1
|
Yakubov R, Kaloti R, Persaud P, McCracken A, Zadeh G, Bunda S. It's all downstream from here: RTK/Raf/MEK/ERK pathway resistance mechanisms in glioblastoma. J Neurooncol 2025; 172:327-345. [PMID: 39821893 PMCID: PMC11937199 DOI: 10.1007/s11060-024-04930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND The receptor tyrosine kinase (RTK)/Ras/Raf/MEK/ERK signaling pathway is one of the most tumorigenic pathways in cancer, with its hyperactivation strongly linked to the aggressive nature of glioblastoma (GBM). Although extensive research has focused on developing therapeutics targeting this pathway, clinical success remains elusive due to the emergence of resistance mechanisms. OBJECTIVE This review investigates how inhibition of the RTK/Ras/Raf/MEK/ERK pathway alters transcription factors, contributing to acquired resistance mechanisms in GBM. It also highlights the critical role of transcription factor dysregulation in therapeutic resistance. METHODS & RESULTS Findings from key studies on the RTK/Ras/Raf/MEK/ERK pathway in GBM were synthesized to explore the role of transcription factor dysregulation in resistance to targeted therapies, radiation, and chemotherapy. The review highlights that transcription factors undergo significant dysregulation following RTK/Ras/Raf/MEK/ERK pathway inhibition, contributing to therapeutic resistance. CONCLUSION Transcription factors are promising targets for overcoming treatment resistance in GBM, with cotreatment strategies combining RTK/Ras/Raf/MEK/ERK pathway inhibitors and transcription factor-targeted therapies presenting a novel approach. Despite the challenges of targeting complex structures and interactions, advancements in drug development and precision technologies hold great potential. Continued research is essential to refine these strategies and improve outcomes for GBM and other aggressive cancers.
Collapse
Affiliation(s)
- Rebeca Yakubov
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ramneet Kaloti
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Phooja Persaud
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Anna McCracken
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - Severa Bunda
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
2
|
Huang Y, Zhu C, Liu P, Ouyang F, Luo J, Lu C, Tang B, Yang X. L1CAM promotes vasculogenic mimicry formation by miR-143-3p-induced expression of hexokinase 2 in glioma. Mol Oncol 2023; 17:664-685. [PMID: 36708044 PMCID: PMC10061292 DOI: 10.1002/1878-0261.13384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/17/2022] [Accepted: 01/26/2023] [Indexed: 01/29/2023] Open
Abstract
In recent decades, antiangiogenic therapy, which blocks the supply of oxygen and nutrition to tumor cells, has become a promising clinical strategy for the treatment of patients with tumors. However, recent studies revealed that vasculogenic mimicry (VM), which is the process by which vascular morphological structures are formed by highly invasive tumor cells, has been considered a potential factor for the failure of antiangiogenic therapy in patients with tumors. Thus, inhibition of VM formation might be a potential target for improving the outcome of antiangiogenic strategies. However, the mechanism underlying VM formation is still incompletely elucidated. Herein, we report that L1CAM might be a critical regulator of VM formation in glioma, and might be associated with the resistance of glioma to antiangiogenic therapy. We found that the tumor-invasion and tube-formation capabilities of L1CAM-overexpressing cells were significantly enhanced in vitro and in vivo. In addition, the results indicated that miR-143-3p, which might directly target the 3'UTR of the hexokinase 2 (HK2) gene to regulate its protein expression, was subsequently involved in L1CAM-mediated VM formation by glioma cells. Further study revealed that the regulation of MMP2, MMP9, and VEGFA expression was involved in this process. Moreover, we identified that activation of the downstream PI3K/AKT signaling pathway of the L1CAM/HK2 cascade is critical for VM formation by glioma cells. Furthermore, we found that the combined treatment of anti-L1CAM neutralizing monoclonal antibody and bevacizumab increases efficacy beyond that of bevacizumab alone, and suppresses glioma growth in vivo, indicating that the inhibition of L1CAM-mediated VM formation might efficiently improve the effect of antiangiogenic treatment for glioma patients. Together, our findings demonstrated a critical role of L1CAM in regulating VM formation in glioma, and that L1CAM might be a potential target for ameliorating tumor resistance to antiangiogenic therapy in glioma patients.
Collapse
Affiliation(s)
- Yishan Huang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular ImmunopathologyShantou University Medical CollegeChina
| | - Chenchen Zhu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular ImmunopathologyShantou University Medical CollegeChina
| | - Pei Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular ImmunopathologyShantou University Medical CollegeChina
| | - Fan Ouyang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular ImmunopathologyShantou University Medical CollegeChina
| | - Juanjuan Luo
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular ImmunopathologyShantou University Medical CollegeChina
| | - Chunjiao Lu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular ImmunopathologyShantou University Medical CollegeChina
| | - Bo Tang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular ImmunopathologyShantou University Medical CollegeChina
| |
Collapse
|
3
|
Huang Y, Liu P, Luo J, Zhu C, Lu C, Zhao N, Zhao W, Cui W, Yang X. Par6 Enhances Glioma Invasion by Activating MEK/ERK Pathway Through a LIN28/let-7d Positive Feedback Loop. Mol Neurobiol 2023; 60:1626-1644. [PMID: 36542194 DOI: 10.1007/s12035-022-03171-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
The invasion of glioblastoma usually results in the recurrence and poor prognosis in patients with glioma. However, the underlying mechanisms involved in glioma invasion remains undefined. In this study, immunohistochemistry analyses of glioma specimens demonstrated that high expression of Par6 was positively correlated with malignancy and poor prognosis of patients with glioma. Par6-overexpressing glioma cells showed much more fibroblast-like morphology, suggesting that regulation of Par6 expression might be associated with tumor invasion in glioma cells. Further study indicated that Par6 overexpression subsequently increased CD44 and N-cadherin expression to enhance glioma invasion through activating MEK/ERK/STAT3 pathway, in vivo and in vitro. Moreover, we found that LIN28/let-7d axis was involved in this process via a positive feedback loop, suggesting that MEK/ERK/LIN28/let-7d/STAT3 cascade might be essential for Par6-mediated glioma invasion. Therefore, these data highlight the roles of Par6 in glioma invasion, and Par6 may serve as a potential therapeutic target for patients with glioma.
Collapse
Affiliation(s)
- Yishan Huang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Pei Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Juanjuan Luo
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Chenchen Zhu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Chunjiao Lu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Na Zhao
- Department of Pharmacology, College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China
| | - Weijiang Zhao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wei Cui
- Department of Pharmacology, College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
4
|
The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24044217. [PMID: 36835628 PMCID: PMC9966483 DOI: 10.3390/ijms24044217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
Collapse
|
5
|
Song P, Li H, Xu K, Li ZW, Ren X, Fu XJ. A bibliometric and visualization-based analysis of temozolomide research hotspots and frontier evolution. Front Oncol 2022; 12:905868. [DOI: 10.3389/fonc.2022.905868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
The literature related to TMZ research in the Web of Science (WOS) database was analyzed using bibliometrics and visualization by Citespace and VOSviewer.The publication status (number of publications, institutions, and frequency of citations), collaborations, and research focus was analyzed to clarify the current situation of TMZ research. And the recent research on TMZ provides a detailed summary. Based on objective data analysis, this study provides a complete analysis portraying the progression of historical milestones in TMZ development and future research directions from various TMZ research domains.
Collapse
|
6
|
Shu Q, Liu X, Yang J, Mou T, Xie F. The clinical prognostic value of lncRNA FOXP4-AS1 in cancer patients: A meta-analysis and bioinformatics analysis based on TCGA datasets. Medicine (Baltimore) 2022; 101:e31439. [PMID: 36281152 PMCID: PMC9592412 DOI: 10.1097/md.0000000000031439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The mortality and recurrence of patients with cancer is of high prevalence. Long non-coding RNA (lncRNA) forkhead box P4 antisense RNA 1 (FOXP4-AS1) is a promising lncRNA. There is increasing evidence that lncRNA FOXP4-AS1 is abnormally expressed in various tumors and is associated with cancer prognosis. This study was designed to identify the prognostic value of lncRNA FOXP4-AS1 in human malignancies. METHODS We searched electronic databases up to April 29, 2022, including PubMed, Cochrane Library, Embase, MEDLINE, and Web of Science. Eligible studies that evaluated the clinicopathological and prognostic role of lncRNA FOXP4-AS1 in patients with malignant tumors were included. The pooled odds ratios (ORs) and the hazard ratios (HRs) were calculated to assess the role of lncRNA FOXP4-AS1 using Stata/SE 16.1 software. RESULTS A total of 6 studies on cancer patients were included in the present meta-analysis. The combined results revealed that high expression of lncRNA FOXP4-AS1 was significantly associated with unfavorable overall survival (OS) (HR = 1.99, 95% confidence interval [CI]: 1.65-2.39, P < .00001), and poor disease-free survival (DFS) (HR = 1.81, 95% CI: 1.54-2.13, P < .00001) in a variety of cancers. In additional, the increase in lncRNA FOXP4-AS1 expression was also correlated with tumor size ((larger vs smaller) (OR = 3.16, 95% CI: 2.12-4.71, P < .00001), alpha-fetoprotein (≥400 vs <400) (OR = 3.81, 95%CI: 2.38-6.11, P = .83), lymph node metastasis (positive vs negative) (OR = 2.93, 95%CI: 1.51-5.68, P = .001), and age (younger vs older) (OR = 2.06, 95% CI: 1.41-3.00, P = .00002) in patients with cancer. Furthermore, analysis results using The Cancer Genome Atlas (TCGA) dataset showed that the expression level of lncRNA FOXP4-AS1 was higher in most tumor tissues than in the corresponding normal tissues, which predicted a worse prognosis. CONCLUSIONS In this meta-analysis, we demonstrate that high lncRNA FOXP4-AS1 expression may become a potential marker to predict cancer prognosis.
