1
|
Hu A, Zhang K, Sun W, Li X, Zhou L, Li X, Chen F, Liu T. Combined impact of neutrophil-to-high-density lipoprotein cholesterol ratio (NHR) and cognitive function on all-cause mortality in older adults: a population-based study. Lipids Health Dis 2025; 24:83. [PMID: 40050983 PMCID: PMC11884028 DOI: 10.1186/s12944-025-02501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/21/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND The neutrophil-to-high-density lipoprotein cholesterol ratio (NHR) has emerged as a potential biomarker for chronic disease outcomes. Cognitive impairment is a major contributor to mortality in older adults. However, the combined effect of NHR and cognitive function on all-cause mortality remains unclear. This study aims to investigate the joint impact of NHR and cognitive impairment on all-cause mortality in this population. METHODS We analyzed participants in the National Health and Nutrition Examination Survey (NHANES) between 2011 and 2014. Participants were grouped according to NHR levels, DSST scores, and the combined NHR and DSST. Weighted Cox regression models assessed the association between NHR, cognitive impairment, and all-cause mortality. Weighted Kaplan-Meier curves estimated survival probabilities. RESULTS The study involved 1,486 participants (weighted sample was 54,078,084) aged 60 years and older, of whom 81.76% (n = 1,180) survived and 18.24% (n = 306) died by the end of follow-up. The median follow-up time was 78 months (IQR: 68-94). Weighted multivariable Cox regression revealed that high NHR (HR = 1.82, 95% CI: 1.21-2.74; P = 0.004), cognitive impairment (HR = 1.87, 95% CI: 1.25-2.79; P = 0.002), and the combination of high NHR and cognitive impairment (HR = 2.98, 95% CI: 1.45-6.14; P = 0.003) were independently associated with higher all-cause mortality, after full adjustment in model 3. Kaplan-Meier curves revealed significant survival differences, with the highest survival rate in the NHR Low & Normal cognition and the lowest in the NHR High & Cognitive impairment (P < 0.001). CONCLUSIONS High NHR and cognitive impairment in aged 60 years and older have an increased risk of all-cause mortality. These findings underscore the importance of integrating both NHR and cognitive assessments in mortality risk evaluations, offering a potential strategy for early intervention in aging populations.
Collapse
Affiliation(s)
- Anquan Hu
- Geriatric Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China
| | - Kun Zhang
- Geriatric Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China
| | - Wei Sun
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China
| | - Xian Li
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China
| | - Lianwan Zhou
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China
| | - Xi Li
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China.
| | - Tao Liu
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China.
| |
Collapse
|
2
|
Le Grand Q, Tsuchida A, Koch A, Imtiaz MA, Aziz NA, Vigneron C, Zago L, Lathrop M, Dubrac A, Couffinhal T, Crivello F, Matthews PM, Mishra A, Breteler MMB, Tzourio C, Debette S. Diffusion imaging genomics provides novel insight into early mechanisms of cerebral small vessel disease. Mol Psychiatry 2024; 29:3567-3579. [PMID: 38811690 PMCID: PMC11541005 DOI: 10.1038/s41380-024-02604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Cerebral small vessel disease (cSVD) is a leading cause of stroke and dementia. Genetic risk loci for white matter hyperintensities (WMH), the most common MRI-marker of cSVD in older age, were recently shown to be significantly associated with white matter (WM) microstructure on diffusion tensor imaging (signal-based) in young adults. To provide new insights into these early changes in WM microstructure and their relation with cSVD, we sought to explore the genetic underpinnings of cutting-edge tissue-based diffusion imaging markers across the adult lifespan. We conducted a genome-wide association study of neurite orientation dispersion and density imaging (NODDI) markers in young adults (i-Share study: N = 1 758, (mean[range]) 22.1[18-35] years), with follow-up in young middle-aged (Rhineland Study: N = 714, 35.2[30-40] years) and late middle-aged to older individuals (UK Biobank: N = 33 224, 64.3[45-82] years). We identified 21 loci associated with NODDI markers across brain regions in young adults. The most robust association, replicated in both follow-up cohorts, was with Neurite Density Index (NDI) at chr5q14.3, a known WMH locus in VCAN. Two additional loci were replicated in UK Biobank, at chr17q21.2 with NDI, and chr19q13.12 with Orientation Dispersion Index (ODI). Transcriptome-wide association studies showed associations of STAT3 expression in arterial and adipose tissue (chr17q21.2) with NDI, and of several genes at chr19q13.12 with ODI. Genetic susceptibility to larger WMH volume, but not to vascular risk factors, was significantly associated with decreased NDI in young adults, especially in regions known to harbor WMH in older age. Individually, seven of 25 known WMH risk loci were associated with NDI in young adults. In conclusion, we identified multiple novel genetic risk loci associated with NODDI markers, particularly NDI, in early adulthood. These point to possible early-life mechanisms underlying cSVD and to processes involving remyelination, neurodevelopment and neurodegeneration, with a potential for novel approaches to prevention.
Collapse
Affiliation(s)
- Quentin Le Grand
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ami Tsuchida
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Alexandra Koch
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Mohammed-Aslam Imtiaz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Chloé Vigneron
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
| | - Laure Zago
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Mark Lathrop
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, H3A 0G1, Canada
| | - Alexandre Dubrac
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
- Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Thierry Couffinhal
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, F-33600, Pessac, France
| | - Fabrice Crivello
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Paul M Matthews
- UK Dementia Research Institute and Department of Brain Sciences, Imperial College, London, UK
| | - Aniket Mishra
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Christophe Tzourio
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- Bordeaux University Hospital, Department of Medical Informatics, F-33000, Bordeaux, France
| | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France.
- Bordeaux University Hospital, Department of Neurology, Institute for Neurodegenerative Diseases, F-33000, Bordeaux, France.
| |
Collapse
|
3
|
Chen MH, Deng ES, Yamada JM, Choudhury S, Scotellaro J, Kelley L, Isselbacher E, Lindsay ME, Walsh CA, Doan RN. Contributions of Germline and Somatic Mosaic Genetics to Thoracic Aortic Aneurysms in Nonsyndromic Individuals. J Am Heart Assoc 2024; 13:e033232. [PMID: 38958128 PMCID: PMC11292778 DOI: 10.1161/jaha.123.033232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is associated with significant morbidity and mortality. Although individuals with family histories of TAA often undergo clinical molecular genetic testing, adults with nonsyndromic TAA are not typically evaluated for genetic causes. We sought to understand the genetic contribution of both germline and somatic mosaic variants in a cohort of adult individuals with nonsyndromic TAA at a single center. METHODS AND RESULTS One hundred eighty-one consecutive patients <60 years who presented with nonsyndromic TAA at the Massachusetts General Hospital underwent deep (>500×) targeted sequencing across 114 candidate genes associated with TAA and its related functional pathways. Samples from 354 age- and sex-matched individuals without TAA were also sequenced, with a 2:1 matching. We found significant enrichments for germline (odds ratio [OR], 2.44, P=4.6×10-6 [95% CI, 1.67-3.58]) and also somatic mosaic variants (OR, 4.71, P=0.026 [95% CI, 1.20-18.43]) between individuals with and without TAA. Likely genetic causes were present in 24% with nonsyndromic TAA, of which 21% arose from germline variants and 3% from somatic mosaic alleles. The 3 most frequently mutated genes in our cohort were FLNA (encoding Filamin A), NOTCH3 (encoding Notch receptor 3), and FBN1 (encoding Fibrillin-1). There was increased frequency of both missense and loss of function variants in TAA individuals. CONCLUSIONS Likely contributory dominant acting genetic variants were found in almost one quarter of nonsyndromic adults with TAA. Our findings suggest a more extensive genetic architecture to TAA than expected and that genetic testing may improve the care and clinical management of adults with nonsyndromic TAA.
Collapse
Affiliation(s)
- Ming Hui Chen
- Department of CardiologyBoston Children’s HospitalBostonMAUSA
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
| | - Ellen S. Deng
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
| | - Jessica M. Yamada
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
| | - Sangita Choudhury
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
| | - Julia Scotellaro
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
| | - Lily Kelley
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
| | - Eric Isselbacher
- Division of Cardiology, Massachusetts General Hospital Department of MedicineHarvard Medical SchoolBostonMAUSA
| | - Mark E. Lindsay
- Division of Cardiology, Massachusetts General Hospital Department of MedicineHarvard Medical SchoolBostonMAUSA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
- Department of NeurologyHarvard Medical SchoolBostonMAUSA
- Department of PediatricsHoward Hughes Medical Institute, Boston Children’s HospitalBostonMAUSA
| | - Ryan N. Doan
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
4
|
Debette S, Caro I, Western D, Namba S, Sun N, Kawaguchi S, He Y, Fujita M, Roshchupkin G, D'Aoust T, Duperron MG, Sargurupremraj M, Tsuchida A, Koido M, Ahmadi M, Yang C, Timsina J, Ibanez L, Matsuda K, Suzuki Y, Oda Y, Kanai A, Jandaghi P, Munter HM, Auld D, Astafeva I, Puerta R, Rotter J, Psaty B, Bis J, Longstreth W, Couffinhal T, Garcia-Gonzalez P, Pytel V, Marquié M, Cano A, Boada M, Joliot M, Lathrop M, Le Grand Q, Launer L, Wardlaw J, Heiman M, Ruiz A, Matthews P, Seshadri S, Fornage M, Adams H, Mishra A, Trégouët DA, Okada Y, Kellis M, De Jager P, Tzourio C, Kamatani Y, Matsuda F, Cruchaga C. Proteogenomics in cerebrospinal fluid and plasma reveals new biological fingerprint of cerebral small vessel disease. RESEARCH SQUARE 2024:rs.3.rs-4535534. [PMID: 39011113 PMCID: PMC11247936 DOI: 10.21203/rs.3.rs-4535534/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Cerebral small vessel disease (cSVD) is a leading cause of stroke and dementia with no specific mechanism-based treatment. We used Mendelian randomization to combine a unique cerebrospinal fluid (CSF) and plasma pQTL resource with the latest European-ancestry GWAS of MRI-markers of cSVD (white matter hyperintensities, perivascular spaces). We describe a new biological fingerprint of 49 protein-cSVD associations, predominantly in the CSF. We implemented a multipronged follow-up, across fluids, platforms, and ancestries (Europeans and East-Asian), including testing associations of direct plasma protein measurements with MRI-cSVD. We highlight 16 proteins robustly associated in both CSF and plasma, with 24/4 proteins identified in CSF/plasma only. cSVD-proteins were enriched in extracellular matrix and immune response pathways, and in genes enriched in microglia and specific microglial states (integration with single-nucleus RNA sequencing). Immune-related proteins were associated with MRI-cSVD already at age twenty. Half of cSVD-proteins were associated with stroke, dementia, or both, and seven cSVD-proteins are targets for known drugs (used for other indications in directions compatible with beneficial therapeutic effects. This first cSVD proteogenomic signature opens new avenues for biomarker and therapeutic developments.
Collapse
Affiliation(s)
| | | | - Daniel Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Na Sun
- MIT Computer Science and Artificial Intelligence Laboratory; Broad Institute of MIT and Harvard
| | | | - Yunye He
- Graduate School of Frontier Sciences, The University of Tokyo
| | | | | | - Tim D'Aoust
- Bordeaux Population Health, Inserm U1219, University of Bordeaux
| | | | - Murali Sargurupremraj
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, F-33000 Bordeaux, France; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases Unive
| | | | - Masaru Koido
- Graduate School of Frontier Sciences, The University of Tokyo
| | | | | | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo
| | | | - Yoshiya Oda
- Graduate School of Medicine, The University of Tokyo
| | | | | | | | - Dan Auld
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University
| | - Iana Astafeva
- Bordeaux Population Health, Inserm U1219, University of Bordeaux; Institute of Neurodegenerative Diseases
| | | | - Jerome Rotter
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | | | | | | | - Thierry Couffinhal
- University of Bordeaux, The clinical unit of Exploration, Prevention and Care Center for Atherosclerosis (CEPTA), CHUB, Inserm U1034
| | | | - Vanesa Pytel
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III
| | | | | | | | | | - Mark Lathrop
- Department of Human Genetics, McGill University, 1205 Dr Penfield Avenue, Montreal, QC, H3A 1B1, Canada
| | - Quentin Le Grand
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219
| | - Lenore Launer
- National Institute on Aging, National Institutes of Health
| | | | | | - Agustin Ruiz
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center; Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya;CIBERN
| | - Paul Matthews
- UK Dementia Research Institute Centre at Imperial College London
| | | | - Myriam Fornage
- 1. Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center 2. Human Genetics Center, Department of Epidemiology, School of Public Health
| | - Hieab Adams
- Department of Human Genetics, Radboud University Medical Center; Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez
| | | | | | - Yukinori Okada
- Department of Genome Informatics, Graduate School of Medicine, The Univ. of Tokyo; Department of Statistical Genetics, Osaka Univ. Graduate School of Medicine; Laboratory for Systems Genetic, RIKEN
| | | | | | | | | | | | | |
Collapse
|
5
|
Huang C, Zhang Y, Liu Y, Zhang M, Li Z, Li M, Ren M, Yin J, Zhou Y, Zhou X, Zhu X, Sun Z. A Bidirectional Mendelian Randomization Study of Gut Microbiota and Cerebral Small Vessel Disease. J Nutr 2024; 154:1994-2005. [PMID: 38642744 DOI: 10.1016/j.tjnut.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND The causal nature of gut microbiota and cerebral small vessel disease (CSVD) is still obscure regardless of evidence supporting their observational correlations. OBJECTIVES The primary objective of this research is to investigate the potentially pathogenic or protective causal impacts of specific gut microbiota on various neuroimaging subtypes of CSVD. METHODS We obtained the latest summary-level genome-wide databases for gut microbiota and 9 CSVD traits. The univariable and multivariable Mendelian randomization (MR) studies were conducted to examine the possible causal link between exposure and outcome. Meanwhile, we conducted sensitivity analyses sequentially, containing the heterogeneity, pleiotropy, and leave-one-out analysis. Additionally, to clarify the potential bidirectional causality, the causality from CSVD traits to the identified gut microbiota was implemented through reverse MR analysis. RESULTS The univariable MR analysis identified 22 genetically predicted bacterial abundances that were correlated with CSVD traits. Although conditioning on macronutrient dietary compositions, 2 suggestive relationships were retained using the multivariable MR analysis. Specifically, the class Negativicutes and order Selenomonadales exhibited a negative causal association with strictly lobar cerebral microbleeds, one neuroimaging trait of CSVD. There is insufficient evidence indicating the presence of heterogeneity and horizontal pleiotropy. Furthermore, the identified causal relationship was not driven by any single nucleotide polymorphism. The results of the reverse MR analysis did not reveal any statistically significant causality from CSVD traits to the identified gut microbiota. CONCLUSIONS Our study indicated several suggestive causal effects from gut microbiota to different neuroimaging subtypes of CSVD. These findings provided a latent understanding of the pathogenesis of CSVD from the perspective of the gut-brain axis.
