous. With additional deficits in visuospatial attention, the two systems are hard to disentangle and it is not known whether impaired functional connectivity in the visual cortex is translative in nature or disrupted attentional modulation also contributes. In this study, we investigate functional connectivity modulation during a visuospatial attention task in patients with PD. In total, 15 PD and 16 age-matched healthy controls performed a visuospatial attention task while undergoing fMRI, in addition to a resting-state fMRI scan. Tensorial independent component analysis was used to investigate task-related network activity patterns. Independently, an atlas-based connectivity modulation analysis was performed using the task potency method. Spearman's rank correlation was calculated between task-related network expression, connectivity modulation, and clinical characteristics. Task-related networks including mostly visual, parietal, and prefrontal cortices were expressed to a significantly lesser degree in patients with PD (p < 0.027). Resting-state functional connectivity did not differ between the healthy and diseased cohorts. Connectivity between the precuneus and ventromedial prefrontal cortex was modulated to a higher degree in patients with PD (p < 0.004), while connections between the posterior parietal cortex and primary visual cortex, and also the superior frontal gyrus and opercular cortex were modulated to a lesser degree (p < 0.001 and p < 0.011). Task-related network expression and superior frontal gyrus–opercular cortex connectivity modulation were significantly associated with UPDRSIII motor scores and the Hoehn–Yahr stages (R = −0.72, p < 0.006 and R = −0.90, p < 0.001; R = −0.68, p < 0.01 and R = −0.71, p < 0.007). Task-related networks function differently in patients with PD in association with motor symptoms, whereas impaired modulation of visual and default-mode network connectivity was not correlated with motor function.
Collapse
Affiliation(s)
- Dániel Veréb
- Department of Radiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Márton Attila Kovács
- Department of Radiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Szabolcs Antal
- Department of Radiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Krisztián Kocsis
- Department of Radiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Nikoletta Szabó
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Bálint Kincses
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Bence Bozsik
- Department of Radiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Péter Faragó
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Eszter Tóth
- Department of Radiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - András Király
- Department of Radiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Zsigmond Tamás Kincses
- Department of Radiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- *Correspondence: Zsigmond Tamás Kincses
| |
Collapse
|
23
|
Cao K, Pang H, Yu H, Li Y, Guo M, Liu Y, Fan G. Identifying and validating subtypes of Parkinson's disease based on multimodal MRI data via hierarchical clustering analysis. Front Hum Neurosci 2022; 16:919081. [PMID: 35966989 PMCID: PMC9372337 DOI: 10.3389/fnhum.2022.919081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Objective We wished to explore Parkinson's disease (PD) subtypes by clustering analysis based on the multimodal magnetic resonance imaging (MRI) indices amplitude of low-frequency fluctuation (ALFF) and gray matter volume (GMV). Then, we analyzed the differences between PD subtypes. Methods Eighty-six PD patients and 44 healthy controls (HCs) were recruited. We extracted ALFF and GMV according to the Anatomical Automatic Labeling (AAL) partition using Data Processing and Analysis for Brain Imaging (DPABI) software. The Ward linkage method was used for hierarchical clustering analysis. DPABI was employed to compare differences in ALFF and GMV between groups. Results Two subtypes of PD were identified. The “diffuse malignant subtype” was characterized by reduced ALFF in the visual-related cortex and extensive reduction of GMV with severe impairment in motor function and cognitive function. The “mild subtype” was characterized by increased ALFF in the frontal lobe, temporal lobe, and sensorimotor cortex, and a slight decrease in GMV with mild impairment of motor function and cognitive function. Conclusion Hierarchical clustering analysis based on multimodal MRI indices could be employed to identify two PD subtypes. These two PD subtypes showed different neurodegenerative patterns upon imaging.
Collapse
Affiliation(s)
- Kaiqiang Cao
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huize Pang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongmei Yu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yingmei Li
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Miaoran Guo
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Liu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guoguang Fan
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Guoguang Fan
| |
Collapse
|
24
|
Kratter IH, Karp JF, Chang YF, Whiteman AC, Feyder MT, Jorge A, Richardson RM, Henry LC. Association of Preoperative Visual Hallucinations With Cognitive Decline After Deep Brain Stimulation for Parkinson's Disease. J Neuropsychiatry Clin Neurosci 2022; 33:144-151. [PMID: 33203305 DOI: 10.1176/appi.neuropsych.20040077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is effective for the motor symptoms of Parkinson's disease (PD). Although most patients benefit with minimal cognitive side effects, cognitive decline is a risk, and there is little available evidence to guide preoperative risk assessment. Visual illusions or visual hallucinations (VHs) and impulse-control behaviors (ICBs) are relatively common complications of PD and its treatment and may be a marker of more advanced disease, but their relationship with postoperative cognition has not been established. The authors aimed to determine whether any preoperative history of VHs or ICBs is associated with cognitive change after DBS. METHODS Retrospective chart review identified 54 patients with PD who received DBS of the subthalamic nucleus or globus pallidus internus and who completed both pre- and postoperative neuropsychological testing. Linear regression models were used to assess whether any preoperative history of VHs or ICBs was associated with changes in attention, executive function, language, memory, or visuospatial cognitive domains while controlling for surgical target and duration between evaluations. RESULTS The investigators found that a history of VHs was associated with declines in attention (b=-4.04, p=0.041) and executive function (b=-4.24, p=0.021). A history of ICBs was not associated with any significant changes. CONCLUSIONS These results suggest that a history of VHs may increase risk of cognitive decline after DBS; thus, specific preoperative counseling and targeted remediation strategies for these patients may be indicated. In contrast, a history of ICBs does not appear to be associated with increased cognitive risk.
Collapse
Affiliation(s)
- Ian H Kratter
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh (Kratter, Karp); Department of Neurological Surgery, Brain Modulation Laboratory, University of Pittsburgh School of Medicine (Kratter, Chang, Whiteman, Feyder, Jorge, Henry); Department of Neurosurgery, Massachusetts General Hospital, Boston (Richardson); University of Arizona College of Medicine, Department of Psychiatry, Tucson (Karp); and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif. (Kratter)
| | - Jordan F Karp
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh (Kratter, Karp); Department of Neurological Surgery, Brain Modulation Laboratory, University of Pittsburgh School of Medicine (Kratter, Chang, Whiteman, Feyder, Jorge, Henry); Department of Neurosurgery, Massachusetts General Hospital, Boston (Richardson); University of Arizona College of Medicine, Department of Psychiatry, Tucson (Karp); and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif. (Kratter)
| | - Yue-Fang Chang
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh (Kratter, Karp); Department of Neurological Surgery, Brain Modulation Laboratory, University of Pittsburgh School of Medicine (Kratter, Chang, Whiteman, Feyder, Jorge, Henry); Department of Neurosurgery, Massachusetts General Hospital, Boston (Richardson); University of Arizona College of Medicine, Department of Psychiatry, Tucson (Karp); and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif. (Kratter)
| | - Ashley C Whiteman
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh (Kratter, Karp); Department of Neurological Surgery, Brain Modulation Laboratory, University of Pittsburgh School of Medicine (Kratter, Chang, Whiteman, Feyder, Jorge, Henry); Department of Neurosurgery, Massachusetts General Hospital, Boston (Richardson); University of Arizona College of Medicine, Department of Psychiatry, Tucson (Karp); and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif. (Kratter)
| | - Michael T Feyder
