1
|
Hoang JT, Maia RM, Burkat CN. Assessing Changes in Hand Tactile Sensitivity After Glabellar Botulinum Toxin Treatment. Ophthalmic Plast Reconstr Surg 2025; 41:161-165. [PMID: 39206798 DOI: 10.1097/iop.0000000000002764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
PURPOSE The authors aimed to assess behavioral changes in tactile sensitivity in patients receiving cosmetic glabellar botulinum toxin-A injections. METHODS In this prospective cohort study, the authors conducted quantitative sensory testing on 20 patients receiving 15 to 35 units of glabellar botulinum toxin-A treatment between October 1, 2022 and March 8, 2023. The authors used modified Von Frey filaments to exert forces between 0.25 mN and 512 mN to the dorsal hand just prior to botulinum toxin-A injections. Filament tips were uniform, rounded, and 0.5 mm in diameter to prevent nociceptor activation. This process was repeated 4 to 6 weeks after injection to assess for any change in minimal mechanical detection thresholds. RESULTS Minimal mechanical detection thresholds decreased (patients detected smaller amounts of force) overall, in patients with prior botulinum toxin-A treatment, and in patients without prior botulinum toxin-A treatment: 5.34 mN to 4.33 mN ( p = 0.22), 6.43 mN to 5.97 mN ( p = 0.31), and 4.44 mN to 3.00 mN ( p = 0.53), respectively. CONCLUSIONS The authors' results suggest that the plastic changes observed in previous studies do not necessarily result in clinically significant manifestations when utilizing small to moderate amounts of botulinum toxin-A for aesthetic correction of glabellar lines, thus highlighting the safety of botulinum toxin-A for this indication. Further research is required to gain a comprehensive understanding of whether hand-associated cortical activity is altered after aesthetic amounts of botulinum toxin are injected.
Collapse
Affiliation(s)
- Johnson T Hoang
- Oculoplastics, Orbital, & Cosmetic Facial Surgery, Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, U.S.A
| | | | | |
Collapse
|
2
|
Aurucci GV, Preatoni G, Risso G, Raspopovic S. Amputees but not healthy subjects optimally integrate non-spatially matched visuo-tactile stimuli. iScience 2025; 28:111685. [PMID: 39886468 PMCID: PMC11780163 DOI: 10.1016/j.isci.2024.111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/08/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
Our brain combines sensory inputs to create a univocal perception, enhanced when stimuli originate from the same location. Following amputation, distorted body representations may disrupt visuo-tactile integration at the amputated leg. We aim to unveil the principles guiding optimal and cognitive-efficient visuo-tactile integration at both intact and amputated legs. Hence, we designed a VR electro-stimulating platform to assess the functional and cognitive correlates of visuo-tactile integration in two amputees and sixteen healthy subjects performing a 2-alternative forced choice (2AFC) task. We showed that amputees optimally integrate non-spatially matched stimuli at the amputated leg but not the intact leg (tactile cue at the stump/thigh and visual cue under the virtual foot), while healthy controls only integrated spatially matched visuo-tactile stimuli. Optimal integration also reduced 2AFC task reaction times and was confirmed by cognitive EEG-based mental workload reduction. These findings offer insights into multisensory integration processes, opening new perspectives on amputees' brain plasticity.
Collapse
Affiliation(s)
- Giuseppe Valerio Aurucci
- Laboratory for Neuroengineering, Department of Health Science and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Greta Preatoni
- Laboratory for Neuroengineering, Department of Health Science and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Gaia Risso
- Institute of Health, School of Health Sciences, HES-SO Valais-Wallis, 1950 Sion, Switzerland
- The Sense Innovation & Research Center, 1950 Sion and Lausanne, Switzerland
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Science and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
3
|
Madden DJ, Merenstein JL, Harshbarger TB, Cendales LC. Changes in Functional and Structural Brain Connectivity Following Bilateral Hand Transplantation. NEUROIMAGE. REPORTS 2024; 4:100222. [PMID: 40162089 PMCID: PMC11951133 DOI: 10.1016/j.ynirp.2024.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
As a surgical treatment following amputation or loss of an upper limb, nearly 200 hand transplantations have been completed to date. We report here a magnetic resonance imaging (MRI) investigation of functional and structural brain connectivity for a bilateral hand transplant patient (female, 60 years of age), with a preoperative baseline and three postoperative testing sessions each separated by approximately six months. We used graph theoretical analyses to estimate connectivity within and between modules (networks of anatomical nodes), particularly a sensorimotor network (SMN), from resting-state functional MRI and structural diffusion-weighted imaging (DWI). For comparison, corresponding MRI measures of connectivity were obtained from 10 healthy, age-matched controls, at a single testing session. The patient's within-module functional connectivity (both SMN and non-SMN modules), and structural within-SMN connectivity, were higher preoperatively than that of the controls, indicating a response to amputation. Postoperatively, the patient's within-module functional connectivity decreased towards the control participants' values, across the 1.5 years postoperatively, particularly for hand-related nodes within the SMN module, suggesting a return to a more canonical functional organization. Whereas the patient's structural connectivity values remained relatively constant postoperatively, some evidence suggested that structural connectivity supported the postoperative changes in within-module functional connectivity.
Collapse
Affiliation(s)
- David J. Madden
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| | - Jenna L. Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| | - Todd B. Harshbarger
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Linda C. Cendales
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
4
|
Pacheco-Barrios K, Heemels RE, Martinez-Magallanes D, Daibes M, Naqui-Xicota C, Andrade M, Fregni F. Neural correlates of phantom motor execution: A functional neuroimaging systematic review and meta-analysis. Cortex 2024; 181:295-304. [PMID: 39341715 PMCID: PMC11611634 DOI: 10.1016/j.cortex.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024]
Abstract
Phantom motor execution (PME) shows promise as a new treatment for phantom limb pain (PLP) by inducing motor-related analgesia and retraining the pain network activation. However, the current understanding of the neural correlates underlying PME is limited. Databases were systematically searched for multimodal neuroimaging studies to explore the neural correlates of PME. A narrative synthesis (17 studies, n = 328) and coordinate-based meta-analysis were performed to identify activation commonalities. Contrasting PME-vs-REST revealed differential activation of the supplementary motor area (SMA), post-central gyrus, and dorsolateral superior frontal gyrus; while PME-vs-ME revealed differential activation of the right anterior insula, anterior cingulate, left amygdala, and right striatum. Further narrative synthesis revealed a positive correlation between PME-induced brain activity and PLP intensity, and a specific connectivity pattern during PME on the SMA-M1 network compared to ME and motor imagery. Our results suggest that the PME represents a distinct type of motor network activation, partially overlapping with ME and motor imagery activations but with special activation of interoceptive regulation and mood-related regions. Thus, confirming its potential as a therapeutic approach for PLP.
Collapse
Affiliation(s)
- Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru.
| | - Robin Emily Heemels
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium
| | - Daniela Martinez-Magallanes
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Marianna Daibes
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Cristina Naqui-Xicota
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Maria Andrade
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
5
|
Isabella SL, D'Alonzo M, Mioli A, Arcara G, Pellegrino G, Di Pino G. Artificial embodiment displaces cortical neuromagnetic somatosensory responses. Sci Rep 2024; 14:22279. [PMID: 39333283 PMCID: PMC11437133 DOI: 10.1038/s41598-024-72460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Integrating artificial limbs as part of one's body involves complex neuroplastic changes resulting from various sensory inputs. While somatosensory feedback is crucial, plastic processes that enable embodiment remain unknown. We investigated this using somatosensory evoked fields (SEFs) in the primary somatosensory cortex (S1) following the Rubber Hand Illusion (RHI), known to quickly induce artificial limb embodiment. During electrical stimulation of the little finger and thumb, 19 adults underwent neuromagnetic recordings before and after the RHI. We found early SEF displacement, including an illusion-brain correlation between extent of embodiment and specific changes to the first cortical response at 20 ms in Area 3b, within S1. Furthermore, we observed a posteriorly directed displacement at 35 ms towards Area 1, known to be important for visual integration during touch perception. That this second displacement was unrelated to extent of embodiment implies a functional distinction between neuroplastic changes of these components and areas. The earlier shift in Area 3b may shape extent of limb ownership, while subsequent displacement into Area 1 may relate to early visual-tactile integration that initiates embodiment. Here we provide evidence for multiple neuroplastic processes in S1-lasting beyond the illusion-supporting integration of artificial limbs like prostheses within the body representation.
Collapse
Affiliation(s)
- Silvia L Isabella
- NeXT: Neurophsyiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Universita' Campus Bio-Medico di Roma, Rome, Italy.
- San Camillo IRCCS Research Hospital, Venice, Italy.
| | - Marco D'Alonzo
- NeXT: Neurophsyiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Universita' Campus Bio-Medico di Roma, Rome, Italy
| | - Alessandro Mioli
- NeXT: Neurophsyiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Universita' Campus Bio-Medico di Roma, Rome, Italy
| | | | - Giovanni Pellegrino
- Epilepsy program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Giovanni Di Pino
- NeXT: Neurophsyiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Universita' Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
6
|
Schone HR, Udeozor M, Moninghoff M, Rispoli B, Vandersea J, Lock B, Hargrove L, Makin TR, Baker CI. Biomimetic versus arbitrary motor control strategies for bionic hand skill learning. Nat Hum Behav 2024; 8:1108-1123. [PMID: 38499772 PMCID: PMC11199138 DOI: 10.1038/s41562-023-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 12/21/2023] [Indexed: 03/20/2024]
Abstract
A long-standing engineering ambition has been to design anthropomorphic bionic limbs: devices that look like and are controlled in the same way as the biological body (biomimetic). The untested assumption is that biomimetic motor control enhances device embodiment, learning, generalization and automaticity. To test this, we compared biomimetic and non-biomimetic control strategies for non-disabled participants when learning to control a wearable myoelectric bionic hand operated by an eight-channel electromyography pattern-recognition system. We compared motor learning across days and behavioural tasks for two training groups: biomimetic (mimicking the desired bionic hand gesture with biological hand) and arbitrary control (mapping an unrelated biological hand gesture with the desired bionic gesture). For both trained groups, training improved bionic limb control, reduced cognitive reliance and increased embodiment over the bionic hand. Biomimetic users had more intuitive and faster control early in training. Arbitrary users matched biomimetic performance later in training. Furthermore, arbitrary users showed increased generalization to a new control strategy. Collectively, our findings suggest that biomimetic and arbitrary control strategies provide different benefits. The optimal strategy is probably not strictly biomimetic, but rather a flexible strategy within the biomimetic-to-arbitrary spectrum, depending on the user, available training opportunities and user requirements.
Collapse
Affiliation(s)
- Hunter R Schone
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
- Institute of Cognitive Neuroscience, University College London, London, UK.
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Malcolm Udeozor
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mae Moninghoff
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Beth Rispoli
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - James Vandersea
- Medical Center Orthotics and Prosthetics, Silver Spring, MD, USA
| | | | - Levi Hargrove
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- The Regenstein Foundation Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, UK.
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Chris I Baker
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Rierola-Fochs S, Ochandorena-Acha M, Merchán-Baeza JA, Minobes-Molina E. The effectiveness of graded motor imagery and its components on phantom limb pain in amputated patients: A systematic review. Prosthet Orthot Int 2024; 48:158-169. [PMID: 37870365 DOI: 10.1097/pxr.0000000000000293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/09/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Phantom limb pain (PLP) can be defined as pain in a missing part of the limb. It is reported in 50%-80% of people with amputation. OBJECTIVES To provide an overview of the effectiveness of graded motor imagery (GMI) and the techniques which form it on PLP in amputees. STUDY DESIGN Systematic review. METHODS Two authors independently selected relevant studies, screened the articles for methodological validity and risk of bias, and extracted the data. Inclusion criteria used were clinical studies, written in English or Spanish, using GMI, laterality recognition, motor imagery, mirror therapy, or a combination of some of them as an intervention in amputated patients, and one of the outcomes was PLP, and it was assessed using a validated scale. The databases used were PubMed, Scopus, Web of Science, CINAHL, and PEDro. RESULTS Fifteen studies were included in the review. After the intervention, all the groups in which the GMI or one of the techniques that comprise it was used showed decrease in PLP. CONCLUSION The 3 GMI techniques showed effectiveness in decreasing PLP in amputees, although it should be noted that the application of the GMI showed better results.