Collapse
Affiliation(s)
- Qiang Shu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Neijiang First People’s Hospital affiliated to Chongqing Medical University, Neijiang City, Sichuan Province, China
| | - Xiaoling Liu
- Department of Hospital Infection Management, The Neijiang Hospital of Traditional Chinese Medicine, Neijiang City, Sichuan Province, China
| | - Jushu Yang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Neijiang First People’s Hospital affiliated to Chongqing Medical University, Neijiang City, Sichuan Province, China
| | - Tinggang Mou
- Department of Hepatic-Biliary-Pancreatic Surgery, The Neijiang First People’s Hospital affiliated to Chongqing Medical University, Neijiang City, Sichuan Province, China
| | - Fei Xie
- Department of Hepatic-Biliary-Pancreatic Surgery, The Neijiang First People’s Hospital affiliated to Chongqing Medical University, Neijiang City, Sichuan Province, China
| |
Collapse
|
7
|
Huang Y, Ouyang F, Yang F, Zhang N, Zhao W, Xu H, Yang X. The expression of Hexokinase 2 and its hub genes are correlated with the prognosis in glioma. BMC Cancer 2022; 22:900. [PMID: 35982398 PMCID: PMC9386956 DOI: 10.1186/s12885-022-10001-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/10/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hexokinase 2 (HK2) is an enzyme that catalyses the conversion of glucose to glucose-6-phosphate, which has been found to be associated with malignant tumour growth. However, the potential immunological and clinical significance of HK2, especially in terms of prognostic prediction for patients with glioma, has not been fully elucidated. METHODS To investigate the expression, immunological and clinical significance of HK2 in patients with glioma, several databases, including ONCOMINE, TIMER2.0, GEPIA, CGGA, UCSC, LinkedOmics, Metascape, STRING, GSCA, and TISIDB, as well as biochemical, cellular, and pathological analyses, were used in this study. In addition, we performed univariate, multivariate Cox regression and nomogram analyses of the hub genes positively and negatively correlated with HK2 to explore the potential regulatory mechanism in the initiation and development of glioma. RESULTS Our results demonstrated that HK2 was highly expressed in most malignant cancers. HK2 expression was significantly higher in lower grade glioma (LGG) and glioblastoma (GBM) than in adjacent normal tissue. In addition, HK2 expression was significantly correlated with clinical parameters, histological manifestations, and prognosis in glioma patients. Specifically, the data from The Cancer Genome Atlas downloaded from UCSC Xena database analysis showed that high expression of HK2 was strongly associated with poor prognosis in glioma patients. The LinkedOmics database indicated that HK2-related genes were mainly enriched in immune-related cells. In LGG and GBM tissues, HK2 expression is usually correlated with recognized immune checkpoints and the abundance of multiple immune infiltrates. Similarly, the Metascape database revealed that HK2-related genes were mainly enriched and annotated in immune-related pathways and immune cells. Further investigations also confirmed that the inhibition of HK2 expression remarkably suppressed metastasis and vasculogenic mimicry (VM) formation in glioma cells through regulating the gene expression of inflammatory and immune modulators. CONCLUSION HK2 expression was closely associated with the malignant properties of glioma through activating multiple immune-related signalling pathways to regulate immune responses and the infiltration of immune cells. Thus, HK2 and its hub genes may be a potential target for the treatment of glioma.
Collapse
Affiliation(s)
- Yishan Huang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Fan Ouyang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Fengxia Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Ning Zhang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Weijiang Zhao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hongwu Xu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Anthropotomy/Clinically Oriented Anatomy, Shantou University Medical College, Shantou, China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
8
|
Vilar JB, Christmann M, Tomicic MT. Alterations in Molecular Profiles Affecting Glioblastoma Resistance to Radiochemotherapy: Where Does the Good Go? Cancers (Basel) 2022; 14:cancers14102416. [PMID: 35626024 PMCID: PMC9139489 DOI: 10.3390/cancers14102416] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Glioblastoma is a type of brain cancer that remains incurable. Despite multiple past and ongoing preclinical studies and clinical trials, involving adjuvants to the conventional therapy and based on molecular targeting, no relevant benefit for patients’ survival has been achieved so far. The current first-line treatment regimen is based on ionizing radiation and the monoalkylating compound, temozolomide, and has been administered for more than 15 years. Glioblastoma is extremely resistant to most agents due to a mutational background that elicits quick response to insults and adapts to microenvironmental and metabolic changes. Here, we present the most recent evidence concerning the molecular features and their alterations governing pathways involved in GBM response to the standard radio-chemotherapy and discuss how they collaborate with acquired GBM’s resistance. Abstract Glioblastoma multiforme (GBM) is a brain tumor characterized by high heterogeneity, diffuse infiltration, aggressiveness, and formation of recurrences. Patients with this kind of tumor suffer from cognitive, emotional, and behavioral problems, beyond exhibiting dismal survival rates. Current treatment comprises surgery, radiotherapy, and chemotherapy with the methylating agent, temozolomide (TMZ). GBMs harbor intrinsic mutations involving major pathways that elicit the cells to evade cell death, adapt to the genotoxic stress, and regrow. Ionizing radiation and TMZ induce, for the most part, DNA damage repair, autophagy, stemness, and senescence, whereas only a small fraction of GBM cells undergoes treatment-induced apoptosis. Particularly upon TMZ exposure, most of the GBM cells undergo cellular senescence. Increased DNA repair attenuates the agent-induced cytotoxicity; autophagy functions as a pro-survival mechanism, protecting the cells from damage and facilitating the cells to have energy to grow. Stemness grants the cells capacity to repopulate the tumor, and senescence triggers an inflammatory microenvironment favorable to transformation. Here, we highlight this mutational background and its interference with the response to the standard radiochemotherapy. We discuss the most relevant and recent evidence obtained from the studies revealing the molecular mechanisms that lead these cells to be resistant and indicate some future perspectives on combating this incurable tumor.
Collapse
|
9
|
Chen Z, Wang S, Li HL, Luo H, Wu X, Lu J, Wang HW, Chen Y, Chen D, Wu WT, Zhang S, He Q, Lu D, Liu N, You Y, Wu W, Wang H. FOSL1 promotes proneural-to-mesenchymal transition of glioblastoma stem cells via UBC9/CYLD/NF-κB axis. Mol Ther 2022; 30:2568-2583. [DOI: 10.1016/j.ymthe.2021.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 10/18/2022] Open
|
10
|
Liu Y, Wang X, Zhu Y, Cao Y, Wang L, Li F, Zhang Y, Li Y, Zhang Z, Luo J, Deng X, Peng C, Wei G, Chen H, Shen B. The CTCF/LncRNA-PACERR complex recruits E1A binding protein p300 to induce pro-tumour macrophages in pancreatic ductal adenocarcinoma via directly regulating PTGS2 expression. Clin Transl Med 2022; 12:e654. [PMID: 35184402 PMCID: PMC8858628 DOI: 10.1002/ctm2.654] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tumour-associated macrophages (TAMs) play an important role in promoting the progression of pancreatic ductal adenocarcinoma (PDAC). Here, we aimed to study the epigenetic mechanisms in regulating pro-tumour M2-polarised TAMs in the PDAC tumour microenvironment. METHODS This study was conducted based on ex vivo TAMs isolated from PDAC tissues and in vitro THP1-derived TAM model. RNA-sequencing (RNA-seq), assay for transposase-accessible chromatin with sequencing and chromatin immunoprecipitation sequencing were performed to investigate gene expression, chromatin accessibility, transcription factor binding sites and histone modifications. Gene knockdown in THP1-derived TAMs was performed with lentivirus, and the impact of THP1-derived TAMs on invasion and metastasis ability of PDAC cells were investigated with in vitro and in vivo functional assays. RNA-chromatin interaction was analysed by chromatin isolation through RNA purification with sequencing. RNA-protein interaction was studied by RNA immunoprecipitation and RNA pull-down. RESULTS Our data showed that the transcription factor CTCF (CCCTC-binding factor) was highly expressed in TAMs and predicted to be significantly enriched in hyper-accessible chromatin regions when compared to monocytes. High infiltration of CTCF+ TAMs was significantly associated with poor prognosis in PDAC patients. Knockdown of CTCF in THP1-derived TAMs led to the down-regulation of specific markers for M2-polarised TAMs, including CD206 and CD163. When THP1-derived TAMs with CTCF knockdown, they showed a decreased ability of invasion and metastasis. Further integrative analysis of multi-omics data revealed that prostaglandin-endoperoxide synthase 2 (PTGS2) and PTGS2 antisense NF-κB1 complex-mediated expression regulator RNA (PACERR) were critical downstream targets of CTCF and positively correlated with each other, which are closely situated on a chromosome. Knockdown of PACERR exhibited a similar phenotype as observed in CTCF knockdown THP1-derived TAMs. Moreover, PACERR could directly bind to CTCF and recruit histone acetyltransferase E1A binding protein p300 to the promoter regions of PACERR and PTGS2, thereby enhancing histone acetylation and gene transcription, promoting the M2 polarization of TAMs in PDAC. CONCLUSIONS Our study demonstrated a novel epigenetic regulation mechanism of promoting pro-tumour M2-polarised TAMs in the PDAC tumour microenvironment.
Collapse
Affiliation(s)
- Yihao Liu
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Xuelong Wang
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Youwei Zhu
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yizhi Cao
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Liwen Wang
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Fanlu Li
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yu Zhang
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Ying Li
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Zhiqiang Zhang
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Jiaxin Luo
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Xiaxing Deng
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Chenghong Peng
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Gang Wei
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Hao Chen
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Baiyong Shen
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| |
Collapse
|
11
|
Exosomal circRELL1 serves as a miR-637 sponge to modulate gastric cancer progression via regulating autophagy activation. Cell Death Dis 2022; 13:56. [PMID: 35027539 PMCID: PMC8758736 DOI: 10.1038/s41419-021-04364-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
Circular RNAs (circRNAs) play a vital role in the occurrence and development of tumors, including gastric cancer (GC). However, there are still many circRNAs related to GC whose functions and molecular mechanisms remain undetermined. Herein, we discover circRNA RELL1, which has not been investigated in GC, and it is markedly downregulated in GC tissues, which is related with poor prognosis, more pronounced lymph node metastasis and poor TNM stage. After confirming the circular structure of circRELL1, we found that circRELL1 could block cell proliferation, invasion, migration, and anti-apoptosis in patients with GC by a series of in vivo and in vitro function-related studies. Further mechanism investigation demonstrated that circRELL1 could sponge miR-637 and indirectly unregulated the expression of EPHB3 via modulating autophagy activation in GC. Additionally, circRELL1 can be transmitted by exosomal communication, and exosomal circRELL1 suppressed the malignant behavior of GC in vivo and in vitro. Taken together, this study elucidates the suppressive roles of circRELL1/miR-637/EPHB3 axis through autophagy activation in GC progression, inspiring for further understanding of the underlying molecular mechanisms of GC and providing a promising novel diagnostic circulating biomarker and therapeutic target in GC.
Collapse
|
12
|
Papavassiliou KA, Papavassiliou AG. Transcription factors in glioblastoma - Molecular pathogenesis and clinical implications. Biochim Biophys Acta Rev Cancer 2022; 1877:188667. [PMID: 34894431 DOI: 10.1016/j.bbcan.2021.188667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is one of the most lethal human cancers, however, the molecular mechanisms driving GBM remain largely elusive. Recent studies have revealed that transcription factors are significantly involved in GBM biology. Transcription factors (TFs), which are proteins that bind DNA to regulate gene expression, have critical roles at focal points in signaling pathways, orchestrating many cellular processes, such as cell growth and proliferation, differentiation, apoptosis, immune responses, and metabolism. Dysregulated or mutated TFs are common in GBM, resulting in aberrant gene expression that promotes tumor initiation, progression, and resistance to conventional therapies. In the present Review, we focus on TFs that are implicated in GBM pathogenesis, highlighting their oncogenic or tumor suppressive functions and describing the molecular mechanisms underlying their effect on GBM cells. We also discuss their use as biomarkers for GBM prognosis and therapeutic response, as well as their targeting with drugs for GBM treatment. Deciphering the role of TFs in the biology of GBM will provide new insights into the pathological mechanisms and reveal novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Athens, Greece.
| |
Collapse
|
13
|
Yang J, Ding W, Wang X, Xiang Y. Knockdown of DNA polymerase ζ relieved the chemoresistance of glioma via inhibiting the PI3K/AKT signaling pathway. Bioengineered 2021; 12:3924-3933. [PMID: 34281455 PMCID: PMC8806676 DOI: 10.1080/21655979.2021.1944027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Previous reports suggest that DNA polymerase ζ is highly expressed in glioma tissues. The present study aimed to investigate the roles of the REV7 subunit of DNA polymerase ζ in glioma cell chemoresistance and its underlying mechanisms. The bioinformatics method was used to compare the expression of REV7 in glioma and normal tissues. The expression of REV7 in glioma tumor samples and the adjacent tissue was examined by reverse transcription polymerase chain reaction. Moreover, an in vitro analysis using glioma cells was used to test the effects of REV7 siRNA on the proliferation and apoptosis of glioma cell line U251 cells, and the effect of REV7 siRNA on the sensitivity of the U251 cells to cisplatin was also explored. The expression of REV7 in glioma tumors was significantly increased. Moreover, the knockdown of REV7 in glioma cells decreased the proliferation and increased the apoptosis of U251 cells; moreover, REV7 siRNA also increased the sensitivity of U251 cells to cisplatin. Finally, REV7 may regulate the proliferation, apoptosis, and chemosensitivity of U251 cells by affecting phosphoinositide 3-kinase signaling. Our data suggest that REV7 is involved in the chemosensitivity of glioma cells and provides a theoretical basis for targeting DNA polymerase ζ to improve the sensitivity of glioma cells to chemotherapy.