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh (Kratter, Karp); Department of Neurological Surgery, Brain Modulation Laboratory, University of Pittsburgh School of Medicine (Kratter, Chang, Whiteman, Feyder, Jorge, Henry); Department of Neurosurgery, Massachusetts General Hospital, Boston (Richardson); University of Arizona College of Medicine, Department of Psychiatry, Tucson (Karp); and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif. (Kratter)
| | - Ahmed Jorge
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh (Kratter, Karp); Department of Neurological Surgery, Brain Modulation Laboratory, University of Pittsburgh School of Medicine (Kratter, Chang, Whiteman, Feyder, Jorge, Henry); Department of Neurosurgery, Massachusetts General Hospital, Boston (Richardson); University of Arizona College of Medicine, Department of Psychiatry, Tucson (Karp); and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif. (Kratter)
| | - R Mark Richardson
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh (Kratter, Karp); Department of Neurological Surgery, Brain Modulation Laboratory, University of Pittsburgh School of Medicine (Kratter, Chang, Whiteman, Feyder, Jorge, Henry); Department of Neurosurgery, Massachusetts General Hospital, Boston (Richardson); University of Arizona College of Medicine, Department of Psychiatry, Tucson (Karp); and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif. (Kratter)
| | - Luke C Henry
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh (Kratter, Karp); Department of Neurological Surgery, Brain Modulation Laboratory, University of Pittsburgh School of Medicine (Kratter, Chang, Whiteman, Feyder, Jorge, Henry); Department of Neurosurgery, Massachusetts General Hospital, Boston (Richardson); University of Arizona College of Medicine, Department of Psychiatry, Tucson (Karp); and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif. (Kratter)
| |
Collapse
|
25
|
Geng C, Wang S, Li Z, Xu P, Bai Y, Zhou Y, Zhang X, Li Y, Zhang J, Zhang H. Resting-State Functional Network Topology Alterations of the Occipital Lobe Associated With Attention Impairment in Isolated Rapid Eye Movement Behavior Disorder. Front Aging Neurosci 2022; 14:844483. [PMID: 35431890 PMCID: PMC9012114 DOI: 10.3389/fnagi.2022.844483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThis study investigates the topological properties of brain functional networks in patients with isolated rapid eye movement sleep behavior disorder (iRBD).Participants and MethodsA total of 21 patients with iRBD (iRBD group) and 22 healthy controls (HCs) were evaluated using resting-state functional MRI (rs-fMRI) and neuropsychological measures in cognitive and motor function. Data from rs-fMRI were analyzed using graph theory, which included small-world properties, network efficiency, network local efficiency, nodal shortest path, node efficiency, and network connectivity, as well as the relationship between behavioral characteristics and altered brain topological features.ResultsRey-Osterrieth complex figure test (ROCFT-copy), symbol digital modalities test (SDMT), auditory verbal learning test (AVLT)-N1, AVLT-N2, AVLT-N3, and AVLT-N1-3 scores were significantly lower in patients with iRBD than in HC (P < 0.05), while trail making test A (TMT-A), TMT-B, and Unified Parkinson’s Disease Rating Scale Part-III (UPDRS-III) scores were higher in patients with iRBD (P < 0.05). Compared with the HCs, patients with iRBD had no difference in the small-world attributes (P > 0.05). However, there was a significant decrease in network global efficiency (P = 0.0052) and network local efficiency (P = 0.0146), while an increase in characteristic path length (P = 0.0071). There was lower nodal efficiency in occipital gyrus and nodal shortest path in frontal, parietal, temporal lobe, and cingulate gyrus. Functional connectivities were decreased between the nodes of occipital with the regions where they had declined nodal shortest path. There was a positive correlation between TMT-A scores and the nodal efficiency of the right middle occipital gyrus (R = 0.602, P = 0.014).ConclusionThese results suggest that abnormal behaviors may be associated with disrupted brain network topology and functional connectivity in patients with iRBD and also provide novel insights to understand pathophysiological mechanisms in iRBD.
Collapse
Affiliation(s)
- Chaofan Geng
- Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shenghui Wang
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zhonglin Li
- Department of Radiology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Pengfei Xu
- Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yingying Bai
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yao Zhou
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xinyu Zhang
- Department of Neurology, Henan Provincial People’s Hospital Affiliated to Xinxiang Medical University, Zhengzhou, China
| | - Yongli Li
- Department of Functional Imaging, Henan Key Laboratory for Medical Imaging of Neurological Diseases, Zhengzhou, China
| | - Jiewen Zhang
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Hongju Zhang
- Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People’s Hospital Affiliated to Xinxiang Medical University, Zhengzhou, China
- *Correspondence: Hongju Zhang,
| |
Collapse
|
26
|
Tanaka M, Yanagisawa T, Fukuma R, Tani N, Oshino S, Mihara M, Hattori N, Kajiyama Y, Hashimoto R, Ikeda M, Mochizuki H, Kishima H. Magnetoencephalography detects phase-amplitude coupling in Parkinson's disease. Sci Rep 2022; 12:1835. [PMID: 35115607 PMCID: PMC8813926 DOI: 10.1038/s41598-022-05901-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
Abstract
To characterize Parkinson's disease, abnormal phase-amplitude coupling is assessed in the cortico-basal circuit using invasive recordings. It is unknown whether the same phenomenon might be found in regions other than the cortico-basal ganglia circuit. We hypothesized that using magnetoencephalography to assess phase-amplitude coupling in the whole brain can characterize Parkinson's disease. We recorded resting-state magnetoencephalographic signals in patients with Parkinson's disease and in healthy age- and sex-matched participants. We compared whole-brain signals from the two groups, evaluating the power spectra of 3 frequency bands (alpha, 8-12 Hz; beta, 13-25 Hz; gamma, 50-100 Hz) and the coupling between gamma amplitude and alpha or beta phases. Patients with Parkinson's disease showed significant beta-gamma phase-amplitude coupling that was widely distributed in the sensorimotor, occipital, and temporal cortices; healthy participants showed such coupling only in parts of the somatosensory and temporal cortices. Moreover, beta- and gamma-band power differed significantly between participants in the two groups (P < 0.05). Finally, beta-gamma phase-amplitude coupling in the sensorimotor cortices correlated significantly with motor symptoms of Parkinson's disease (P < 0.05); beta- and gamma-band power did not. We thus demonstrated that beta-gamma phase-amplitude coupling in the resting state characterizes Parkinson's disease.
Collapse
Affiliation(s)
- Masataka Tanaka
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Neuroinformatics, ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Kyoto, 619 0288, Japan.
| | - Ryohei Fukuma
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Neuroinformatics, ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Kyoto, 619 0288, Japan
| | - Naoki Tani
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahito Mihara
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Noriaki Hattori
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Rehabilitation, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Yuta Kajiyama
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1 Ogawahigashi, Kodaira, Tokyo, 187-8553, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
27
|
Vignando M, Ffytche D, Lewis SJG, Lee PH, Chung SJ, Weil RS, Hu MT, Mackay CE, Griffanti L, Pins D, Dujardin K, Jardri R, Taylor JP, Firbank M, McAlonan G, Mak HKF, Ho SL, Mehta MA. Mapping brain structural differences and neuroreceptor correlates in Parkinson's disease visual hallucinations. Nat Commun 2022; 13:519. [PMID: 35082285 PMCID: PMC8791961 DOI: 10.1038/s41467-022-28087-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson's psychosis (PDP) describes a spectrum of symptoms that may arise in Parkinson's disease (PD) including visual hallucinations (VH). Imaging studies investigating the neural correlates of PDP have been inconsistent in their findings, due to differences in study design and limitations of scale. Here we use empirical Bayes harmonisation to pool together structural imaging data from multiple research groups into a large-scale mega-analysis, allowing us to identify cortical regions and networks involved in VH and their relation to receptor binding. Differences of morphometrics analysed show a wider cortical involvement underlying VH than previously recognised, including primary visual cortex and surrounding regions, and the hippocampus, independent of its role in cognitive decline. Structural covariance analyses point to the involvement of the attentional control networks in PD-VH, while associations with receptor density maps suggest neurotransmitter loss may be linked to the cortical changes.
Collapse
Affiliation(s)
- Miriam Vignando
- Department of Neuroimaging, King's College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, SE5 8AF, UK.