Collapse
Affiliation(s)
- Chaojuan Huang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuyang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Man Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhiwei Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingxu Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengmeng Ren
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiabin Yin
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yajun Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoqun Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Dupré N, Drieu A, Joutel A. Pathophysiology of cerebral small vessel disease: a journey through recent discoveries. J Clin Invest 2024; 134:e172841. [PMID: 38747292 PMCID: PMC11093606 DOI: 10.1172/jci172841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Cerebral small vessel disease (cSVD) encompasses a heterogeneous group of age-related small vessel pathologies that affect multiple regions. Disease manifestations range from lesions incidentally detected on neuroimaging (white matter hyperintensities, small deep infarcts, microbleeds, or enlarged perivascular spaces) to severe disability and cognitive impairment. cSVD accounts for approximately 25% of ischemic strokes and the vast majority of spontaneous intracerebral hemorrhage and is also the most important vascular contributor to dementia. Despite its high prevalence and potentially long therapeutic window, there are still no mechanism-based treatments. Here, we provide an overview of the recent advances in this field. We summarize recent data highlighting the remarkable continuum between monogenic and multifactorial cSVDs involving NOTCH3, HTRA1, and COL4A1/A2 genes. Taking a vessel-centric view, we discuss possible cause-and-effect relationships between risk factors, structural and functional vessel changes, and disease manifestations, underscoring some major knowledge gaps. Although endothelial dysfunction is rightly considered a central feature of cSVD, the contributions of smooth muscle cells, pericytes, and other perivascular cells warrant continued investigation.
Collapse
Affiliation(s)
- Nicolas Dupré
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Antoine Drieu
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Anne Joutel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| |
Collapse
|
7
|
Wang P, Yao M, Yuan J, Han F, Zhai F, Zhang D, Zhou L, Ni J, Zhang S, Cui L, Zhu Y. Association of Rare NOTCH3 Variants With Prevalent and Incident Stroke and Dementia in the General Population. J Am Heart Assoc 2024; 13:e032668. [PMID: 38348813 PMCID: PMC11010104 DOI: 10.1161/jaha.123.032668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/05/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND It is uncertain whether rare NOTCH3 variants are associated with stroke and dementia in the general population and whether they lead to alterations in cognitive function. This study aims to determine the associations of rare NOTCH3 variants with prevalent and incident stroke and dementia, as well as cognitive function changes. METHODS AND RESULTS In the prospective community-based Shunyi Study, a total of 1007 participants were included in the baseline analysis. For the follow-up analysis, 1007 participants were included in the stroke analysis, and 870 participants in the dementia analysis. All participants underwent baseline brain magnetic resonance imaging, carotid ultrasound, and whole exome sequencing. Rare NOTCH3 variants were defined as variants with minor allele frequency <1%. A total of 137 rare NOTCH3 carriers were enrolled in the baseline study. At baseline, rare NOTCH3 variant carriers had higher rates of stroke (8.8% versus 5.6%) and dementia (2.9% versus 0.8%) compared with noncarriers. After adjustment for associated risk factors, the epidermal growth factor-like repeats (EGFr)-involving rare NOTCH3 variants were associated with a higher risk of prevalent stroke (odds ratio [OR], 2.697 [95% CI, 1.266-5.745]; P=0.040) and dementia (OR, 8.498 [95% CI, 1.727-41.812]; P=0.032). After 5 years of follow-up, we did not find that the rare NOTCH3 variants increased the risk of incident stroke and dementia. There was no statistical difference in the change in longitudinal cognitive scale scores. CONCLUSIONS Rare NOTCH3 EGFr-involving variants are genetic risk factors for stroke and dementia in the general Chinese population.
Collapse
Affiliation(s)
- Pei Wang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ming Yao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jing Yuan
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fei Han
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fei‐Fei Zhai
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ding‐Ding Zhang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Li‐Xin Zhou
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jun Ni
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shu‐Yang Zhang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Li‐Ying Cui
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yi‐Cheng Zhu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
8
|
Liu ZY, Zhai FF, Liu JY, Zhou YJ, Shu MJ, Huang XH, Han F, Li ML, Zhou LX, Ni J, Yao M, Zhang SY, Cui LY, Jin ZY, Zhu YC. Pattern of Brain Parenchymal Damage Related to Cerebral Small Vessel Disease in Carriers of Rare NOTCH3 Variants. Neurology 2023; 101:e1979-e1991. [PMID: 37775315 PMCID: PMC10662991 DOI: 10.1212/wnl.0000000000207882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/10/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Previous studies reported that carriers of rare NOTCH3 variants comprised more than 10% of the general population and are susceptible to a heavy overall burden of cerebral small vessel disease while the injury patterns remain uncovered. This study aimed to investigate the imaging features in relation to rare NOTCH3 variants and the interaction between cortical atrophy and white matter lesions from a longitudinal view, with respect to spatial and dynamic patterns. METHODS As part of a community-based cohort, we included participants with complete whole-exome sequencing and brain MRI in the baseline analysis. All participants were invited for a 5-year follow-up MRI, and those who did not complete the follow-up were excluded from the longitudinal analysis. NOTCH3 variants with minor allele frequency <1% in all 4 public population databases were defined as rare variants. We used general linear models to compare the volume of white matter hyperintensity (WMH) volume and brain parenchymal fraction between rare NOTCH3 variant carriers and noncarriers. In addition, we compared the WMH probability map and vertex-wise cortex maps at a voxel/vertex-wise level. RESULTS A total of 1,054 participants were included in baseline analysis (13.56% carried rare NOTCH3 variants), among whom 661 had a follow-up brain MRI (13.76% carried rare NOTCH3 variants). Rare NOTCH3 variant carriers had a heavier white matter hyperintensity burden (1.65 vs 0.85 mL, p = 0.025) and had more extensive WMH distributed in the periventricular areas. We also found that rare NOTCH3 variant carriers were susceptible to worse cortical atrophy (β = -0.004, SE = 0.002, p = 0.057, adjusted for age and sex). Cortical atrophy of multiple regions in the frontal and parietal lobes was related to white matter hyperintensity progression. DISCUSSION Individuals with rare NOTCH3 variants have a distinct pattern of brain parenchymal damage related to CSVD. Our findings uncover the important genetic predisposition in age-related cerebral small vessel disease in the general population.
Collapse
Affiliation(s)
- Zi-Yue Liu
- From the Department of Neurology (Z.-Y.L., F.-F.Z., M.-J.S., X.-H.H., F.H., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.); Department of Radiology (J.-Y.L., Y.-J.Z., M.-L.L., Z.-Y.J.); and Department of Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei-Fei Zhai
- From the Department of Neurology (Z.-Y.L., F.-F.Z., M.-J.S., X.-H.H., F.H., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.); Department of Radiology (J.-Y.L., Y.-J.Z., M.-L.L., Z.-Y.J.); and Department of Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Yi Liu
- From the Department of Neurology (Z.-Y.L., F.-F.Z., M.-J.S., X.-H.H., F.H., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.); Department of Radiology (J.-Y.L., Y.-J.Z., M.-L.L., Z.-Y.J.); and Department of Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Jun Zhou
- From the Department of Neurology (Z.-Y.L., F.-F.Z., M.-J.S., X.-H.H., F.H., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.); Department of Radiology (J.-Y.L., Y.-J.Z., M.-L.L., Z.-Y.J.); and Department of Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei-Jun Shu
- From the Department of Neurology (Z.-Y.L., F.-F.Z., M.-J.S., X.-H.H., F.H., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.); Department of Radiology (J.-Y.L., Y.-J.Z., M.-L.L., Z.-Y.J.); and Department of Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Hong Huang
- From the Department of Neurology (Z.-Y.L., F.-F.Z., M.-J.S., X.-H.H., F.H., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.); Department of Radiology (J.-Y.L., Y.-J.Z., M.-L.L., Z.-Y.J.); and Department of Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Han
- From the Department of Neurology (Z.-Y.L., F.-F.Z., M.-J.S., X.-H.H., F.H., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.); Department of Radiology (J.-Y.L., Y.-J.Z., M.-L.L., Z.-Y.J.); and Department of Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Li Li
- From the Department of Neurology (Z.-Y.L., F.-F.Z., M.-J.S., X.-H.H., F.H., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.); Department of Radiology (J.-Y.L., Y.-J.Z., M.-L.L., Z.-Y.J.); and Department of Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Xin Zhou
- From the Department of Neurology (Z.-Y.L., F.-F.Z., M.-J.S., X.-H.H., F.H., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.); Department of Radiology (J.-Y.L., Y.-J.Z., M.-L.L., Z.-Y.J.); and Department of Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Ni
- From the Department of Neurology (Z.-Y.L., F.-F.Z., M.-J.S., X.-H.H., F.H., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.); Department of Radiology (J.-Y.L., Y.-J.Z., M.-L.L., Z.-Y.J.); and Department of Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Yao
- From the Department of Neurology (Z.-Y.L., F.-F.Z., M.-J.S., X.-H.H., F.H., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.); Department of Radiology (J.-Y.L., Y.-J.Z., M.-L.L., Z.-Y.J.); and Department of Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Yang Zhang
- From the Department of Neurology (Z.-Y.L., F.-F.Z., M.-J.S., X.-H.H., F.H., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.); Department of Radiology (J.-Y.L., Y.-J.Z., M.-L.L., Z.-Y.J.); and Department of Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Ying Cui
- From the Department of Neurology (Z.-Y.L., F.-F.Z., M.-J.S., X.-H.H., F.H., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.); Department of Radiology (J.-Y.L., Y.-J.Z., M.-L.L., Z.-Y.J.); and Department of Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng-Yu Jin
- From the Department of Neurology (Z.-Y.L., F.-F.Z., M.-J.S., X.-H.H., F.H., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.); Department of Radiology (J.-Y.L., Y.-J.Z., M.-L.L., Z.-Y.J.); and Department of Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Cheng Zhu
- From the Department of Neurology (Z.-Y.L., F.-F.Z., M.-J.S., X.-H.H., F.H., L.-X.Z., J.N., M.Y., L.-Y.C., Y.-C.Z.); Department of Radiology (J.-Y.L., Y.-J.Z., M.-L.L., Z.-Y.J.); and Department of Cardiology (S.-Y.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Mohapatra L, Mishra D, Shiomurti Tripathi A, Kumar Parida S. Immunosenescence as a convergence pathway in neurodegeneration. Int Immunopharmacol 2023; 121:110521. [PMID: 37385122 DOI: 10.1016/j.intimp.2023.110521] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Immunity refers to the body's defense mechanism to protect itself against illness or to produce antibodies against pathogens. Senescence is a cellular phenomenon that integrates a sustainable growth restriction, other phenotypic abnormalities and including a pro-inflammatory secretome. It is highly involved in regulating developmental stages, tissue homeostasis, and tumor proliferation monitoring. Contemporary experimental reports imply that abolition of senescent cells employing evolved genetic and therapeutic approaches augment the chances of survival and boosts the health span of an individual. Immunosenescence is considered as a process in which dysfunction of the immune system occurs with aging and greatly includes remodeling of lymphoid organs. This in turn causes fluctuations in the immune function of the elderly that has strict relation with the expansion of autoimmune diseases, infections, malignant tumors and neurodegenerative disorders. The interaction of the nervous and immune systems during aging is marked by bi-directional influence and mutual correlation of variations. The enhanced systemic inflammatory condition in the elderly, and the neuronal immune cell activity can be modulated by inflamm-aging and peripheral immunosenescence resulting in chronic low-grade inflammatory processes in the central Nervous system known as neuro-inflammaging. For example, glia excitation by cytokines and glia pro-inflammatory productions contribute significantly to memory injury as well as in acute systemic inflammation, which is associated with high levels of Tumor necrosis factor -α and a rise in cognitive decline. In recent years its role in the pathology of Alzheimer's disease has caught research interest to a large extent. This article reviews the connection concerning the immune and nervous systems and highlights how immunosenescence and inflamm-aging can affect neurodegenerative disorders.