Collapse
Affiliation(s)
- Junbao Yang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Weilong Ding
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yongsheng Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Si J, Li W, Li X, Cao L, Chen Z, Jiang Z. Heparanase confers temozolomide resistance by regulation of exosome secretion and circular RNA composition in glioma. Cancer Sci 2021; 112:3491-3506. [PMID: 34036683 PMCID: PMC8409313 DOI: 10.1111/cas.14984] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Temozolomide (TMZ) resistance is the main challenge in the management of glioma patients. Heparanase can mediate the secretion and function of exosomes, which are considered to be a promising molecular delivery system for cancer therapy. Therefore, this study aimed to investigate whether heparanase‐mediated delivery of exosomes was related to TMZ resistance of glioma. Heparanase was upregulated in TMZ‐resistant glioma cells, and overexpression of heparanase led to increased resistance of U87 cells to TMZ. Knockdown of heparanase led to increased sensitivity of TMZ‐resistant U251 cells (U251R) cells to TMZ. Heparanase promoted the secretion of exosomes from glioma cells, and coculture with exosomes derived from heparanase knockdown U251R cells partly restored the sensitivity of U251 cells to TMZ compared with exosomes derived from si‐control transfected U251R cells. It was identified by circular RNA microarrays that hsa_circ_0042003 was upregulated in exosomes derived from U251R, which could be positively regulated by heparanase. U251R cell‐derived exosomal hsa_circ_0042003 conferred the resistance of U251 cells to TMZ. In vivo studies also showed that U251R cell‐derived exosomes induced resistance of U251 cells to TMZ, and the combination of tail‐injected exosomal si‐heparanase or exosomal si‐hsa_circ_0042003 and intraperitoneal TMZ applied to nude mice abolished TMZ resistance. Heparanase mediated the transfer of exosomal hsa_circ_0042003 from TMZ‐resistant glioma cells to drug‐sensitive cells, which contributed to the chemoresistance of glioma to TMZ.
Collapse
Affiliation(s)
- Jinchao Si
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Li
- Department of Physiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lixing Cao
- Department of Perioperative Research Centre of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiqiang Chen
- Department of Perioperative Research Centre of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi Jiang
- Department of Perioperative Research Centre of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Liu Y, Jiang K, Zhi T, Xu X. miR-720 is a key regulator of glioma migration and invasion by controlling TARSL2 expression. Hum Cell 2021; 34:1504-1516. [PMID: 34024034 DOI: 10.1007/s13577-021-00551-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/12/2021] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM) is the most lethal type of primary brain tumor and is characterized by diffuse infiltrative growth. However, the mechanisms that control this phenotype remain largely unknown. Emerging evidence has demonstrated that the abnormal expression of microRNAs and their target genes are involved in the migration and invasion of glioma cells. In this study, we demonstrated that microRNA-720 (miR-720) was significantly upregulated in glioma tissues and cells. Functional experiments showed that overexpression of miR-720 promotes glioma migration and invasion, while downregulation of miR-720 inhibits glioma migration and invasion. Meanwhile, we found that threonyl-tRNA synthetase like-2 (TARSL2) was a direct and functional target of miR-720 in glioma. Reintroduction of TARSL2 into glioma cells repressed the invasion promoting function of miR-720, whereas downregulation of TARSL2 reversed the anti-invasion function of anti-miR-720. Furthermore, quantitative real-time polymerase chain reaction results showed that miR-720 was inversely correlated with TARSL2 expression in 40 GBM tissues. Finally, in vivo experiments showed that miR-720 promotes glioma growth and upregulates invasion-related genes in nude mice. Overall, our findings suggest increasing miR-720 enhances glioma migration and invasion through downregulation of TARSL2, which may provide novel insight into the treatment of glioma.
Collapse
Affiliation(s)
- Yinlong Liu
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215008, Jiangsu Province, China
| | - Kuan Jiang
- Department of Neurosurgery, Yixing People's Hospital, Yixing, 214200, Jiangsu Province, China
| | - Tongle Zhi
- Department of Neurosurgery, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, 224006, Jiangsu Province, China
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
16
|
Huang Y, Ling A, Pareek S, Huang RS. Oncogene or tumor suppressor? Long noncoding RNAs role in patient's prognosis varies depending on disease type. Transl Res 2021; 230:98-110. [PMID: 33152534 PMCID: PMC7936950 DOI: 10.1016/j.trsl.2020.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Functional studies of long noncoding RNAs (lncRNAs) are often performed in the context of only a single cancer type. However, the tissue-specific expression patterns of lncRNAs raise the question of whether lncRNA associations identified in one cancer type are relevant to other cancer types. Here, we examine the relationships between the expression levels of 50 cancer-related lncRNAs and survival data from 24 types of cancer in The Cancer Genome Atlas (TCGA) with the goal of identifying prognosis related lncRNAs. Our results suggest that high expression levels of certain lncRNAs are consistently associated with worse/better survival in a number of cancers, while other lncRNAs have different prognostic roles in different types of cancer. Our analysis also identifies 20 novel unadjusted associations that have not been reported before. In addition, in low-grade glioma (LGG), prognostic-related lncRNAs are identified after conditioning on known clinical biomarker and common therapy, revealing that 2 lncRNAs, FOXP4-AS1, and NEAT1, are associated with temozolomide response-a standard-of-care in LGG. Pathway analysis suggests NF-kB/STAT3 signaling pathway enrichment in LGG patients with high NEAT1 expression and DNA repair/myc gene set enrichment in LGG patients with high expression of FOXP4-AS1. Our work demonstrates the context dependency of lncRNAs across cancer types and highlights a number of lncRNAs as potential novel cancer prognosis markers.
Collapse
Affiliation(s)
- Yingbo Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Alexander Ling
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Siddhika Pareek
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota; Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - R Stephanie Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
17
|
Wang C, Zhao Z, Qi Q, Wang J, Kong Y, Feng Z, Chen A, Li W, Zhang Q, Wang J, Huang B, Li X. miR-6858 plays a key role in the process of melatonin inhibition of the malignant biological behavior of glioma. J Clin Neurosci 2021; 87:137-146. [PMID: 33863521 DOI: 10.1016/j.jocn.2021.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 12/16/2020] [Accepted: 02/15/2021] [Indexed: 10/21/2022]
Abstract
MicroRNAs (miRNAs), small non-coding RNA molecules with a length of 18-25 nucleotides, have been shown to be involved in mediating various malignant properties of GBM, including growth, invasion and angiogenesis. Here, we investigated whether miRNAs might be involved in mediating the suppression of malignant properties of GBM by melatonin (MEL), an amine hormone secreted by the pineal gland. Sequencing was performed to screen specifically for miRNAs induced by MEL in U87 and an orthotopically xenografted primary GBM cell line, GBM#P3. MiR-6858-5p was the most significantly up-regulated miR in GBM cell lines in response to MEL (~5 × ). Transfection of a mimic of miR-6858-5p into both cell lines led to a decrease in viability of ~ 50% at 72 h, confirming a suppressive role for miR-6858-5p in GBM. In contrast, an inhibitor of miR-6858-5p rescued GBM cells from MEL suppression of proliferation, migration and invasion. Analysis using Targetscan yielded candidate mRNAs targeted by miR-6858-5p, some of which are involved in the SIRT/AKT signaling pathway. In cells transfected with a mimic or an inhibitor of miR-6858-5p, levels of SIRT3 and downstream components of the AKT signaling pathway were suppressed or up-regulated, respectively, both in vitro and in an in vivo orthotopic xenograft model. Our results elucidated a novel molecular mechanism underlying MEL suppression of GBM, highlighting a role for miRNAs, and provide a potential therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Zhimin Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Yang Kong
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China; Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China.
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China.
| |
Collapse
|
18
|
Li DM, Chen QD, Wei GN, Wei J, Yin JX, He JH, Ge X, Shi ZM. Hypoxia-Induced miR-137 Inhibition Increased Glioblastoma Multiforme Growth and Chemoresistance Through LRP6. Front Oncol 2021; 10:611699. [PMID: 33718112 PMCID: PMC7946983 DOI: 10.3389/fonc.2020.611699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose Glioblastoma multiforme (GBM) is one of the deadliest tumors, which is involved in numerous dysregulated microRNAs including miR-137. However, the mechanism of how miR-137 suppression associated with cancer progression and chemoresistance still remains to be elucidated. Methods Quantitative reverse transcriptase-PCR (qRT-PCR), DNA methylation analysis, cell proliferation assay, flow cytometric analysis, invasion assay, in situ tumor formation experiment were performed to test the expression levels and functions of miR-137 in GBM. Bioinformatics analysis, luciferase reporter assay, qRT-PCR, immunoblotting, immunofluorescence, and immunohistochemistry assay were used to identify and verify the target of miR-137. Results We found that miR-137 was downregulated in primary and recurrent GBM compared with normal brain tissues. Overexpression of miR-137 inhibited cell invasion and enhanced cell chemosensitivity to temozolomide (TMZ) by directly targeting low-density lipoprotein receptor-related protein 6 (LRP6) in GBM. Forced expression of LRP6 cDNA without its 3’-UTR region partly restored the effects of miR-137 in vitro and in vivo. Hypoxia-induced miR-137 methylation was responsible for the miR-137 suppression, leading to the cell chemoresistance and poor prognosis of GBM. Conclusions These findings demonstrated the detailed molecular mechanism of miR-137 in regulating GBM growth and chemoresistance in hypoxia microenvironment, suggesting the potentiality of miR-137 as a therapeutic target for GBM.