Collapse
Affiliation(s)
- Sandra Rierola-Fochs
- Research Group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M O), Faculty of Health Sciences and Welfare, University of Vic-Central University of Catalonia (UVIC-UCC), Catalonia, Vic, Spain
- Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Vic, Spain
| | - Mirari Ochandorena-Acha
- Research Group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M O), Faculty of Health Sciences and Welfare, University of Vic-Central University of Catalonia (UVIC-UCC), Catalonia, Vic, Spain
- Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Vic, Spain
| | - Jose Antonio Merchán-Baeza
- Research Group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M O), Faculty of Health Sciences and Welfare, University of Vic-Central University of Catalonia (UVIC-UCC), Catalonia, Vic, Spain
- Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Vic, Spain
| | - Eduard Minobes-Molina
- Research Group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M O), Faculty of Health Sciences and Welfare, University of Vic-Central University of Catalonia (UVIC-UCC), Catalonia, Vic, Spain
- Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Vic, Spain
| |
Collapse
|
8
|
Yang H, Yanagisawa T. Is Phantom Limb Awareness Necessary for the Treatment of Phantom Limb Pain? Neurol Med Chir (Tokyo) 2024; 64:101-107. [PMID: 38267056 PMCID: PMC10992984 DOI: 10.2176/jns-nmc.2023-0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/31/2023] [Indexed: 01/26/2024] Open
Abstract
Phantom limb pain is attributed to abnormal sensorimotor cortical representations. Various feedback treatments have been applied to induce the reorganization of the sensorimotor cortical representations to reduce pain. We developed a training protocol using a brain-computer interface (BCI) to induce plastic changes in the sensorimotor cortical representation of phantom hand movements and demonstrated that BCI training effectively reduces phantom limb pain. By comparing the induced cortical representation and pain, the mechanisms worsening the pain have been attributed to the residual phantom hand representation. Based on our data obtained using neurofeedback training without explicit phantom hand movements and hand-like visual feedback, we suggest a direct relationship between cortical representation and pain. In this review, we summarize the results of our BCI training protocol and discuss the relationship between cortical representation and phantom limb pain. We propose a treatment for phantom limb pain based on real-time neuroimaging to induce appropriate cortical reorganization by monitoring cortical activities.
Collapse
Affiliation(s)
- Huixiang Yang
- Institute for Advanced Co-creation Studies, Osaka University
| | - Takufumi Yanagisawa
- Institute for Advanced Co-creation Studies, Osaka University
- Department of Neurosurgery, Graduate School of Medicine, Osaka University
| |
Collapse
|
9
|
Weiss T, Koehler H, Croy I. Pain and Reorganization after Amputation: Is Interoceptive Prediction a Key? Neuroscientist 2023; 29:665-675. [PMID: 35950521 PMCID: PMC10623598 DOI: 10.1177/10738584221112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an ongoing discussion on the relevance of brain reorganization following amputation for phantom limb pain. Recent attempts to provide explanations for seemingly controversial findings-specifically, maladaptive plasticity versus persistent functional representation as a complementary process-acknowledged that reorganization in the primary somatosensory cortex is not sufficient to explain phantom limb pain satisfactorily. Here we provide theoretical considerations that might help integrate the data reviewed and suppose a possible additional driver of the development of phantom limb pain-namely, an error in interoceptive predictions to somatosensory sensations and movements of the missing limb. Finally, we derive empirically testable consequences based on our considerations to guide future research.
Collapse
Affiliation(s)
- Thomas Weiss
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| | - Hanna Koehler
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Ilona Croy
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
10
|
Vannuscorps G, Caramazza A. Effector-specific motor simulation supplements core action recognition processes in adverse conditions. Soc Cogn Affect Neurosci 2023; 18:nsad046. [PMID: 37688518 PMCID: PMC10576201 DOI: 10.1093/scan/nsad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/10/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023] Open
Abstract
Observing other people acting activates imitative motor plans in the observer. Whether, and if so when and how, such 'effector-specific motor simulation' contributes to action recognition remains unclear. We report that individuals born without upper limbs (IDs)-who cannot covertly imitate upper-limb movements-are significantly less accurate at recognizing degraded (but not intact) upper-limb than lower-limb actions (i.e. point-light animations). This finding emphasizes the need to reframe the current controversy regarding the role of effector-specific motor simulation in action recognition: instead of focusing on the dichotomy between motor and non-motor theories, the field would benefit from new hypotheses specifying when and how effector-specific motor simulation may supplement core action recognition processes to accommodate the full variety of action stimuli that humans can recognize.
Collapse
Affiliation(s)
- Gilles Vannuscorps
- Psychological Sciences Research Institute, Université catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Université catholique de Louvain, Avenue E. Mounier 53, Brussels 1200, Belgium
- Department of Psychology, Harvard University, Kirkland Street 33, Cambridge, MA 02138, USA
| | - Alfonso Caramazza
- Department of Psychology, Harvard University, Kirkland Street 33, Cambridge, MA 02138, USA
- CIMEC (Center for Mind-Brain Sciences), University of Trento, Via delle Regole 101, Mattarello TN 38123, Italy
| |
Collapse
|
11
|
Amoruso E, Terhune DB, Kromm M, Kirker S, Muret D, Makin TR. Reassessing referral of touch following peripheral deafferentation: The role of contextual bias. Cortex 2023; 167:167-177. [PMID: 37567052 PMCID: PMC11139647 DOI: 10.1016/j.cortex.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/28/2023] [Accepted: 04/21/2023] [Indexed: 08/13/2023]
Abstract
Some amputees have been famously reported to perceive facial touch as arising from their phantom hand. These referred sensations have since been replicated across multiple neurological disorders and were classically interpreted as a perceptual correlate of cortical plasticity. Common to all these and related studies is that participants might have been influenced in their self-reports by the experimental design or related contextual biases. Here, we investigated whether referred sensations reports might be confounded by demand characteristics (e.g., compliance, expectation, suggestion). Unilateral upper-limb amputees (N = 18), congenital one-handers (N = 19), and two-handers (N = 22) were repeatedly stimulated with computer-controlled vibrations on 10 body-parts and asked to report the occurrence of any concurrent sensations on their hand(s). To further manipulate expectations, we gave participants the suggestion that some of these vibrations had a higher probability to evoke referred sensations. We also assessed similarity between (phantom) hand and face representation in primary somatosensory cortex (S1), using functional Magnetic Resonance Imaging (fMRI) multivariate representational similarity analysis. We replicated robust reports of referred sensations in amputees towards their phantom hand; however, the frequency and distribution of reported referred sensations were similar across groups. Moreover, referred sensations were evoked by stimulation of multiple body-parts and similarly reported on both the intact and phantom hand in amputees. Face-to-phantom-hand representational similarity was not different in amputees' missing hand region, compared with controls. These findings weaken the interpretation of referred sensations as a perceptual correlate of S1 plasticity and reveal the need to account for contextual biases when evaluating anomalous perceptual phenomena.
Collapse
Affiliation(s)
- Elena Amoruso
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Devin B Terhune
- Department of Psychology, Goldsmiths, University of London, London SE14 6NW, UK
| | - Maria Kromm
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Stephen Kirker
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK.
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
12
|
Papaleo ED, D'Alonzo M, Fiori F, Piombino V, Falato E, Pilato F, De Liso A, Di Lazzaro V, Di Pino G. Integration of proprioception in upper limb prostheses through non-invasive strategies: a review. J Neuroeng Rehabil 2023; 20:118. [PMID: 37689701 PMCID: PMC10493033 DOI: 10.1186/s12984-023-01242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023] Open
Abstract
Proprioception plays a key role in moving our body dexterously and effortlessly. Nevertheless, the majority of investigations evaluating the benefits of providing supplemental feedback to prosthetics users focus on delivering touch restitution. These studies evaluate the influence of touch sensation in an attempt to improve the controllability of current robotic devices. Contrarily, investigations evaluating the capabilities of proprioceptive supplemental feedback have yet to be comprehensively analyzed to the same extent, marking a major gap in knowledge within the current research climate. The non-invasive strategies employed so far to restitute proprioception are reviewed in this work. In the absence of a clearly superior strategy, approaches employing vibrotactile, electrotactile and skin-stretch stimulation achieved better and more consistent results, considering both kinesthetic and grip force information, compared with other strategies or any incidental feedback. Although emulating the richness of the physiological sensory return through artificial feedback is the primary hurdle, measuring its effects to eventually support the integration of cumbersome and energy intensive hardware into commercial prosthetic devices could represent an even greater challenge. Thus, we analyze the strengths and limitations of previous studies and discuss the possible benefits of coupling objective measures, like neurophysiological parameters, as well as measures of prosthesis embodiment and cognitive load with behavioral measures of performance. Such insights aim to provide additional and collateral outcomes to be considered in the experimental design of future investigations of proprioception restitution that could, in the end, allow researchers to gain a more detailed understanding of possibly similar behavioral results and, thus, support one strategy over another.
Collapse
Affiliation(s)
- Ermanno Donato Papaleo
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico Di Roma, Via Álvaro Del Portillo 21, 00128, Rome, Italy
| | - Marco D'Alonzo
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico Di Roma, Via Álvaro Del Portillo 21, 00128, Rome, Italy
| | - Francesca Fiori
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico Di Roma, Via Álvaro Del Portillo 21, 00128, Rome, Italy
| | - Valeria Piombino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico Di Roma, Via Álvaro Del Portillo 21, 00128, Rome, Italy
| | - Emma Falato
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Fabio Pilato
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Alfredo De Liso
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Vincenzo Di Lazzaro
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico Di Roma, Via Álvaro Del Portillo 21, 00128, Rome, Italy.
| |
Collapse
|
13
|
Ueta Y, Miyata M. Functional and structural synaptic remodeling mechanisms underlying somatotopic organization and reorganization in the thalamus. Neurosci Biobehav Rev 2023; 152:105332. [PMID: 37524138 DOI: 10.1016/j.neubiorev.2023.105332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
The somatosensory system organizes the topographic representation of body maps, termed somatotopy, at all levels of an ascending hierarchy. Postnatal maturation of somatotopy establishes optimal somatosensation, whereas deafferentation in adults reorganizes somatotopy, which underlies pathological somatosensation, such as phantom pain and complex regional pain syndrome. Here, we focus on the mouse whisker somatosensory thalamus to study how sensory experience shapes the fine topography of afferent connectivity during the critical period and what mechanisms remodel it and drive a large-scale somatotopic reorganization after peripheral nerve injury. We will review our findings that, following peripheral nerve injury in adults, lemniscal afferent synapses onto thalamic neurons are remodeled back to immature configuration, as if the critical period reopens. The remodeling process is initiated with local activation of microglia in the brainstem somatosensory nucleus downstream to injured nerves and heterosynaptically controlled by input from GABAergic and cortical neurons to thalamic neurons. These fruits of thalamic studies complement well-studied cortical mechanisms of somatotopic organization and reorganization and unveil potential intervention points in treating pathological somatosensation.