Collapse
Affiliation(s)
- Lucy Mohapatra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Sector-125, Noida, 201313, India.
| | - Deepak Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Sector-125, Noida, 201313, India
| | | | | |
Collapse
|
10
|
Haffner C. The emerging role of the HTRA1 protease in brain microvascular disease. FRONTIERS IN DEMENTIA 2023; 2:1146055. [PMID: 39081996 PMCID: PMC11285548 DOI: 10.3389/frdem.2023.1146055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 08/02/2024]
Abstract
Pathologies of the brain microvasculature, often referred to as cerebral small-vessel disease, are important contributors to vascular dementia, the second most common form of dementia in aging societies. In addition to their role in acute ischemic and hemorrhagic stroke, they have emerged as major cause of age-related cognitive decline in asymptomatic individuals. A central histological finding in these pathologies is the disruption of the vessel architecture including thickening of the vessel wall, narrowing of the vessel lumen and massive expansion of the mural extracellular matrix. The underlying molecular mechanisms are largely unknown, but from the investigation of several disease forms with defined etiology, high temperature requirement protein A1 (HTRA1), a secreted serine protease degrading primarily matrisomal substrates, has emerged as critical factor and potential therapeutic target. A genetically induced loss of HTRA1 function in humans is associated with cerebral autosomal-recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), a rare, hereditary form of brain microvascular disease. Recently, proteomic studies on cerebral amyloid angiopathy (CAA), a common cause of age-related dementia, and cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most prevalent monogenic small-vessel disease, have provided evidence for an impairment of HTRA1 activity through sequestration into pathological protein deposits, suggesting an alternative mechanism of HTRA1 inactivation and expanding the range of diseases with HTRA1 involvement. Further investigations of the mechanisms of HTRA1 regulation in the brain microvasculature might spawn novel strategies for the treatment of small-vessel pathologies.
Collapse
Affiliation(s)
- Christof Haffner
- Department of Psychiatry and Psychotherapy, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
11
|
Yang Y, Knol MJ, Wang R, Mishra A, Liu D, Luciano M, Teumer A, Armstrong N, Bis JC, Jhun MA, Li S, Adams HHH, Aziz NA, Bastin ME, Bourgey M, Brody JA, Frenzel S, Gottesman RF, Hosten N, Hou L, Kardia SLR, Lohner V, Marquis P, Maniega SM, Satizabal CL, Sorond FA, Valdés Hernández MC, van Duijn CM, Vernooij MW, Wittfeld K, Yang Q, Zhao W, Boerwinkle E, Levy D, Deary IJ, Jiang J, Mather KA, Mosley TH, Psaty BM, Sachdev PS, Smith JA, Sotoodehnia N, DeCarli CS, Breteler MMB, Ikram MA, Grabe HJ, Wardlaw J, Longstreth WT, Launer LJ, Seshadri S, Debette S, Fornage M. Epigenetic and integrative cross-omics analyses of cerebral white matter hyperintensities on MRI. Brain 2023; 146:492-506. [PMID: 35943854 PMCID: PMC9924914 DOI: 10.1093/brain/awac290] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral white matter hyperintensities on MRI are markers of cerebral small vessel disease, a major risk factor for dementia and stroke. Despite the successful identification of multiple genetic variants associated with this highly heritable condition, its genetic architecture remains incompletely understood. More specifically, the role of DNA methylation has received little attention. We investigated the association between white matter hyperintensity burden and DNA methylation in blood at ∼450 000 cytosine-phosphate-guanine (CpG) sites in 9732 middle-aged to older adults from 14 community-based studies. Single CpG and region-based association analyses were carried out. Functional annotation and integrative cross-omics analyses were performed to identify novel genes underlying the relationship between DNA methylation and white matter hyperintensities. We identified 12 single CpG and 46 region-based DNA methylation associations with white matter hyperintensity burden. Our top discovery single CpG, cg24202936 (P = 7.6 × 10-8), was associated with F2 expression in blood (P = 6.4 × 10-5) and co-localized with FOLH1 expression in brain (posterior probability = 0.75). Our top differentially methylated regions were in PRMT1 and in CCDC144NL-AS1, which were also represented in single CpG associations (cg17417856 and cg06809326, respectively). Through Mendelian randomization analyses cg06809326 was putatively associated with white matter hyperintensity burden (P = 0.03) and expression of CCDC144NL-AS1 possibly mediated this association. Differentially methylated region analysis, joint epigenetic association analysis and multi-omics co-localization analysis consistently identified a role of DNA methylation near SH3PXD2A, a locus previously identified in genome-wide association studies of white matter hyperintensities. Gene set enrichment analyses revealed functions of the identified DNA methylation loci in the blood-brain barrier and in the immune response. Integrative cross-omics analysis identified 19 key regulatory genes in two networks related to extracellular matrix organization, and lipid and lipoprotein metabolism. A drug-repositioning analysis indicated antihyperlipidaemic agents, more specifically peroxisome proliferator-activated receptor-alpha, as possible target drugs for white matter hyperintensities. Our epigenome-wide association study and integrative cross-omics analyses implicate novel genes influencing white matter hyperintensity burden, which converged on pathways related to the immune response and to a compromised blood-brain barrier possibly due to disrupted cell-cell and cell-extracellular matrix interactions. The results also suggest that antihyperlipidaemic therapy may contribute to lowering risk for white matter hyperintensities possibly through protection against blood-brain barrier disruption.
Collapse
Affiliation(s)
- Yunju Yang
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science at Houston, Houston, TX 77030, USA
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Ruiqi Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Aniket Mishra
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, F-33000 Bordeaux, France
| | - Dan Liu
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald 17475, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald 17475, Germany
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, 15-269, Poland
| | - Nicola Armstrong
- Mathematics and Statistics, Curtin University, 6845 Perth, Australia
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 02115, USA
| | - Min A Jhun
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48104, USA
| | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Hieab H H Adams
- Department of Epidemiology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Nasir Ahmad Aziz
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, 53127 Bonn, Germany
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Mathieu Bourgey
- Canadian Centre for Computational Genomics, McGill University, Montréal, Quebec, Canada H3A 0G1
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, Quebec, Canada H3A 0G1
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 02115, USA
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald 17475, Germany
| | - Rebecca F Gottesman
- Stroke Branch, National Institutes of Neurological Disorders and Stroke, Bethesda, MD 20814, USA
| | - Norbert Hosten
- Department of Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48104, USA
| | - Valerie Lohner
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Pascale Marquis
- Canadian Centre for Computational Genomics, McGill University, Montréal, Quebec, Canada H3A 0G1
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, Quebec, Canada H3A 0G1
| | - Susana Muñoz Maniega
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases and Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX 78229, USA
- The Framingham Heart Study, Framingham, MA 01701, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02115, USA
| | - Farzaneh A Sorond
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maria C Valdés Hernández
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, The Netherlands
- Nuffield Department of Population Health, Oxford University, Oxford, OX3 7LF, UK
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald 17475, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Rostock, Germany
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
- The Framingham Heart Study, Framingham, MA 01701, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48104, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science at Houston, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel Levy
- The Framingham Heart Study, Framingham, MA 01701, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ian J Deary
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
- Neuroscience Research Australia, Sydney, NSW 2031, Australia
| | - Thomas H Mosley
- The Memory Impairment Neurodegenerative Dementia (MIND) Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 02115, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98104, USA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, University of New South Wales, Randwick, NSW 2031, Australia
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48104, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 02115, USA
| | - Charles S DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA 95816, USA
| | - Monique M B Breteler
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, 53127 Bonn, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald 17475, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Rostock, Germany
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - W T Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA 98104, USA
- Department of Neurology, University of Washington, Seattle, WA 98104, USA
| | - Lenore J Launer
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases and Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX 78229, USA
- The Framingham Heart Study, Framingham, MA 01701, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02115, USA
| | - Stephanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, F-33000 Bordeaux, France
- Department of Neurology, Boston University School of Medicine, Boston, MA 02115, USA
- CHU de Bordeaux, Department of Neurology, F-33000 Bordeaux, France
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science at Houston, Houston, TX 77030, USA
| |
Collapse
|
12
|
Lebenberg J, Zhang R, Grosset L, Guichard JP, Fernandes F, Jouvent E, Chabriat H. Segmentation of incident lacunes during the course of ischemic cerebral small vessel diseases. Front Neurol 2023; 14:1113644. [PMID: 37034061 PMCID: PMC10076773 DOI: 10.3389/fneur.2023.1113644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Background Lacunes represent key imaging markers of cerebral small vessel diseases (cSVDs). During their progression, incident lacunes are related to stroke manifestations and contribute to progressive cognitive and/or motor decline. Assessing new lesions has become crucial but remains time-consuming and error-prone, even for an expert. We, thus, sought to develop and validate an automatic segmentation method of incident lacunes in CADASIL caused by cysteine mutation in the EGFr domains of the NOTCH3 gene, a severe and progressive monogenic form of cSVD. Methods Incident lacunes were identified based on difference maps of 3D T1-weighted MRIs obtained at the baseline and 2 years later. These maps were thresholded using clustering analysis and compared with results obtained by expert visual analysis, which is considered the gold standard approach. Results The median number of lacunes at the baseline in 30 randomly selected patients was 7 (IQR = [2, 11]). The median number of incident lacunes was 2 (IQR = [0, 3]) using the automatic method (mean time-processing: 25 s/patient) and 0.5 (IQR = [0, 2]) using the standard visual approach (mean time-processing: 8 min/patient). The complementary analysis of segmentation results is enabled to quickly remove false positives detected in specific locations and to identify true incident lesions not previously detected by the standard analysis (2 min/case). A combined approach based on automatic segmentation of incident lacunes followed by quick corrections of false positives allowed to reach high individual sensitivity (median at 0.66, IQR = [0.21, 1.00]) and global specificity scores (0.80). Conclusion The automatic segmentation of incident lacunes followed by quick corrections of false positives appears promising for properly and rapidly quantifying incident lacunes in large cohorts of cSVDs.
Collapse
Affiliation(s)
- Jessica Lebenberg
- APHP, Lariboisière Hospital, Translational Neurovascular Centre, FHU Neurovasc, Université Paris Cité, Paris, France
- U1141, Université Paris Cité, Inserm, Neurodiderot, Paris, France
| | - Ruiting Zhang
- U1141, Université Paris Cité, Inserm, Neurodiderot, Paris, France
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Lina Grosset
- U1141, Université Paris Cité, Inserm, Neurodiderot, Paris, France
- APHP, Lariboisière Hospital, Department of Neurology, FHU NeuroVasc, Université Paris Cité, Paris, France
- Faculté de Santé, Université Paris Cité, Paris, France
| | - Jean Pierre Guichard
- APHP, Lariboisière Hospital, Department of Neuroradiology, Université Paris Cité, Paris, France
| | - Fanny Fernandes
- APHP, Lariboisière Hospital, Translational Neurovascular Centre, FHU Neurovasc, Université Paris Cité, Paris, France
| | - Eric Jouvent
- U1141, Université Paris Cité, Inserm, Neurodiderot, Paris, France
- APHP, Lariboisière Hospital, Department of Neurology, FHU NeuroVasc, Université Paris Cité, Paris, France
- Faculté de Santé, Université Paris Cité, Paris, France
| | - Hugues Chabriat
- APHP, Lariboisière Hospital, Translational Neurovascular Centre, FHU Neurovasc, Université Paris Cité, Paris, France
- U1141, Université Paris Cité, Inserm, Neurodiderot, Paris, France
- Faculté de Santé, Université Paris Cité, Paris, France
- *Correspondence: Hugues Chabriat
| |
Collapse
|
13
|
Liu C, Li M, Yin Q, Fan Y, Shen C, Yang R. HTRA1 methylation in peripheral blood as a potential marker for the preclinical detection of stroke: a case-control study and a prospective nested case-control study. Clin Epigenetics 2022; 14:191. [PMID: 36581876 PMCID: PMC9801609 DOI: 10.1186/s13148-022-01418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Stroke is the leading cause of mortality in China. DNA methylation has essential roles in multiple diseases, but its association with stroke was barely studied. We hereby explored the association between blood-based HTRA serine protease 1 (HTRA1) methylation and the risk of stroke. RESULTS The association was discovered in a hospital-based case-control study (cases/controls = 190:190) and further validated in a prospective nested case-control study including 139 cases who developed stroke within 2 years after recruitment and 144 matched stroke-free controls. We observed stroke-related altered HTRA1 methylation and expression in both case-control study and prospective study. This blood-based HTRA1 methylation was associated with stroke independently from the known risk factors and mostly affected the older population. The prospective results further showed that the altered HTRA1 methylation was detectable 2 years before the clinical determination of stroke and became more robust with increased discriminatory power for stroke along with time when combined with other known stroke-related variables [onset time ≤ 1 year: area under the curve (AUC) = 0.76]. CONCLUSIONS In our study, altered HTRA1 methylation was associated with stroke at clinical and preclinical stages and thus may provide a potential biomarker in the blood for the risk evaluation and preclinical detection of stroke.