Collapse
Affiliation(s)
- Dong-Mei Li
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, China.,Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qiu-Dan Chen
- The Department of Central Laboratory, Clinical Laboratory, Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai, China
| | - Gui-Ning Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, China
| | - Jie Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, China
| | - Jian-Xing Yin
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun-Hui He
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, China
| | - Xin Ge
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhu-Mei Shi
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Ashrafizadeh M, Zarabi A, Hushmandi K, Moghadam ER, Hashemi F, Daneshi S, Hashemi F, Tavakol S, Mohammadinejad R, Najafi M, Dudha N, Garg M. C-Myc Signaling Pathway in Treatment and Prevention of Brain Tumors. Curr Cancer Drug Targets 2021; 21:2-20. [PMID: 33069197 DOI: 10.2174/1568009620666201016121005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
Brain tumors are responsible for high morbidity and mortality worldwide. Several factors such as the presence of blood-brain barrier (BBB), sensitive location in the brain, and unique biological features challenge the treatment of brain tumors. The conventional drugs are no longer effective in the treatment of brain tumors, and scientists are trying to find novel therapeutics for brain tumors. In this way, identification of molecular pathways can facilitate finding an effective treatment. c-Myc is an oncogene signaling pathway capable of regulation of biological processes such as apoptotic cell death, proliferation, survival, differentiation, and so on. These pleiotropic effects of c-Myc have resulted in much fascination with its role in different cancers, particularly brain tumors. In the present review, we aim to demonstrate the upstream and down-stream mediators of c-Myc in brain tumors such as glioma, glioblastoma, astrocytoma, and medulloblastoma. The capacity of c-Myc as a prognostic factor in brain tumors will be investigated. Our goal is to define an axis in which the c-Myc signaling pathway plays a crucial role and to provide direction for therapeutic targeting in these signaling networks in brain tumors.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Universite Caddesi No. 27, Orhanli, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of physiotherapy, Faculty of rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, Uttar Pradesh, India
| | - Manoj Garg
- Amity of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida-201313, India
| |
Collapse
|
20
|
Xie P, Li X, Chen R, Liu Y, Liu D, Liu W, Cui G, Xu J. Upregulation of HOTAIRM1 increases migration and invasion by glioblastoma cells. Aging (Albany NY) 2020; 13:2348-2364. [PMID: 33323548 PMCID: PMC7880397 DOI: 10.18632/aging.202263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) promote invasion and migration by glioblastoma (GBM) cells. In this study, quantitative real-time polymerase chain reaction was used to detect expression levels of the lncRNA HOTAIRM1 in GBM tissue samples and cells. The function of HOTAIRM1 was examined using wound healing assays, transwell assays, and in vivo experiments after GBM cells were transfected with either sh-ctrl or sh-HOTAIRM1. Luciferase reporter assays and RIP assays were performed to determine the interactions between HOTAIRM1 and miR-153-5p and between miR-153-5p and SNAI2. We also used luciferase reporter assays and ChIP assays to assess the transcriptional regulation of HOTAIRM1 by SNAI2 and CDH1. HOTAIRM1 was significantly overexpressed in GBM tissues and cells. HOTAIRM1 knockdown significantly weakened the migration and invasion by GBM cells. HOTAIRM1 was found to sponge miR-153-5p, and SNAI2 is a direct target of miR-153-5p. In addition, SNAI2 was shown to force HOTAIRM1 expression through directly promoting transcription and suppressing the negative regulation of CDH1 on transcription. Our results indicate a positive feedback loop between HOTAIRM1 and SNAI2, and suggest that the lncRNA HOTAIRM1 is a potential biomarker and therapeutic target in GBM.
Collapse
Affiliation(s)
- Peng Xie
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Xiang Li
- Department of Oncology, Huaian Hospital of Huaian District, Huai'an, Jiangsu Province, China.,Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Rui Chen
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Yue Liu
- Department of Intensive Care Unit, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - DaChao Liu
- Department of Image, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Wenguang Liu
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Gang Cui
- Department of Neurosurgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinjing Xu
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu Province, China
| |
Collapse
|
21
|
Depletion of glioma stem cells by synergistic inhibition of mTOR and c-Myc with a biological camouflaged cascade brain-targeting nanosystem. Biomaterials 2020; 268:120564. [PMID: 33296794 DOI: 10.1016/j.biomaterials.2020.120564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022]
Abstract
Glioma stem cells (GSCs), as a subpopulation of stem cell-like cells, have been proposed to play a crucial role in the progression of drug-resistance in glioblastoma (GBM). Therefore, the targeted eradication of GSCs can serve as a promising therapeutic strategy for the reversal of drug-resistance in GBM. Herein, the effects of silencing c-Myc and m-TOR on primary GBM cells extracted from patients were investigated. Results confirmed that dual inhibition treatment significantly (p < 0.05) and synergistically suppressed GSCs, and consequently reversed TMZ-resistance when compared with the single treatment group. Subsequently, to facilitate effective crossing of the BBB, a biological camouflaged cascade brain-targeting nanosystem (PMRT) was created. The PMRT significantly inhibited tumor growth and extended the lifespan of orthotopic transplantation TMZ-resistant GBM-grafted mice. Our data demonstrated that PMRT could precisely facilitate drug release at the tumor site across the BBB. Simultaneously, c-Myc and m-TOR could serve as synergistic targets to eradicate the GSCs and reverse GBM resistance to TMZ.
Collapse
|
22
|
Saha P, Mandal T, Talukdar AD, Kumar D, Kumar S, Tripathi PP, Wang QE, Srivastava AK. DNA polymerase eta: A potential pharmacological target for cancer therapy. J Cell Physiol 2020; 236:4106-4120. [PMID: 33184862 DOI: 10.1002/jcp.30155] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
In the last two decades, intensive research has been carried out to improve the survival rates of cancer patients. However, the development of chemoresistance that ultimately leads to tumor relapse poses a critical challenge for the successful treatment of cancer patients. Many cancer patients experience tumor relapse and ultimately die because of treatment failure associated with acquired drug resistance. Cancer cells utilize multiple lines of self-defense mechanisms to bypass chemotherapy and radiotherapy. One such mechanism employed by cancer cells is translesion DNA synthesis (TLS), in which specialized TLS polymerases bypass the DNA lesion with the help of monoubiquitinated proliferating cell nuclear antigen. Among all TLS polymerases (Pol η, Pol ι, Pol κ, REV1, Pol ζ, Pol μ, Pol λ, Pol ν, and Pol θ), DNA polymerase eta (Pol η) is well studied and majorly responsible for the bypass of cisplatin and UV-induced DNA damage. TLS polymerases contribute to chemotherapeutic drug-induced mutations as well as therapy resistance. Therefore, targeting these polymerases presents a novel therapeutic strategy to combat chemoresistance. Mounting evidence suggests that inhibition of Pol η may have multiple impacts on cancer therapy such as sensitizing cancer cells to chemotherapeutics, suppressing drug-induced mutagenesis, and inhibiting the development of secondary tumors. Herein, we provide a general introduction of Pol η and its clinical implications in blocking acquired drug resistance. In addition; this review addresses the existing gaps and challenges of Pol η mediated TLS mechanisms in human cells. A better understanding of the Pol η mediated TLS mechanism will not merely establish it as a potential pharmacological target but also open possibilities to identify novel drug targets for future therapy.
Collapse
Affiliation(s)
- Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Tanima Mandal
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Anupam D Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Deepak Kumar
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh, India
| | - Prem P Tripathi
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Qi-En Wang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Amit K Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
23
|
Zhai S, Xu Z, Xie J, Zhang J, Wang X, Peng C, Li H, Chen H, Shen B, Deng X. Epigenetic silencing of LncRNA LINC00261 promotes c-myc-mediated aerobic glycolysis by regulating miR-222-3p/HIPK2/ERK axis and sequestering IGF2BP1. Oncogene 2020; 40:277-291. [PMID: 33122827 PMCID: PMC7808938 DOI: 10.1038/s41388-020-01525-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs have been identified as key regulators in the progression of various cancers. LINC00261 has been reported as a tumor suppressor in multiple cancers. However, its function and underlying mechanisms in pancreatic cancer remain largely unclear. Quantitative real-time PCR was performed to detect RNA expression. In situ hybridization was used to discover the subcellular location. The direct binding of LINC00261 to miR-222-3p was verified using a dual-luciferase reporter assay and RNA immunoprecipitation. LINC00261-binding proteins were detected using an RNA pulldown assay. LINC00261 was downregulated in pancreatic cancer tissues and cell lines. Its reduced expression was correlated with advanced pathological stage and poor prognosis. Forced expression of LINC00261 suppressed pancreatic cancer glycolysis and proliferation and induced cell cycle arrest and apoptosis. Mechanistically, downregulation of LINC00261 was caused by hypermethylation of the CpG island in the promoter region and EZH2-mediated histone H3 lysine 27 trimethylation. Moreover, LINC00261 exerted its biological function by binding to miR-222-3p to activate the HIPK2/ERK/c-myc pathway. In addition, LINC00261 could also reduce c-myc expression by sequestering IGF2BP1. Our study suggests that LINC00261 functions as a tumor suppressor in pancreatic cancer and identifies novel epigenetic and posttranscriptional regulatory mechanisms of LINC00261, which contribute to the targeted therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Shuyu Zhai
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Junjie Xie
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jun Zhang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xinjing Wang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hongwei Li
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
24
|
Rezaei O, Honarmand K, Nateghinia S, Taheri M, Ghafouri-Fard S. miRNA signature in glioblastoma: Potential biomarkers and therapeutic targets. Exp Mol Pathol 2020; 117:104550. [PMID: 33010295 DOI: 10.1016/j.yexmp.2020.104550] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are transcripts with sizes of about 22 nucleotides, which are produced through a multistep process in the nucleus and cytoplasm. These transcripts modulate the expression of their target genes through binding with certain target regions, particularly 3' suntranslated regions. They are involved in the pathogenesis of several kinds of cancers, such as glioblastoma. Several miRNAs, including miR-10b, miR-21, miR-17-92-cluster, and miR-93, have been up-regulated in glioblastoma cell lines and clinical samples. On the other hand, expression of miR-7, miR-29b, miR-32, miR-34, miR-181 family members, and a number of other miRNAs have been decreased in this type of cancer. In the current review, we explain the role of miRNAs in the pathogenesis of glioblastoma through providing a summary of studies that reported dysregulation of these epigenetic effectors in this kind of brain cancer.
Collapse
Affiliation(s)
- Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Nateghinia
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Li R, Zhou H, Jia C, Jin P, Ma F. Drosophila Myc restores immune homeostasis of Imd pathway via activating miR-277 to inhibit imd/Tab2. PLoS Genet 2020; 16:e1008989. [PMID: 32810129 PMCID: PMC7455005 DOI: 10.1371/journal.pgen.1008989] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/28/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Drosophila Myc (dMyc), as a broad-spectrum transcription factor, can regulate the expression of a large number of genes to control diverse cellular processes, such as cell cycle progression, cell growth, proliferation and apoptosis. However, it remains largely unknown about whether dMyc can be involved in Drosophila innate immune response. Here, we have identified dMyc to be a negative regulator of Drosophila Imd pathway via the loss- and gain-of-function screening. We demonstrate that dMyc inhibits Drosophila Imd immune response via directly activating miR-277 transcription, which further inhibit the expression of imd and Tab2-Ra/b. Importantly, dMyc can improve the survival of flies upon infection, suggesting inhibiting Drosophila Imd pathway by dMyc is vital to restore immune homeostasis that is essential for survival. Taken together, our study not only reports a new dMyc-miR-277-imd/Tab2 axis involved in the negative regulation of Drosophila Imd pathway, and provides a new insight into the complex regulatory mechanism of Drosophila innate immune homeostasis maintenance.