| | - Dominic Ffytche
- Department of Old Age Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Phil Hyu Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | | | - Rimona S Weil
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1M 3BG, UK
- Wellcome Centre for Neuroimaging, University College London, London, UK
| | - Michele T Hu
- Oxford Parkinson's Disease Centre, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Clare E Mackay
- Oxford Parkinson's Disease Centre, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ludovica Griffanti
- Oxford Parkinson's Disease Centre, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Delphine Pins
- Univ. Lille, Inserm, CHU Lille, U1172 - Centre Lille Neuroscience & Cognition, 59000, Lille, France
| | - Kathy Dujardin
- Univ. Lille, Inserm, CHU Lille, U1172 - Centre Lille Neuroscience & Cognition, 59000, Lille, France
| | - Renaud Jardri
- Univ. Lille, Inserm, CHU Lille, U1172 - Centre Lille Neuroscience & Cognition, 59000, Lille, France
| | - John-Paul Taylor
- Newcastle University, Translational and Clinical Research Institute, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle Upon Tyne, NE4 5PL, UK
| | - Michael Firbank
- Newcastle University, Translational and Clinical Research Institute, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle Upon Tyne, NE4 5PL, UK
| | - Grainne McAlonan
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Henry K F Mak
- Division of Neurology, Dept of Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Shu Leong Ho
- Division of Neurology, Dept of Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Mitul A Mehta
- Department of Neuroimaging, King's College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|
28
|
Nyatega CO, Qiang L, Adamu MJ, Kawuwa HB. Gray matter, white matter and cerebrospinal fluid abnormalities in Parkinson's disease: A voxel-based morphometry study. Front Psychiatry 2022; 13:1027907. [PMID: 36325532 PMCID: PMC9618656 DOI: 10.3389/fpsyt.2022.1027907] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by bradykinesia, tremor, and rigidity among other symptoms. With a 70% cumulative prevalence of dementia in PD, cognitive impairment and neuropsychiatric symptoms are frequent. MATERIALS AND METHODS In this study, we looked at anatomical brain differences between groups of patients and controls. A total of 138 people with PD were compared to 64 age-matched healthy people using voxel-based morphometry (VBM). VBM is a fully automated technique that allows for the identification of regional differences in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) allowing for an objective comparison of brains of different groups of people. We used statistical parametric mapping for image processing and statistical analysis. RESULTS In comparison to controls, PD patients had lower GM volumes in the left middle cingulate, left lingual gyrus, right calcarine and left fusiform gyrus, also PD patients indicated lower WM volumes in the right middle cingulate, left lingual gyrus, right calcarine, and left inferior occipital gyrus. Moreover, PD patients group demonstrated higher CSF in the left caudate compared to the controls. CONCLUSION Physical fragility and cognitive impairments in PD may be detected more easily if anatomical abnormalities to the cingulate gyrus, occipital lobe and the level of CSF in the caudate are identified. Thus, our findings shed light on the role of the brain in PD and may aid in a better understanding of the events that occur in PD patients.
Collapse
Affiliation(s)
- Charles Okanda Nyatega
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China.,Department of Electronics and Telecommunication Engineering, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Li Qiang
- School of Microelectronics, Tianjin University, Tianjin, China
| | | | | |
Collapse
|
29
|
Abstract
INTRODUCTION Psychosis is one of the incapacitating nonmotor symptoms of Parkinson's disease (PD). Although several risk factors that include older age, rapid eye movement sleep behavior disorder, depression, and cognitive dysfunction have been identified, the exact neural correlates remain elusive. As cognitive impairment has a close association with psychosis in PD, it is useful to know the spectrum of cognitive impairment in PD patients with psychosis (PD-P). METHODS This cross-sectional study compared various cognitive parameters of PD-P (visual/minor hallucinations) and PD patients with no psychosis (PD-NP). A neuropsychological battery encapsulating several cognitive domains (executive, visuospatial, learning, and memory) was used for the cognitive assessment of 37 PD-P and 51 PD-NP patients who were matched for age, gender, education, and disease duration. RESULTS The two groups were comparable in terms of disease severity and stage. Although the groups had a comparable mean score on Montreal cognitive assessment, the PD-P group performed poorly in tests focused on executive function (color trail test, forward digit span), verbal learning and memory (Rey auditory and verbal learning test), and visuospatial functions (complex figure test, corsi block tapping test). Those with complex visual hallucinations performed poorly in the color trial test (part A) compared to those with minor hallucinations. CONCLUSION Psychosis is associated with a multidomain cognitive dysfunction in PD. All PD patients should undergo detailed cognitive assessment as cognitive dysfunction may be a marker of psychosis in the future. Additional longitudinal studies are warranted to obtain detailed insights into this issue.
Collapse
|
30
|
Hanna-Pladdy B, Pahwa R, Lyons KE. Dopaminergic Basis of Spatial Deficits in Early Parkinson's Disease. Cereb Cortex Commun 2021; 2:tgab042. [PMID: 34738086 DOI: 10.1093/texcom/tgab042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/14/2022] Open
Abstract
Dopaminergic mechanisms regulating cognitive and motor control were evaluated comparing visuoperceptual and perceptuomotor functions in Parkinson's disease (PD). The performance of PD patients (n = 40) was contrasted with healthy controls (n = 42) across two separate visits (on and off dopaminergic medications) on computerized tasks of perception and aiming to a target at variable stimulus lengths (4, 8, 12 cm). Novel visuoperceptual tasks of length equivalence and width interval estimations without motor demands were compared with tasks estimating spatial deviation in movement termination. The findings support the presence of spatial deficits in early PD, more pronounced with increased discrimination difficulty, and with shorter stimulus lengths of 4 cm for both visuoperceptual and perceptumotor functions. Dopaminergic medication had an adverse impact on visuoperceptual accuracy in particular for length equivalence estimations, in contrast with dopaminergic modulation of perceptuomotor functions that reduced angular displacements toward the target. The differential outcomes for spatial accuracy in perception versus movement termination in PD are consistent with involvement of the direct pathway and models of progressive loss of dopamine through corticostriatal loops. Future research should develop validated and sensitive standardized tests of perception and explore dopaminergic selective deficits in PD to optimize medication titration for motor and cognitive symptoms of the disease.
Collapse
Affiliation(s)
- B Hanna-Pladdy
- Center for Advanced Imaging Research (CAIR), Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - R Pahwa
- Parkinson's Disease and Movement Disorder Center, Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - K E Lyons
- Parkinson's Disease and Movement Disorder Center, Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
31
|
Marques A, Taylor NL, Roquet D, Beze S, Chassain C, Pereira B, O'Callaghan C, Lewis SJG, Durif F. Structural and Functional Correlates of Hallucinations and Illusions in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 12:397-409. [PMID: 34744050 DOI: 10.3233/jpd-212838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Visual illusions (VI) in Parkinson's disease (PD) are generally considered as an early feature of the psychosis spectrum leading to fully formed visual hallucinations (VH), although this sequential relationship has not been clearly demonstrated. OBJECTIVE We aimed to determine whether there are any overlapping, potentially graded patterns of structural and functional connectivity abnormalities in PD with VI and with VH. Such a finding would argue for a continuum between these entities, whereas distinct imaging features would suggest different neural underpinnings for the phenomena. METHODS In this case control study, we compared structural and resting state functional MRI brain patterns of PD patients with VH (PD-H, n = 20), with VI (PD-I, n = 19), and without VH or VI (PD-C, n = 23). RESULTS 1) PD-H had hypo-connectivity between the ILO and anterior cingulate precuneus and parahippocampal gyrus compared to PD-C and PD-I; 2) In contrast, PD-I had hyper-connectivity between the inferior frontal gyrus and the postcentral gyrus compared to PD-C and PD-H. Moreover, PD-I had higher levels of functional connectivity between the amygdala, hippocampus, insula, and fronto-temporal regions compared to PD-H, together with divergent patterns toward the cingulate. 3) Both PD-I and PD-H had functional hypo-connectivity between the lingual gyrus and the parahippocampal region vs. PD-C, and no significant grey matter volume differences was observed between PD-I and PD-H. CONCLUSION Distinct patterns of functional connectivity characterized VI and VH in PD, suggesting that these two perceptual experiences, while probably linked and driven by at least some similar mechanisms, could reflect differing neural dysfunction.