Collapse
Affiliation(s)
- Chunlan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China
| | - Mengxia Li
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China
| | - Qiming Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China
| | - Yao Fan
- Division of Clinical Epidemiology, Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Chong Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China.
| | - Rongxi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China.
| |
Collapse
|
14
|
Chang LH, Chi NF, Chen CY, Lin YS, Hsu SL, Tsai JY, Huang HC, Lin CJ, Chung CP, Tung CY, Jeng CJ, Lee YC, Liu YT, Lee IH. Monogenic Causes in Familial Stroke Across Intracerebral Hemorrhage and Ischemic Stroke Subtypes Identified by Whole-Exome Sequencing. Cell Mol Neurobiol 2022:10.1007/s10571-022-01315-3. [PMID: 36580209 DOI: 10.1007/s10571-022-01315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
Whole exome sequencing (WES) has been used to detect rare causative variants in neurological diseases. However, the efficacy of WES in genetic diagnosis of clinically heterogeneous familial stroke remains inconclusive. We prospectively searched for disease-causing variants in unrelated probands with defined familial stroke by candidate gene/hotspot screening and/or WES, depending on stroke subtypes and neuroimaging features at a referral center. The clinical significance of each variant was determined according to the American College of Medical Genetics guidelines. Among 161 probands (mean age at onset 53.2 ± 13.7 years; male 63.4%), 33 participants (20.5%) had been identified with 19 pathogenic/likely pathogenic variants (PVs; WES applied 152/161 = 94.4%). Across subtypes, the highest hit rate (HR) was intracerebral hemorrhage (ICH, 7/18 = 38.9%), particularly with the etiological subtype of structural vasculopathy (4/4 = 100%, PVs in ENG, KRIT1, PKD1, RNF213); followed by ischemic small vessel disease (SVD, 15/48 = 31.3%; PVs in NOTCH3, HTRA1, HBB). In contrast, large artery atherosclerosis (LAA, 4/44 = 9.1%) and cardioembolism (0/11 = 0%) had the lowest HR. NOTCH3 was the most common causative gene (16/161 = 9.9%), presenting with multiple subtypes of SVD (n = 13), ICH (n = 2), or LAA (n = 1). Importantly, we disclosed two previously unreported PVs, KRIT1 p.E379* in a familial cerebral cavernous malformation, and F2 p.F382L in a familial cerebral venous sinus thrombosis. The contribution of monogenic etiologies was particularly high in familial ICH and SVD subtypes in our Taiwanese cohort. Utilizing subtype-guided hotspot screening and/or subsequent WES, we unraveled monogenic causes in 20.5% familial stroke probands, including 1.2% novel PVs. Genetic diagnosis may enable early diagnosis, management and lifestyle modification. Among 161 familial stroke probands, 33 (20.5%) had been identified pathogenic or likely pathogenic monogenic variants related to stroke. The positive hit rate among all subtypes was high in intracerebral hemorrhage (ICH) and ischemic small vessel disease (SVD). Notably, two previously unreported variants, KRIT1 p.E379* in a familial cerebral cavernous malformation and F2 p.F382L in familial cerebral venous sinus thrombosis, were disclosed. CVT cerebral venous thrombosis; HTN Hypertensive subtype; LAA large artery atherosclerosis; SV structural vasculopathy; U Undetermined.
Collapse
Affiliation(s)
- Li-Hsin Chang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nai-Fang Chi
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yu Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Yung-Shuan Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Shao-Lun Hsu
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Jui-Yao Tsai
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Hui-Chi Huang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Chun-Jen Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Ping Chung
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Yi Tung
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Jiuan Jeng
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yo-Tsen Liu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - I-Hui Lee
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
15
|
Zhou H, Jiao B, Ouyang Z, Wu Q, Shen L, Fang L. Report of two pedigrees with heterozygous HTRA1 variants-related cerebral small vessel disease and literature review. Mol Genet Genomic Med 2022; 10:e2032. [PMID: 35946346 PMCID: PMC9544214 DOI: 10.1002/mgg3.2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/11/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biallelic HTRA1 pathogenic variants are associated with autosomal recessive cerebral arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Recent studies have indicated that heterozygous HTRA1 variants are related to autosomal dominant hereditary cerebral small vessel disease (CSVD). However, few studies have assessed heterozygous HTRA1 carriers or the genotype-phenotype correlation. METHODS The clinical data of two unrelated Chinese Han families with CSVD were collected. Panel sequencing was used to search for pathogenic genes, Sanger sequencing was used for verification, three-dimensional protein models were constructed, and pathogenicity was analyzed. Published HTRA1-related phenotypes included in PubMed up to September 2021 were extensively reviewed, and the patients' genetic and clinical characteristics were summarized. RESULTS We report a novel heterozygous variant c.920T>C p.L307P in the HTRA1, whose main clinical and neuroimaging phenotypes are stroke and gait disturbance. We report another patient with the previously reported pathogenic variant HTRA1 c.589C>T p.R197X characterized by early cognitive decline. A literature review indicated that compared with CARASIL, HTRA1-related autosomal dominant hereditary CSVD has a later onset age, milder clinical symptoms, fewer extraneurological symptoms, and slower progression, indicating a milder CARASIL phenotype. In addition, HTRA1 heterozygous variants were related to a higher proportion of vascular risk factors (p < .001) and male sex (p = .022). CONCLUSION These findings broaden the known mutational spectrum and possible clinical phenotype of HTRA1. Considering the semidominant characteristics of HTRA1-related phenotypes, we recommend that all members of HTRA1 variant families undergo genetic screening and clinical follow-up if carrying pathogenic variants.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Ziyu Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qihui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Liangjuan Fang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
16
|
Mishra A, Duplaà C, Vojinovic D, Suzuki H, Sargurupremraj M, Zilhão NR, Li S, Bartz TM, Jian X, Zhao W, Hofer E, Wittfeld K, Harris SE, van der Auwera-Palitschka S, Luciano M, Bis JC, Adams HHH, Satizabal CL, Gottesman RF, Gampawar PG, Bülow R, Weiss S, Yu M, Bastin ME, Lopez OL, Vernooij MW, Beiser AS, Völker U, Kacprowski T, Soumare A, Smith JA, Knopman DS, Morris Z, Zhu Y, Rotter JI, Dufouil C, Valdés Hernández M, Muñoz Maniega S, Lathrop M, Boerwinkle E, Schmidt R, Ihara M, Mazoyer B, Yang Q, Joutel A, Tournier-Lasserve E, Launer LJ, Deary IJ, Mosley TH, Amouyel P, DeCarli CS, Psaty BM, Tzourio C, Kardia SLR, Grabe HJ, Teumer A, van Duijn CM, Schmidt H, Wardlaw JM, Ikram MA, Fornage M, Gudnason V, Seshadri S, Matthews PM, Longstreth WT, Couffinhal T, Debette S. Gene-mapping study of extremes of cerebral small vessel disease reveals TRIM47 as a strong candidate. Brain 2022; 145:1992-2007. [PMID: 35511193 PMCID: PMC9255380 DOI: 10.1093/brain/awab432] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Cerebral small vessel disease is a leading cause of stroke and a major contributor to cognitive decline and dementia, but our understanding of specific genes underlying the cause of sporadic cerebral small vessel disease is limited. We report a genome-wide association study and a whole-exome association study on a composite extreme phenotype of cerebral small vessel disease derived from its most common MRI features: white matter hyperintensities and lacunes. Seventeen population-based cohorts of older persons with MRI measurements and genome-wide genotyping (n = 41 326), whole-exome sequencing (n = 15 965), or exome chip (n = 5249) data contributed 13 776 and 7079 extreme small vessel disease samples for the genome-wide association study and whole-exome association study, respectively. The genome-wide association study identified significant association of common variants in 11 loci with extreme small vessel disease, of which the chr12q24.11 locus was not previously reported to be associated with any MRI marker of cerebral small vessel disease. The whole-exome association study identified significant associations of extreme small vessel disease with common variants in the 5' UTR region of EFEMP1 (chr2p16.1) and one probably damaging common missense variant in TRIM47 (chr17q25.1). Mendelian randomization supports the causal association of extensive small vessel disease severity with increased risk of stroke and Alzheimer's disease. Combined evidence from summary-based Mendelian randomization studies and profiling of human loss-of-function allele carriers showed an inverse relation between TRIM47 expression in the brain and blood vessels and extensive small vessel disease severity. We observed significant enrichment of Trim47 in isolated brain vessel preparations compared to total brain fraction in mice, in line with the literature showing Trim47 enrichment in brain endothelial cells at single cell level. Functional evaluation of TRIM47 by small interfering RNAs-mediated knockdown in human brain endothelial cells showed increased endothelial permeability, an important hallmark of cerebral small vessel disease pathology. Overall, our comprehensive gene-mapping study and preliminary functional evaluation suggests a putative role of TRIM47 in the pathophysiology of cerebral small vessel disease, making it an important candidate for extensive in vivo explorations and future translational work.
Collapse
Affiliation(s)
- Aniket Mishra
- University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, UMR 1219, F-33000 Bordeaux, France
| | - Cécile Duplaà
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, F-33600 Pessac, France
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Hideaki Suzuki
- Department of Cardiovascular Medicine, Tohoku University Hospital, 1-1, Seiryo, Aoba, Sendai 980-8574, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo, Aoba, Sendai 980-8573, Japan
- Department of Brain Sciences and UK Dementia Research Institute Centre, Imperial College, London, W12 0NN, UK
| | - Muralidharan Sargurupremraj
- University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, UMR 1219, F-33000 Bordeaux, France
| | | | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02115, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Xueqiu Jian
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Michigan, MI 48104, USA
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, 8036 Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria
| | - Katharina Wittfeld
- German Centre for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, 17489 Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Sarah E Harris
- Department of Psychology, University of Edinburgh, EH8 9JZ Edinburgh, UK
| | - Sandra van der Auwera-Palitschka
- German Centre for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, 17489 Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, EH8 9JZ Edinburgh, UK
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hieab H H Adams
- Department of Epidemiology, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
- The Framingham Heart Study, Framingham, MA 01701, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 2115, USA
| | - Rebecca F Gottesman
- National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD 20814, USA
| | - Piyush G Gampawar
- Institute of Molecular Biology & Biochemistry, Gottfried Schatz Research Centre (for Cell Signalling, Metabolism and Aging), Medical University of Graz, 8036 Graz, Austria
| | - Robin Bülow
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Miao Yu
- Department of Epidemiology, School of Public Health, University of Michigan, Michigan, MI 48104, USA
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH8 9AB, UK
- Division of Neuroimaging Sciences, Brain Research Imaging Centre, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Alexa S Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02115, USA
- The Framingham Heart Study, Framingham, MA 01701, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 2115, USA
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Tim Kacprowski
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17489 Greifswald, Germany
- TUM School of Life Sciences Weihenstephan (WZW), Technical University of Munich (TUM), 85354 Freising-Weihenstephan, Germany
| | - Aicha Soumare
- University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, UMR 1219, F-33000 Bordeaux, France
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Michigan, MI 48104, USA
| | | | - Zoe Morris
- Neuroradiology Department, Department of Clinical Neurosciences, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Yicheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Carole Dufouil
- University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, UMR 1219, F-33000 Bordeaux, France
| | - Maria Valdés Hernández
- Division of Neuroimaging Sciences, Brain Research Imaging Centre, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Susana Muñoz Maniega
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Mark Lathrop
- University of McGill Genome Center, Montreal, Quebec H3A 0G1, Canada
| | - Erik Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, 8036 Graz, Austria
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Bernard Mazoyer
- University of Bordeaux, Institut des Maladies Neurodégénératives, CNRS-CEA UMR 5293, 33000 Bordeaux, France
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02115, USA
- The Framingham Heart Study, Framingham, MA 01701, USA
| | - Anne Joutel
- Institute of Psychiatry and Neurosciences of Paris, INSERM UMR1266, Université de Paris, France
| | | | - Lenore J Launer
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian J Deary
- Department of Psychology, University of Edinburgh, EH8 9JZ Edinburgh, UK
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Philippe Amouyel
- University of Lille, INSERM, Institut Pasteur de Lille, UMR1167-RID-AGE—Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
- LabEx DISTALZ, Institut Pasteur de Lille, 59000 Lille, France
- Department of Epidemiology and Public Health, Centre Hospital University of Lille, F-59000 Lille, France
| | - Charles S DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA 95816, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA
| | - Christophe Tzourio
- University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, UMR 1219, F-33000 Bordeaux, France
- CHU de Bordeaux, Pole de santé publique, Service d’information médicale, F-33000 Bordeaux, France
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Michigan, MI 48104, USA
| | - Hans J Grabe
- German Centre for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, 17489 Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Cornelia M van Duijn
- Department of Biomedical Data Sciences, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Helena Schmidt
- Institute of Molecular Biology & Biochemistry, Gottfried Schatz Research Centre (for Cell Signalling, Metabolism and Aging), Medical University of Graz, 8036 Graz, Austria
| | - Joanna M Wardlaw
- Division of Neuroimaging Sciences, Brain Research Imaging Centre, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - M Arfan Ikram
- Department of Biomedical Data Sciences, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, 200 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Sudha Seshadri
- Department of Epidemiology, School of Public Health, University of Michigan, Michigan, MI 48104, USA
- The Framingham Heart Study, Framingham, MA 01701, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 2115, USA
| | - Paul M Matthews
- Department of Brain Sciences and UK Dementia Research Institute Centre, Imperial College, London, W12 0NN, UK
| | - William T Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA 98104-2420, USA
| | - Thierry Couffinhal
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, F-33600 Pessac, France
| | - Stephanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, UMR 1219, F-33000 Bordeaux, France
- Department of Neurology, Boston University School of Medicine, Boston, MA 2115, USA
- CHU de Bordeaux, Department of Neurology, F-33000 Bordeaux, France
| |
Collapse
|
17
|
Del Cuore A, Pacinella G, Riolo R, Tuttolomondo A. The Role of Immunosenescence in Cerebral Small Vessel Disease: A Review. Int J Mol Sci 2022; 23:7136. [PMID: 35806140 PMCID: PMC9266569 DOI: 10.3390/ijms23137136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is one of the most important causes of vascular dementia. Immunosenescence and inflammatory response, with the involvement of the cerebrovascular system, constitute the basis of this disease. Immunosenescence identifies a condition of deterioration of the immune organs and consequent dysregulation of the immune response caused by cellular senescence, which exposes older adults to a greater vulnerability. A low-grade chronic inflammation status also accompanies it without overt infections, an "inflammaging" condition. The correlation between immunosenescence and inflammaging is fundamental in understanding the pathogenesis of age-related CSVD (ArCSVD). The production of inflammatory mediators caused by inflammaging promotes cellular senescence and the decrease of the adaptive immune response. Vice versa, the depletion of the adaptive immune mechanisms favours the stimulation of the innate immune system and the production of inflammatory mediators leading to inflammaging. Furthermore, endothelial dysfunction, chronic inflammation promoted by senescent innate immune cells, oxidative stress and impairment of microglia functions constitute, therefore, the framework within which small vessel disease develops: it is a concatenation of molecular events that promotes the decline of the central nervous system and cognitive functions slowly and progressively. Because the causative molecular mechanisms have not yet been fully elucidated, the road of scientific research is stretched in this direction, seeking to discover other aberrant processes and ensure therapeutic tools able to enhance the life expectancy of people affected by ArCSVD. Although the concept of CSVD is broader, this manuscript focuses on describing the neurobiological basis and immune system alterations behind cerebral aging. Furthermore, the purpose of our work is to detect patients with CSVD at an early stage, through the evaluation of precocious MRI changes and serum markers of inflammation, to treat untimely risk factors that influence the burden and the worsening of the cerebral disease.