Collapse
Affiliation(s)
- Yoshifumi Ueta
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
14
|
Sanders Z, Dempsey‐Jones H, Wesselink DB, Edmondson LR, Puckett AM, Saal HP, Makin TR. Similar somatotopy for active and passive digit representation in primary somatosensory cortex. Hum Brain Mapp 2023; 44:3568-3585. [PMID: 37145934 PMCID: PMC10203813 DOI: 10.1002/hbm.26298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/11/2022] [Accepted: 03/13/2023] [Indexed: 05/07/2023] Open
Abstract
Scientists traditionally use passive stimulation to examine the organisation of primary somatosensory cortex (SI). However, given the close, bidirectional relationship between the somatosensory and motor systems, active paradigms involving free movement may uncover alternative SI representational motifs. Here, we used 7 Tesla functional magnetic resonance imaging to compare hallmark features of SI digit representation between active and passive tasks which were unmatched on task or stimulus properties. The spatial location of digit maps, somatotopic organisation, and inter-digit representational structure were largely consistent between tasks, indicating representational consistency. We also observed some task differences. The active task produced higher univariate activity and multivariate representational information content (inter-digit distances). The passive task showed a trend towards greater selectivity for digits versus their neighbours. Our findings highlight that, while the gross features of SI functional organisation are task invariant, it is important to also consider motor contributions to digit representation.
Collapse
Affiliation(s)
- Zeena‐Britt Sanders
- Wellcome Centre of Integrative NeuroimagingFMRIB, John Radcliffe HospitalOxfordUK
| | - Harriet Dempsey‐Jones
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
- School of PsychologyThe University of QueenslandBrisbaneAustralia
| | - Daan B. Wesselink
- Wellcome Centre of Integrative NeuroimagingFMRIB, John Radcliffe HospitalOxfordUK
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | | | - Alexander M. Puckett
- School of PsychologyThe University of QueenslandBrisbaneAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Hannes P. Saal
- Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Tamar R. Makin
- Wellcome Centre of Integrative NeuroimagingFMRIB, John Radcliffe HospitalOxfordUK
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
15
|
Kuffler DP. Evolving techniques for reducing phantom limb pain. Exp Biol Med (Maywood) 2023; 248:561-572. [PMID: 37158119 PMCID: PMC10350801 DOI: 10.1177/15353702231168150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
At least two million people in the United States of America live with lost limbs, and the number is expected to double by 2050, although the incidence of amputations is significantly greater in other parts of the world. Within days to weeks of the amputation, up to 90% of these individuals develop neuropathic pain, presenting as phantom limb pain (PLP). The pain level increases significantly within one year and remains chronic and severe for about 10%. Amputation-induced changes are considered to underlie the causation of PLP. Techniques applied to the central nervous system (CNS) and peripheral nervous system (PNS) are designed to reverse amputation-induced changes, thereby reducing/eliminating PLP. The primary treatment for PLP is the administration of pharmacological agents, some of which are considered but provide no more than short-term pain relief. Alternative techniques are also discussed, which provide only short-term pain relief. Changes induced by various cells and the factors they release are required to change neurons and their environment to reduce/eliminate PLP. It is concluded that novel techniques that utilize autologous platelet-rich plasma (PRP) may provide long-term PLP reduction/elimination.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan 00901, Puerto Rico
| |
Collapse
|
16
|
Gaetz W, Dockstader C, Furlong PL, Amaral S, Vossough A, Schwartz ES, Roberts TPL, Scott Levin L. Somatosensory and motor representations following bilateral transplants of the hands: A 6-year longitudinal case report on the first pediatric bilateral hand transplant patient. Brain Res 2023; 1804:148262. [PMID: 36706858 DOI: 10.1016/j.brainres.2023.148262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
A vascularized composite tissue allotransplantation (VCA) was performed at the Children's Hospital of Philadelphia (CHOP), on an 8-year-old patient in 2015, six years after bilateral hand and foot amputation. Hand VCA resulted in reafferentation of the medial, ulnar, and radial nerves serving hand somatosensation and motor function. We used magnetoencephalography (MEG) to assess somatosensory cortical plasticity following the post-transplantation recovery of the peripheral sensory nerves of the hands. Our 2-year postoperative MEG showed that somatosensory lip representations, initially observed at "hand areas", reverted to canonical, orthotopic lip locations with recovery of post-transplant hand function. Here, we continue the assessment of motor and somatosensory responses up to 6-years post-transplant. Magnetoencephalographic somatosensory responses were recorded eight times over a six-year period following hand transplantation, using a 275-channel MEG system. Somatosensory tactile stimuli were presented to the right lower lip (all 8 visits) as well as right and left index fingers (visits 3-8) and fifth digits (visits 4-8). In addition, left and right-hand motor responses were also recorded for left index finger and right thumb (visit 8 only).During the acute recovery phase (visits 3 and 4), somatosensory responses of the digits were observed to be significantly larger and more phasic (i.e., smoother) than controls. Subsequent measures showed that digit responses maintain this atypical response profile (evoked-response magnitudes typically exceed 1 picoTesla). Orthotopic somatosensory localization of the lip, D2, and D5 was preserved. Motor beta-band desynchrony was age-typical in localization and response magnitude; however, the motor gamma-band response was significantly larger than that observed in a reference population.These novel findings show that the restoration of somatosensory input of the hands resulted in persistent and atypically large cortical responses to digit stimulation, which remain atypically large at 6 years post-transplant; there is no known perceptual correlate, and no reports of phantom pain. Normal somatosensory organization of the lip, D2, and D5 representation remain stable following post-recovery reorganization of the lip's somatosensory response.
Collapse
Affiliation(s)
- W Gaetz
- Lurie Family Foundations' MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia PA, USA; Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - C Dockstader
- Human Biology Program, University of Toronto, Toronto ON, Canada
| | - P L Furlong
- Institute of Health and Neurodevelopment, Aston University, Birmingham, UK
| | - S Amaral
- Department of Pediatrics, Division of Nephrology, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - A Vossough
- Lurie Family Foundations' MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia PA, USA; Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Neuroradiology, Department of Radiology, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - E S Schwartz
- Lurie Family Foundations' MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia PA, USA; Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Neuroradiology, Department of Radiology, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - T P L Roberts
- Lurie Family Foundations' MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia PA, USA; Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L Scott Levin
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Plastic and Reconstructive Surgery, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA; Department of Orthopaedic Surgery, The Children's Hospital of Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Mastria G, Scaliti E, Mehring C, Burdet E, Becchio C, Serino A, Akselrod M. Morphology, Connectivity, and Encoding Features of Tactile and Motor Representations of the Fingers in the Human Precentral and Postcentral Gyrus. J Neurosci 2023; 43:1572-1589. [PMID: 36717227 PMCID: PMC10008061 DOI: 10.1523/jneurosci.1976-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the tight coupling between sensory and motor processing for fine manipulation in humans, it is not yet totally clear which specific properties of the fingers are mapped in the precentral and postcentral gyrus. We used fMRI to compare the morphology, connectivity, and encoding of the motor and tactile finger representations (FRs) in the precentral and postcentral gyrus of 25 5-fingered participants (8 females). Multivoxel pattern and structural and functional connectivity analyses demonstrated the existence of distinct motor and tactile FRs within both the precentral and postcentral gyrus, integrating finger-specific motor and tactile information. Using representational similarity analysis, we found that the motor and tactile FRs in the sensorimotor cortex were described by the perceived structure of the hand better than by the actual hand anatomy or other functional models (finger kinematics, muscles synergies). We then studied a polydactyly individual (i.e., with a congenital 6-fingered hand) showing superior manipulation abilities and divergent anatomic-functional hand properties. The perceived hand model was still the best model for tactile representations in the precentral and postcentral gyrus, while finger kinematics better described motor representations in the precentral gyrus. We suggest that, under normal conditions (i.e., in subjects with a standard hand anatomy), the sensorimotor representations of the 5 fingers in humans converge toward a model of perceived hand anatomy, deviating from the real hand structure, as the best synthesis between functional and structural features of the hand.SIGNIFICANCE STATEMENT Distinct motor and tactile finger representations exist in both the precentral and postcentral gyrus, supported by a finger-specific pattern of anatomic and functional connectivity across modalities. At the representational level, finger representations reflect the perceived structure of the hand, which might result from an adapting process harmonizing (i.e., uniformizing) the encoding of hand function and structure in the precentral and postcentral gyrus. The same analyses performed in an extremely rare polydactyly subject showed that the emergence of such representational geometry is also found in neuromechanical variants with different hand anatomy and function. However, the harmonization process across the precentral and postcentral gyrus might not be possible because of divergent functional-structural properties of the hand and associated superior manipulation abilities.
Collapse
Affiliation(s)
- Giulio Mastria
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Eugenio Scaliti
- C'MoN, Cognition, Motion and Neuroscience Unit, Fondazione Istituto Italiano di Tecnologia, Genova, 16163, Italy
| | - Carsten Mehring
- Bernstein Center and Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Etienne Burdet
- Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, SW7 2AZ, United Kingdom
| | - Cristina Becchio
- C'MoN, Cognition, Motion and Neuroscience Unit, Fondazione Istituto Italiano di Tecnologia, Genova, 16163, Italy
| | - Andrea Serino
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Michel Akselrod
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, CH-1011, Switzerland
| |
Collapse
|
18
|
Schone HR, Udeozor M, Moninghoff M, Rispoli B, Vandersea J, Lock B, Hargrove L, Makin TR, Baker CI. Should bionic limb control mimic the human body? Impact of control strategy on bionic hand skill learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.525548. [PMID: 36945476 PMCID: PMC10028741 DOI: 10.1101/2023.02.07.525548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A longstanding engineering ambition has been to design anthropomorphic bionic limbs: devices that look like and are controlled in the same way as the biological body (biomimetic). The untested assumption is that biomimetic motor control enhances device embodiment, learning, generalization, and automaticity. To test this, we compared biomimetic and non-biomimetic control strategies for able-bodied participants when learning to operate a wearable myoelectric bionic hand. We compared motor learning across days and behavioural tasks for two training groups: Biomimetic (mimicking the desired bionic hand gesture with biological hand) and Arbitrary control (mapping an unrelated biological hand gesture with the desired bionic gesture). For both trained groups, training improved bionic limb control, reduced cognitive reliance, and increased embodiment over the bionic hand. Biomimetic users had more intuitive and faster control early in training. Arbitrary users matched biomimetic performance later in training. Further, arbitrary users showed increased generalization to a novel control strategy. Collectively, our findings suggest that biomimetic and arbitrary control strategies provide different benefits. The optimal strategy is likely not strictly biomimetic, but rather a flexible strategy within the biomimetic to arbitrary spectrum, depending on the user, available training opportunities and user requirements.
Collapse
Affiliation(s)
- Hunter R. Schone
- Laboratory of Brain & Cognition, National Institutes of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Malcolm Udeozor
- Laboratory of Brain & Cognition, National Institutes of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mae Moninghoff
- Laboratory of Brain & Cognition, National Institutes of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Beth Rispoli
- Laboratory of Brain & Cognition, National Institutes of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - James Vandersea
- Medical Center Orthotics & Prosthetics, Silver Spring, MD, USA
| | | | - Levi Hargrove
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- The Regenstein Foundation Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Chris I. Baker
- Laboratory of Brain & Cognition, National Institutes of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Hybart RL, Ferris DP. Embodiment for Robotic Lower-Limb Exoskeletons: A Narrative Review. IEEE Trans Neural Syst Rehabil Eng 2023; 31:657-668. [PMID: 37015690 PMCID: PMC10267288 DOI: 10.1109/tnsre.2022.3229563] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Research on embodiment of objects external to the human body has revealed important information about how the human nervous system interacts with robotic lower limb exoskeletons. Typical robotic exoskeleton control approaches view the controllers as an external agent intending to move in coordination with the human. However, principles of embodiment suggest that the exoskeleton controller should ideally coordinate with the human such that the nervous system can adequately model the input-output dynamics of the exoskeleton controller. Measuring embodiment of exoskeletons should be a necessary step in the exoskeleton development and prototyping process. Researchers need to establish high fidelity quantitative measures of embodiment, rather than relying on current qualitative survey measures. Mobile brain imaging techniques, such as high-density electroencephalography, is likely to provide a deeper understanding of embodiment during human-machine interactions and advance exoskeleton research and development. In this review we show why future exoskeleton research should include quantitative measures of embodiment as a metric of success.