Collapse
Affiliation(s)
- Ana Marques
- Forefront Parkinson's Disease Research Clinic, Brain and Mind Center, School of Medical Sciences, University ofSydney, Camperdown, Sydney, Australia.,Université Clermont Auvergne, IGCNC, InstitutPascal, Clermont-Ferrand University Hospital, Neurology Department, Clermont-Ferrand, France
| | - Natasha L Taylor
- Forefront Parkinson's Disease Research Clinic, Brain and Mind Center, School of Medical Sciences, University ofSydney, Camperdown, Sydney, Australia
| | - Daniel Roquet
- Frontiers, Brain andMind Center, University of Sydney, Camperdown, Sydney, Australia
| | - Steven Beze
- Université Clermont Auvergne, IGCNC, InstitutPascal, Clermont-Ferrand University Hospital, Neurology Department, Clermont-Ferrand, France
| | - Carine Chassain
- Université Clermont Auvergne, IGCNC, InstitutPascal, Clermont-Ferrand University Hospital, NeuroradiologyDepartment, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Bruno Pereira
- Clermont-Ferrand University Hospital, Biostatistics Department, Clermont-Ferrand, France
| | - Claire O'Callaghan
- Forefront Parkinson's Disease Research Clinic, Brain and Mind Center, School of Medical Sciences, University ofSydney, Camperdown, Sydney, Australia
| | - Simon J G Lewis
- Forefront Parkinson's Disease Research Clinic, Brain and Mind Center, School of Medical Sciences, University ofSydney, Camperdown, Sydney, Australia
| | - Franck Durif
- Université Clermont Auvergne, IGCNC, InstitutPascal, Clermont-Ferrand University Hospital, Neurology Department, Clermont-Ferrand, France
| |
Collapse
|
32
|
Aracil-Bolaños I, Sampedro F, Marín-Lahoz J, Horta-Barba A, Martínez-Horta S, Gónzalez-de-Echávarri JM, Pérez-Pérez J, Bejr-Kasem H, Pascual-Sedano B, Botí M, Campolongo A, Izquierdo C, Gironell A, Gómez-Ansón B, Kulisevsky J, Pagonabarraga J. Tipping the scales: how clinical assessment shapes the neural correlates of Parkinson's disease mild cognitive impairment. Brain Imaging Behav 2021; 16:761-772. [PMID: 34553331 DOI: 10.1007/s11682-021-00543-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 11/30/2022]
Abstract
Mild cognitive impairment in Parkinson's disease (PD-MCI) is associated with consistent structural and functional brain changes. Whether different approaches for diagnosing PD-MCI are equivalent in their neural correlates is presently unknown. We aimed to profile the neuroimaging changes associated with the two endorsed methods of diagnosing PD-MCI. We recruited 53 consecutive non-demented PD patients and classified them as PD-MCI according to comprehensive neuropsychological examination as operationalized by the Movement Disorders Task Force. Voxel-based morphometry, cortical thickness, functional connectivity and graph theoretical measures were obtained on a 3-Tesla MRI scanner. 18 patients (32%) were classified as PD-MCI with Level-II criteria, 19 (33%) with the Parkinson's disease Cognitive Rating Scale (PD-CRS) and 32 (60%) with the Montreal Cognitive Assessment (MoCA) scale. Though regions of atrophy differed across classifications, reduced gray matter in the precuneus was found using both Level-II and PD-CRS classifications in PD-MCI patients. Patients diagnosed with the PD-CRS also showed extensive changes in cortical thickness, concurring with the MoCA in regions of the cingulate cortex, and again with Level-II regarding cortical thinning in the precuneus. Functional connectivity analysis found higher coherence within salience network regions of interest, and decreased anticorrelations between salience/central executive and default-mode networks in the PD-CRS classification for PD-MCI patients. Graph theoretical metrics showed a widespread decrease in node degree for the three classifications in PD-MCI, whereas betweenness centrality was increased in select nodes of the default mode network (DMN). Clinical and neuroimaging commonalities between the endorsed methods of cognitive assessment suggest a corresponding set of neural correlates in PD-MCI: loss of structural integrity in DMN structures, mainly the precuneus, and a loss of weighted connections in the salience network that might be counterbalanced by increased centrality in the DMN. Furthermore, the similarity of the results between exhaustive Level-II and screening Level-I tools might have practical implications in the search for neuroimaging biomarkers of cognitive impairment in Parkinson's disease.
Collapse
Affiliation(s)
- Ignacio Aracil-Bolaños
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Frederic Sampedro
- Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Marín-Lahoz
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Saül Martínez-Horta
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Jesús Pérez-Pérez
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Helena Bejr-Kasem
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Berta Pascual-Sedano
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mariángeles Botí
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Cristina Izquierdo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alexandre Gironell
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Beatriz Gómez-Ansón
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Neuroradiology Unit, Sant Pau Hospital, Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain. .,Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain. .,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain. .,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Mas Casanovas 90-08041, Barcelona, Spain. .,Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain. .,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain. .,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
33
|
Zhong M, Wu Z, Jiang X, Shen B, Zhu J, Zhang L. Knowledge domain and emerging trends in visual hallucination research: A scientometric analysis. World J Psychiatry 2021; 11:491-506. [PMID: 34513610 PMCID: PMC8394690 DOI: 10.5498/wjp.v11.i8.491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/29/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Visual hallucination (VH) refers to a spontaneous visual perception without corresponding external stimuli and often occurs in ophthalmological and neuropsychiatric disorders. It is associated with poor quality of life, and increased patient hospitalization and nursing home admission. To date, a scientometric analysis of research on VH is lacking.
AIM To objectively summarize the features of VH research and gain insights into the emerging trends in research on VH.
METHODS CiteSpace V was used in this article. Publication outputs, document types, geographic distributions, co-authorship status, research hotspots, and co-citation status were analyzed. A total of 2176 original articles and 465 reviews were included in the database downloaded from the Web of Science Core Collection. We selected the top 50 most cited or occurring articles or items to create a visualized network with a 1-year interval. In the document co-citation analysis stage, we performed clustering analysis on co-cited references, and log likelihood tests were used to name the clusters.
RESULTS The results showed that most publications can be classified into neurology, sports, and ophthalmology studies. In addition, North America, Europe, Asia and Australia published the most documents. Some well-known authors have always had a leading role in this field; meanwhile, new authors keep emerging. A relatively stable cooperation has been formed among many authors. Furthermore, neuropsychiatric symptom and functional connectivity are the top hotspots. Research on VH in dementia with Lewy bodies and Parkinson’s disease (PD) have received much attention. Studies on VH in PD are likely to be the new emerging trends in the future, especially the mechanisms of VH.
CONCLUSION Research on VH has formed a complete system. More large-scale clinical and in-depth basic research are required to better understand the mechanisms underlying VH, which will contribute to our understanding of the pathophysiology and therapeutic options for VH.
Collapse
Affiliation(s)
- Min Zhong
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Zhuang Wu
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xu Jiang
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Bo Shen
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jun Zhu
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Li Zhang
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Institute of Neuropsychiatric Diseases, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
34
|
Zhang Y, Huang B, Chen Q, Wang L, Zhang L, Nie K, Huang Q, Huang R. Altered microstructural properties of superficial white matter in patients with Parkinson's disease. Brain Imaging Behav 2021; 16:476-491. [PMID: 34410610 DOI: 10.1007/s11682-021-00522-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD), a chronic neurodegenerative disease, is characterized by sensorimotor and cognitive deficits. Previous diffusion tensor imaging (DTI) studies found abnormal DTI metrics in white matter bundles, such as the corpus callosum, cingulate, and frontal-parietal bundles, in PD patients. These studies mainly focused on alterations in microstructural features of long-range bundles within the deep white matter (DWM) that connects pairs of distant cortical regions. However, less is known about the DTI metrics of the superficial white matter (SWM) that connects local cortical regions in PD patients. To determine whether the DTI metrics of the SWM were different between the PD patients and the healthy controls, we recruited DTI data from 34 PD patients and 29 gender- and age-matched healthy controls. Using a probabilistic tractographic approach, we first defined a population-based SWM mask across all the subjects. Using a tract-based spatial statistical (TBSS) analytic approach, we then identified the SWM bundles showing abnormal DTI metrics in the PD patients. We found that the PD patients showed significantly lower DTI metrics in the SWM bundles connecting the sensorimotor cortex, cingulate cortex, posterior parietal cortex (PPC), and parieto-occipital cortex than the healthy controls. We also found that the clinical measures in the PD patients was significantly negatively correlated with the fractional anisotropy in the SWM (FASWM) that connects core regions in the default mode network (DMN). The FASWM in the bundles that connected the PPC was significantly positively correlated with cognitive performance in the PD patients. Our findings suggest that SWM may serve as the brain structural basis underlying the sensorimotor deficits and cognitive degeneration in PD patients.