Collapse
Affiliation(s)
- Alessandro Del Cuore
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialised Medicine (PROMISE) G. D’Alessandro, University of Palermo, 90133 Palermo, Italy; (G.P.); (R.R.); (A.T.)
- Internal Medicine and Stroke Care Ward, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Gaetano Pacinella
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialised Medicine (PROMISE) G. D’Alessandro, University of Palermo, 90133 Palermo, Italy; (G.P.); (R.R.); (A.T.)
- Internal Medicine and Stroke Care Ward, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Renata Riolo
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialised Medicine (PROMISE) G. D’Alessandro, University of Palermo, 90133 Palermo, Italy; (G.P.); (R.R.); (A.T.)
- Internal Medicine and Stroke Care Ward, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialised Medicine (PROMISE) G. D’Alessandro, University of Palermo, 90133 Palermo, Italy; (G.P.); (R.R.); (A.T.)
- Internal Medicine and Stroke Care Ward, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
18
|
Whittaker E, Thrippleton S, Chong LYW, Collins VG, Ferguson AC, Henshall DE, Lancastle E, Wilkinson T, Wilson B, Wilson K, Sudlow C, Wardlaw J, Rannikmäe K. Systematic Review of Cerebral Phenotypes Associated With Monogenic Cerebral Small-Vessel Disease. J Am Heart Assoc 2022; 11:e025629. [PMID: 35699195 PMCID: PMC9238640 DOI: 10.1161/jaha.121.025629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
Abstract
Background Cerebral small-vessel disease (cSVD) is an important cause of stroke and vascular dementia. Most cases are multifactorial, but an emerging minority have a monogenic cause. While NOTCH3 is the best-known gene, several others have been reported. We aimed to summarize the cerebral phenotypes associated with these more recent cSVD genes. Methods and Results We performed a systematic review (PROSPERO [International Prospective Register of Systematic Reviews]: CRD42020196720), searching Medline/Embase (conception to July 2020) for any language publications describing COL4A1/2, TREX1, HTRA1, ADA2, or CTSA pathogenic variant carriers. We extracted data about individuals' characteristics and clinical and vascular radiological cerebral phenotypes. We summarized phenotype frequencies per gene, comparing patterns across genes. We screened 6485 publications including 402, and extracted data on 390 individuals with COL4A1, 123 with TREX1, 44 with HTRA1 homozygous, 41 with COL4A2, 346 with ADA2, 82 with HTRA1 heterozygous, and 14 with CTSA. Mean age ranged from 15 (ADA2) to 59 years (HTRA1 heterozygotes). Clinical phenotype frequencies varied widely: stroke, 9% (TREX1) to 52% (HTRA1 heterozygotes); cognitive features, 0% (ADA2) to 64% (HTRA1 homozygotes); and psychiatric features, 0% (COL4A2; ADA2) to 57% (CTSA). Among individuals with neuroimaging, vascular radiological phenotypes appeared common, ranging from 62% (ADA2) to 100% (HTRA1 homozygotes; CTSA). White matter lesions were the most common pathology, except in ADA2 and COL4A2 cases, where ischemic and hemorrhagic lesions dominated, respectively. Conclusions There appear to be differences in cerebral manifestations across cSVD genes. Vascular radiological changes were more common than clinical neurological phenotypes, and present in the majority of individuals with reported neuroimaging. However, these results may be affected by age and biases inherent to case reports. In the future, better characterization of associated phenotypes, as well as insights from population-based studies, should improve our understanding of monogenic cSVD to inform genetic testing, guide clinical management, and help unravel underlying disease mechanisms.
Collapse
Affiliation(s)
- Ed Whittaker
- Medical SchoolUniversity of EdinburghEdinburghUnited Kingdom
| | | | | | | | - Amy C. Ferguson
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghUnited Kingdom
| | - David E. Henshall
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghUnited Kingdom
| | - Emily Lancastle
- Medical SchoolUniversity of EdinburghEdinburghUnited Kingdom
| | - Tim Wilkinson
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghUnited Kingdom
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Blair Wilson
- NHS Greater Glasgow and ClydeGlasgowUnited Kingdom
| | | | - Cathie Sudlow
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghUnited Kingdom
- BHF Data Science CentreLondonUnited Kingdom
| | - Joanna Wardlaw
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute CentreUniversity of EdinburghEdinburghUnited Kingdom
| | - Kristiina Rannikmäe
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
19
|
Abstract
Stroke is the second leading cause of death worldwide and a complex, heterogeneous condition. In this review, we provide an overview of the current knowledge on monogenic and multifactorial forms of stroke, highlighting recent insight into the continuum between these. We describe how, in recent years, large-scale genome-wide association studies have enabled major progress in deciphering the genetic basis for stroke and its subtypes, although more research is needed to interpret these findings. We cover the potential of stroke genetics to reveal novel pathophysiological processes underlying stroke, to accelerate the discovery of new therapeutic approaches, and to identify individuals in the population who are at high risk of stroke and could be targeted for tailored preventative interventions.
Collapse
Affiliation(s)
- Stéphanie Debette
- Bordeaux Population Health Research Center, Inserm U1219, University of Bordeaux, France (S.D.).,Department of Neurology, Bordeaux University Hospital, Institute for Neurodegenerative Diseases, France (S.D.)
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom (H.S.M.)
| |
Collapse
|
20
|
Cavedon M, vonHoldt B, Hebblewhite M, Hegel T, Heppenheimer E, Hervieux D, Mariani S, Schwantje H, Steenweg R, Theoret J, Watters M, Musiani M. Genomic legacy of migration in endangered caribou. PLoS Genet 2022; 18:e1009974. [PMID: 35143486 PMCID: PMC8830729 DOI: 10.1371/journal.pgen.1009974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Wide-ranging animals, including migratory species, are significantly threatened by the effects of habitat fragmentation and habitat loss. In the case of terrestrial mammals, this results in nearly a quarter of species being at risk of extinction. Caribou are one such example of a wide-ranging, migratory, terrestrial, and endangered mammal. In populations of caribou, the proportion of individuals considered as "migrants" can vary dramatically. There is therefore a possibility that, under the condition that migratory behavior is genetically determined, those individuals or populations that are migratory will be further impacted by humans, and this impact could result in the permanent loss of the migratory trait in some populations. However, genetic determination of migration has not previously been studied in an endangered terrestrial mammal. We examined migratory behavior of 139 GPS-collared endangered caribou in western North America and carried out genomic scans for the same individuals. Here we determine a genetic subdivision of caribou into a Northern and a Southern genetic cluster. We also detect >50 SNPs associated with migratory behavior, which are in genes with hypothesized roles in determining migration in other organisms. Furthermore, we determine that propensity to migrate depends upon the proportion of ancestry in individual caribou, and thus on the evolutionary history of its migratory and sedentary subspecies. If, as we report, migratory behavior is influenced by genes, caribou could be further impacted by the loss of the migratory trait in some isolated populations already at low numbers. Our results indicating an ancestral genetic component also suggest that the migratory trait and their associated genetic mutations could not be easily re-established when lost in a population.
Collapse
Affiliation(s)
- Maria Cavedon
- Faculty of Environmental Design, University of Calgary, Calgary, Alberta, Canada
| | - Bridgett vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Mark Hebblewhite
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| | - Troy Hegel
- Yukon Department of Environment, Whitehorse, Yukon, Canada
| | - Elizabeth Heppenheimer
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Dave Hervieux
- Fish and Wildlife Stewardship Branch, Alberta Environment and Parks, Grande Prairie, Alberta, Canada
| | - Stefano Mariani
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Helen Schwantje
- Wildlife and Habitat Branch, Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Government of British Columbia, Nanaimo, British Columbia, Canada
| | - Robin Steenweg
- Pacific Region, Canadian Wildlife Service, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Jessica Theoret
- Faculty of Environmental Design, University of Calgary, Calgary, Alberta, Canada
| | - Megan Watters
- Land and Resource Specialist, Fort St. John, British Columbia, Canada
| | - Marco Musiani
- Department of Biological Sciences, Faculty of Science and Veterinary Medicine (Joint Appointment), University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Abstract
Cerebral small vessel disease (cSVD) is a leading cause of ischaemic and haemorrhagic stroke and a major contributor to dementia. Covert cSVD, which is detectable with brain MRI but does not manifest as clinical stroke, is highly prevalent in the general population, particularly with increasing age. Advances in technologies and collaborative work have led to substantial progress in the identification of common genetic variants that are associated with cSVD-related stroke (ischaemic and haemorrhagic) and MRI-defined covert cSVD. In this Review, we provide an overview of collaborative studies - mostly genome-wide association studies (GWAS) - that have identified >50 independent genetic loci associated with the risk of cSVD. We describe how these associations have provided novel insights into the biological mechanisms involved in cSVD, revealed patterns of shared genetic variation across cSVD traits, and shed new light on the continuum between rare, monogenic and common, multifactorial cSVD. We consider how GWAS summary statistics have been leveraged for Mendelian randomization studies to explore causal pathways in cSVD and provide genetic evidence for drug effects, and how the combination of findings from GWAS with gene expression resources and drug target databases has enabled identification of putative causal genes and provided proof-of-concept for drug repositioning potential. We also discuss opportunities for polygenic risk prediction, multi-ancestry approaches and integration with other omics data.
Collapse
|
22
|
Jiménez-Sánchez L, Hamilton OKL, Clancy U, Backhouse EV, Stewart CR, Stringer MS, Doubal FN, Wardlaw JM. Sex Differences in Cerebral Small Vessel Disease: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:756887. [PMID: 34777227 PMCID: PMC8581736 DOI: 10.3389/fneur.2021.756887] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Cerebral small vessel disease (SVD) is a common cause of stroke, mild cognitive impairment, dementia and physical impairments. Differences in SVD incidence or severity between males and females are unknown. We assessed sex differences in SVD by assessing the male-to-female ratio (M:F) of recruited participants and incidence of SVD, risk factor presence, distribution, and severity of SVD features. Methods: We assessed four recent systematic reviews on SVD and performed a supplementary search of MEDLINE to identify studies reporting M:F ratio in covert, stroke, or cognitive SVD presentations (registered protocol: CRD42020193995). We meta-analyzed differences in sex ratios across time, countries, SVD severity and presentations, age and risk factors for SVD. Results: Amongst 123 relevant studies (n = 36,910 participants) including 53 community-based, 67 hospital-based and three mixed studies published between 1989 and 2020, more males were recruited in hospital-based than in community-based studies [M:F = 1.16 (0.70) vs. M:F = 0.79 (0.35), respectively; p < 0.001]. More males had moderate to severe SVD [M:F = 1.08 (0.81) vs. M:F = 0.82 (0.47) in healthy to mild SVD; p < 0.001], and stroke presentations where M:F was 1.67 (0.53). M:F did not differ for recent (2015-2020) vs. pre-2015 publications, by geographical region, or age. There were insufficient sex-stratified data to explore M:F and risk factors for SVD. Conclusions: Our results highlight differences in male-to-female ratios in SVD severity and amongst those presenting with stroke that have important clinical and translational implications. Future SVD research should report participant demographics, risk factors and outcomes separately for males and females. Systematic Review Registration: [PROSPERO], identifier [CRD42020193995].