Collapse
|
20
|
Root V, Muret D, Arribas M, Amoruso E, Thornton J, Tarall-Jozwiak A, Tracey I, Makin TR. Complex pattern of facial remapping in somatosensory cortex following congenital but not acquired hand loss. eLife 2022; 11:e76158. [PMID: 36583538 PMCID: PMC9851617 DOI: 10.7554/elife.76158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Cortical remapping after hand loss in the primary somatosensory cortex (S1) is thought to be predominantly dictated by cortical proximity, with adjacent body parts remapping into the deprived area. Traditionally, this remapping has been characterised by changes in the lip representation, which is assumed to be the immediate neighbour of the hand based on electrophysiological research in non-human primates. However, the orientation of facial somatotopy in humans is debated, with contrasting work reporting both an inverted and upright topography. We aimed to fill this gap in the S1 homunculus by investigating the topographic organisation of the face. Using both univariate and multivariate approaches we examined the extent of face-to-hand remapping in individuals with a congenital and acquired missing hand (hereafter one-handers and amputees, respectively), relative to two-handed controls. Participants were asked to move different facial parts (forehead, nose, lips, tongue) during functional MRI (fMRI) scanning. We first confirmed an upright face organisation in all three groups, with the upper-face and not the lips bordering the hand area. We further found little evidence for remapping of both forehead and lips in amputees, with no significant relationship to the chronicity of their phantom limb pain (PLP). In contrast, we found converging evidence for a complex pattern of face remapping in congenital one-handers across multiple facial parts, where relative to controls, the location of the cortical neighbour - the forehead - is shown to shift away from the deprived hand area, which is subsequently more activated by the lips and the tongue. Together, our findings demonstrate that the face representation in humans is highly plastic, but that this plasticity is restricted by the developmental stage of input deprivation, rather than cortical proximity.
Collapse
Affiliation(s)
- Victoria Root
- WIN Centre, University of OxfordOxfordUnited Kingdom
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
| | - Dollyane Muret
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| | - Maite Arribas
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Elena Amoruso
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
| | - John Thornton
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| | | | - Irene Tracey
- WIN Centre, University of OxfordOxfordUnited Kingdom
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| |
Collapse
|
21
|
Yanagisawa T, Fukuma R, Seymour B, Tanaka M, Yamashita O, Hosomi K, Kishima H, Kamitani Y, Saitoh Y. Neurofeedback Training without Explicit Phantom Hand Movements and Hand-Like Visual Feedback to Modulate Pain: A Randomized Crossover Feasibility Trial. THE JOURNAL OF PAIN 2022; 23:2080-2091. [PMID: 35932992 DOI: 10.1016/j.jpain.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/25/2022] [Accepted: 07/20/2022] [Indexed: 01/04/2023]
Abstract
Phantom limb pain is attributed to abnormal sensorimotor cortical representations, although the causal relationship between phantom limb pain and sensorimotor cortical representations suffers from the potentially confounding effects of phantom hand movements. We developed neurofeedback training to change sensorimotor cortical representations without explicit phantom hand movements or hand-like visual feedback. We tested the feasibility of neurofeedback training in fourteen patients with phantom limb pain. Neurofeedback training was performed in a single-blind, randomized, crossover trial using two decoders constructed using motor cortical currents measured during phantom hand movements; the motor cortical currents contralateral or ipsilateral to the phantom hand (contralateral and ipsilateral training) were estimated from magnetoencephalograms. Patients were instructed to control the size of a disk, which was proportional to the decoding results, but to not move their phantom hands or other body parts. The pain assessed by the visual analogue scale was significantly greater after contralateral training than after ipsilateral training. Classification accuracy of phantom hand movements significantly increased only after contralateral training. These results suggested that the proposed neurofeedback training changed phantom hand representation and modulated pain without explicit phantom hand movements or hand-like visual feedback, thus showing the relation between the phantom hand representations and pain. PERSPECTIVE: Our work demonstrates the feasibility of using neurofeedback training to change phantom hand representation and modulate pain perception without explicit phantom hand movements and hand-like visual feedback. The results enhance the mechanistic understanding of certain treatments, such as mirror therapy, that change the sensorimotor cortical representation.
Collapse
Affiliation(s)
- Takufumi Yanagisawa
- Osaka University, Institute for Advanced Co-Creation Studies, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; ATR Computational Neuroscience Laboratories, Department of Neuroinformatics, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan.
| | - Ryohei Fukuma
- Osaka University, Institute for Advanced Co-Creation Studies, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; ATR Computational Neuroscience Laboratories, Department of Neuroinformatics, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan
| | - Ben Seymour
- University of Oxford, Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, Oxford OX3 7DQ, UK; National Institute for Information and Communications Technology, Center for Information and Neural Networks, 1-3 Suita, Osaka 565-0871, Japan
| | - Masataka Tanaka
- Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Okito Yamashita
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; ATR Neural Information Analysis Laboratories, Department of Computational Brain Imaging, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan
| | - Koichi Hosomi
- Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Graduate School of Medicine, Department of Neuromodulation and Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruhiko Kishima
- Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukiyasu Kamitani
- ATR Computational Neuroscience Laboratories, Department of Neuroinformatics, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan; Kyoto University, Graduate School of Informatics, Yoshidahonmachi, Sakyoku, Kyoto, Kyoto 606-8501, Japan
| | - Youichi Saitoh
- Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Graduate School of Medicine, Department of Neuromodulation and Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Temporal and spatial goal-directed reaching in upper limb prosthesis users. Exp Brain Res 2022; 240:3011-3021. [PMID: 36222884 DOI: 10.1007/s00221-022-06476-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/30/2022] [Indexed: 11/04/2022]
Abstract
Understanding the fundamental characteristics of prosthetic movement control is imperative in improving prosthesis design and training. This study quantified how using an upper limb prosthesis affected performance during goal-directed reaching tasks. Nine prosthesis users with unilateral transradial limb absence and nine healthy controls completed a series of goal-directed reaching movements with different goals: one spatial and three temporal with different goal frequencies. We quantified end-point accuracy, smoothness, and peak speed for the spatial task and temporal accuracy, horizontal distance, and speed for the temporal task. For the temporal task, we also used a goal-equivalent manifold (GEM) approach to decompose variability in movement distance and speed into those perpendicular and tangential to the GEM. Detrended fluctuation analysis (DFA) quantified the temporal persistence of each time series. For the spatial task, movements made with prostheses were less smooth, had larger end-point errors, and had slower peak speed compared to those with control limbs (p < 0.041). For the temporal task, movements made with prostheses and intact limbs of prosthesis users and control limbs were similar in distance and speed and had similar timing errors (p > 0.138). Timing errors, distance, speed, and GEM deviations were corrected similarly between prosthetic limbs and control limbs (p > 0.091). The mean and variability of distance, speed, and perpendicular deviations decreased with increased goal frequency (p < 0.001). Our results suggest that prosthesis users have a sufficient internal model to successfully complete ballistic movements but are unable to accurately complete movements requiring substantial feedback.
Collapse
|
23
|
Philip BA, Valyear KF, Cirstea CM, Baune NA, Kaufman C, Frey SH. Changes in Primary Somatosensory Cortex Following Allogeneic Hand Transplantation or Autogenic Hand Replantation. FRONTIERS IN NEUROIMAGING 2022; 1:919694. [PMID: 36590253 PMCID: PMC9802660 DOI: 10.3389/fnimg.2022.919694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/09/2022] [Indexed: 01/03/2023]
Abstract
Former amputees who undergo allogeneic hand transplantation or autogenic hand replantation (jointly, "hand restoration") present a unique opportunity to measure the range of post-deafferentation plastic changes in the nervous system, especially primary somatosensory cortex (S1). However, few such patients exist, and previous studies compared single cases to small groups of typical adults. Here, we studied 5 individuals (n = 8 sessions: a transplant with 2 sessions, a transplant with 3 sessions, and three replants with 1 session each). We used functional magnetic resonance imaging (fMRI) to measure S1 responsiveness to controlled pneumatic tactile stimulation delivered to each patient's left and right fingertips and lower face. These data were compared with responses acquired from typical adults (n = 29) and current unilateral amputees (n = 19). During stimulation of the affected hand, patients' affected S1 (contralateral to affected hand) responded to stimulation in a manner similar both to amputees and to typical adults. The presence of contralateral responses indicated grossly typical S1 function, but responses were universally at the low end of the range of typical variability. Patients' affected S1 showed substantial individual variability in responses to stimulation of the intact hand: while all patients fell within the range of typical adults, some patient sessions (4/8) had substantial ipsilateral responses similar to those exhibited by current amputees. Unlike hand restoration patients, current amputees exhibited substantial S1 reorganization compared to typical adults, including bilateral S1 responses to stimulation of the intact hand. In all three participant groups, we assessed tactile localization by measuring individuals' ability to identify the location of touch on the palm and fingers. Curiously, while transplant patients improved their tactile sensory localization over time, this was uncorrelated with changes in S1 responses to tactile stimuli. Overall, our results provide the first description of cortical responses to well-controlled tactile stimulation after hand restoration. Our case studies indicate that hand restoration patients show S1 function within the range of both typical adults and amputees, but with low-amplitude and individual-specific responses that indicate a wide range of potential cortical neurological changes following de-afferentation and re-afferentation.
Collapse
Affiliation(s)
- Benjamin A. Philip
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, United States
| | - Kenneth F. Valyear
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
| | - Carmen M. Cirstea
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, United States
| | - Nathan A. Baune
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, United States
| | - Christina Kaufman
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, United States
| | - Scott H. Frey
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, United States
| |
Collapse
|
24
|
Risso G, Bassolino M. Assess and rehabilitate body representations via (neuro)robotics: An emergent perspective. Front Neurorobot 2022; 16:964720. [PMID: 36160286 PMCID: PMC9498221 DOI: 10.3389/fnbot.2022.964720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
The perceptions of our own body (e.g., size and shape) do not always coincide with its real characteristics (e.g., dimension). To track the complexity of our perception, the concept of mental representations (model) of the body has been conceived. Body representations (BRs) are stored in the brain and are maintained and updated through multiple sensory information. Despite being altered in different clinical conditions and being tightly linked with self-consciousness, which is one of the most astonishing features of the human mind, the BRs and, especially, the underlying mechanisms and functions are still unclear. In this vein, here we suggest that (neuro)robotics can make an important contribution to the study of BRs. The first section of the study highlights the potential impact of robotics devices in investigating BRs. Far to be exhaustive, we illustrate major examples of its possible exploitation to further improve the assessment of motor, haptic, and multisensory information building up the BRs. In the second section, we review the main evidence showing the contribution of neurorobotics-based (multi)sensory stimulation in reducing BRs distortions in various clinical conditions (e.g., stroke, amputees). The present study illustrates an emergent multidisciplinary perspective combining the neuroscience of BRs and (neuro)robotics to understand and modulate the perception and experience of one's own body. We suggest that (neuro)robotics can enhance the study of BRs by improving experimental rigor and introducing new experimental conditions. Furthermore, it might pave the way for the rehabilitation of altered body perceptions.