Collapse
Affiliation(s)
- Yichen Zhang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Biao Huang
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, 510080 , China.
| | - Qinyuan Chen
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, 510080, China
| | - Lu Zhang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Kun Nie
- Department of Neurology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, 510080, China
| | - Qinda Huang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Ruiwang Huang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
35
|
Zhou M, Zhuo L, Ji R, Gao Y, Yao H, Feng R, Zhang L, Huang G, Huang X. Alterations in functional network centrality in first-episode drug-naïve adolescent-onset schizophrenia. Brain Imaging Behav 2021; 16:316-323. [PMID: 34410608 DOI: 10.1007/s11682-021-00505-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
Schizophrenia is a disorder resulting from aberrant brain networks and circuits. In the current study, we aimed to investigate specific network alterations in adolescent-onset schizophrenia (AOS) and to help identify the neurophysiological mechanisms of this adolescent disorder. We recruited forty-one subjects, including 20 AOS patients and 21 matched healthy controls (HCs), and we acquired brain images to examine the specific changes in functional network patterns using degree centrality (DC), which quantifies the strength of the local functional connectivity hubs. Whole-brain correlation analysis was applied to assess the relationships between clinical characteristics and DC measurements. The AOS group exhibited increased DC in the right inferior frontal lobe, right fusiform gyrus and right thalamus (p < 0.05, AlphaSim correction). Whole-brain correlation analysis found that the DC value in the right parahippocampus was positively correlated with PANSS-positive symptom scores (r = 0.80); DC in the right superior parietal lobe (SPL) was positively correlated with PANSS-negative symptom scores (r = 0.79); DC in the left precuneus was positively correlated with self-certainty (SC) scores (r = 0.70); and DC in the left medial frontal gyrus (MFG) was negatively correlated with self-reflectiveness (SR) scores (r = 0.69). We conclude that frontoparietal network and cortico-thalamo-cortical pathway disruptions could play key roles in the neurophysiological mechanisms underlying AOS. In AOS patients, the right parahippocampus and SPL are important structures associated with positive and negative symptoms, respectively, and the left precuneus and MFG contribute to deficits in cognitive insights.
Collapse
Affiliation(s)
- Ming Zhou
- Center of Psychoradiology, Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, People's Republic of China
| | - Lihua Zhuo
- Center of Psychoradiology, Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, People's Republic of China
| | - Ruofei Ji
- Department of Psychiatry, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, People's Republic of China
| | - Yingxue Gao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongchao Yao
- Center of Psychoradiology, Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, People's Republic of China
| | - Ruohan Feng
- Center of Psychoradiology, Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, People's Republic of China.,Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lianqing Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guoping Huang
- Center of Psychoradiology, Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, People's Republic of China. .,Department of Psychiatry, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, People's Republic of China.
| | - Xiaoqi Huang
- Center of Psychoradiology, Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, People's Republic of China. .,Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
36
|
Hamedani AG. Vision loss and hallucinations: perspectives from neurology and ophthalmology. Curr Opin Neurol 2021; 34:84-88. [PMID: 33230034 DOI: 10.1097/wco.0000000000000882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The aim of this article is to summarize the evidence for visual impairment as a risk factor for visual hallucinations in neurologic disease and recent advances in our understanding of the central visual pathways that mediate this association. RECENT FINDINGS Recent studies have described the prevalence Charles Bonnet syndrome and questioned its lack of association with cognitive impairment, used advanced neuroimaging to show that disinhibition of the occipital lobe is involved in the pathogenesis of visual hallucinations in Parkinson's disease, and demonstrated that visual impairment because of eye disease is a consistent risk factor for visual hallucinations across a number of different neurodegenerative disease populations. SUMMARY Through connections between the primary visual cortex and other brain structures, visual function is closely tied to visual hallucinations. Given that the vast majority of vision loss is caused by ophthalmic disease, much of which is preventable or treatable, the detection and treatment of vision loss in at-risk populations may reduce the burden and consequences of visual hallucinations in older adults.
Collapse
Affiliation(s)
- Ali G Hamedani
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Alenikova OA. [Visual hallucinations in Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:106-113. [PMID: 34283539 DOI: 10.17116/jnevro2021121061106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Visual hallucinations have a negative effect on the course of Parkinson's disease (PD), being a source of stress for the patients themselves and caregivers. The article discusses the basic theories and pathogenetic mechanisms of the development of visual hallucinations in PD consisting of the following components: impairment of the visual information received from the retina with subsequent disruption of its processing in the central parts of the visual system; lack of suppression of internally generated images through the ponto-geniculo-occipital system; the invasion of REM sleep patterns in wakefulness; decreased ability of the brain stem structures to implement appropriate information filtering as well as excessive drug-induced activation of the mesolimbic system. Particular attention is paid to visual impairment and changes in the transmission of information along the retino-hypothalamic tract. In this connection, dysfunction in the «retina - hypothalamus» system can also be considered as one of the factors that determines the time and rhythm of occurrence or exacerbation of visual hallucinations in PD. Attracting attention to this aspect opens new therapeutic possibilities where the circadian system can be positioned as a target of additional exposure in the treatment of visual hallucinations in PD.
Collapse
Affiliation(s)
- O A Alenikova
- Republican Scientific and Practical Center of Neurology and Neurosurgery, Minsk, Republic of Belarus
| |
Collapse
|
38
|
Pezzoli S, Sánchez-Valle R, Solanes A, Kempton MJ, Bandmann O, Shin JI, Cagnin A, Goldman JG, Merkitch D, Firbank MJ, Taylor JP, Pagonabarraga J, Kulisevsky J, Blanc F, Verdolini N, Venneri A, Radua J. Neuroanatomical and cognitive correlates of visual hallucinations in Parkinson's disease and dementia with Lewy bodies: Voxel-based morphometry and neuropsychological meta-analysis. Neurosci Biobehav Rev 2021; 128:367-382. [PMID: 34171324 DOI: 10.1016/j.neubiorev.2021.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/30/2021] [Accepted: 06/19/2021] [Indexed: 02/04/2023]
Abstract
Visual hallucinations (VH) are common in Parkinson's disease and dementia with Lewy bodies, two forms of Lewy body disease (LBD), but the neural substrates and mechanisms involved are still unclear. We conducted meta-analyses of voxel-based morphometry (VBM) and neuropsychological studies investigating the neuroanatomical and cognitive correlates of VH in LBD. For VBM (12 studies), we used Seed-based d Mapping with Permutation of Subject Images (SDM-PSI), including statistical parametric maps for 50% of the studies. For neuropsychology (35 studies), we used MetaNSUE to consider non-statistically significant unreported effects. VH were associated with smaller grey matter volume in occipital, frontal, occipitotemporal, and parietal areas (peak Hedges' g -0.34 to -0.49). In patients with Parkinson's disease without dementia, VH were associated with lower verbal immediate memory performance (Hedges' g -0.52). Both results survived correction for multiple comparisons. Abnormalities in these brain regions might reflect dysfunctions in brain networks sustaining visuoperceptive, attention, and executive abilities, with the latter also being at the basis of poor immediate memory performance.
Collapse
Affiliation(s)
- Stefania Pezzoli
- Department of Neuroscience, University of Sheffield, Sheffield, UK; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Aleix Solanes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, UK
| | - Oliver Bandmann
- Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Jennifer G Goldman
- Shirley Ryan Ability Lab Parkinson's Disease and Movement Disorders program, Chicago, IL, USA; Northwestern University Feinberg School of Medicine, Departments of Physical Medicine and Neurology, Chicago, IL, USA
| | - Doug Merkitch
- Shirley Ryan Ability Lab Parkinson's Disease and Movement Disorders program, Chicago, IL, USA
| | - Michael J Firbank
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain; Institut d'Investigacions Biomèdiques - Sant Pau (IIB-Sant Pau), Barcelona, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain; Institut d'Investigacions Biomèdiques - Sant Pau (IIB-Sant Pau), Barcelona, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Frederic Blanc
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Geriatrics Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Memory Resources and Research Centre (CMRR), University Hospital of Strasbourg, Strasbourg, France; Team IMIS/Neurocrypto, French National Center for Scientific Research (CNRS), ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Norma Verdolini
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Mental Health Research Networking Center (CIBERSAM), Madrid, Spain; Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield, Sheffield, UK; Department of Life Sciences, Brunel University London, London, UK
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Mental Health Research Networking Center (CIBERSAM), Madrid, Spain; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
39
|
Lee Y, Jeon S, Kang SW, Park M, Baik K, Yoo HS, Chung SJ, Jeong SH, Jung JH, Lee PH, Sohn YH, Evans AC, Ye BS. Interaction of CSF α-synuclein and amyloid beta in cognition and cortical atrophy. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12177. [PMID: 34046519 PMCID: PMC8140203 DOI: 10.1002/dad2.12177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lewy body-related pathology is commonly observed at autopsy in individuals with dementia, but in vivo biomarkers for α-synucleinopathy are lacking. METHODS Baseline cerebrospinal fluid (CSF) biomarkers, polygenic risk score (PRS) for Parkinson's disease (PRS-PD) and Alzheimer's disease (PRS-AD), longitudinal cognitive scores, and magnetic resonance imaging were measured in 217 participants from the Alzheimer's Disease Neuroimaging Initiative. Linear mixed models were used to find the relationship of CSF biomarkers and the PRS with cognition and cortical atrophy. RESULTS Higher PRS-PD and PRS-AD were associated with lower CSF α-synuclein and amyloid beta (Aβ), respectively. Lower CSF α-synuclein and the interaction of CSF α-synuclein and Aβ were associated with lower cognitive scores and global cortical atrophy most prominently in the occipital cortex. DISCUSSION Lower CSF α-synuclein could be a biomarker for α-synucleinopathy, and the simultaneous evaluation of CSF biomarkers for AD and CSF α-synuclein could reveal the independent and interactive effects on cognition and cortical atrophy.