Collapse
Affiliation(s)
- Ruimin Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Chaolong Jia
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
- * E-mail: (PJ); (FM)
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
- * E-mail: (PJ); (FM)
| |
Collapse
|
26
|
Yin J, Shi Z, Wei W, Lu C, Wei Y, Yan W, Li R, Zhang J, You Y, Wang X. MiR-181b suppress glioblastoma multiforme growth through inhibition of SP1-mediated glucose metabolism. Cancer Cell Int 2020; 20:69. [PMID: 32158359 PMCID: PMC7057587 DOI: 10.1186/s12935-020-1149-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background Glucose metabolic reprogramming is a significant hallmark of malignant tumors including GBM. Previous studies suggest that microRNAs play key roles in modulating this process in GBM cells. miR-181b acts as a tumor suppressor miRNA in influencing glioma tumorigenesis. Our previous results showed that miR-181b was down-regulated in glioma cells and tissues. Methods The extracellular acidification rate (ECAR), colony formation assay and levels of Glut1 and PKM2 were measured to assess the glucose metabolic and proliferation changes in GBM cells overexpressing miR-181b. Immunoblotting and luciferase reporter assay were performed to confirm the expression and role of SP1 as a direct target of miR-181b. ChIP assay was used to figure out the transcriptional regulation of SP1 on Glut1 and PKM2. In vivo study was examined for the role of miR-181b in GBM cells. Results MiR-181b overexpression significantly reduced the glucose metabolic and colony formation ability of GBM cells. And, SP1 was confirmed as a direct target of miR-181b while upregulation of SP1 could reverse the influence of overexpression of miR-181b. Furthermore, Glut1 and PKM2 could be regulated by SP1. Finally, miR-181b could inhibit the tumor growth in vivo. Conclusions Our article demonstrated the inhibitory effect of miR-181b on glucose metabolism and proliferation in GBM by suppressing SP1 expression.
Collapse
Affiliation(s)
- JianXing Yin
- 1Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - ZhuMei Shi
- 1Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - WenJin Wei
- 2Department of Neurosurgery, The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, 341000 Jiangxi China
| | - Chenfei Lu
- 1Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yutian Wei
- 1Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Yan
- 1Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Li
- 1Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - JunXia Zhang
- 1Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - YongPing You
- 1Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - XieFeng Wang
- 1Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, Chen L, Lyu X, Shi Z, Yan W, You Y. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer 2020; 19:28. [PMID: 32039732 PMCID: PMC7011291 DOI: 10.1186/s12943-020-1137-5] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/16/2020] [Indexed: 12/27/2022] Open
Abstract
Background Accumulating evidence shows that long noncoding RNAs (lncRNAs) are important regulator molecules involved in diverse biological processes. Acquired drug resistance is a major challenge in the clinical treatment of glioblastoma (GBM), and lncRNAs have been shown to play a role in chemotherapy resistance. However, the underlying mechanisms by which lncRNA mediates TMZ resistance in GBM remain poorly characterized. Methods Quantitative reverse transcription PCR (qRT-PCR) and fluorescence in situ hybridization assays were used to detect small nucleolar RNA host gene 12 (SNHG12) levels in TMZ-sensitive and TMZ-resistant GBM cells and tissues. The effects of SNHG12 on TMZ resistance were investigated through in vitro assays (western blots, colony formation assays, flow cytometry assays, and TUNEL assays). The mechanism mediating the high expression of SNHG12 in TMZ-resistant cells and its relationships with miR-129-5p, mitogen-activated protein kinase 1 (MAPK1), and E2F transcription factor 7 (E2F7) were determined by bioinformatic analysis, bisulfite amplicon sequencing, methylation-specific PCR, dual luciferase reporter assays, chromatin immunoprecipitation assays, RNA immunoprecipitation assays, immunofluorescence, qRT-PCR, and western blot. For in vivo experiments, an intracranial xenograft tumor mouse model was used to investigate SNHG12 function. Results SNHG12 was upregulated in TMZ-resistant cells and tissues. Overexpression of SNHG12 led to the development of acquired TMZ resistance, while knockdown of SNHG12 restored TMZ sensitivity. An abnormally low level of DNA methylation was detected within the promoter region of SNHG12, and loss of DNA methylation made this region more accessible to the Sp1 transcription factor (SP1); this indicated that methylation and SP1 work together to regulate SNHG12 expression. In the cytoplasm, SNHG12 served as a sponge for miR-129-5p, leading to upregulation of MAPK1 and E2F7 and endowing the GBM cells with TMZ resistance. Disinhibition of MAPK1 regulated TMZ-induced cell apoptosis and the G1/S cell cycle transition by activating the MAPK/ERK pathway, while E2F7 dysregulation was primarily associated with G1/S cell cycle transition. Clinically, SNHG12 overexpression was associated with poor survival of GBM patients undergoing TMZ treatment. Conclusion Our results suggest that SNHG12 could serve as a promising therapeutic target to surmount TMZ resistance, thereby improving the clinical efficacy of TMZ chemotherapy.
Collapse
Affiliation(s)
- Chenfei Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yutian Wei
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xiefeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhuoran Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jianxing Yin
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wentao Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Lijiu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xiao Lyu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China. .,Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
28
|
Favia A, Salvatori L, Nanni S, Iwamoto-Stohl LK, Valente S, Mai A, Scagnoli F, Fontanella RA, Totta P, Nasi S, Illi B. The Protein Arginine Methyltransferases 1 and 5 affect Myc properties in glioblastoma stem cells. Sci Rep 2019; 9:15925. [PMID: 31685892 PMCID: PMC6828805 DOI: 10.1038/s41598-019-52291-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
Protein Arginine (R) methylation is the most common post-translational methylation in mammalian cells. Protein Arginine Methyltransferases (PRMT) 1 and 5 dimethylate their substrates on R residues, asymmetrically and symmetrically, respectively. They are ubiquitously expressed and play fundamental roles in tumour malignancies, including glioblastoma multiforme (GBM) which presents largely deregulated Myc activity. Previously, we demonstrated that PRMT5 associates with Myc in GBM cells, modulating, at least in part, its transcriptional properties. Here we show that Myc/PRMT5 protein complex includes PRMT1, in both HEK293T and glioblastoma stem cells (GSCs). We demonstrate that Myc is both asymmetrically and symmetrically dimethylated by PRMT1 and PRMT5, respectively, and that these modifications differentially regulate its stability. Moreover, we show that the ratio between symmetrically and asymmetrically dimethylated Myc changes in GSCs grown in stem versus differentiating conditions. Finally, both PRMT1 and PRMT5 activity modulate Myc binding at its specific target promoters. To our knowledge, this is the first work reporting R asymmetrical and symmetrical dimethylation as novel Myc post-translational modifications, with different functional properties. This opens a completely unexplored field of investigation in Myc biology and suggests symmetrically dimethylated Myc species as novel diagnostic and prognostic markers and druggable therapeutic targets for GBM.
Collapse
Affiliation(s)
- Annarita Favia
- Institute of Molecular Biology and Pathology - National Research Council (IBPM-CNR), Rome, Italy
| | - Luisa Salvatori
- Institute of Molecular Biology and Pathology - National Research Council (IBPM-CNR), Rome, Italy.
| | - Simona Nanni
- Institute of Medical Pathology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Sergio Valente
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy.,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Fiorella Scagnoli
- Institute of Molecular Biology and Pathology - National Research Council (IBPM-CNR), Rome, Italy.,Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Rosaria Anna Fontanella
- Institute of Molecular Biology and Pathology - National Research Council (IBPM-CNR), Rome, Italy
| | | | - Sergio Nasi
- Institute of Molecular Biology and Pathology - National Research Council (IBPM-CNR), Rome, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology - National Research Council (IBPM-CNR), Rome, Italy.
| |
Collapse
|
29
|
Liu Y, Li X, Zhang Y, Wang H, Rong X, Peng J, He L, Peng Y. An miR-340-5p-macrophage feedback loop modulates the progression and tumor microenvironment of glioblastoma multiforme. Oncogene 2019; 38:7399-7415. [PMID: 31427735 DOI: 10.1038/s41388-019-0952-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 06/14/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) have been shown to be involved in the progression and tumor microenvironment of glioblastoma multiforme (GBM). Our previous research has indicated that miR-340-5p has an antitumor effect in vitro. However, the role of miR-340-5p in GBM has not been fully elucidated. Here, we show that downregulation of miR-340-5p in GBM is correlated with tumor size, recurrence, and poor survival. Moreover, we found that miR-340-5p levels are correlated with the density of tumor-associated macrophages (TAMs) and M2-polarized TAMs in GBM. Biofunctional investigations revealed that downregulation of miR-340-5p promoted TAM recruitment and M2-TAMs polarization in vitro and in vivo. In addition, we found that upregulation of miR-340-5p inhibited tumor growth and was associated with good prognosis in vivo. Through gene expression profiles and bioinformatics analysis, we showed that miR-340-5p directly targets POSTN, which recruited TAMs through integrin αvβ3. Downregulation of miR-340-5p in GBM did not induce the differentiation of TAMs into polarized M2 cells but was able to promote the M2 polarization of TAMs through directly targeting LTBP-1. Furthermore, we found that M2-TAMs promoted tumorigenesis and were associated with a poor prognosis in vivo. In an in vitro study, we demonstrated that M2-TAMs inhibited miR-340-5p expression in GBM cells by upregulation of TGFβ-1, which increased HMGA-2 expression in GBM. A ChIP assay confirmed that HMGA-2 transcriptionally suppressed miR-340-5p expression. Patients with low-miR-340-5p expression, high CD163, high POSTN, high LIBP1 levels, and high HMGA-2 had a poor prognosis with shorter overall survival, confirming data from the TCGA database. These findings suggest that an miR-340-5p-macrophage feedback loop modulates the progression and tumor microenvironment of GBM and may represent a prognostic biomarker and therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Yunyun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Xiaoyu Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Yuanpei Zhang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Hongxuan Wang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Xiongming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Jialing Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Lei He
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.