Collapse
Affiliation(s)
- Gaia Risso
- School of Health Sciences, Haute École spécialisée de Suisse occidentale (HES-SO) Valais-Wallis, Sion, Switzerland
- The Sense Innovation and Research Center, Sion, Switzerland
- Robotics, Brain and Cognitive Sciences (RBCS), Istituto Italiano di Tecnologia, Genoa, Italy
| | - Michela Bassolino
- School of Health Sciences, Haute École spécialisée de Suisse occidentale (HES-SO) Valais-Wallis, Sion, Switzerland
- The Sense Innovation and Research Center, Sion, Switzerland
- Laboratoire MySpace, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Graham A, Ryan CG, MacSween A, Alexanders J, Livadas N, Oatway S, Atkinson G, Martin DJ. Sensory discrimination training for adults with chronic musculoskeletal pain: a systematic review. Physiother Theory Pract 2022; 38:1107-1125. [PMID: 33078667 DOI: 10.1080/09593985.2020.1830455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Sensory discrimination training (SDT) is a form of feedback guided sensory training used in the treatment of chronic musculoskeletal pain (CMP). OBJECTIVE This systematic review aimed to investigate the efficacy and safety of SDT for CMP. METHODS MEDLINE, CINAHL, EMBASE, AMED, CENTRAL, PsycINFO, Scopus, OT Seeker, PEDro, ETHOS, Web of Science, and Open Grey were searched for appropriate randomized controlled trials (RCTs). Included papers were assessed for risk of bias, and evidence was graded using the GRADE approach. The protocol was published on PROSPERO (anonymized). RESULTS Ten RCTs met the inclusion/exclusion criteria. There was conflicting evidence from seven RCTs for the efficacy of SDT for chronic low back pain (CLBP). There was very low-quality evidence from two studies supporting the efficacy of SDT for phantom limb pain (PLP). There was very low-quality evidence from one RCT for the efficacy of SDT for Fibromyalgia. No adverse effects of SDT were identified. CONCLUSIONS SDT has been delivered in multiple forms in the literature. SDT does not appear to be associated with any adverse effects and shows potential regarding its clinical efficacy. However, there is a lack of high-quality evidence upon which to make any firm clinical recommendations.
Collapse
Affiliation(s)
- Andrew Graham
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Cormac G Ryan
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Alasdair MacSween
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Jenny Alexanders
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Nick Livadas
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Sarah Oatway
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Greg Atkinson
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Denis J Martin
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| |
Collapse
|
26
|
Pang D, Ashkan K. Deep brain stimulation for phantom limb pain. Eur J Paediatr Neurol 2022; 39:96-102. [PMID: 35728428 DOI: 10.1016/j.ejpn.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 03/25/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
Phantom limb pain is a rare cause of chronic pain in children but it is associated with extremely refractory pain and disability. The reason for limb amputation is often due to treatment for cancer or trauma and it has a lower incidence compared to adults. The mechanism of why phantom pain exists remains uncertain and may be a result of cortical reorganisation as well as ectopic peripheral input. Treatment is aimed at reducing both symptoms as well as managing pain related disability and functional restoration. Neuromodulatory approaches using deep brain stimulation for phantom limb pain is reserved for only the most refractory cases. The targets for brain stimulation include the thalamic nuclei and motor cortex. Novel targets such as the anterior cingulate cortex remain experimental as cases of serious adverse effects such as seziures have limited their widespread uptake. A multidisciplinary approach is crucial to successful rehabilitation using a biopsychosocial pain management approach.
Collapse
Affiliation(s)
- David Pang
- Consultant in Pain Management, Pain Management Centre, INPUT St Thomas Hospital, London, SE1 7EH, UK.
| | - Keyoumars Ashkan
- Department of Neurosurgery, Kins's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
27
|
The Role of Body in Brain Plasticity. Brain Sci 2022; 12:brainsci12020277. [PMID: 35204040 PMCID: PMC8869932 DOI: 10.3390/brainsci12020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/14/2022] Open
|
28
|
Jadidi AF, Stevenson AJT, Zarei AA, Jensen W, Lontis R. Effect of Modulated TENS on Corticospinal Excitability in Healthy Subjects. Neuroscience 2022; 485:53-64. [PMID: 35031397 DOI: 10.1016/j.neuroscience.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
Abstract
Conventional transcutaneous electrical nerve stimulation (TENS) has been reported to effectively alleviate chronic pain, including phantom limb pain (PLP). Recently, literature has focused on modulated TENS patterns, such as pulse width modulation (PWM) and burst modulation (BM), as alternatives to conventional, non-modulated (NM) sensory neurostimulation to increase the efficiency of rehabilitation. However, there is still limited knowledge of how these modulated TENS patterns affect corticospinal (CS) and motor cortex activity. Therefore, our aim was to first investigate the effect of modulated TENS patterns on CS activity and corticomotor map in healthy subjects. Motor evoked potentials (MEP) elicited by transcranial magnetic stimulation (TMS) were recorded from three muscles before and after the application of TENS interventions. Four different TENS patterns (PWM, BM, NM 40 Hz, and NM 100 Hz) were applied. The results revealed significant facilitation of CS excitability following the PWM intervention. We also found an increase in the volume of the motor cortical map following the application of the PWM and NM (40 Hz). Although PLP alleviation has been reported to be associated with an enhancement of corticospinal excitability, the efficiency of the PWM intervention to induce pain alleviation should be validated in a future clinical study in amputees with PLP.
Collapse
Affiliation(s)
- Armita Faghani Jadidi
- Center for Neuroplasticity and Pain (CNAP) Department of Health Science and Technology, Aalborg University, Denmark.
| | | | - Ali Asghar Zarei
- Center for Neuroplasticity and Pain (CNAP) Department of Health Science and Technology, Aalborg University, Denmark
| | - Winnie Jensen
- Center for Neuroplasticity and Pain (CNAP) Department of Health Science and Technology, Aalborg University, Denmark
| | - Romulus Lontis
- Center for Neuroplasticity and Pain (CNAP) Department of Health Science and Technology, Aalborg University, Denmark
| |
Collapse
|
29
|
Garcia-Pallero MÁ, Cardona D, Rueda-Ruzafa L, Rodriguez-Arrastia M, Roman P. Central nervous system stimulation therapies in phantom limb pain: a systematic review of clinical trials. Neural Regen Res 2022; 17:59-64. [PMID: 34100428 PMCID: PMC8451556 DOI: 10.4103/1673-5374.314288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phantom limb pain is a chronic pain syndrome that is difficult to cope with. Despite neurostimulation treatment is indicated for refractory neuropathic pain, there is scant evidence from randomized controlled trials to recommend it as the treatment choice. Thus, a systematic review was performed to analyze the efficacy of central nervous system stimulation therapies as a strategy for pain management in patients with phantom limb pain. A literature search for studies conducted between 1970 and September 2020 was carried out using the MEDLINE and Embase databases. Principles of The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline were followed. There were a total of 10 full-text articles retrieved and included in this review. Deep brain stimulation, repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and motor cortex stimulation were the treatment strategies used in the selected clinical trials. Repetitive transcranial magnetic stimulation and transcranial direct current stimulation were effective therapies to reduce pain perception, as well as to relieve anxiety and depression symptoms in phantom limb pain patients. Conversely, invasive approaches were considered the last treatment option as evidence in deep brain stimulation and motor cortex stimulation suggests that the value of phantom limb pain treatment remains controversial. However, the findings on use of these treatment strategies in other forms of neuropathic pain suggest that these invasive approaches could be a potential option for phantom limb pain patients.
Collapse
Affiliation(s)
| | - Diana Cardona
- Department of Nursing Science, Physiotherapy and Medicine, University of Almería, Almería, Spain
| | - Lola Rueda-Ruzafa
- Department of Functional Biology and Health Sciences, Faculty of Biology- CINBIO, University of Vigo, Vigo, Pontevedra, Spain
| | - Miguel Rodriguez-Arrastia
- Faculty of Health Sciences, Pre-Department of Nursing; Research Group CYS, Faculty of Health Sciences, Jaume I University, Castello de la Plana, Spain
| | - Pablo Roman
- Department of Nursing Science, Physiotherapy and Medicine, University of Almería, Almería, Spain
| |
Collapse
|
30
|
Bhoi D, Nanda S, Mohan V. Postamputation pain: A narrative review. INDIAN JOURNAL OF PAIN 2022. [DOI: 10.4103/ijpn.ijpn_95_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Characterisation of Phantom Limb Pain in Traumatic Lower-Limb Amputees. Pain Res Manag 2021; 2021:2706731. [PMID: 34938379 PMCID: PMC8687837 DOI: 10.1155/2021/2706731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/03/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022]
Abstract
Introduction There is no diagnosis for phantom limb pain (PLP), and its investigation is based on anamnesis, which is subject to several biases. Therefore, it is important to describe and standardize the diagnostic methodology for PLP. Objective To characterise PLP and, secondarily, to determine predictors for its diagnosis. Methodology. This is a cross-sectional study involving patients with unilateral traumatic lower-limb amputation aged over 18 years. Those with clinical decompensation or evidence of disease, trauma, or surgery in the central or peripheral nervous system were excluded. Sociodemographic and rehabilitative data were collected; PLP was characterised using the visual analogue scale (VAS), pain descriptors, and weekly frequency. Results A total of 55 eligible patients participated in the study; most were male, young, above-knee amputees in the preprosthetic phase of the rehabilitation. The median PLP VAS was 60 (50–79.3) mm characterised by 13 (6–20) different descriptors in the same patient, which coexist, alternate, and add up to a frequency of 3.94 (2.5–4.38) times per week. The most frequent descriptor was movement of the phantom limb (70.91%). Tingling, numbness, flushing, itchiness, spasm, tremor, and throbbing are statistically significant PLP descriptor numbers per patient predicted by above-knee amputation, prosthetic phase, higher education level, and greater PLP intensity by VAS (p < 0.05). Conclusion PLP is not a single symptom, but a set with different sensations and perceptions that need directed and guided anamnesis for proper diagnosis.
Collapse
|
32
|
Rierola-Fochs S, Varela-Vásquez LA, Merchán-Baeza JA, Minobes-Molina E. Development and Validation of a Graded Motor Imagery Intervention for Phantom Limb Pain in Patients with Amputations (GraMI Protocol): A Delphi Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12240. [PMID: 34831997 PMCID: PMC8623973 DOI: 10.3390/ijerph182212240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Phantom limb pain can be defined as discomfort or pain in a missing part of the limb. The aims of this study were to develop and validate, through a Delphi methodology, a graded motor imagery protocol in order to reduce phantom limb pain. METHOD Physiotherapists and/or occupational therapists with experience in research and a minimum clinical experience of five years in the field of neurorehabilitation and/or pain were recruited by part of a group of experts to assess the intervention. The study was conducted through an online questionnaire, where experts assessed each aspect of the intervention through a Likert scale. As many rounds as necessary were carried out until consensus was reached among experts. RESULTS A total of two rounds were required to fully validate the intervention. During the second round, the relative interquartile range of all aspects to be assessed was less than 15%, thus showing a consensus among experts and with good concordance (Kappa index of 0.76). CONCLUSION Experts validated a graded motor imagery intervention of phantom limb pain in patients with amputations (GraMi protocol). This intervention can help to homogenize the use of graded motor imagery in future studies and in clinical practice.