Collapse
Affiliation(s)
- Young‐gun Lee
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Seun Jeon
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Sung Woo Kang
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Mincheol Park
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Kyoungwon Baik
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Han Soo Yoo
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Seok Jong Chung
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Seong Ho Jeong
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Jin Ho Jung
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Phil Hyu Lee
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Young Ho Sohn
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | - Alan C. Evans
- Brain Research InstituteYonsei University College of MedicineSeoulKorea
| | - Byoung Seok Ye
- Department of NeurologyInje University Busan Paik HospitalBusanKorea
| | | |
Collapse
|
40
|
Wang E, Jia Y, Ya Y, Xu J, Mao C, Luo W, Fan G, Jiang Z. Patterns of Sulcal depth and cortical thickness in Parkinson's disease. Brain Imaging Behav 2021; 15:2340-2346. [PMID: 34018166 DOI: 10.1007/s11682-020-00428-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 10/21/2022]
Abstract
Previous voxel-based morphometry (VBM) and cortical thickness (CT) studies on Parkinson's disease (PD) have mainly reported the gray matter size reduction, whereas the shape of cortical surface can also change in PD patients. For the first time, we analyzed sulcal depth (SD) patterns in PD patients by using whole brain region of interest (ROI)-based approach. In a cross-sectional study, high-resolution brain structural MRI images were collected from 60 PD patients without dementia and 56 age-and sex-matched healthy controls (HC). SD and CT were estimated using the Computational Anatomy Toolbox (CAT12) and statistically compared between groups on whole brain ROI-based level using statistical parametric mapping 12 (SPM12). Additionally, correlations between regional brain changes and clinical variables were also examined. Compared to HC, PD patients showed lower SD in widespread regions, including temporal (the bilateral transverse temporal, the left inferior temporal, the right middle temporal and the right superior temporal), insular (the left insula), frontal (the left pars triangularis, the left pars opercularis and the left precentral), parietal (the bilateral superior parietal) and occipital (the right cuneus) regions. For CT, only the left pars opercularis showed lower CT in PD patients compared to HC. No regions showed higher SD or CT in PD patients compared to HC. In PD patients, a significant positive correlation was found between SD of the left pars opercularis and MMSE scores, such that lower MMSE scores were related to lower SD of the left pars opercularis. Our results of widespread lower SD, but relatively localized lower CT, indicate that SD seems to be more sensitive to brain changes than CT and may be mainly affected by white matter damage. Hence, SD may be a more promising indicator to investigate the surface shape changes in PD patients. The significant positive correlation between SD of the left pars opercularis and MMSE scores suggests that SD may be prognostic of future cognitive decline.
Collapse
Affiliation(s)
- Erlei Wang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yujing Jia
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Ya
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Xu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chengjie Mao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weifeng Luo
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guohua Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Zhen Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
41
|
Goetz CG. Will Artificial Intelligence Outperform the Clinical Neurologist in the Near Future? No. Mov Disord Clin Pract 2021; 8:529-531. [PMID: 33981786 DOI: 10.1002/mdc3.13200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/26/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Christopher G Goetz
- Department of Neurological Sciences Rush University Medical Center Chicago Illinois USA
| |
Collapse
|
42
|
Suo X, Lei D, Li N, Li W, Kemp GJ, Sweeney JA, Peng R, Gong Q. Disrupted morphological grey matter networks in early-stage Parkinson's disease. Brain Struct Funct 2021; 226:1389-1403. [PMID: 33825053 PMCID: PMC8096749 DOI: 10.1007/s00429-020-02200-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/16/2020] [Indexed: 02/05/2023]
Abstract
While previous structural-covariance studies have an advanced understanding of brain alterations in Parkinson's disease (PD), brain–behavior relationships have not been examined at the individual level. This study investigated the topological organization of grey matter (GM) networks, their relation to disease severity, and their potential imaging diagnostic value in PD. Fifty-four early-stage PD patients and 54 healthy controls (HC) underwent structural T1-weighted magnetic resonance imaging. GM networks were constructed by estimating interregional similarity in the distributions of regional GM volume using the Kullback–Leibler divergence measure. Results were analyzed using graph theory and network-based statistics (NBS), and the relationship to disease severity was assessed. Exploratory support vector machine analyses were conducted to discriminate PD patients from HC and different motor subtypes. Compared with HC, GM networks in PD showed a higher clustering coefficient (P = 0.014) and local efficiency (P = 0.014). Locally, nodal centralities in PD were lower in postcentral gyrus and temporal-occipital regions, and higher in right superior frontal gyrus and left putamen. NBS analysis revealed decreased morphological connections in the sensorimotor and default mode networks and increased connections in the salience and frontoparietal networks in PD. Connection matrices and graph-based metrics allowed single-subject classification of PD and HC with significant accuracy of 73.1 and 72.7%, respectively, while graph-based metrics allowed single-subject classification of tremor-dominant and akinetic–rigid motor subtypes with significant accuracy of 67.0%. The topological organization of GM networks was disrupted in early-stage PD in a way that suggests greater segregation of information processing. There is potential for application to early imaging diagnosis.
Collapse
Affiliation(s)
- Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, PR China
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, PR China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Nannan Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, PR China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, PR China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Rong Peng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, PR China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
43
|
Yuki N, Yoshioka A, Mizuhara R, Kimura T. Visual hallucinations and inferior longitudinal fasciculus in Parkinson's disease. Brain Behav 2020; 10:e01883. [PMID: 33078912 PMCID: PMC7749587 DOI: 10.1002/brb3.1883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION We investigated whether disruption of the inferior longitudinal fasciculus and inferior fronto-occipital fasciculus are associated with visual hallucinations in Parkinson's disease (PD). METHODS Sixty consecutive right-handed patients with PD with and without visual hallucinations were enrolled in this cross-sectional study. Diffusion tensor imaging was acquired by 3.0 T magnetic resonance imaging. We measured fractional anisotropy and mean diffusivity of the bilateral inferior longitudinal fasciculus and inferior fronto-occipital fasciculus using diffusion tensor tractography analysis software. RESULTS Seventeen patients with PD had visual hallucinations; these patients tended to have lower fractional anisotropy and higher mean diffusivity values in all fasciculi than did patients without visual hallucinations. A univariate logistic analysis showed that the presence of visual hallucinations was significantly associated with lower fractional anisotropy and higher mean diffusivity of the left inferior longitudinal fasciculus, and lower Mini-Mental State Examination (MMSE) scores. A multivariable logistic analysis adjusted by MMSE scores and disease duration showed a significant association between the presence of visual hallucinations and fractional anisotropy and mean diffusivity values of the left inferior longitudinal fasciculus. CONCLUSIONS Our results suggest that disruption of left inferior longitudinal fasciculus integrity is associated with visual hallucinations in patients with PD, independent of cognitive impairment and disease duration.