Collapse
Affiliation(s)
- Lorena Jiménez-Sánchez
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Olivia K. L. Hamilton
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Dementia Research Centre in the UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Una Clancy
- Edinburgh Dementia Research Centre in the UK Dementia Research Institute, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ellen V. Backhouse
- Edinburgh Dementia Research Centre in the UK Dementia Research Institute, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Catriona R. Stewart
- Edinburgh Dementia Research Centre in the UK Dementia Research Institute, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael S. Stringer
- Edinburgh Dementia Research Centre in the UK Dementia Research Institute, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Fergus N. Doubal
- Edinburgh Dementia Research Centre in the UK Dementia Research Institute, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna M. Wardlaw
- Edinburgh Dementia Research Centre in the UK Dementia Research Institute, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Malik R, Beaufort N, Frerich S, Gesierich B, Georgakis MK, Rannikmäe K, Ferguson AC, Haffner C, Traylor M, Ehrmann M, Sudlow CLM, Dichgans M. Whole-exome sequencing reveals a role of HTRA1 and EGFL8 in brain white matter hyperintensities. Brain 2021; 144:2670-2682. [PMID: 34626176 PMCID: PMC8557338 DOI: 10.1093/brain/awab253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/01/2021] [Accepted: 06/19/2021] [Indexed: 11/13/2022] Open
Abstract
White matter hyperintensities (WMH) are among the most common radiological abnormalities in the ageing population and an established risk factor for stroke and dementia. While common variant association studies have revealed multiple genetic loci with an influence on their volume, the contribution of rare variants to the WMH burden in the general population remains largely unexplored. We conducted a comprehensive analysis of this burden in the UK Biobank using publicly available whole-exome sequencing data (n up to 17 830) and found a splice-site variant in GBE1, encoding 1,4-alpha-glucan branching enzyme 1, to be associated with lower white matter burden on an exome-wide level [c.691+2T>C, β = -0.74, standard error (SE) = 0.13, P = 9.7 × 10-9]. Applying whole-exome gene-based burden tests, we found damaging missense and loss-of-function variants in HTRA1 (frequency of 1 in 275 in the UK Biobank population) to associate with an increased WMH volume (P = 5.5 × 10-6, false discovery rate = 0.04). HTRA1 encodes a secreted serine protease implicated in familial forms of small vessel disease. Domain-specific burden tests revealed that the association with WMH volume was restricted to rare variants in the protease domain (amino acids 204-364; β = 0.79, SE = 0.14, P = 9.4 × 10-8). The frequency of such variants in the UK Biobank population was 1 in 450. The WMH volume was brought forward by ∼11 years in carriers of a rare protease domain variant. A comparison with the effect size of established risk factors for WMH burden revealed that the presence of a rare variant in the HTRA1 protease domain corresponded to a larger effect than meeting the criteria for hypertension (β = 0.26, SE = 0.02, P = 2.9 × 10-59) or being in the upper 99.8% percentile of the distribution of a polygenic risk score based on common genetic variants (β = 0.44, SE = 0.14, P = 0.002). In biochemical experiments, most (6/9) of the identified protease domain variants resulted in markedly reduced protease activity. We further found EGFL8, which showed suggestive evidence for association with WMH volume (P = 1.5 × 10-4, false discovery rate = 0.22) in gene burden tests, to be a direct substrate of HTRA1 and to be preferentially expressed in cerebral arterioles and arteries. In a phenome-wide association study mapping ICD-10 diagnoses to 741 standardized Phecodes, rare variants in the HTRA1 protease domain were associated with multiple neurological and non-neurological conditions including migraine with aura (odds ratio = 12.24, 95%CI: 2.54-35.25; P = 8.3 × 10-5]. Collectively, these findings highlight an important role of rare genetic variation and the HTRA1 protease in determining WMH burden in the general population.
Collapse
Affiliation(s)
- Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Simon Frerich
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Benno Gesierich
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Kristiina Rannikmäe
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh EH16 4TL, UK
| | - Amy C Ferguson
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh EH16 4TL, UK
| | - Christof Haffner
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthew Traylor
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
- The Barts Heart Centre and NIHR Barts Biomedical Research Centre - Barts Health NHS Trust, The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen 45141, Germany
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Cathie L M Sudlow
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh EH16 4TL, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4TL, UK
- Health Data Research UK Scotland, University of Edinburgh, Edinburgh EH16 4TL, UK
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology, Munich 81377, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich 81377, Germany
| |
Collapse
|
24
|
Xiao X, Guo L, Liao X, Zhou Y, Zhang W, Zhou L, Wang X, Liu X, Liu H, Xu T, Zhu Y, Yang Q, Hao X, Liu Y, Wang J, Li J, Jiao B, Shen L. The role of vascular dementia associated genes in patients with Alzheimer's disease: A large case-control study in the Chinese population. CNS Neurosci Ther 2021; 27:1531-1539. [PMID: 34551193 PMCID: PMC8611771 DOI: 10.1111/cns.13730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 12/16/2022] Open
Abstract
Aim The role of vascular dementia (VaD)‐associated genes in Alzheimer's disease (AD) remains elusive despite similar clinical and pathological features. We aimed to explore the relationship between these genes and AD in the Chinese population. Methods Eight VaD‐associated genes were screened by a targeted sequencing panel in a sample of 3604 individuals comprising 1192 AD patients and 2412 cognitively normal controls. Variants were categorized into common variants and rare variants according to minor allele frequency (MAF). Common variant (MAF ≥ 0.01)‐based association analysis was conducted by PLINK 1.9. Rare variant (MAF < 0.01) association study and gene‐based aggregation testing of rare variants were performed by PLINK 1.9 and Sequence Kernel Association Test‐Optimal (SKAT‐O test), respectively. Age at onset (AAO) and Mini‐Mental State Examination (MMSE) association studies were performed with PLINK 1.9. Analyses were adjusted for age, gender, and APOE ε4 status. Results Four common COL4A1 variants, including rs874203, rs874204, rs16975492, and rs1373744, exhibited suggestive associations with AD. Five rare variants, NOTCH3 rs201436750, COL4A1 rs747972545, COL4A1 rs201481886, CST3 rs765692764, and CST3 rs140837441, showed nominal association with AD risk. Gene‐based aggregation testing revealed that HTRA1 was nominally associated with AD. In the AAO and MMSE association studies, variants in GSN, ITM2B, and COL4A1 reached suggestive significance. Conclusion Common variants in COL4A1 and rare variants in HTRA1, NOTCH3, COL4A1, and CST3 may be implicated in AD pathogenesis. Besides, GSN, ITM2B, and COL4A1 are probably involved in the development of AD endophenotypes.
Collapse
Affiliation(s)
- Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Weiwei Zhang
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyan Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoli Hao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingzi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
25
|
Wang Y, Li X, Liu Y, Guo W, Chen J, Lu M, Huang S, Pang T, Chen J, Kong X. Notch3 Mutation Detection in Stroke Patients and Selective Nanoliposome in Stroke Alleviation in a Mouse Model. J Biomed Nanotechnol 2021; 17:1735-1744. [PMID: 34688318 DOI: 10.1166/jbn.2021.3142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study analyzed the correlation between the Notch3 mutation and stroke by testing an effective nanoparticle-loaded aspirin in stroke therapy. Fifty patients with ischemic stroke were followed for two years, and fifty healthy persons served as the control group. By RT-PCR, this study revealed that the Notch3 mutation existed in ischemic stroke patients who were more likely to have a family history, small vessel lesions, relatively frequent cerebral hemorrhage, and poor long-term prognosis. Liposome-aspirin-chitosan nanoparticle (LACN) was constructed as a nano-composite for stroke treatment. Notch3 Arg170Cys knock-in mice were prepared as a mutant Notch3 mouse model to test the LACN infiltration efficiency and observe the anti-stroke capacity. We found that LACN could better transport aspirin into brain vessels than the Polyethyleneimine (PEI) delivery system. However, in the Notch3 mutation mouse model, cerebral infarction and hemorrhage often occurred after being treated with aspirin. Still, LACN better prolongs the half-life of aspirin, rescues the pathological alteration of stroke in the brain, and reduces inflammatory reaction and oxidative stress response. In conclusion, the Notch3 mutation is closely related to stroke occurrence, and LACN may be a better choice for stroke therapy in the future.
Collapse
Affiliation(s)
- Yanxia Wang
- Central Laboratory of Cangzhou Central Hospital, Cangzhou 061001, Hebei, PR China
| | - Xinmeng Li
- Central Laboratory of Cangzhou Central Hospital, Cangzhou 061001, Hebei, PR China
| | - Ying Liu
- Central Laboratory of Cangzhou Central Hospital, Cangzhou 061001, Hebei, PR China
| | - Wenjing Guo
- Central Laboratory of Cangzhou Central Hospital, Cangzhou 061001, Hebei, PR China
| | - Jiangpo Chen
- Biotecnovo (Langfang) Medical Lab Co. Ltd., Langfang 065011, Hebei, PR China
| | - Mengmeng Lu
- Biotecnovo (Langfang) Medical Lab Co. Ltd., Langfang 065011, Hebei, PR China
| | - Shuchun Huang
- Department of Internal Medicine-Neurology, 302 Hospital of China Guizhou Aviation Industry Group, Anshun 561000, Guizhou, PR China
| | - Tieliang Pang
- Biotecnovo (Langfang) Medical Lab Co. Ltd., Langfang 065011, Hebei, PR China
| | - Jinghong Chen
- Department of Clinical Laboratory, Langfang Changzheng Hospital, Langfang 065011, Hebei, PR China
| | - Xiangjun Kong
- Central Laboratory of Cangzhou Central Hospital, Cangzhou 061001, Hebei, PR China
| |
Collapse
|
26
|
Liu JY, Yao M, Dai Y, Han F, Zhai FF, Zhang DD, Zhou LX, Ni J, Zhang SY, Cui LY, Zhu YC. Rare NOTCH3 Variants in a Chinese Population-Based Cohort and Its Relationship With Cerebral Small Vessel Disease. Stroke 2021; 52:3918-3925. [PMID: 34404235 DOI: 10.1161/strokeaha.120.032265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Researches on rare variants of NOTCH3 in the general Chinese population are lacking. This study aims to describe the spectrum of rare NOTCH3 variants by whole-exome sequencing in a Chinese community-based cohort and to investigate the association between rare NOTCH3 variants and age-related cerebral small vessel disease. METHODS The cross-sectional study comprised 1065 participants who underwent whole-exome sequencing and brain magnetic resonance imaging. NOTCH3 variants with minor allele frequency<1% in all 4 public population databases (1000 Genomes, ESP6500siv2_ALL, GnomAD_ALL, and GnomAD_EAS) were defined as rare variants. Multivariable linear and logistic regressions were used to investigate the associations between rare NOTCH3 variants and volume of white matter hyperintensities and cerebral small vessel disease burden. Clinical and imaging characteristics of rare NOTCH3 variant carriers were summarized. RESULTS Sixty-five rare NOTCH3 variants were identified in 147 of 1065 (13.8%) participants, including 57 missense single nucleotide polymorphisms (SNPs), 5 SNPs in splice branching sites, and 3 frameshift deletions. A significantly higher volume of white matter hyperintensities and heavier burden of cerebral small vessel disease was found in carriers of rare NOTCH3 EGFr (epidermal growth factor-like repeats)-involving variants, but not in carriers of EGFr-sparing variants. The carrying rate of rare EGFr-involving NOTCH3 variants in participants with dementia or stroke was significantly higher than those without dementia or stroke (12.4% versus 6.6%, P=0.041). Magnetic resonance imaging signs suggestive of CADASIL were found in 3.4% (5/145) rare EGFr cysteine-sparing NOTCH3 variant carriers but not in 2 cysteine-altering NOTCH3 variant carriers. CONCLUSIONS Carriers of rare NOTCH3 variants involving the EGFr domain may be genetically predisposed to age-related cerebral small vessel disease in the general Chinese population.
Collapse
Affiliation(s)
- Jing-Yi Liu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| | - Ming Yao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| | - Fei Han
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| | - Fei-Fei Zhai
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| | - Ding-Ding Zhang
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China (D.-D.Z.)
| | - Li-Xin Zhou
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| | - Jun Ni
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| | - Shu-Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China (S.-Y.Z.)
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| | - Yi-Cheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China. (J.-Y.L., M.Y., Y.D., F.H., F.-F.Z., L.-X.Z., J.N., L.-Y.C., Y.-C.Z.)
| |
Collapse
|
27
|
Cerebral microbleeds in vascular dementia from clinical aspects to host-microbial interaction. Neurochem Int 2021; 148:105073. [PMID: 34048844 DOI: 10.1016/j.neuint.2021.105073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 12/30/2022]
Abstract
Vascular dementia is the second leading cause of dementia after Alzheimer's disease in the elderly population worldwide. Cerebral microbleeds (CMBs) are frequently observed in MRI of elderly subjects and considered as a possible surrogate marker. The number and location of CMBs reflect the severity of diseases and the underlying pathologies may involve cerebral amyloid angiopathy or hypertensive vasculopathy. Accumulating evidence demonstrated the clinicopathological discrepancies of CMBs, the clinical significance of CMBs associated with other MRI markers of cerebral small vessel disease, cognitive impairments, serum, and cerebrospinal fluid biomarkers. Moreover, emerging evidence has shown that genetic factors and gene-environmental interactions might shed light on the underlying etiologies of CMBs, focusing on blood-brain-barrier and inflammation. In this review, we introduce recent genetic and microbiome studies as a cutting-edge approach to figure out the etiology of CMBs through the "microbe-brain-oral axis" and "microbiome-brain-gut axis." Finally, we propose novel concepts, "microvascular matrisome" and "imbalanced proteostasis," which may provide better perspectives for elucidating the pathophysiology of CMBs and future development of therapeutics for vascular dementia using CMBs as a surrogate marker.