| |
Collapse
|
30
|
Tang LJ, Sun GK, Zhang TJ, Wu DH, Zhou JD, Ma BB, Xu ZJ, Wen XM, Chen Q, Yao DM, Qian J, Ma JC, Lin J. Down-regulation of miR-29c is a prognostic biomarker in acute myeloid leukemia and can reduce the sensitivity of leukemic cells to decitabine. Cancer Cell Int 2019; 19:177. [PMID: 31333331 PMCID: PMC6617691 DOI: 10.1186/s12935-019-0894-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNA-29c (miR-29c) is abnormally expressed in several cancers and serves as an important predictor of tumor prognosis. Herein, we investigate the effects of abnormal miR-29c expression and analyze its clinical significance in acute myeloid leukemia (AML) patients. In addition, decitabine (DAC) has made great progress in the treatment of AML in recent years, but DAC resistance is still common phenomenon and the mechanism of resistance is still unclear. We further analyze the influences of miR-29c to leukemic cells treated with DAC. Methods Real-time quantitative PCR (RQ-PCR) was carried out to detect miR-29c transcript level in 102 de novo AML patients and 25 normal controls. miR-29c/shRNA-29c were respectively transfected into K562 cells and HEL cells. Cell viability after transfection was detected by cell counting Kit-8 assays. Flow cytometry was used to detect apoptosis. Results MiR-29c was significantly down-regulated in AML (P < 0.001). Low miR-29c expression was frequently observed in patients with poor karyotype and high risk (P = 0.006 and 0.013, respectively). Patients with low miR-29c expression had a markedly shorter overall survival (OS) than those with high miR-29c expression (P < 0.001). Multivariate analysis confirmed the independent prognostic value of low miR-29c expression in both the whole cohort as well as the cytogenetically normal AML (CN-AML) subset. Over-expression of miR-29c in K562 treated with DAC inhibited growth, while silencing of miR-29c in HEL promoted growth and inhibited apoptosis. MiR-29c overexpression decreased the half maximal inhibitory concentration (IC50) of DAC in K562, while miR-29c silencing increased the IC50 of DAC in HEL. The demethylation of the miR-29c promoter was associated with its up-regulated expression. Although miR-29c demethylation was also observed in DAC-resistant K562 (K562/DAC), miR-29c expression was down-regulated. MiR-29c transfection also promoted apoptosis and decreased the IC50 of DAC in K562/DAC cells. Conclusions Our results suggest that miR-29c down-regulation may act as an independent prognostic biomarker in AML patients, and miR-29c over-expression can increase the sensitivity of both non-resistant and resistant of leukemic cells to DAC. Electronic supplementary material The online version of this article (10.1186/s12935-019-0894-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Juan Tang
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Guo-Kang Sun
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Ting-Juan Zhang
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - De-Hong Wu
- Department of Hematology, The Third People's Hospital of Kunshan City, 615 Zizhu Rd, Kunshan, 215300 People's Republic of China
| | - Jing-Dong Zhou
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Bei-Bei Ma
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Zi-Jun Xu
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Xiang-Mei Wen
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Qin Chen
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Dong-Ming Yao
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Jun Qian
- 2Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China
| | - Ji-Chun Ma
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China
| | - Jiang Lin
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China
| |
Collapse
|
31
|
Wang Z, Chen N, Yang J, Wang Q, Li A. Microarray gene profiling analysis of glioblastoma cell line U87 reveals suppression of the FANCD2/Fanconi anemia pathway by the combination of Y15 and temozolomide. Arch Med Sci 2019; 15:1035-1046. [PMID: 31360198 PMCID: PMC6657253 DOI: 10.5114/aoms.2019.86063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/16/2018] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION A recent study showed that a combination of Y15 (a FAK autophosphorylation inhibitor) with temozolomide (TMZ) treatment was effective in glioblastoma (GBM) therapy. In this study, we further investigated the pathways and genes that are differentially expressed in Y15 and TMZ treated U87 cells via bioinformatics analysis. MATERIAL AND METHODS The microarray gene profiling analysis screened out genes with differential expression in U87 cells treated with TMZ and Y15. Gene set enrichment analysis (GSEA) identified the key GO terms and KEGG pathways in TMZ + Y15 treated U87 cells. The functional partner genes of TMZ were predicted by the STICH database. FANCD2 expression in U87 cells was detected by qRT-PCR. MTT assay and colony formation assay were conducted for cell viability detection, and flow cytometry was performed for cell apoptosis detection. Western blot was conducted to determine the expression levels of the downstream proteins of the Fanconi anemia (FA) pathway, FAN1 and BRCA2. RESULTS The FA pathway was suppressed in U87 cells after treatment with TMZ and Y15. Genes involved in this pathway, including FANCD2, were also down-regulated. FANCD2 knockdown could restrain viability and promote apoptosis of U87 cells, as well as enhancing the inhibitory effect of TMZ + Y15 treatment. FANCD2 could regulate the FA pathway as the protein expression levels of FAN1 and BRCA2 were modulated by FANCD2. CONCLUSIONS The FA pathway and FANCD2 are down-regulated in U87 cells treated with TMZ and Y15. FANCD2 down-regulation by TMZ + Y15 treatment suppressed growth of U87 cells through inhibiting the FA pathway.
Collapse
Affiliation(s)
- Zichuan Wang
- College of Basic Medicine, Nanjing University of Chinese Medicine, Jiangsu, China
| | - Nan Chen
- College of Basic Medicine, Nanjing University of Chinese Medicine, Jiangsu, China
| | - Jin Yang
- College of Basic Medicine, Nanjing University of Chinese Medicine, Jiangsu, China
| | - Qingzhong Wang
- Department of Neurosurgery, People’s Hospital of Guanyun County, Jiangsu, China
| | - Aimin Li
- Department of Neurosurgery, First People’s Hospital of Lianyungang, Jiangsu, China
| |
Collapse
|
32
|
Chen Q, Hou J, Wu Z, Zhao J, Ma D. miR-145 Regulates the sensitivity of esophageal squamous cell carcinoma cells to 5-FU via targeting REV3L. Pathol Res Pract 2019; 215:152427. [PMID: 31072625 DOI: 10.1016/j.prp.2019.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/28/2019] [Accepted: 04/26/2019] [Indexed: 12/24/2022]
Abstract
Aberrant expression of miR-145 was associated with chemotherapy in multitype cancers. However, the underlying role and molecular mechanism of miR-145 in the sensitivity of esophageal squamous cell carcinoma (ESCC) to 5-FU remained largely unknown. Cell viability was determined by Cell Counting Kit-8 (CCK-8) assay. Gene expression levels were detected by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Protein expression levels were evaluated by Western blot. TargetScan was used for the prediction of binding sites for miRNA in mRNAs. The interaction between mRNA 3' UTR and miRNA was verified by dual luciferase reporter assay. The results showed that miR-145 was downregulated in ESCC tumor tissues and cells, while REV3L was upregulated in ESCC tumor tissues. Overexpression of miR-145 decreased REV3L mRNA and protein level in ESCC cell line KYSE150, while decreased miR-145 increased REV3L mRNA and protein level in esophageal epithelium cell line (HEEC). In addition, the luciferase activity of ESCC cells was decreased after the treatment of miR-145 mimic and mRNA 3'UTR-WT. Overexpressed miR-145 significantly inhibited cell viability and elevated cell apoptosis rate upon 5-FU treatment. Additionally, transfection of miR-145 mimic further altered expression of key genes involved in cell apoptosis (Bcl-2, Bax, Caspase3) in ESCC cells treated with 5-FU. miR-145 might be a therapeutic target for the treatment of ESCC.
Collapse
Affiliation(s)
- Qing Chen
- Department of Oncology, Jingjiang Peoples' Hospital, Jingjiang, 214500, China
| | - Juan Hou
- Department of Oncology, Jingjiang Peoples' Hospital, Jingjiang, 214500, China
| | - Zhiwei Wu
- Department of Oncology, Jingjiang Peoples' Hospital, Jingjiang, 214500, China
| | - Jie Zhao
- Department of Oncology, Jingjiang Peoples' Hospital, Jingjiang, 214500, China
| | - De Ma
- Department of Oncology, Jingjiang Peoples' Hospital, Jingjiang, 214500, China.
| |
Collapse
|
33
|
Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y. Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:166. [PMID: 30992025 PMCID: PMC6469146 DOI: 10.1186/s13046-019-1139-6] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
Background Acquired drug resistance is a constraining factor in clinical treatment of glioblastoma (GBM). However, the mechanisms of chemoresponsive tumors acquire therapeutic resistance remain poorly understood. Here, we aim to investigate whether temozolomide (TMZ) resistance of chemoresponsive GBM was enhanced by long non-coding RNA SBF2 antisense RNA 1 (lncRNA SBF2-AS1) enriched exosomes. Method LncSBF2-AS1 level in TMZ-resistance or TMZ-sensitive GBM tissues and cells were analyzed by qRT-PCR and FISH assays. A series of in vitro assay and xenograft tumor models were performed to observe the effect of lncSBF2-AS1 on TMZ-resistance in GBM. CHIP assay were used to investigate the correlation of SBF2-AS1 and transcription factor zinc finger E-box binding homeobox 1 (ZEB1). Dual-luciferase reporter, RNA immunoprecipitation (RIP), immunofluorescence and western blotting were performed to verify the relation between lncSBF2-AS1, miR-151a-3p and XRCC4. Comet assay and immunoblotting were performed to expound the effect of lncSBF2-AS1 on DNA double-stand break (DSB) repair. A series of in vitro assay and intracranial xenografts tumor model were used to determined the function of exosomal lncSBF2-AS1. Result It was found that SBF2-AS1 was upregulated in TMZ-resistant GBM cells and tissues, and overexpression of SBF2-AS1 led to the promotion of TMZ resistance, whereas its inhibition sensitized resistant GBM cells to TMZ. Transcription factor ZEB1 was found to directly bind to the SBF2-AS1 promoter region to regulate SBF2-AS1 level and affected TMZ resistance in GBM cells. SBF2-AS1 functions as a ceRNA for miR-151a-3p, leading to the disinhibition of its endogenous target, X-ray repair cross complementing 4 (XRCC4), which enhances DSB repair in GBM cells. Exosomes selected from temozolomide-resistant GBM cells had high levels of SBF2-AS1 and spread TMZ resistance to chemoresponsive GBM cells. Clinically, high levels of lncSBF2-AS1 in serum exosomes were associated with poor response to TMZ treatment in GBM patients. Conclusion We can conclude that GBM cells remodel the tumor microenvironment to promote tumor chemotherapy-resistance by secreting the oncogenic lncSBF2-AS1-enriched exosomes. Thus, exosomal lncSBF2-AS1 in human serum may serve as a possible diagnostic marker for therapy-refractory GBM. Electronic supplementary material The online version of this article (10.1186/s13046-019-1139-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhuoran Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jianxing Yin
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chenfei Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yutian Wei
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ailiang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
34
|
Yin J, Zeng A, Zhang Z, Shi Z, Yan W, You Y. Exosomal transfer of miR-1238 contributes to temozolomide-resistance in glioblastoma. EBioMedicine 2019; 42:238-251. [PMID: 30917935 PMCID: PMC6491393 DOI: 10.1016/j.ebiom.2019.03.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
Background Although temozolomide (TMZ) resistance is a significant clinical problem in glioblastoma (GBM), its underlying molecular mechanisms are poorly understood. In this study, we identified the role of exosomal microRNAs (miRNAs) from TMZ-resistant cells as important mediators of chemoresistance in GBM cells. Methods Exosomes were isolated from TMZ-resistant GBM cells and characterized via scanning electron microscopy (SEM). Expression levels of miR-1238 in GBM cell lines and their exosomes, clinical tissues, and sera were evaluated by RT-qPCR. In vitro and in vivo experiments were performed to elucidate the function of exosomal miR-1238 in TMZ resistance in GBM cells. Co-immunoprecipitation assays and western blot analysis were used to investigate the potential mechanisms of miR-1238/CAV1 that contribute to TMZ resistance. Findings MiR-1238 levels were higher in TMZ-resistant GBM cells and their exosomes than in sensitive cells. Higher levels of miR-1238 were found in the sera of GBM patients than in healthy people. The loss of miR-1238 may sensitize resistant GBM cells by directly targeting the CAV1/EGFR pathway. Furthermore, bioactive miR-1238 may be incorporated into the exosomes shed by TMZ-resistant cells and taken up by TMZ-sensitive cells, thus disseminating TMZ resistance. Interpretation Our findings establish that miR-1238 plays an important role in mediating the acquired chemoresistance of GBM and that exosomal miR-1238 may confer chemoresistance in the tumour microenvironment. These results suggest that circulating miR-1238 serves as a clinical biomarker and a promising therapeutic target for TMZ resistance in GBM. Fund This study was supported by the National Natural Science Foundation of China (No·81402056, 81472362, and 81772951) and the National High Technology Research and Development Program of China (863) (No·2012AA02A508).