Collapse
Affiliation(s)
| | | | - Jose Antonio Merchán-Baeza
- Research Group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M3O), Faculty of Health Sciences and Welfare, University of Vic-Central University of Catalonia (Uvic-UCC), C. Sagrada Familia, 7, 08500 Vic, Spain; (S.R.-F.); (L.A.V.-V.); (E.M.-M.)
| | | |
Collapse
|
33
|
Ramalho BL, Moly J, Raffin E, Bouet R, Harquel S, Farnè A, Reilly KT. Face-hand sensorimotor interactions revealed by afferent inhibition. Eur J Neurosci 2021; 55:189-200. [PMID: 34796553 DOI: 10.1111/ejn.15536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
Reorganization of the sensorimotor cortex following permanent (e.g., amputation) or temporary (e.g., local anaesthesia) deafferentation of the hand has revealed large-scale plastic changes between the hand and face representations that are accompanied by perceptual correlates. The physiological mechanisms underlying this reorganization remain poorly understood. The aim of this study was to investigate sensorimotor interactions between the face and hand using an afferent inhibition transcranial magnetic stimulation protocol in which the motor evoked potential elicited by the magnetic pulse is inhibited when it is preceded by an afferent stimulus. We hypothesized that if face and hand representations in the sensorimotor cortex are functionally coupled, then electrocutaneous stimulation of the face would inhibit hand muscle motor responses. In two separate experiments, we delivered an electrocutaneous stimulus to either the skin over the right upper lip (Experiment 1) or right cheek (Experiment 2) and recorded muscular activity from the right first dorsal interosseous. Both lip and cheek stimulation inhibited right first dorsal interosseous motor evoked potentials. To investigate the specificity of this effect, we conducted two additional experiments in which electrocutaneous stimulation was applied to either the right forearm (Experiment 3) or right upper arm (Experiment 4). Forearm and upper arm stimulation also significantly inhibited the right first dorsal interosseous motor evoked potentials, but this inhibition was less robust than the inhibition associated with face stimulation. These findings provide the first evidence for face-to-hand afferent inhibition.
Collapse
Affiliation(s)
- Bia Lima Ramalho
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France.,Laboratory of Neurobiology II, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Research Division, National Institute of Traumatology and Orthopedics Jamil Haddad, Rio de Janeiro, Brazil
| | - Julien Moly
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France
| | - Estelle Raffin
- University Grenoble Alpes, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Romain Bouet
- University UCBL Lyon 1, University of Lyon, Lyon, France.,Brain Dynamics and Cognition Team - DyCog, Lyon Neuroscience Research Center, INSERM U1028, CRNS-UMR5292, Lyon, France
| | - Sylvain Harquel
- University Grenoble Alpes, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France.,Laboratoire de Psychologie et NeuroCognition - LPNC, University Grenoble Alpes, CNRS UMR5105, Grenoble, France.,IRMaGe, University Grenoble-Alpes, CHU Grenoble Alpes, INSERM US17, CNRS UMS3552, Grenoble, France
| | - Alessandro Farnè
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France.,Hospices Civils de Lyon, Neuro-immersion, Mouvement and Handicap, Lyon, France.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Karen T Reilly
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France
| |
Collapse
|
34
|
Management of Phantom Limb Pain through Thalamotomy of the Centro-Median Nucleus. Neurol Int 2021; 13:587-593. [PMID: 34842785 PMCID: PMC8628935 DOI: 10.3390/neurolint13040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Phantom limb syndrome is defined as the perception of intense pain or other sensations that are secondary to a neural lesion in a limb that does not exist. It can be treated using pharmacological and surgical interventions. Most medications are prescribed to improve patients’ lives; however, the response rate is low. In this case report, we present a case of phantom limb syndrome in a 42-year-old female with a history of transradial amputation of the left thoracic limb due to an accidental compression one year before. The patient underwent placement of a deep brain stimulator at the ventral posteromedial nucleus (VPM) on the right side and removal secondary to loss of battery. The patient continued to have a burning pain throughout the limb with a sensation of still having the limb, which was subsequently diagnosed as phantom limb syndrome. After a thorough discussion with the patient, a right stereotactic centro-median thalamotomy was offered. An immediate response was reported with a reduction in pain severity on the visual analogue scale (VAS) from a value of 9–10 preoperative to a value of 2 postoperative, with no postoperative complications. Although phantom limb pain is one of the most difficult to treat conditions, centro-median thalamotomy may provide an effective stereotactic treatment procedure with adequate outcomes.
Collapse
|
35
|
Shifting attention in visuospatial short-term memory does not require oculomotor planning: Insight from congenital gaze paralysis. Neuropsychologia 2021; 161:107998. [PMID: 34419490 DOI: 10.1016/j.neuropsychologia.2021.107998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
Attention allows pieces of information stored in visuospatial short-term memory (VSSTM) to be selectively processed. Previous studies showed that shifts of attention in VSSTM in response to a retro-cue are accompanied by eye movements in the direction of the position of the memorized item although there is nothing left to look at. This finding raises the possibility that shifts of attention in VSSTM are underpinned by mechanisms originally involved in the planning and control of eye movements. To explore this possibility, we investigated the ability of an individual with congenital horizontal gaze paralysis (HGP2) to shift her attention horizontally or vertically toward a memorized item within VSSTM using a retro-cue paradigm. As efficient oculomotor programming is not innate but requires some trial and error learning and adaptation to develop, congenital paralysis prevents this development. Consequently, if shifts of attention in VSSTM rely on the same mechanisms as those supporting the programming of eye movements, then horizontal congenital gaze paralysis should necessarily prevent typical retro-cueing effect in the paralyzed axis. At odds with this prediction, HGP2 showed a typical retro-cueing effect in her paralyzed axis. This original finding indicates that selecting an item within VSSTM does not depend on the ability to program a saccade.
Collapse
|
36
|
van den Boom M, Miller KJ, Gregg NM, Ojeda Valencia G, Lee KH, Richner TJ, Ramsey NF, Worrell GA, Hermes D. Typical somatomotor physiology of the hand is preserved in a patient with an amputated arm: An ECoG case study. Neuroimage Clin 2021; 31:102728. [PMID: 34182408 PMCID: PMC8253998 DOI: 10.1016/j.nicl.2021.102728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/17/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022]
Abstract
Electrophysiological signals in the human motor system may change in different ways after deafferentation, with some studies emphasizing reorganization while others propose retained physiology. Understanding whether motor electrophysiology is retained over longer periods of time can be invaluable for patients with paralysis (e.g. ALS or brainstem stroke) when signals from sensorimotor areas may be used for communication or control over neural prosthetic devices. In addition, a maintained electrophysiology can potentially benefit the treatment of phantom limb pains through prolonged use of these signals in a brain-machine interface (BCI). Here, we were presented with the unique opportunity to investigate the physiology of the sensorimotor cortex in a patient with an amputated arm using electrocorticographic (ECoG) measurements. While implanted with an ECoG grid for clinical evaluation of electrical stimulation for phantom limb pain, the patient performed attempted finger movements with the contralateral (lost) hand and executed finger movements with the ipsilateral (healthy) hand. The electrophysiology of the sensorimotor cortex contralateral to the amputated hand remained very similar to that of hand movement in healthy people, with a spatially focused increase of high-frequency band (65-175 Hz; HFB) power over the hand region and a distributed decrease in low-frequency band (15-28 Hz; LFB) power. The representation of the three different fingers (thumb, index and little) remained intact and HFB patterns could be decoded using support vector learning at single-trial classification accuracies of >90%, based on the first 1-3 s of the HFB response. These results indicate that hand representations are largely retained in the motor cortex. The intact physiological response of the amputated hand, the high distinguishability of the fingers and fast temporal peak are encouraging for neural prosthetic devices that target the sensorimotor cortex.
Collapse
Affiliation(s)
- Max van den Boom
- Department of Physiology and Biomedical Engineering, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Neurology & Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Nicholas M Gregg
- Department of Neurology, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Gabriela Ojeda Valencia
- Department of Physiology and Biomedical Engineering, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kendall H Lee
- Department of Neurosurgery, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Thomas J Richner
- Department of Neurosurgery, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Nick F Ramsey
- Department of Neurology & Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Greg A Worrell
- Department of Neurology, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
37
|
Bradley SS, Howe E, Bailey CDC, Vickaryous MK. The dendrite arbor of Purkinje cells is altered following to tail regeneration in the leopard gecko. Integr Comp Biol 2021; 61:370-384. [PMID: 34038505 DOI: 10.1093/icb/icab098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Purkinje cells of the cerebellum have a complex arborized arrangement of dendrites and are amongst the most distinctive cell types of the nervous system. Although the neuromorphology of Purkinje cells has been well described for some mammals and teleost fish, for most vertebrates less is known. Here we used a modified Golgi-Cox method to investigate the neuromorphology of Purkinje cells from the lizard Eublepharis macularius, the leopard gecko. Using Sholl and Branch Structure Analyses, we sought to investigate whether the neuromorphology of gecko Purkinje cells was altered is response to tail loss and regeneration. Tail loss is an evolved mechanism commonly used by geckos to escape predation. Loss of the tail represents a significant and sudden change in body length and mass, which is only partially recovered as the tail is regenerated. We predicted that tail loss and regeneration would induce a quantifiable change in Purkinje cell dendrite arborization. Post hoc comparisons of Sholl analyses data showed that geckos with regenerated tails have significant changes in dendrite diameter and the number of dendrite intersections in regions corresponding to the position of parallel fiber synapses. We propose that the neuromorphological alterations observed in gecko Purkinje cells represent a compensatory response to tail regrowth, and perhaps a role in motor learning.
Collapse
Affiliation(s)
| | - Erika Howe
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | | | | |
Collapse
|
38
|
Doshi TL, Dworkin RH, Polomano RC, Carr DB, Edwards RR, Finnerup NB, Freeman RL, Paice JA, Weisman SJ, Raja SN. AAAPT Diagnostic Criteria for Acute Neuropathic Pain. PAIN MEDICINE 2021; 22:616-636. [PMID: 33575803 DOI: 10.1093/pm/pnaa407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Acute neuropathic pain is a significant diagnostic challenge, and it is closely related to our understanding of both acute pain and neuropathic pain. Diagnostic criteria for acute neuropathic pain should reflect our mechanistic understanding and provide a framework for research on and treatment of these complex pain conditions. METHODS The Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION) public-private partnership with the U.S. Food and Drug Administration (FDA), the American Pain Society (APS), and the American Academy of Pain Medicine (AAPM) collaborated to develop the ACTTION-APS-AAPM Pain Taxonomy (AAAPT) for acute pain. A working group of experts in research and clinical management of neuropathic pain was convened. Group members used literature review and expert opinion to develop diagnostic criteria for acute neuropathic pain, as well as three specific examples of acute neuropathic pain conditions, using the five dimensions of the AAAPT classification of acute pain. RESULTS AAAPT diagnostic criteria for acute neuropathic pain are presented. Application of these criteria to three specific conditions (pain related to herpes zoster, chemotherapy, and limb amputation) illustrates the spectrum of acute neuropathic pain and highlights unique features of each condition. CONCLUSIONS The proposed AAAPT diagnostic criteria for acute neuropathic pain can be applied to various acute neuropathic pain conditions. Both the general and condition-specific criteria may guide future research, assessment, and management of acute neuropathic pain.