Collapse
|
28
|
Su C, Liu WC, Li GM, Huang Y. Association Between the Angiotensin-Converting Enzyme I/D Polymorphism and Risk of Cerebral Small Vessel Disease: A Meta-Analysis Based on 7186 Subjects. J Stroke Cerebrovasc Dis 2021; 30:105579. [PMID: 33412396 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Cerebral small vessel disease (CSVD) causes a quarter of all strokes and is the most common pathology underlying vascular dementia. However, the mechanism of CSVD remains unclear. Numerous studies have investigated whether the angiotensin-converting enzyme (ACE) intersection/deletion (I/D) polymorphism influences the risk of CSVD, but the results are controversial. METHODS We searched English and Chinese databases and calculated the odds ratio (OR) and 95% confidence interval (CI) to examine the existence of genetic associations between the ACE I/D polymorphism and the risk of CSVD. All relevant studies were screened and meta-analyzed using Review Manager 5.4. RESULTS A total of 27 studies involving 7,186 subjects were identified for the meta-analysis. The results of five genetic models showed a significantly increased risk of CSVD (allelic, OR=1.30; recessive, OR=1.41; dominant, OR=1.34; homozygous, OR=1.55 and heterozygous OR=1.22) in the overall analysis. Furthermore, in subgroup analysis, increased CSVD risks were also observed in Asian and Caucasian populations. We also found no relationship between ACE I/D and leukoaraiosis (LA) in patients with lacunar infarction (LI). CONCLUSION The ACE I/D polymorphism was positively associated with CSVD in both populations. However, this polymorphism did not increase the risk of LA in LI patients.
Collapse
Affiliation(s)
- Cheng Su
- Neurology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Wen-Chen Liu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Guo-Ming Li
- Neurology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| | - Yan Huang
- Neurology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
29
|
Blevins BL, Vinters HV, Love S, Wilcock DM, Grinberg LT, Schneider JA, Kalaria RN, Katsumata Y, Gold BT, Wang DJJ, Ma SJ, Shade LMP, Fardo DW, Hartz AMS, Jicha GA, Nelson KB, Magaki SD, Schmitt FA, Teylan MA, Ighodaro ET, Phe P, Abner EL, Cykowski MD, Van Eldik LJ, Nelson PT. Brain arteriolosclerosis. Acta Neuropathol 2021; 141:1-24. [PMID: 33098484 PMCID: PMC8503820 DOI: 10.1007/s00401-020-02235-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Brain arteriolosclerosis (B-ASC), characterized by pathologic arteriolar wall thickening, is a common finding at autopsy in aged persons and is associated with cognitive impairment. Hypertension and diabetes are widely recognized as risk factors for B-ASC. Recent research indicates other and more complex risk factors and pathogenetic mechanisms. Here, we describe aspects of the unique architecture of brain arterioles, histomorphologic features of B-ASC, relevant neuroimaging findings, epidemiology and association with aging, established genetic risk factors, and the co-occurrence of B-ASC with other neuropathologic conditions such as Alzheimer's disease and limbic-predominant age-related TDP-43 encephalopathy (LATE). There may also be complex physiologic interactions between metabolic syndrome (e.g., hypertension and inflammation) and brain arteriolar pathology. Although there is no universally applied diagnostic methodology, several classification schemes and neuroimaging techniques are used to diagnose and categorize cerebral small vessel disease pathologies that include B-ASC, microinfarcts, microbleeds, lacunar infarcts, and cerebral amyloid angiopathy (CAA). In clinical-pathologic studies that factored in comorbid diseases, B-ASC was independently associated with impairments of global cognition, episodic memory, working memory, and perceptual speed, and has been linked to autonomic dysfunction and motor symptoms including parkinsonism. We conclude by discussing critical knowledge gaps related to B-ASC and suggest that there are probably subcategories of B-ASC that differ in pathogenesis. Observed in over 80% of autopsied individuals beyond 80 years of age, B-ASC is a complex and under-studied contributor to neurologic disability.
Collapse
Affiliation(s)
- Brittney L Blevins
- Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Seth Love
- University of Bristol and Southmead Hospital, Bristol, BS10 5NB, UK
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Lea T Grinberg
- Department of Neurology and Pathology, UCSF, San Francisco, CA, USA
- Global Brain Health Institute, UCSF, San Francisco, CA, USA
- LIM-22, Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Julie A Schneider
- Departments of Neurology and Pathology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Brian T Gold
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Samantha J Ma
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Lincoln M P Shade
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, University Kentucky, Lexington, KY, 40536, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | | | - Shino D Magaki
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | - Merilee A Teylan
- Department of Epidemiology, University Washington, Seattle, WA, 98105, USA
| | | | - Panhavuth Phe
- Sanders-Brown Center on Aging, University Kentucky, Lexington, KY, 40536, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, Department of Epidemiology, University Kentucky, Lexington, KY, 40536, USA
| | - Matthew D Cykowski
- Departments of Pathology and Genomic Medicine and Neurology, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, Department of Pathology, University of Kentucky, Lexington, KY, 40536, USA.
- Rm 311 Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone Avenue, Lexington, KY, 40536, USA.
| |
Collapse
|
30
|
Cai W, Chen X, Men X, Ruan H, Hu M, Liu S, Lu T, Liao J, Zhang B, Lu D, Huang Y, Fan P, Rao J, Lei C, Wang J, Ma X, Zhu Q, Li L, Zhu X, Hou Y, Li S, Dong Q, Tian Q, Ai L, Luo W, Zuo M, Shen L, Xie C, Song H, Xu G, Zheng K, Zhang Z, Lu Y, Qiu W, Chen T, Xiang AP, Lu Z. Gut microbiota from patients with arteriosclerotic CSVD induces higher IL-17A production in neutrophils via activating RORγt. SCIENCE ADVANCES 2021; 7:eabe4827. [PMID: 33523954 DOI: 10.1126/sciadv.abe4827] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The intestinal microbiota shape the host immune system and influence the outcomes of various neurological disorders. Arteriosclerotic cerebral small vessel disease (aCSVD) is highly prevalent among the elderly with its pathological mechanisms yet is incompletely understood. The current study investigated the ecology of gut microbiota in patients with aCSVD, particularly its impact on the host immune system. We reported that the altered composition of gut microbiota was associated with undesirable disease outcomes and exacerbated inflammaging status. When exposed to the fecal bacterial extracts from a patient with aCSVD, human and mouse neutrophils were activated, and capacity of interleukin-17A (IL-17A) production was increased. Mechanistically, RORγt signaling in neutrophils was activated by aCSVD-associated gut bacterial extracts to up-regulate IL-17A production. Our findings revealed a previously unrecognized implication of the gut-immune-brain axis in aCSVD pathophysiology, with therapeutic implications.
Collapse
Affiliation(s)
- Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaodong Chen
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xuejiao Men
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Hengfang Ruan
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Sanxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tingting Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jinchi Liao
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Bingjun Zhang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yinong Huang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ping Fan
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Junping Rao
- Department of Neurology, Yuedong Hospital, the Third Affiliated Hospital of Sun Yat-sen University, Meizhou, Guangdong 514011, China
| | - Chunyan Lei
- South China Institute of Biomedicine, Guangzhou, Guangdong 510535, China
| | - Jihui Wang
- Department of Psychiatry, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiaomeng Ma
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Qiang Zhu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Lili Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiuyun Zhu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yujiao Hou
- Department of Neurology, Yuedong Hospital, the Third Affiliated Hospital of Sun Yat-sen University, Meizhou, Guangdong 514011, China
| | - Shu Li
- Department of Neurology, Yuedong Hospital, the Third Affiliated Hospital of Sun Yat-sen University, Meizhou, Guangdong 514011, China
| | - Qing Dong
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Qing Tian
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Lulu Ai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wenjing Luo
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Mengyun Zuo
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Liping Shen
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Congyan Xie
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Hongzhong Song
- Department of Neurology, Yuedong Hospital, the Third Affiliated Hospital of Sun Yat-sen University, Meizhou, Guangdong 514011, China
| | - Ganlin Xu
- South China Institute of Biomedicine, Guangzhou, Guangdong 510535, China
| | - Kangdi Zheng
- South China Institute of Biomedicine, Guangzhou, Guangdong 510535, China
| | - Zhao Zhang
- South China Institute of Biomedicine, Guangzhou, Guangdong 510535, China
| | - Yongjun Lu
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life Sciences and Biomedical Center of Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Qiu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tao Chen
- South China Institute of Biomedicine, Guangzhou, Guangdong 510535, China
- Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong 510535, China
| | - Andy Peng Xiang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
31
|
Jian B, Hu M, Cai W, Zhang B, Lu Z. Update of Immunosenescence in Cerebral Small Vessel Disease. Front Immunol 2020; 11:585655. [PMID: 33362768 PMCID: PMC7756147 DOI: 10.3389/fimmu.2020.585655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Aging of the central nervous system (CNS) is closely associated with chronic sterile low-grade inflammation in older organisms and related immune response. As an amplifier for neuro-inflammaging, immunosenescence remodels and deteriorates immune systems gradually with the passage of time, and finally contributes to severe outcomes like stroke, dementia and neurodegeneration in elderly adults. Cerebral small vessel disease (CSVD), one of the major causes of vascular dementia, has an intensive connection with the inflammatory response and immunosenescence plays a crucial role in the pathology of this disorder. In this review, we discuss the impact of immunosenescence on the development of CSVD and its underlying mechanism. Furthermore, the clinical practice significance of immunosenescence management and the diagnosis and treatment of CSVD will be also discussed.
Collapse
Affiliation(s)
- Banghao Jian
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mengyan Hu
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Cai
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Center of Clinical Immunology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingjun Zhang
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Guo Y, Li Y, Liu X, Cui Y, Zhao Y, Sun S, Jia Q, Chai Q, Gong G, Zhang H, Liu Z. Assessing the effectiveness of statin therapy for alleviating cerebral small vessel disease progression in people ≥75 years of age. BMC Geriatr 2020; 20:292. [PMID: 32807086 PMCID: PMC7430010 DOI: 10.1186/s12877-020-01682-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Statins have been recommended by several guidelines as the primary prevention medication for cardiovascular diseases. However, the benefits of statin therapy for cerebral small vessel disease (CSVD), particularly in adults ≥75 years of age, have not been fully evaluated. METHODS We analyzed the data from a prospective population-based cohort study and a randomized, double-blind, placebo-controlled clinical trial to determine whether statin therapy might aid in slowing the progression of CSVD in adults ≥75 years of age. For the cohort study, 827 participants were considered eligible and were included in the baseline analysis. Subsequently, 781 participants were included in follow-up analysis. For the clinical trial, 227 participants were considered eligible and were used in the baseline and follow-up analyses. RESULTS The white matter hyperintensities (WMH) volume, the WMH-to-intracranial volume (ICV) ratio, the prevalence of a Fazekas scale score ≥ 2, lacunes, enlarged perivascular spaces (EPVS), and microbleeds were significantly lower in the statin group than the non-statin group at baseline in the cohort study (all P < 0.05). During the follow-up period, in both the cohort and clinical trial studies, the WMH volume and WMH-to-ICV ratio were significantly lower in the statin/rosuvastatin group than the non-statin/placebo group (all P < 0.001). Statin therapy was associated with lower risk of WMH, lacunes, and EPVS progression than the non-statin therapy group after adjustment for confounders (all P < 0.05). There was no statistically significant difference in the risk of microbleeds between the statin and non-statin therapy groups (all, P > 0.05). CONCLUSIONS Our findings indicated that statin therapy alleviated the progression of WMH, lacunes, and EPVS without elevating the risk of microbleeds. On the basis of the observed results, we concluded that statin therapy is an efficient and safe intervention for CSVD in adults ≥75 years of age. TRIAL REGISTRATION Chictr.org.cn: ChiCTR-IOR-17013557 , date of trial retrospective registration November 27, 2017 and ChiCTR-EOC-017013598 , date of trial retrospective registration November 29, 2017.