Collapse
Affiliation(s)
- Jianxing Yin
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ailiang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhuoran Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
35
|
Biersack B. Alkylating anticancer agents and their relations to microRNAs. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1-17. [PMID: 35582140 PMCID: PMC9019174 DOI: 10.20517/cdr.2019.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 11/12/2022]
Abstract
Alkylating agents represent an important class of anticancer drugs. The occurrence and emergence of tumor resistance to the treatment with alkylating agents denotes a severe problem in the clinics. A detailed understanding of the mechanisms of activity of alkylating drugs is essential in order to overcome drug resistance. In particular, the role of non-coding microRNAs concerning alkylating drug activity and resistance in various cancers is highlighted in this review. Both synthetic and natural alkylating agents, which are approved for cancer therapy, are discussed concerning their interplay with microRNAs.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
36
|
Rynkeviciene R, Simiene J, Strainiene E, Stankevicius V, Usinskiene J, Miseikyte Kaubriene E, Meskinyte I, Cicenas J, Suziedelis K. Non-Coding RNAs in Glioma. Cancers (Basel) 2018; 11:cancers11010017. [PMID: 30583549 PMCID: PMC6356972 DOI: 10.3390/cancers11010017] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most aggressive brain tumor of the central nervous system. The ability of glioma cells to migrate, rapidly diffuse and invade normal adjacent tissue, their sustained proliferation, and heterogeneity contribute to an overall survival of approximately 15 months for most patients with high grade glioma. Numerous studies indicate that non-coding RNA species have critical functions across biological processes that regulate glioma initiation and progression. Recently, new data emerged, which shows that the cross-regulation between long non-coding RNAs and small non-coding RNAs contribute to phenotypic diversity of glioblastoma subclasses. In this paper, we review data of long non-coding RNA expression, which was evaluated in human glioma tissue samples during a five-year period. Thus, this review summarizes the following: (I) the role of non-coding RNAs in glioblastoma pathogenesis, (II) the potential application of non-coding RNA species in glioma-grading, (III) crosstalk between lncRNAs and miRNAs (IV) future perspectives of non-coding RNAs as biomarkers for glioma.
Collapse
Affiliation(s)
- Ryte Rynkeviciene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
| | - Julija Simiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-08412 Vilnius, Lithuania.
| | - Egle Strainiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio ave. 11, LT-10122 Vilnius, Lithuania.
| | - Vaidotas Stankevicius
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biotechnology, Vilnius University, LT-10257 Vilnius, Lithuania.
| | - Jurgita Usinskiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
| | - Edita Miseikyte Kaubriene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Faculty of Medicine, Vilnius University, M.K. Cˇiurlionio 21, LT-03101 Vilnius, Lithuania.
| | - Ingrida Meskinyte
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, 3027 Bern, Switzerland.
| | - Jonas Cicenas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, 3027 Bern, Switzerland.
- Energy and Biotechnology Engineering Institute, Aleksandro Stulginskio University, Studentų g. 11, LT-53361 Akademija, Lithuania.
| | - Kestutis Suziedelis
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-08412 Vilnius, Lithuania.
| |
Collapse
|
37
|
Nie E, Miao F, Jin X, Wu W, Zhou X, Zeng A, Yu T, Zhi T, Shi Z, Wang Y, Zhang J, Liu N, You Y. Fstl1/DIP2A/MGMT signaling pathway plays important roles in temozolomide resistance in glioblastoma. Oncogene 2018; 38:2706-2721. [PMID: 30542120 PMCID: PMC6484760 DOI: 10.1038/s41388-018-0596-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/23/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023]
Abstract
Temozolomide was recognized as the first-line therapy for glioblastoma to prolong the survival of patients noticeably, while recent clinical studies found that some patients were not sensitive to temozolomide treatment. The possible mechanisms seemed to be methylguanine-DNA-methyltransferase (MGMT), mismatch repair, PARP, etc. And the abnormal expression of MGMT might be the most direct factor. In this study, we provide evidence that Fstl1 plays a vital role in temozolomide resistance by sequentially regulating DIP2A protein distribution, H3K9 acetylation (H3K9Ac), and MGMT transcription. As a multifunctional protein widely distributed in cells, DIP2A cooperates with the HDAC2-DMAP1 complex to enhance H3K9Ac deacetylation, prevent MGMT transcription, and increase temozolomide sensitivity. Fstl1, a glycoprotein highly expressed in glioblastoma, competitively binds DIP2A to block DIP2A nuclear translocation, so as to hinder DIP2A from binding the HDAC2-DMAP1 complex. The overexpression of Fstl1 promoted the expression of MGMT in association with increased promoter H3K9Ac. Upregulation of Fstl1 enhanced temozolomide resistance, whereas Fstl1 silencing obviously sensitized GBM cells to temozolomide both in vivo and in vitro. Moreover, DIP2A depletion abolished the effects of Fstl1 on MGMT expression and temozolomide resistance. These findings highlight an important role of Fstl1 in the regulation of temozolomide resistance by modulation of DIP2A/MGMT signaling.
Collapse
Affiliation(s)
- Er Nie
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Faan Miao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xin Jin
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Weining Wu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xu Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ailiang Zeng
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tianfu Yu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tongle Zhi
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhumei Shi
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.,State Key lab of Reproductive Medicine, Department of Pathology, Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, 210029, China
| | - Yingyi Wang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Junxia Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ning Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Chinese Glioma Cooperative Group (CGCG), Nanjing, 210029, China.
| | - Yongping You
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Chinese Glioma Cooperative Group (CGCG), Nanjing, 210029, China.
| |
Collapse
|
38
|
Deris Zayeri Z, Tahmasebi Birgani M, Mohammadi Asl J, Kashipazha D, Hajjari M. A novel infram deletion in MSH6 gene in glioma: Conversation on MSH6 mutations in brain tumors. J Cell Physiol 2018; 234:11092-11102. [DOI: 10.1002/jcp.27759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
- Department of Medical Genetics School of Medicine, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Maryam Tahmasebi Birgani
- Department of Medical Genetics School of Medicine, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Javad Mohammadi Asl
- Department of Medical Genetics School of Medicine, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
- Noor Medical Genetic Laboratory Ahvaz Khuzestan Iran
| | - Davood Kashipazha
- Department of Neurology Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Mohammadreza Hajjari
- Department of Genetics Faculty of Science, Shahid Chamran University of Ahvaz Ahvaz Iran
| |
Collapse
|
39
|
Zhao Z, Zhang K, Wang Z, Wang K, Liu X, Wu F, Chen J. A comprehensive review of available omics data resources and molecular profiling for precision glioma studies. Biomed Rep 2018; 10:3-9. [PMID: 30588296 DOI: 10.3892/br.2018.1168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/11/2018] [Indexed: 12/22/2022] Open
Abstract
Gliomas are the most common and lethal type of primary malignant central nervous system tumors, with an extremely poor prognosis. The latest progression in the technological development of sequencing/microarray and bioinformatics has provided insights into the glioma genome. These technologies have generated large amounts of easily accessible biological omics data, providing an unprecedented opportunity to study glioma formation. According to the 2016 WHO organization classification of brain tumors, gliomas are currently diagnosed with respect to morphological and molecular tumor alterations, especially for isocitrate dehydrogenase and 1p/19q codeletions. In the present study, the comprehensive molecular profiling and available omics data resources for malignant gliomas were reviewed for novel insights into the biology and classification of these tumors. These molecular profiling resources may be useful for improving the understanding of malignant gliomas, and to accelerate the clinical, experimental and epidemiological studies that may lead to improvements in the lives of patients with glioma.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Kenan Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Zhiliang Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Kuanyu Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Jing Chen
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
40
|
Exosomal transfer of miR-151a enhances chemosensitivity to temozolomide in drug-resistant glioblastoma. Cancer Lett 2018; 436:10-21. [DOI: 10.1016/j.canlet.2018.08.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022]
|
41
|
Zeng A, Yin J, Wang Z, Zhang C, Li R, Zhang Z, Yan W, You Y. miR-17-5p-CXCL14 axis related transcriptome profile and clinical outcome in diffuse gliomas. Oncoimmunology 2018; 7:e1510277. [PMID: 30524906 DOI: 10.1080/2162402x.2018.1510277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/31/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022] Open
Abstract
GBM tissues are comprised of not only tumor cells but also tumor-associated nontumor cells, such as stromal cells and immune cells, which dilute the purity of glioma cells and function in glioma biology. However, the roles of miRNAs in modulating glioma purity are not clarified. In total, 838 glioma samples with transcriptome data, including 537 RNAseq data from TCGA project and 301 microarray data from Chinese Glioma Genome Atlas (CGGA project), were recruited into our investigation. Tumor purity, molecular subtypes and IDH status were also available. R language was employed as the main tool for statistical analysis and graphical work. Screening miRNA profiling and paired TCGA samples' transcriptome data demonstrates that miR-17-5p expression harbors the most significant positive correlation with glioma purity among all miRNAs. CXCL14 shows robust negative correlation with miR-17-5p expression in TCGA and CGGA dataset. miR-17-5p directly targets CXCL14 and functions as a tumor-suppressor of GBM. CXCL14 showed lower expression in proneural subtype and may contribute as a potential marker for proneural subtype in glioma. Genes markedly correlated with CXCL14 are involved in essential functions associated with anti-tumor immune process. CXCL14 has a strong correlation with immune(T cells, Monocytic lineage and Neutrophils) and Fibroblasts within glioma environment. miR-17-5p and CXCL14 exhibited predictive values for high-grade glioma(HGG) patients: Higher miR-17-5p indicated significantly longer survival while lower CXCL14 indicated longer survival. Our results highlight the importance of the miR-17-5p-CXCL14 axis in regulating key steps of anti-tumor immune process and may serve as potential targets of immune treatments for gliomas.
Collapse
Affiliation(s)
- Ailiang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.,Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jianxin Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing China
| | - Zheng Wang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing China
| | - Rui Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Zhuoran Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
42
|
Costa Nunes F, Silva LB, Winter E, Silva AH, de Melo LJ, Rode M, Martins MAP, Zanatta N, Feitosa SC, Bonacorso HG, Creczynski-Pasa TB. Tacrine derivatives stimulate human glioma SF295 cell death and alter important proteins related to disease development: An old drug for new targets. Biochim Biophys Acta Gen Subj 2018; 1862:1527-1536. [DOI: 10.1016/j.bbagen.2018.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 10/24/2022]
|
43
|
Zeng A, Yin J, Li Y, Li R, Wang Z, Zhou X, Jin X, Shen F, Yan W, You Y. miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma. Cell Death Dis 2018. [PMID: 29531296 PMCID: PMC5847604 DOI: 10.1038/s41419-018-0343-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Therapeutic application of microRNAs (miRNAs) in Wnt-driven glioma has been valuable; however, their specific roles and mechanisms have not been completely investigated. Real-time quantitative PCR (RT-qPCR) was used to analyse the expression of microRNA-129-5p (miR-129-5p) in human glioma samples. Cell-Counting Kit 8 (CCK-8), flow cytometry, EdU, angiogenesis, Transwell invasion, wound healing, in vitro 3D migration and neurosphere formation assays were employed to assess the role of miR-129-5p in glioblastoma multiforme (GBM) cells. Moreover, we performed the luciferase reporter assay and the RNA-ChIP (chromatin immunoprecipitation) assay to confirm whether Wnt5a was a direct target of miR-129-5p. We also confirmed the correlation between the expression profile of miR-129-5p and Wnt5a in glioma patients from the Chinese Glioma Genome Atlas (CGGA) and investigated the overall survival of GBM patients using two data sets, namely, TCGA and GSE16011, according to their Wnt5a expression status. MiR-129-5p expression levels were downregulated and inversely correlated with Wnt5a expression levels in CGGA glioma patients. Restored expression of miR-129-5p blocked GBM cell proliferation, invasion, migration, angiogenesis, neurosphere formation and resistance to temozolomide. We reported that miR-129-5p directly targeted Wnt5a in glioma. Furthermore, we observed that overexpression of miR-129-5p inhibited the expression of Wnt5a, thus blocking the protein kinase C(PKC)/ERK/NF-κB and JNK pathways. Inhibiting Wnt5a rescued the effects of miR-129-5p loss and increased Wnt5a expression was associated with reduced overall survival of GBM patients. We also demonstrated the inhibitory effect of miR-129-5p on tumour growth in GBM using an in vivo model. The miR-129-5p/Wnt5a-axis-mediated PKC/ERK/NF-κB and JNK pathways have therapeutic potential in GBM treatment.