Collapse
Affiliation(s)
- Tina L Doshi
- Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Robert H Dworkin
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, and Department of Neurology, Center for Human Experimental Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Rosemary C Polomano
- Division of Biobehavioral Health Sciences, University of Pennsylvania-School of Nursing, Philadelphia, Pennsylvania, USA
| | - Daniel B Carr
- Public Health and Community Medicine Program, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, and Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Roy L Freeman
- Center for Autonomic and Peripheral Nerve Disorders, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Judith A Paice
- Cancer Pain Program, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Steven J Weisman
- Jane B. Pettit Pain and Headache Center, Children's Wisconsin, Departments of Anesthesiology and Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Surgical prevention of terminal neuroma and phantom limb pain: a literature review. Arch Plast Surg 2021; 48:310-322. [PMID: 34024077 PMCID: PMC8143949 DOI: 10.5999/aps.2020.02180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/08/2021] [Indexed: 12/02/2022] Open
Abstract
The incidence of extremity amputation is estimated at about 200,000 cases annually. Over 25% of patients suffer from terminal neuroma or phantom limb pain (TNPLP), resulting in pain, inability to wear a prosthetic device, and lost work. Once TNPLP develops, there is no definitive cure. Therefore, there has been an emerging focus on TNPLP prevention. We examined the current literature on TNPLP prevention in patients undergoing extremity amputation. A literature review was performed using Ovid Medline, Cochrane Collaboration Library, and Google Scholar to identify all original studies that addressed surgical prophylaxis against TNPLP. The search was conducted using both Medical Subject Headings and free-text using the terms “phantom limb pain,” “amputation neuroma,” and “surgical prevention of amputation neuroma.” Fifteen studies met the inclusion criteria, including six prospective trials, two comprehensive literature reviews, four retrospective chart reviews, and three case series/technique reviews. Five techniques were identified, and each was incorporated into a target-based classification system. A small but growing body of literature exists regarding the surgical prevention of TNPLP. Targeted muscle reinnervation (TMR), a form of physiologic target reassignment, has the greatest momentum in the academic surgical community, with multiple recent prospective studies demonstrating superior prevention of TNPLP. Neurorrhaphy and transposition with implantation are supported by less robust evidence, but merit future study as alternatives to TMR.
Collapse
|
40
|
Therrien AS, Howard C, Buxbaum LJ. Aberrant activity in an intact residual muscle is associated with phantom limb pain in above-knee amputees. J Neurophysiol 2021; 125:2135-2143. [PMID: 33949884 DOI: 10.1152/jn.00482.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many individuals who undergo limb amputation experience persistent phantom limb pain (PLP), but the underlying mechanisms of PLP are unknown. The traditional hypothesis was that PLP resulted from maladaptive plasticity in sensorimotor cortex that degrades the neural representation of the missing limb. However, a recent study of individuals with upper limb amputations has shown that PLP is correlated with aberrant electromyographic (EMG) activity in residual muscles, posited to reflect a retargeting of efferent projections from a preserved representation of a missing limb. Here, we assessed EMG activity in a residual thigh muscle (vastus lateralis, VL) in patients with transfemoral amputations during cyclical movements of a phantom foot. VL activity on the amputated side was compared to that recorded on patients' intact side while they moved both the phantom and intact feet synchronously. VL activity in the patient group was also compared to a sample of control participants with no amputation. We show that phantom foot movement is associated with greater VL activity in the amputated leg than that seen in the intact leg as well as that exhibited by controls. The magnitude of residual VL activity was also positively related to ratings of PLP. These results show that phantom limb movement is associated with aberrant activity in a residual muscle after lower-limb amputation and provide evidence of a positive relationship between this activity and phantom limb pain.NEW & NOTEWORTHY This study is the first to assess residual muscle activity during movement of a phantom limb in individuals with lower limb amputations. We find that phantom foot movement is associated with aberrant recruitment of a residual thigh muscle and that this aberrant activity is related to phantom limb pain.
Collapse
Affiliation(s)
| | - Cortney Howard
- Duke Center for Cognitive Neuroscience, Duke Universitygrid.26009.3d, Durham, North Carolina
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania.,Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Voets NL, Parker Jones O, Isaac C, Mars RB, Plaha P. Tracking longitudinal language network reorganisation using functional MRI connectivity fingerprints. NEUROIMAGE-CLINICAL 2021; 30:102689. [PMID: 34215157 PMCID: PMC8122112 DOI: 10.1016/j.nicl.2021.102689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/03/2022]
Abstract
FMRI connectivity fingerprints represent patient-unique language networks. Fingerprints can be statistically tested to detect reorganisation in individuals. Connectivity fingerprints track surgery-related adaptations in individual patients. Network-level changes appear related to presence of language symptoms.
Large individual differences in how brain networks respond to treatment hinder efforts to personalise treatment in neurological conditions. We used a brain network fingerprinting approach to longitudinally track re-organisation of complementary phonological and semantic language networks in 19 patients before and after brain-tumour surgery. Patient task fingerprints were individually compared to normal networks established in 17 healthy controls. Additionally, pre- and post-operative patient fingerprints were directly compared to assess longitudinal network adaptations. We found that task networks remained stable over time in healthy controls, whereas treatment induced reorganisation in 47.4% of patient fluency networks and 15.8% of semantic networks. How networks adapted after surgery was highly unique; a subset of patients (10%) showed ‘normalisation’ while others (21%) developed newly atypical networks after treatment. The strongest predictor of adaptation of the fluency network was the presence of clinically reported language symptoms. Our findings indicate a tight coupling between processes disrupting performance and neural network adaptation, the patterns of which appear to be both task- and individually-unique. We propose that connectivity fingerprinting offers potential as a clinical marker to track adaptation of specific functional networks across treatment interventions over time.
Collapse
Affiliation(s)
- Natalie L Voets
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK; Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Oiwi Parker Jones
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Claire Isaac
- Russell Cairns Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
Vannuscorps G, Andres M, Carneiro SP, Rombaux E, Caramazza A. Typically Efficient Lipreading without Motor Simulation. J Cogn Neurosci 2021; 33:611-621. [PMID: 33416443 DOI: 10.1162/jocn_a_01666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
All it takes is a face-to-face conversation in a noisy environment to realize that viewing a speaker's lip movements contributes to speech comprehension. What are the processes underlying the perception and interpretation of visual speech? Brain areas that control speech production are also recruited during lipreading. This finding raises the possibility that lipreading may be supported, at least to some extent, by a covert unconscious imitation of the observed speech movements in the observer's own speech motor system-a motor simulation. However, whether, and if so to what extent, motor simulation contributes to visual speech interpretation remains unclear. In two experiments, we found that several participants with congenital facial paralysis were as good at lipreading as the control population and performed these tasks in a way that is qualitatively similar to the controls despite severely reduced or even completely absent lip motor representations. Although it remains an open question whether this conclusion generalizes to other experimental conditions and to typically developed participants, these findings considerably narrow the space of hypothesis for a role of motor simulation in lipreading. Beyond its theoretical significance in the field of speech perception, this finding also calls for a re-examination of the more general hypothesis that motor simulation underlies action perception and interpretation developed in the frameworks of motor simulation and mirror neuron hypotheses.
Collapse
|
43
|
Balakhanlou E, Webster J, Borgia M, Resnik L. Frequency and Severity of Phantom Limb Pain in Veterans with Major Upper Limb Amputation: Results of a National Survey. PM R 2020; 13:827-835. [DOI: 10.1002/pmrj.12485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Ellie Balakhanlou
- School of Medicine at Virginia Commonwealth University Richmond VA USA
| | - Joseph Webster
- School of Medicine at Virginia Commonwealth University Richmond VA USA
- Hunter Homes McGuire Veterans Affairs Medical Center Richmond VA USA
| | - Matthew Borgia
- Research Department Providence VA Medical Center Providence RI USA
| | - Linda Resnik
- Research Department Providence VA Medical Center Providence RI USA
- Health Services, Policy and Practice Brown University Providence RI USA
| |
Collapse
|
44
|
Gorniak SL, Ochoa N, Cox LIG, Khan A, Ansari S, Thames B, Ray H, Lu YF, Hibino H, Watson N, Dougherty PM. Sex-based differences and aging in tactile function loss in persons with type 2 diabetes. PLoS One 2020; 15:e0242199. [PMID: 33180801 PMCID: PMC7660517 DOI: 10.1371/journal.pone.0242199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recent evidence of significant sex-based differences in the presentation of Type 2 Diabetes Mellitus (DM) and its complications has been found in humans, which may contribute to sex-based differences in reduced functionality and quality of life. Some functionality, such as tactile function of the hands, has significant direct impact on quality of life. The purpose of the current study was to explore the impact of DM and sex on tactile function, with consideration of variability in health state measures. RESEARCH DESIGN AND METHODS A case-control single time point observational study from 2012-2020 in an ethnically diverse population-based community setting. The sample consists of 132 adult individuals: 70 independent community dwelling persons with DM (PwDM) and 62 age- and sex-matched controls (42 males and 90 females in total). The Semmes-Weinstein monofilament test was used to evaluate tactile sensation of the hands. RESULTS Tactile sensation thresholds were adversely impacted by sex, age, degree of handedness, high A1c, diagnosis of DM, and neuropathy. Overall, strongly right-handed older adult males with poorly controlled DM and neuropathy possessed the poorest tactile discrimination thresholds. When self-identified minority status was included in a secondary analysis, DM diagnosis was no longer significant; negative impacts of age, neuropathy, degree of handedness, and high A1c remained significant. CONCLUSIONS The data indicate significant impacts of male sex, age, degree of handedness, self-identified minority status, and metabolic health on the development of poor tactile sensation. This combination of modifiable and non-modifiable factors are important considerations in the monitoring and treatment of DM complications.
Collapse
Affiliation(s)
- Stacey L. Gorniak
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
- * E-mail:
| | - Nereyda Ochoa
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Lauren I. Gulley Cox
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Aisha Khan
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Sahifah Ansari
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Beatriz Thames
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Haley Ray
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Yoshimi F. Lu
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Hidetaka Hibino
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Nikita Watson
- Department of Health and Human Performance, University of Houston, Houston, TX, United States of America
| | - Patrick M. Dougherty
- Department of Pain Medicine Research, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
45
|
Granata G, Di Iorio R, Miraglia F, Caulo M, Iodice F, Vecchio F, Valle G, Strauss I, D'anna E, Iberite F, Lauretti L, Fernandez E, Romanello R, Petrini FM, Raspopovic S, Micera S, Rossini PM. Brain reactions to the use of sensorized hand prosthesis in amputees. Brain Behav 2020; 10:e01734. [PMID: 32949216 PMCID: PMC7667362 DOI: 10.1002/brb3.1734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 05/06/2020] [Accepted: 06/06/2020] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE We investigated for the first time the presence of chronic changes in the functional organization of sensorimotor brain areas induced by prolonged training with a bidirectional hand prosthesis. METHODS A multimodal neurophysiological and neuroimaging evaluation of brain functional changes occurring during training in five consecutive amputees participating to experimental trials with robotic hands over a period of 10 years was carried out. In particular, modifications to the functional anatomy of sensorimotor brain areas under resting conditions were explored in order to check for eventual changes with respect to baseline. RESULTS Full evidence is provided to demonstrate brain functional changes, and some of them in both the hemispheres and others restricted to the hemisphere contralateral to the amputation/prosthetic hand. CONCLUSIONS The study describes a unique experimental experience showing that brain reactions to the prolonged use of an artificial hand can be tracked for a tailored approach to a fully embedded artificial upper limb for future chronic uses in daily activities.