Collapse
Affiliation(s)
- Natsuko Yuki
- Department of Neurology, National Hospital Organization Maizuru Medical Center, Maizuru, Japan.,Department of Neurology, Kyoto Kizugawa Hospital, Joyo, Japan
| | - Akira Yoshioka
- Department of Neurology, Kyoto Kizugawa Hospital, Joyo, Japan.,Department of Clinical Research, National Hospital Organization Maizuru Medical Center, Maizuru, Japan
| | - Ryo Mizuhara
- Department of Neurology, National Hospital Organization Maizuru Medical Center, Maizuru, Japan
| | - Tadashi Kimura
- Department of Neurology, National Hospital Organization Maizuru Medical Center, Maizuru, Japan
| |
Collapse
|
44
|
Paez AG, Gu C, Rajan S, Miao X, Cao D, Kamath V, Bakker A, Unschuld PG, Pantelyat AY, Rosenthal LS, Hua J. Differential Changes in Arteriolar Cerebral Blood Volume between Parkinson's Disease Patients with Normal and Impaired Cognition and Mild Cognitive Impairment (MCI) Patients without Movement Disorder - An Exploratory Study. Tomography 2020; 6:333-342. [PMID: 33364423 PMCID: PMC7744190 DOI: 10.18383/j.tom.2020.00033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cognitive impairment amongst Parkinson's disease (PD) patients is highly prevalent and associated with an increased risk of dementia. There is growing evidence that altered cerebrovascular functions contribute to cognitive impairment. Few studies have compared cerebrovascular changes in PD patients with normal and impaired cognition and those with mild-cognitive-impairment (MCI) without movement disorder. Here, we investigated arteriolar-cerebral-blood-volume (CBVa), an index reflecting the homeostasis of the most actively regulated segment in the microvasculature, using advanced MRI in various brain regions in PD and MCI patients and matched controls. Our goal is to find brain regions with altered CBVa that are specific to PD with normal and impaired cognition, and MCI-without-movement-disorder, respectively. In PD patients with normal cognition (n=10), CBVa was significantly decreased in the substantia nigra, caudate and putamen when compared to controls. In PD patients with impaired cognition (n=6), CBVa showed a decreasing trend in the substantia nigra, caudate and putamen, but was significantly increased in the presupplementary motor area and intracalcarine gyrus compared to controls. In MCI-patients-without-movement-disorder (n=18), CBVa was significantly increased in the caudate, putamen, hippocampus and lingual gyrus compared to controls. These findings provide important information for efforts towards developing biomarkers for the evaluation of potential risk of PD dementia (PDD) in PD patients. The current study is limited in sample size and therefore is exploratory in nature. The data from this pilot study will serve as the basis for power analysis for subsequent studies to further investigate and validate the current findings.
Collapse
Affiliation(s)
- Adrian G. Paez
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
- Neurosection, Division of MR Research, Department of Radiology
| | - Chunming Gu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
- Neurosection, Division of MR Research, Department of Radiology
| | - Suraj Rajan
- Department of Neurology; and
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; and
| | - Xinyuan Miao
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
- Neurosection, Division of MR Research, Department of Radiology
| | - Di Cao
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
- Neurosection, Division of MR Research, Department of Radiology
- Department of Biomedical Engineering
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; and
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; and
| | - Paul G. Unschuld
- Department of Psychogeriatric Medicine, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | | | | | - Jun Hua
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
- Neurosection, Division of MR Research, Department of Radiology
| |
Collapse
|
45
|
Janiri D, Petracca M, Moccia L, Tricoli L, Piano C, Bove F, Imbimbo I, Simonetti A, Di Nicola M, Sani G, Calabresi P, Bentivoglio AR. COVID-19 Pandemic and Psychiatric Symptoms: The Impact on Parkinson's Disease in the Elderly. Front Psychiatry 2020; 11:581144. [PMID: 33329124 PMCID: PMC7728715 DOI: 10.3389/fpsyt.2020.581144] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background: The coronavirus disease 2019 (COVID-19) pandemic represents a condition of increased vulnerability and frailty for elderly patients with Parkinson's disease (PD). Social isolation may worsen the burden of the disease and specifically exacerbate psychiatric symptoms, often comorbid with PD. This study aimed at identifying risk/protective factors associated with subjective worsening of psychiatric symptomatology during the COVID-19 outbreak in a sample of individuals with PD aged 65 years or older. Methods: Patients with PD routinely followed at the outpatient clinic of Gemelli University Hospital, Rome, were assessed for subjective worsening of psychiatric symptoms through a dedicated telephone survey, after Italy COVID-19 lockdown. Patients' medical records were reviewed to collect sociodemographic and clinical data, including lifetime psychiatric symptoms and pharmacological treatment. Results: Overall, 134 individuals were assessed and 101 (75.4%) reported lifetime psychiatric symptoms. Among those, 23 (22.8%) presented with subjective worsening of psychiatric symptomatology during the COVID-19 outbreak. In this group, the most frequent symptom was depression (82.6%), followed by insomnia (52.2%). Subjective worsening of neurological symptoms (Wald = 24.03, df = 1, p = 0.001) and lifetime irritability (Wald = 6.35, df = 1, p = 0.020), together with younger age (Wald = 5.06, df = 1, p = 0.038) and female sex (Wald = 9.07 df = 1, p = 0.007), resulted as specific risk factors for ingravescence of psychiatric presentation. Lifetime pre-existing delusions, having received antipsychotics, and not having received mood stabilizer were also associated with subjective worsening of psychiatric symptomatology due to the COVID-19 pandemic. Conclusions: Individuals with PD and lifetime history of psychiatric symptoms may be exposed to increased vulnerability to the stressful effect of COVID-19 outbreak. Interventions aimed at reducing irritability and mood instability might have an indirect effect on the health of patients with PD during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Delfina Janiri
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Psychiatry and Neurology, Sapienza University of Rome, Rome, Italy
| | - Martina Petracca
- Dipartimento Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lorenzo Moccia
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Tricoli
- Dipartimento Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Carla Piano
- Dipartimento Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Bove
- Dipartimento Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Alessio Simonetti
- Department of Psychiatry and Neurology, Sapienza University of Rome, Rome, Italy
| | - Marco Di Nicola
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Sani
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Calabresi
- Dipartimento Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Rita Bentivoglio
- Dipartimento Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
46
|
Díaz-Santos M, Monge ZA, Salazar RD, Gilmore GC, Neargarder S, Cronin-Golomb A. Increasing Contrast Improves Object Perception in Parkinson's Disease with Visual Hallucinations. Mov Disord Clin Pract 2020; 8:51-59. [PMID: 33426159 DOI: 10.1002/mdc3.13104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/11/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Background Deficits in basic vision are associated with visual hallucinations in Parkinson's disease. Of particular interest is contrast sensitivity loss in this disorder and its effect on object identification. Objectives Evaluate whether increased contrast improves object perception in persons with Parkinson's disease and visual hallucinations, without dementia. Methods We assessed 26 individuals with mild to moderate idiopathic Parkinson's disease, half of whom reported one or more episodes of hallucinations/unusual perceptual experiences in the past month, with a letter-identification task that determined the contrast level required to achieve 80% accuracy. Contrast sensitivity was further assessed with a chart that presented stimuli at multiple spatial frequencies. The groups were closely matched for demographic and clinical characteristics except for experience of hallucinations. Results Relative to participants without visual hallucinations, those with hallucinations had poorer spatial frequency contrast sensitivity and required significantly greater contrast to correctly identify the letters on the identification task. Specifically, participants with hallucinations required a mean contrast of 52.8%, whereas participants without hallucinations required 35.0%. When given sufficient contrast, the groups with and without hallucinations were equally accurate in letter identification. Conclusions Compared to those without hallucinations, individuals with Parkinson's disease and hallucinations without dementia showed poorer contrast sensitivity. Once contrast was individually enhanced, the groups were equally accurate at object identification. These findings suggest the potential of visual perception tests to predict, and perception-based interventions to reduce, hallucinations in Parkinson's disease.