Collapse
Affiliation(s)
- Ailiang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China
| | - Jianxing Yin
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China
| | - Yan Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China
| | - Rui Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China
| | - Zheng Wang
- Beijing Neurosurgical Institute, Capital Medical University, 100050, Beijing, PR China
| | - Xu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China
| | - Xin Jin
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China
| | - Feng Shen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China.
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China.
| |
Collapse
|
44
|
Preclinical investigation of ibrutinib, a Bruton's kinase tyrosine (Btk) inhibitor, in suppressing glioma tumorigenesis and stem cell phenotypes. Oncotarget 2018; 7:69961-69975. [PMID: 27564106 PMCID: PMC5342527 DOI: 10.18632/oncotarget.11572] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022] Open
Abstract
Standard interventions for glioma include surgery, radiation and chemotherapies but the prognosis for malignant cases such as glioblastoma multiforme remain grim. Even with targeted therapeutic agent, bevacitumab, malignant glioma often develops resistance and recurrence. Thus, developing alternative interventions (therapeutic targets, biomarkers) is urgently required. Bruton's tyrosine kinase (Btk) has been long implicated in B cell malignancies but surprisingly it has recently been shown to also play a tumorigenic role in solid tumors such as ovarian and prostate cancer. Bioinformatics data indicates that Btk is significantly higher in clinical glioma samples as compared to normal brain cells and Btk expression level is associated with stage progression. This prompts us to investigate the potential role of Btk as a therapeutic target for glioma. Here, we demonstrate Btk expression is associated with GBM tumorigenesis. Down-regulation of Btk in GBM cell lines showed a significantly reduced abilities in colony formation, migration and GBM sphere-forming potential. Mechanistically, Btk-silenced cells showed a concomitant reduction in the expression of CD133 and Akt/mTOR signaling. In parallel, Ibrutinib (a Btk inhibitor) treatment led to a similar anti-tumorigenic response. Using xenograft mouse model, tumorigenesis was significantly reduced in Btk-silenced or ibrutinib-treated mice as compared to control counterparts. Finally, our glioma tissue microarray analysis indicated a higher Btk staining in the malignant tumors than less malignant and normal brain tissues. Collectively, Btk may represent a novel therapeutic target for glioma and ibrunitib may be used as an adjuvant treatment for malignant GBM.
Collapse
|
45
|
Arivazhagan R, Lee J, Bayarsaikhan D, Kwak P, Son M, Byun K, Salekdeh GH, Lee B. MicroRNA-340 inhibits the proliferation and promotes the apoptosis of colon cancer cells by modulating REV3L. Oncotarget 2017; 9:5155-5168. [PMID: 29435169 PMCID: PMC5797040 DOI: 10.18632/oncotarget.23703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/05/2017] [Indexed: 11/25/2022] Open
Abstract
DNA Directed Polymerase Zeta Catalytic Subunit (REV3L) has recently emerged as an important oncogene. Although the expressions of REV3L are similar in normal and cancer cells, several mutations in REV3L have been shown to play important roles in cancer. These mutations cause proteins misfolding and mislocalization, which in turn alters their interactions and biological functions. miRNAs play important regulatory roles during the progression and metastasis of several human cancers. This study was undertaken to determine how changes in the location and interactions of REV3L regulate colon cancer progression. REV3L protein mislocalization confirmed from the immunostaining results and the known interactions of REV3L was found to be broken as seen from the PLA assay results. The mislocalized REV3L might interact with new proteins partners in the cytoplasm which in turn may play role in regulating colon cancer progression. hsa-miR-340 (miR-340), a microRNA down-regulated in colon cancer, was used to bind to and downregulate REV3L, and found to control the proliferation and induce the apoptosis of colon cancer cells (HCT-116 and DLD-1) via the MAPK pathway. Furthermore, this down-regulation of REV3L also diminished colon cancer cell migration, and down-regulated MMP-2 and MMP-9. Combined treatment of colon cancer cells with miR-340 and 5-FU enhanced the inhibitory effects of 5-FU. In addition, in vivo experiments conducted on nude mice revealed tumor sizes were smaller in a HCT-116-miR-340 injected group than in a HCT-116-pCMV injected group. Our findings suggest mutations in REV3L causes protein mislocalization to the cytoplasm, breaking its interaction and is believed to form new protein interactions in cytoplasm contributing to colon cancer progression. Accordingly, microRNA-340 appears to be a good candidate for colon cancer therapy.
Collapse
Affiliation(s)
- Roshini Arivazhagan
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Jaesuk Lee
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Delger Bayarsaikhan
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Peter Kwak
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Myeongjoo Son
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.,Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon, Republic of Korea
| | - Kyunghee Byun
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.,Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon, Republic of Korea
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Molecular Sciences, Macquarie University Sydney, New South Wales, Australia
| | - Bonghee Lee
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.,Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon, Republic of Korea
| |
Collapse
|
46
|
Jing D, Zhang Q, Yu H, Zhao Y, Shen L. Identification of WISP1 as a novel oncogene in glioblastoma. Int J Oncol 2017; 51:1261-1270. [PMID: 28902353 DOI: 10.3892/ijo.2017.4119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/10/2017] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most common and aggressive primary brain tumor and has a high mortality in humans. However, mechanisms and factors involved in the progression of glioblastoma remain elusive. WISP1 (WNT1 inducible signaling pathway protein 1), has been suggested to be a critical regulator of cancer development. The aim of this study was to investigate the role of WISP1 in regulating the progression of glioblastoma. Clinicopathological characteristics of glioblastoma were assessed, and higher levels of WISP1 were positively associated with advanced clinical stage and a poor prognosis. Consistently, WISP1 expression was significantly upregulated in glioblastoma tissue and cell lines compared with normal tissue and cells. Additionally, inhibition of WISP1 greatly suppressed cell proliferation, migration, and invasion and promoted apoptosis and cell cycle arrest of glioblastoma cells. Further study indicated that downregulation of WISP1 suppressed cell proliferation associated with the gene expression of c‑myc and cyclin D1 and cellular signaling such as through the ERK pathway, while inhibiting epithelial-mesenchymal transition and MMP9. Finally, knockdown of WISP1 markedly suppressed in vivo tumor growth and sensitized glioblastoma cells to temozolomide. This study identified WISP1 as an oncogene in glioblastoma and suggests that WISP1 may serve as a potential molecular marker and treatment target for glioblastoma.
Collapse
Affiliation(s)
- Di Jing
- Department of Oncology Radiotherapy, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Qian Zhang
- Teaching and Research Section of Surgery, Xiangnan University Affiliated Hospital, Chenzhou, Hunan 423000, P.R. China
| | - Haiming Yu
- Department of Critical Care Medicine, Hunan Provincial Peopel's Hospital, Changsha, Hunan 410005, P.R. China
| | - Yajie Zhao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liangfang Shen
- Department of Oncology Radiotherapy, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
47
|
Tumour exosomes from cells harbouring PTPRZ1-MET fusion contribute to a malignant phenotype and temozolomide chemoresistance in glioblastoma. Oncogene 2017; 36:5369-5381. [PMID: 28504721 PMCID: PMC5611480 DOI: 10.1038/onc.2017.134] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 02/12/2017] [Accepted: 03/23/2017] [Indexed: 12/12/2022]
Abstract
Exosomes are carriers of pro-tumorigenic factors that participate in glioblastoma (GBM) progression, and many fusion genes are strong driver mutations in neoplasia and are involved in tumorigenesis. However, the ability of fusion genes to be transduced by exosomes is unknown. We characterized exosomes from GBM cells harbouring and not harbouring PTPRZ1–MET fusion (ZM fusion). We also determined the effect of the exosomes from ZM fusion cells (ZM exosomes) on pro-oncogenic secretions and showed that ZM exosomes are internalized by the recipient cells. In addition, we studied the effect of ZM exosome-mediated intercellular communication in the GBM microenvironment. MET proto-oncogene expression was higher in ZM exosomes. Moreover, phosphorylated MET was detected only in ZM exosomes and not in exosomes released by non-ZM fusion GBM cells. ZM exosomes transferred to non-ZM fusion GBM cells and normal human astrocytes altered gene expression and induced epithelial–mesenchymal transition. The uptake of ZM exosomes also induced an exosome-dependent phenotype defined by GBM cell migration and invasion, neurosphere growth and angiogenesis. In addition, ZM exosomes conferred temozolomide resistance to the GBM cells, and exosome-derived ZM fusion network proteins targeted multiple pro-oncogenic effectors in recipient cells within the GBM microenvironment. Our findings show that exosomes mediate the aggressive character of GBM and demonstrate the role of ZM fusion in the exacerbation of this effect. These findings have possible implications for the foundation of gene fusion-based therapy for managing GBM.
Collapse
|
48
|
Maus A, Peters GJ. Glutamate and α-ketoglutarate: key players in glioma metabolism. Amino Acids 2017; 49:21-32. [PMID: 27752843 PMCID: PMC5241329 DOI: 10.1007/s00726-016-2342-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM), or grade IV astrocytoma, is the most common type of primary brain tumor. It has a devastating prognosis with a 2-year-overall survival rate of only 26 % after standard treatment, which includes surgery, radiation, and adjuvant chemotherapy with temozolomide. Also lower grade gliomas are difficult to treat, because they diffusely spread into the brain, where extensive removal of tissue is critical. Better understanding of the cancer's biology is a key for the development of more effective therapy approaches. The discovery of isocitrate dehydrogenase (IDH) mutations in leukemia and glioma drew attention to specific metabolic aberrations in IDH-mutant gliomas. In the center of the metabolic alterations is α-ketoglutarate (αKG), an intermediate metabolite in the tricarboxylic acid (TCA) cycle, and the associated amino acid glutamate (Glu). This article highlights the role of these metabolites in glioma energy and lipid production and indicates possible weak spots of IDH-mutant and IDH-wt gliomas.
Collapse
Affiliation(s)
- Andreas Maus
- Department of Medical Oncology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- University of Gottingen, Gottingen, Germany
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Mercatelli N, Galardi S, Ciafrè SA. MicroRNAs as Multifaceted Players in Glioblastoma Multiforme. MIRNAS IN DIFFERENTIATION AND DEVELOPMENT 2017; 333:269-323. [DOI: 10.1016/bs.ircmb.2017.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
|