Collapse
Affiliation(s)
- Giuseppe Granata
- Institute of Neurology, Fondazione Policlinico A. Gemelli-IRCCS, Roma, Italy
| | - Riccardo Di Iorio
- Institute of Neurology, Fondazione Policlinico A. Gemelli-IRCCS, Roma, Italy
| | - Francesca Miraglia
- Department of Neuroscience & Rehabilitation, IRCCS San Raffaele Pisana, Roma, Italy.,Institute of Neurology, Catholic University of The Sacred Heart, Roma, Italy
| | - Massimo Caulo
- Department of Neuroscience and Imaging and ITAB-Institute of Advanced Biomedical Technologies, University G. d'Annunzio, Chieti, Italy
| | - Francesco Iodice
- Institute of Neurology, Fondazione Policlinico A. Gemelli-IRCCS, Roma, Italy.,Department of Neuroscience & Rehabilitation, IRCCS San Raffaele Pisana, Roma, Italy
| | - Fabrizio Vecchio
- Department of Neuroscience & Rehabilitation, IRCCS San Raffaele Pisana, Roma, Italy
| | - Giacomo Valle
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy.,Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Ivo Strauss
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Edoardo D'anna
- Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Francesco Iberite
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Liverana Lauretti
- Institute of Neurosurgery, Fondazione Policlinico A. Gemelli-IRCCS, Roma, Italy
| | - Eduardo Fernandez
- Institute of Neurology, Fondazione Policlinico A. Gemelli-IRCCS, Roma, Italy.,Institute of Neurosurgery, Fondazione Policlinico A. Gemelli-IRCCS, Roma, Italy
| | - Roberto Romanello
- Institute of Neurology, Fondazione Policlinico A. Gemelli-IRCCS, Roma, Italy
| | - Francesco M Petrini
- Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Stanisa Raspopovic
- Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy.,Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Paolo M Rossini
- Department of Neuroscience & Rehabilitation, IRCCS San Raffaele Pisana, Roma, Italy
| |
Collapse
|
46
|
Duarte D, Bauer CCC, Pinto CB, Saleh Velez FG, Estudillo-Guerra MA, Pacheco-Barrios K, Gunduz ME, Crandell D, Merabet L, Fregni F. Cortical plasticity in phantom limb pain: A fMRI study on the neural correlates of behavioral clinical manifestations. Psychiatry Res Neuroimaging 2020; 304:111151. [PMID: 32738724 PMCID: PMC9394643 DOI: 10.1016/j.pscychresns.2020.111151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022]
Abstract
The neural mechanism of phantom limb pain (PLP) is related to the intense brain reorganization process implicating plasticity after deafferentation mostly in sensorimotor system. There is a limited understanding of the association between the sensorimotor system and PLP. We used a novel task-based functional magnetic resonance imaging (fMRI) approach to (1) assess neural activation within a-priori selected regions-of-interested (motor cortex [M1], somatosensory cortex [S1], and visual cortex [V1]), (2) quantify the cortical representation shift in the affected M1, and (3) correlate these changes with baseline clinical characteristics. In a sample of 18 participants, we found a significantly increased activity in M1 and S1 as well as a shift in motor cortex representation that was not related to PLP intensity. In an exploratory analyses (not corrected for multiple comparisons), they were directly correlated with time since amputation; and there was an association between increased activity in M1 with a lack of itching sensation and V1 activation was negatively correlated with PLP. Longer periods of amputation lead to compensatory changes in sensory-motor areas; and itching seems to be a protective marker for less signal changes. We confirmed that PLP intensity is not associated with signal changes in M1 and S1 but in V1.
Collapse
Affiliation(s)
- D Duarte
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Department of Psychiatry and Behavioural Neurosciences, McMaster University. 100 West 5th Street, Hamilton, ON L8N 3K7, Canada
| | - C C C Bauer
- McGovern Institute for Brain Research, MIT. 43 Vassar St, Cambridge, MA 02139, USA; Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM 3001, 76230 Juriquilla, Querétaro, 76230, México; Department of Psychology, Northeastern University, 805 Columbus Avenue, Boston, MA 02139, USA.
| | - C B Pinto
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - F G Saleh Velez
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; University of Chicago Medical Center, Department of Neurology, University of Chicago. 5841 S Maryland Ave # C411, Chicago, IL 60637, USA
| | - M A Estudillo-Guerra
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - K Pacheco-Barrios
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud. Lima, Peru. Av. La Fontana 750 Edificio El Cubo, La Molina - Perú
| | - M E Gunduz
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - D Crandell
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - L Merabet
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School. 243 Charles St, Boston, MA 02114, USA
| | - F Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Massachusetts General Hospital, Harvard Medical School. 55 Fruit St, Boston, MA 02114, USA.
| |
Collapse
|
47
|
Tong X, Wang X, Cai Y, Gromala D, Williamson O, Fan B, Wei K. "I Dreamed of My Hands and Arms Moving Again": A Case Series Investigating the Effect of Immersive Virtual Reality on Phantom Limb Pain Alleviation. Front Neurol 2020; 11:876. [PMID: 32982914 PMCID: PMC7477390 DOI: 10.3389/fneur.2020.00876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/09/2020] [Indexed: 01/18/2023] Open
Abstract
Phantom limb pain (PLP) is a type of chronic pain that follows limb amputation, brachial plexus avulsion injury, or spinal cord injury. Treating PLP is a well-known challenge. Currently, virtual reality (VR) interventions are attracting increasing attention because they show promising analgesic effects. However, most previous studies of VR interventions were conducted with a limited number of patients in a single trial. Few studies explored questions such as how multiple VR sessions might affect pain over time, or if a patient's ability to move their phantom limb may affect their PLP. Here we recruited five PLP patients to practice two motor tasks for multiple VR sessions over 6 weeks. In VR, patients “inhabit” a virtual body or avatar, and the movements of their intact limbs are mirrored in the avatar, providing them with the illusion that their limbs respond as if they were both intact and functional. We found that repetitive exposure to our VR intervention led to reduced pain and improvements in anxiety, depression, and a sense of embodiment of the virtual body. Importantly, we also found that their ability to move their phantom limbs improved as quantified by shortened motor imagery time with the impaired limb. Although the limited sample size prevents us from performing a correlational analysis, our findings suggest that providing PLP patients with sensorimotor experience for the impaired limb in VR appears to offer long-term benefits for patients and that these benefits may be related to changes in their control of the phantom limbs' movement.
Collapse
Affiliation(s)
- Xin Tong
- School of Interactive Arts and Technology, Simon Fraser University, Surrey, BC, Canada
| | | | - Yiyang Cai
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Diane Gromala
- School of Interactive Arts and Technology, Simon Fraser University, Surrey, BC, Canada
| | - Owen Williamson
- School of Interactive Arts and Technology, Simon Fraser University, Surrey, BC, Canada.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Bifa Fan
- China-Japan Friendship Hospital, Beijing, China
| | - Kunlin Wei
- Motor Control Lab, School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| |
Collapse
|
48
|
Makin TR, Flor H. Brain (re)organisation following amputation: Implications for phantom limb pain. Neuroimage 2020; 218:116943. [PMID: 32428706 PMCID: PMC7422832 DOI: 10.1016/j.neuroimage.2020.116943] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Following arm amputation the region that represented the missing hand in primary somatosensory cortex (S1) becomes deprived of its primary input, resulting in changed boundaries of the S1 body map. This remapping process has been termed 'reorganisation' and has been attributed to multiple mechanisms, including increased expression of previously masked inputs. In a maladaptive plasticity model, such reorganisation has been associated with phantom limb pain (PLP). Brain activity associated with phantom hand movements is also correlated with PLP, suggesting that preserved limb functional representation may serve as a complementary process. Here we review some of the most recent evidence for the potential drivers and consequences of brain (re)organisation following amputation, based on human neuroimaging. We emphasise other perceptual and behavioural factors consequential to arm amputation, such as non-painful phantom sensations, perceived limb ownership, intact hand compensatory behaviour or prosthesis use, which have also been related to both cortical changes and PLP. We also discuss new findings based on interventions designed to alter the brain representation of the phantom limb, including augmented/virtual reality applications and brain computer interfaces. These studies point to a close interaction of sensory changes and alterations in brain regions involved in body representation, pain processing and motor control. Finally, we review recent evidence based on methodological advances such as high field neuroimaging and multivariate techniques that provide new opportunities to interrogate somatosensory representations in the missing hand cortical territory. Collectively, this research highlights the need to consider potential contributions of additional brain mechanisms, beyond S1 remapping, and the dynamic interplay of contextual factors with brain changes for understanding and alleviating PLP.
Collapse
Affiliation(s)
- Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Germany; Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
49
|
Granata G, Valle G, Di Iorio R, Iodice F, Petrini FM, Strauss I, D'anna E, Iberite F, Lauretti L, Fernandez E, Romanello R, Stieglitz T, Raspopovic S, Calabresi P, Micera S, Rossini PM. Cortical plasticity after hand prostheses use: Is the hypothesis of deafferented cortex "invasion" always true? Clin Neurophysiol 2020; 131:2341-2348. [PMID: 32828036 DOI: 10.1016/j.clinph.2020.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/14/2020] [Accepted: 06/11/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To study motor cortex plasticity after a period of training with a new prototype of bidirectional hand prosthesis in three left trans-radial amputees, correlating these changes with the modification of Phantom Limb Pain (PLP) in the same period. METHODS Each subject underwent a brain motor mapping with Transcranial Magnetic Stimulation (TMS) and PLP evaluation with questionnaires during a six-month training with a prototype of bidirectional hand prosthesis. RESULTS The baseline motor maps showed in all three amputees a smaller area of muscles representation of the amputated side compared to the intact limb. After training, there was a partial reversal of the baseline asymmetry. The two subjects affected by PLP experienced a statistically significant reduction of pain. CONCLUSIONS Two apparently opposite findings, the invasion of the "deafferented" cortex by neighbouring areas and the "persistence" of neural structures after amputation, could vary according to different target used for measurement. Our results do not support a correlation between PLP and motor cortical changes. SIGNIFICANCE The selection of the target and of the task is essential for studies investigating motor brain plasticity. This study boosts against a direct and unique role of motor cortical changes on PLP genesis.
Collapse
Affiliation(s)
- G Granata
- Area of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
| | - G Valle
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; Bertarelli Foundation Chair in Translational Neural Engineering. Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - R Di Iorio
- Area of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - F Iodice
- Area of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department of Neuroscience, San Raffaele Pisana IRCCS, Rome, Italy
| | - F M Petrini
- Bertarelli Foundation Chair in Translational Neural Engineering. Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - I Strauss
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; Bertarelli Foundation Chair in Translational Neural Engineering. Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - E D'anna
- Bertarelli Foundation Chair in Translational Neural Engineering. Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - F Iberite
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - L Lauretti
- Institute of Neurosurgery, Catholic University of The Sacred Heart, Roma, Italy
| | - E Fernandez
- Institute of Neurosurgery, Catholic University of The Sacred Heart, Roma, Italy
| | - R Romanello
- Area of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - T Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center Freiburg and BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - S Raspopovic
- Bertarelli Foundation Chair in Translational Neural Engineering. Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - P Calabresi
- Area of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - S Micera
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; Bertarelli Foundation Chair in Translational Neural Engineering. Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - P M Rossini
- Department of Neuroscience, San Raffaele Pisana IRCCS, Rome, Italy
| |
Collapse
|
50
|
Mosch B, Hagena V, Diers M. Bildgebende Untersuchungen des neuronalen
Schmerznetzwerks. AKTUEL RHEUMATOL 2020. [DOI: 10.1055/a-1202-0766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ZusammenfassungDer vorliegende Artikel soll eine Übersicht über bildgebende
Untersuchungen im Bereich chronischer Schmerzsyndrome bieten. Auf die
einleitenden Worte zur allgemeinen Phänomenologie des Schmerzes
folgt ein umfassender Einblick in die gegenwärtige Anwendung
funktioneller und struktureller Bildgebungstechniken am Beispiel
ausgewählter Schmerzsyndrome (Chronischer Rückenschmerz,
Fibromyalgiesyndrom (FMS), Phantomschmerz und Komplexes regionales
Schmerzsyndrom (CRPS)). In diesem Zusammenhang werden Gemeinsamkeiten und
Besonderheiten der spezifischen neurologischen Korrelate verschiedener
chronischer Schmerzerkrankungen diskutiert.
Collapse
Affiliation(s)
- Benjamin Mosch
- Klinik für Psychosomatische Medizin und Psychotherapie, LWL
Universitätsklinikum Bochum der Ruhr-Universität Bochum,
Bochum
| | - Verena Hagena
- Klinik für Psychosomatische Medizin und Psychotherapie, LWL
Universitätsklinikum Bochum der Ruhr-Universität Bochum,
Bochum
| | - Martin Diers
- Klinik für Psychosomatische Medizin und Psychotherapie, LWL
Universitätsklinikum Bochum der Ruhr-Universität Bochum,
Bochum
| |
Collapse
|