Collapse
Affiliation(s)
- Mirella Díaz-Santos
- Department of Psychological and Brain Sciences Boston University Boston Massachusetts USA
| | - Zachary A Monge
- Department of Psychological and Brain Sciences Boston University Boston Massachusetts USA
| | - Robert D Salazar
- Department of Psychological and Brain Sciences Boston University Boston Massachusetts USA
| | - Grover C Gilmore
- Jack, Joseph, and Morton Mandel School of Applied Social Sciences Case Western Reserve University Cleveland Ohio USA
| | - Sandy Neargarder
- Department of Psychological and Brain Sciences Boston University Boston Massachusetts USA.,Department of Psychology Bridgewater State University Bridgewater Massachusetts USA
| | - Alice Cronin-Golomb
- Department of Psychological and Brain Sciences Boston University Boston Massachusetts USA
| |
Collapse
|
47
|
Murueta-Goyena A, Del Pino R, Galdós M, Arana B, Acera M, Carmona-Abellán M, Fernández-Valle T, Tijero B, Lucas-Jiménez O, Ojeda N, Ibarretxe-Bilbao N, Peña J, Cortes J, Ayala U, Barrenechea M, Gómez-Esteban JC, Gabilondo I. Retinal Thickness Predicts the Risk of Cognitive Decline in Parkinson Disease. Ann Neurol 2020; 89:165-176. [PMID: 33098308 PMCID: PMC7756646 DOI: 10.1002/ana.25944] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022]
Abstract
Objective This study was undertaken to analyze longitudinal changes of retinal thickness and their predictive value as biomarkers of disease progression in idiopathic Parkinson's disease (iPD). Methods Patients with Lewy body diseases were enrolled and prospectively evaluated at 3 years, including patients with iPD (n = 42), dementia with Lewy bodies (n = 4), E46K‐SNCA mutation carriers (n = 4), and controls (n = 17). All participants underwent Spectralis retinal optical coherence tomography and Montreal Cognitive Assessment, and Unified Parkinson's Disease Rating Scale score was obtained in patients. Macular ganglion cell–inner plexiform layer complex (GCIPL) and peripapillary retinal nerve fiber layer (pRNFL) thickness reduction rates were estimated with linear mixed models. Risk ratios were calculated to evaluate the association between baseline GCIPL and pRNFL thicknesses and the risk of subsequent cognitive and motor worsening, using clinically meaningful cutoffs. Results GCIPL thickness in the parafoveal region (1‐ to 3‐mm ring) presented the largest reduction rate. The annualized atrophy rate was 0.63μm in iPD patients and 0.23μm in controls (p < 0.0001). iPD patients with lower parafoveal GCIPL and pRNFL thickness at baseline presented an increased risk of cognitive decline at 3 years (relative risk [RR] = 3.49, 95% confidence interval [CI] = 1.10–11.1, p = 0.03 and RR = 3.28, 95% CI = 1.03–10.45, p = 0.045, respectively). We did not identify significant associations between retinal thickness and motor deterioration. Interpretation Our results provide evidence of the potential use of optical coherence tomography–measured parafoveal GCIPL thickness to monitor neurodegeneration and to predict the risk of cognitive worsening over time in iPD. ANN NEUROL 2021;89:165–176
Collapse
Affiliation(s)
- Ane Murueta-Goyena
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Physiology, University of the Basque Country (Universidad del País Vasco / Euskal Herriko Unibertsitatea), Leioa, Spain
| | - Rocío Del Pino
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,International University of La Rioja, Logroño, Spain
| | - Marta Galdós
- Ophthalmology Department, Cruces University Hospital, Barakaldo, Spain
| | - Begoña Arana
- Ophthalmology Department, Cruces University Hospital, Barakaldo, Spain
| | - Marian Acera
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Mar Carmona-Abellán
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Tamara Fernández-Valle
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Neurology Department, Cruces University Hospital, Barakaldo, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Beatriz Tijero
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Neurology Department, Cruces University Hospital, Barakaldo, Spain
| | - Olaia Lucas-Jiménez
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Javier Peña
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Jesus Cortes
- Computational Neuroimaging Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque: The Basque Foundation for Science, Bilbao, Spain
| | - Unai Ayala
- Biomedical Engineering Department, Faculty of Engineering, Mondragon University, Mondragon, Spain
| | - Maitane Barrenechea
- Biomedical Engineering Department, Faculty of Engineering, Mondragon University, Mondragon, Spain
| | - Juan Carlos Gómez-Esteban
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Neurology Department, Cruces University Hospital, Barakaldo, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iñigo Gabilondo
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Neurology Department, Cruces University Hospital, Barakaldo, Spain.,Ikerbasque: The Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
48
|
Bejr-Kasem H, Sampedro F, Marín-Lahoz J, Martínez-Horta S, Pagonabarraga J, Kulisevsky J. Minor hallucinations reflect early gray matter loss and predict subjective cognitive decline in Parkinson's disease. Eur J Neurol 2020; 28:438-447. [PMID: 33032389 DOI: 10.1111/ene.14576] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/02/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Well-structured hallucinations in Parkinson's disease (PD) are associated with poor prognosis and dementia. However, the predictive value of minor psychotic phenomena in cognitive deterioration is not well known. Cross-sectional studies have shown that PD patients with minor hallucinations have more severe cortical atrophy than non-hallucinators, but baseline and longitudinal studies addressing the evolution of these brain differences are lacking. The impact of developing minor hallucinations on cognitive impairment and cortical atrophy progression in early PD was explored. METHODS One hundred and thirty-one de novo PD patients from the Parkinson's Progression Marker Initiative for whom brain magnetic resonance imaging scans were available were included. Cognitive outcome at 5 years was compared between patients with and without minor hallucinations during follow-up. Additionally, using gray matter volume (GMV) voxel-based morphometry, cross-sectional (at baseline) and longitudinal (1- and 2-year GMV loss) structural brain differences between groups were studied. RESULTS During follow-up, 35.1% of patients developed minor hallucinations. At 5 years, these patients showed an increased prevalence of subjective cognitive decline compared to non-hallucinators (44.1% vs. 13.9%; p < 0.001), but not formal cognitive impairment. Additionally, compared to non-hallucinators, they exhibited reduced GMV at baseline in visuoperceptive areas and increased GMV loss in left temporal areas (p < 0.05 corrected). CONCLUSIONS Minor hallucinations seem to be an early clinical marker of increased neurodegeneration and are associated with mid-term subjective cognitive decline. Longer follow-up analyses would be needed to further define if these findings could reflect a higher risk of future cognitive deterioration.
Collapse
Affiliation(s)
- H Bejr-Kasem
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona (U.A.B.), Department of Medicine, Barcelona, Spain.,Institut d´Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - F Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona (U.A.B.), Department of Medicine, Barcelona, Spain.,Institut d´Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - J Marín-Lahoz
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona (U.A.B.), Department of Medicine, Barcelona, Spain.,Institut d´Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - S Martínez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona (U.A.B.), Department of Medicine, Barcelona, Spain.,Institut d´Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - J Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona (U.A.B.), Department of Medicine, Barcelona, Spain.,Institut d´Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - J Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona (U.A.B.), Department of Medicine, Barcelona, Spain.,Institut d´Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| |
Collapse
|
49
|
Kurita A, Koshikawa H, Akiba T, Seki K, Ishikawa H, Suzuki M. Visual Hallucinations and Impaired Conscious Visual Perception in Parkinson Disease. J Geriatr Psychiatry Neurol 2020; 33:377-385. [PMID: 31808354 DOI: 10.1177/0891988719892318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Visual hallucinations (VHs) are common in patients with Parkinson disease (PD), especially those with dementia, whereas auditory hallucinations are quite rare. Recent studies have revealed the involvement of several regions along the visual information-processing system that contribute to the pathophysiological mechanism of VHs: the eyes and retina, retinofugal projection, lateral geniculate nucleus, striate cortex, ventral pathways in the temporal cortices, and frontal and parietal cortices. In addition, the concurrent involvement of other systems in the brainstem and basal forebrain further modify VHs in PD. In this review, we discuss the pathophysiological association between the regional involvement of these areas and VHs.
Collapse
Affiliation(s)
- Akira Kurita
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Hiroaki Koshikawa
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Takeshi Akiba
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Kanako Seki
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Hiroaki Ishikawa
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Megumi Suzuki
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| |
Collapse
|
50
|
Weintraub D. Management of psychiatric disorders in Parkinson's disease : Neurotherapeutics - Movement Disorders Therapeutics. Neurotherapeutics 2020; 17:1511-1524. [PMID: 32514891 PMCID: PMC7851231 DOI: 10.1007/s13311-020-00875-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Affective disorders (depression and anxiety), psychosis, impulse control disorders, and apathy are common and sometimes disabling psychiatric conditions in Parkinson disease (PD). Psychiatric aspects of PD are associated with numerous adverse outcomes, yet in spite of this and their high frequency, there remains incomplete understanding of epidemiology, presentation, risk factors, neural substrate, and management strategies. Psychiatric features are typically co- or multimorbid, and there is great intra- and interindividual variability in presentation [1]. The neuropathophysiological changes that occur in PD, as well as the association between PD treatment and particular psychiatric disorders, suggest a neurobiological contribution to many psychiatric symptoms. There is evidence that psychiatric disorders in PD are still under-recognized and undertreated, and although psychotropic medication use is common, randomized controlled trials demonstrating efficacy and tolerability are largely lacking. Future research on neuropsychiatric complications in PD should be oriented toward determining modifiable correlates or risk factors, and most importantly, establishing efficacious and well-tolerated treatment strategies.
Collapse
Affiliation(s)
- Daniel Weintraub
- Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Parkinson's Disease Research, Education and Clinical Center (PADRECC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
| |
Collapse
|