Collapse
Affiliation(s)
- Yuqi Guo
- Basic Medical College, Shandong First Medical University, Jinan, 250062 Shandong China
- Key Laboratory of Rare and Uncommon Diseases, Basic Medical Colleg, Shandong First Medical University, Jinan, 250062 Shandong China
| | - Yunpeng Li
- School of Medicine and Life Sciences, Shandong First Medical University, Zhangqiu, 250202 Shandong China
| | - Xukui Liu
- School of Medicine and Life Sciences, Shandong First Medical University, Zhangqiu, 250202 Shandong China
| | - Yi Cui
- Department of Radiology, Shandong University Qilu Hospital, Jinan, 250012 Shandong China
| | - Yingxin Zhao
- Basic Medical College, Shandong First Medical University, Jinan, 250062 Shandong China
- Cardio-Cerebrovascular Control and Research Center, Basic Medical Colleg, Shandong First Medical University, No. 18877, Jingshi Road, Jinan, 250062 Shandong China
| | - Shangwen Sun
- Basic Medical College, Shandong First Medical University, Jinan, 250062 Shandong China
- Cardio-Cerebrovascular Control and Research Center, Basic Medical Colleg, Shandong First Medical University, No. 18877, Jingshi Road, Jinan, 250062 Shandong China
| | - Qing Jia
- Basic Medical College, Shandong First Medical University, Jinan, 250062 Shandong China
- Cardio-Cerebrovascular Control and Research Center, Basic Medical Colleg, Shandong First Medical University, No. 18877, Jingshi Road, Jinan, 250062 Shandong China
| | - Qiang Chai
- Basic Medical College, Shandong First Medical University, Jinan, 250062 Shandong China
- Cardio-Cerebrovascular Control and Research Center, Basic Medical Colleg, Shandong First Medical University, No. 18877, Jingshi Road, Jinan, 250062 Shandong China
| | - Gary Gong
- The Russel H. Morgan Department of Radiology and Radiological Sciences, the Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Hua Zhang
- Basic Medical College, Shandong First Medical University, Jinan, 250062 Shandong China
- Cardio-Cerebrovascular Control and Research Center, Basic Medical Colleg, Shandong First Medical University, No. 18877, Jingshi Road, Jinan, 250062 Shandong China
| | - Zhendong Liu
- Basic Medical College, Shandong First Medical University, Jinan, 250062 Shandong China
- Cardio-Cerebrovascular Control and Research Center, Basic Medical Colleg, Shandong First Medical University, No. 18877, Jingshi Road, Jinan, 250062 Shandong China
| |
Collapse
|
33
|
Uemura M, Nozaki H, Kato T, Koyama A, Sakai N, Ando S, Kanazawa M, Hishikawa N, Nishimoto Y, Polavarapu K, Nalini A, Hanazono A, Kuzume D, Shindo A, El-Ghanem M, Abe A, Sato A, Yoshida M, Ikeuchi T, Mizuta I, Mizuno T, Onodera O. HTRA1-Related Cerebral Small Vessel Disease: A Review of the Literature. Front Neurol 2020; 11:545. [PMID: 32719647 PMCID: PMC7351529 DOI: 10.3389/fneur.2020.00545] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/14/2020] [Indexed: 11/13/2022] Open
Abstract
Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is clinically characterized by early-onset dementia, stroke, spondylosis deformans, and alopecia. In CARASIL cases, brain magnetic resonance imaging reveals severe white matter hyperintensities (WMHs), lacunar infarctions, and microbleeds. CARASIL is caused by a homozygous mutation in high-temperature requirement A serine peptidase 1 (HTRA1). Recently, it was reported that several heterozygous mutations in HTRA1 also cause cerebral small vessel disease (CSVD). Although patients with heterozygous HTRA1-related CSVD (symptomatic carriers) are reported to have a milder form of CARASIL, little is known about the clinical and genetic differences between the two diseases. Given this gap in the literature, we collected clinical information on HTRA1-related CSVD from a review of the literature to help clarify the differences between symptomatic carriers and CARASIL and the features of both diseases. Forty-six symptomatic carriers and 28 patients with CARASIL were investigated. Twenty-eight mutations in symptomatic carriers and 22 mutations in CARASIL were identified. Missense mutations in symptomatic carriers are more frequently identified in the linker or loop 3 (L3)/loop D (LD) domains, which are critical sites in activating protease activity. The ages at onset of neurological symptoms/signs were significantly higher in symptomatic carriers than in CARASIL, and the frequency of characteristic extraneurological findings and confluent WMHs were significantly higher in CARASIL than in symptomatic carriers. As previously reported, heterozygous HTRA1-related CSVD has a milder clinical presentation of CARASIL. It seems that haploinsufficiency can cause CSVD among symptomatic carriers according to the several patients with heterozygous nonsense/frameshift mutations. However, the differing locations of mutations found in the two diseases indicate that distinct molecular mechanisms influence the development of CSVD in patients with HTRA1-related CSVD. These findings further support continued careful examination of the pathogenicity of mutations located outside the linker or LD/L3 domain in symptomatic carriers.
Collapse
Affiliation(s)
- Masahiro Uemura
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroaki Nozaki
- Department of Medical Technology, Graduate School of Health Sciences, Niigata University, Niigata, Japan.,Department of Neurology, Niigata City General Hospital, Niigata, Japan
| | - Taisuke Kato
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihide Koyama
- Division of Legal Medicine, Niigata University, Niigata, Japan
| | - Naoko Sakai
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shoichiro Ando
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Kiran Polavarapu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Akira Hanazono
- Division of Gastroenterology, Hepato-Biliary-Pancreatology and Neurology, Akita University Hospital, Akita, Japan
| | - Daisuke Kuzume
- Department of Neurology, Chikamori Hospital, Kochi, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Mohammad El-Ghanem
- Department of Neurology, Neurosurgery and Medical Imaging, University of Arizona-Banner University Medicine, Tucson, AZ, United States
| | - Arata Abe
- Department of Neurology, Nippon Medical School Musashi Kosugi Hospital, Kawasaki, Japan
| | - Aki Sato
- Department of Neurology, Niigata City General Hospital, Niigata, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
34
|
Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat Rev Neurol 2020; 16:247-264. [PMID: 32322099 DOI: 10.1038/s41582-020-0350-6] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Despite many years of research, no biomarkers for stroke are available to use in clinical practice. Progress in high-throughput technologies has provided new opportunities to understand the pathophysiology of this complex disease, and these studies have generated large amounts of data and information at different molecular levels. The integration of these multi-omics data means that thousands of proteins (proteomics), genes (genomics), RNAs (transcriptomics) and metabolites (metabolomics) can be studied simultaneously, revealing interaction networks between the molecular levels. Integrated analysis of multi-omics data will provide useful insight into stroke pathogenesis, identification of therapeutic targets and biomarker discovery. In this Review, we detail current knowledge on the pathology of stroke and the current status of biomarker research in stroke. We summarize how proteomics, metabolomics, transcriptomics and genomics are all contributing to the identification of new candidate biomarkers that could be developed and used in clinical stroke management.
Collapse
|
35
|
Grami N, Chong M, Lali R, Mohammadi-Shemirani P, Henshall DE, Rannikmäe K, Paré G. Global Assessment of Mendelian Stroke Genetic Prevalence in 101 635 Individuals From 7 Ethnic Groups. Stroke 2020; 51:1290-1293. [PMID: 32106772 DOI: 10.1161/strokeaha.119.028840] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background and Purpose- Mendelian stroke confers a high lifetime risk for mutation carriers; however, ethnicity-specific prevalence estimates have been difficult to establish. Methods- Eighteen genes responsible for Mendelian stroke were investigated using the Genome Aggregation Database. Genome Aggregation Database participants belonged to 1 of 7 populations: African/African-American, Latino/Admixed American, Ashkenazi Jewish, East Asian, Finnish European, non-Finnish European, and South Asian. Rare nonsynonymous variants from 101 635 participants free of neurological disease were examined for each ethnicity. Mutations were categorized according to 3 nested classes: pathogenic clinical variants, likely damaging variants based on in silico prediction, and all nonsynonymous variants. Results- ABCC6, KRIT1, CECR1, COL3A1, COL4A1, COL4A2, COLGALT1, GLA, HTRA1, NOTCH3, RNF213, and TREX1 harbored pathogenic clinical variants in Genome Aggregation Database. Across all 18 genes, total nonsynonymous carrier frequency was found to be high in 5 ethnicities (African/African-American, Latino/Admixed American, East Asian, non-Finnish European, and South Asian; 28.5%-37.5%) while lower total frequencies were estimated for in silico-predicted likely damaging variants (14.9%-19.7%) and pathogenic clinical variants (0.7%-2.8%). Overall, East Asian exhibited the highest total pathogenic clinical mutation carrier frequency (2.8%). ABCC6 pathogenic clinical variants were most prevalent among East Asian (0.8%). Pathogenic NOTCH3 variants, causal for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, were most frequent among East Asian (1.1%) and South Asian (1.2%). East Asian also demonstrated the highest carrier rate for RNF213 (0.8%). Finnish European exhibited the greatest HTRA1 frequency (0.2%), while COL4A1 pathogenic variants were most prevalent in African/African-American (0.3%). Conclusions- Especially, among pathogenic clinical variants, Mendelian stroke genetic prevalence differed significantly between populations. These prevalence estimates may serve as guides for screening and risk profiling in patients worldwide, particularly for understudied non-European populations.
Collapse
Affiliation(s)
- Nickrooz Grami
- From the Population Health Research Institute, the Thrombosis & Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada (N.G., M.C., R.L., P.M.-S., G.P.)
| | - Michael Chong
- From the Population Health Research Institute, the Thrombosis & Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada (N.G., M.C., R.L., P.M.-S., G.P.)
| | - Ricky Lali
- From the Population Health Research Institute, the Thrombosis & Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada (N.G., M.C., R.L., P.M.-S., G.P.)
| | - Pedrum Mohammadi-Shemirani
- From the Population Health Research Institute, the Thrombosis & Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada (N.G., M.C., R.L., P.M.-S., G.P.)
| | - David E Henshall
- the Centre for Medical Informatics, Usher Institute, The University of Edinburgh, United Kingdom (D.E.H., K.R.)
| | - Kristiina Rannikmäe
- the Centre for Medical Informatics, Usher Institute, The University of Edinburgh, United Kingdom (D.E.H., K.R.)
| | - Guillaume Paré
- From the Population Health Research Institute, the Thrombosis & Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada (N.G., M.C., R.L., P.M.-S., G.P.)
| |
Collapse
|
36
|
Affiliation(s)
- James F Meschia
- From the Department of Neurology, Mayo Clinic in Florida, Jacksonville
| |
Collapse
|
37
|
Joutel A. Prospects for Diminishing the Impact of Nonamyloid Small-Vessel Diseases of the Brain. Annu Rev Pharmacol Toxicol 2020; 60:437-456. [PMID: 31425001 DOI: 10.1146/annurev-pharmtox-010818-021712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small-vessel diseases (SVDs) of the brain are involved in about one-fourth of ischemic strokes and a vast majority of intracerebral hemorrhages and are responsible for nearly half of dementia cases in the elderly. SVDs are a heavy burden for society, a burden that is expected to increase further in the absence of significant therapeutic advances, given the aging population. Here, we provide a critical appraisal of currently available therapeutic approaches for nonamyloid sporadic SVDs that are largely based on targeting modifiable risk factors. We review what is known about the pathogenic mechanisms of vascular risk factor-related SVDs and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most frequent hereditary SVD, and elaborate on two mechanism-based therapeutic approaches worth exploring in sporadic SVD and CADASIL. We conclude by discussing opportunities and challenges that need to be tackled if efforts to achieve significant therapeutic advances for these diseases are to be successful.
Collapse
Affiliation(s)
- Anne Joutel
- Institute of Psychiatry and Neurosciences of Paris, INSERM UMR1266, Paris Descartes University, 75014 Paris, France; .,DHU NeuroVasc, Sorbonne Paris Cité, 75010 Paris, France.,Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
38
|
Planas AM. Top ten discoveries of the year: Neurovascular disease. FREE NEUROPATHOLOGY 2020; 1:5. [PMID: 37283688 PMCID: PMC10209999 DOI: 10.17879/freeneuropathology-2020-2615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/25/2020] [Indexed: 06/08/2023]
Abstract
The aim of this review is to highlight novel findings in 2019 in the area of neurovascular disease. Experimental studies have provided insight into disease development, molecular determinants of pathology, and putative novel therapeutic targets. Studies in genetic experimental models as well as monogenic forms of human cerebrovascular diseases identified pathogenic molecules that may also be relevant to sporadic cases. There have been advances in understanding the development of cerebral cavernous angiomas and arteriovenous malformations, and putative curative treatments have been suggested from experimental models. Key pathogenic pathways involved in vessel calcification and stiffness have also been identified. At the cellular level, studies showed that proper function of endothelial and mural cells, particularly pericytes, is crucial to ensure full endothelial differentiation and blood-brain barrier integrity. Moreover, recent discoveries support the existence of a homeostatic crosstalk between vascular cells and other neural cells, including neurons. Cerebrovascular diseases are strongly associated with inflammation. Beyond pathogenic roles of specific components of the inflammatory response, new discoveries showed interesting interactions between inflammatory molecules and regulators of vascular function. Clinical investigation on cerebrovascular diseases has progressed by combining advanced imaging and genome-wide association studies. Finally, vascular cognitive impairment and dementia are receiving increasing attention. Recent findings suggest that high-salt intake may cause cerebrovascular dysfunction and cognitive impairment independent of hypoperfusion and hypertension. These and other recent reports will surely inspire further research in the field of cerebrovascular disease that will hopefully contribute to improved prevention and treatment.
Collapse
Affiliation(s)
- Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Spanish National Research Council (CSIC), Barcelona, Spain
| |
Collapse
|
39
|
Liu G, Zhang H, Liu B, Ji X. Rs2293871 regulates HTRA1 expression and affects cerebral small vessel stroke and Alzheimer's disease. Brain 2019; 142:e61. [PMID: 31603204 PMCID: PMC6821345 DOI: 10.1093/brain/awz305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Guiyou Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Haihua Zhang
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Bian Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|