1
|
Bardon AG, Ballesteros JJ, Brincat SL, Roy JE, Mahnke MK, Ishizawa Y, Brown EN, Miller EK. Convergent effects of different anesthetics on changes in phase alignment of cortical oscillations. Cell Rep 2025; 44:115685. [PMID: 40349347 DOI: 10.1016/j.celrep.2025.115685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 03/15/2025] [Accepted: 04/18/2025] [Indexed: 05/14/2025] Open
Abstract
Many anesthetics cause loss of consciousness despite having diverse underlying molecular and circuit actions. To explore the convergent effects of these drugs, we examine how anesthetic doses of ketamine and dexmedetomidine affect bilateral oscillations in the prefrontal cortex of nonhuman primates. Both anesthetics increase phase locking in the ventrolateral and dorsolateral prefrontal cortex, within and across hemispheres. However, the nature of the phase locking varies. Neighboring prefrontal subregions within a hemisphere show decreased phase alignment with both drugs. Local analyses within a region suggest that this finding could be explained by broad cortical distance-based effects, such as large traveling waves. In contrast, homologous areas across hemispheres become more aligned in phase. Our results suggest that both anesthetics induce strong patterns of cortical phase alignment that are markedly different from those during waking and that these patterns may be a common feature driving loss of responsiveness from different anesthetic drugs.
Collapse
Affiliation(s)
- Alexandra G Bardon
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesus J Ballesteros
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Psychology, Ruhr-Universität-Bochum, 44801 Bochum, Germany
| | - Scott L Brincat
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jefferson E Roy
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Meredith K Mahnke
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yumiko Ishizawa
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Emery N Brown
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Earl K Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Liang Z, Fan L, Zhang B, Shu W, Li D, Li X, Yu T. The changes in neural complexity and connectivity in thalamocortical and cortico-cortical systems after propofol-induced unconsciousness in different temporal scales. Neuroimage 2025; 311:121193. [PMID: 40204075 DOI: 10.1016/j.neuroimage.2025.121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/20/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025] Open
Abstract
Existing studies have indicated neural activity across diverse temporal and spatial scales. However, the alterations in complexity, functional connectivity, and directional connectivity within the thalamocortical and corticocortical systems across various scales during propofol-induced unconsciousness remain uncertain. We analyzed the stereo-electroencephalography (SEEG) from wakefulness to unconsciousness among the brain regions of the prefrontal cortex, temporal lobe, and anterior nucleus of the thalamus. The complexity (examined by permutation entropy (PE)), functional connectivity (permutation mutual information (PMI)), and directional connectivity (symbolic conditional mutual information (SCMI) and directionality index (DI)) were calculated across various scales. In the lower-band frequency (0.1-45 Hz) SEEG, after the loss of consciousness, PE significantly decreased (p < 0.001) in all regions and scales, except for the thalamus, which remained relatively unchanged at large scales (τ=32 ms). Following the loss of consciousness, inter-regional PMI either significantly increased or remained stable across different scales (τ=4 ms to 32 ms). During the unconscious state, SCMI between brain regions exhibited inconsistent changes across scales. In the late unconscious stage, the inter-regional DI across all scales indicated a shift from a balanced state of information flow between brain regions to a pattern where the prefrontal cortex and thalamus drive the temporal lobe. Our findings demonstrate that propofol-induced unconsciousness is associated with reduced cortical complexity, diverse functional connectivity, and a disrupted balance of information integration among thalamocortical and cortico-cortical systems. This study enhances the theoretical understanding of anesthetic-induced loss of consciousness by elucidating the scale- and region-specific effects of propofol on thalamocortical and cortico-cortical systems.
Collapse
Affiliation(s)
- Zhenhu Liang
- Key Laboratory of Intelligent Control and Neural Information Processing of the Ministry of Education of China, Yanshan University, Qinhuangdao 066004, Hebei, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Luxin Fan
- Key Laboratory of Intelligent Control and Neural Information Processing of the Ministry of Education of China, Yanshan University, Qinhuangdao 066004, Hebei, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Bin Zhang
- Key Laboratory of Intelligent Control and Neural Information Processing of the Ministry of Education of China, Yanshan University, Qinhuangdao 066004, Hebei, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Wei Shu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Duan Li
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Tao Yu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
3
|
Tong Y, Fan Z, Zou X, Yue Q, Wu Z, Chen L. Passive mapping of hand motor cortex across altered states of consciousness. Int J Neurosci 2025:1-11. [PMID: 40260620 DOI: 10.1080/00207454.2025.2496821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025]
Abstract
OBJECTIVE To evaluate the ability of median nerve stimulation (MNS)-induced high gamma band (HGB) activity in mapping the hand motor cortex at different states of consciousness. METHODS Five patients undergoing awake craniotomy were recruited. MNS-induced electrocorticographic signals were recorded from awake to anesthetic states, with the loss of consciousness (LOC) session divided into three stages (LOC1, LOC2, and LOC3) based on conscious level. HGB signals were analyzed to localize hand motor cortex. Linear models were applied to analyze HGB dynamics during LOC. RESULTS The sensitivity of hand motor cortex mapping based on HGB average envelope at short-latency period was 100%, 96.67%±3.33%, 83.47%±8.19%, and 82.22%±11.44% for the awake, LOC1, LOC2 and LOC3 stages. The sensitivity for HGB average envelope at long-latency period was 92.67%±4.52%, 90.85%±4.13%, 72.27%±17.07%, and 40.53%±12.82% across the same stages. The sensitivity based on HGB average power at short-latency period decreased from 100% in awake stage to 72.83%±12.95%, 48.11%±15.95%, and 21.12%±5.70% across LOC stages. The sensitivity for HGB average power at long-latency period dropped from 92.67%±4.52% in awake stage to 70.94%±10.79%, 58.37%±17.49%, and 25.71%±14.95% in the subsequent LOC stages. The slope coefficient of the simple linear model for long-latency average envelope was significantly smaller than that for short-latency. In the linear mixed effects model, the Condition × Sliding Window estimate coefficient was -0.794. CONCLUSION In awake state, HGB average envelope and average power both effectively localized hand motor cortex. With declining consciousness, the mapping ability of average power significantly deteriorated, while the mapping ability of short-latency average envelope remained relatively stable.
Collapse
Affiliation(s)
- Yusheng Tong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Zhen Fan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Xiang Zou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Qi Yue
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Zehan Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|
4
|
Yin R, Gao J, Liu Y, Guo C. Functional analysis of the effects of propofol on tamoxifen‑resistant breast cancer cells: Insights into transcriptional regulation. Oncol Lett 2025; 29:194. [PMID: 40041408 PMCID: PMC11878209 DOI: 10.3892/ol.2025.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Although 70% of patients with estrogen receptor-positive breast cancer benefit from tamoxifen (TAM) therapy, the development of resistance to TAM leads to high rates of metastasis and a poor prognosis. Propofol, a commonly used anesthetic, can inhibit the occurrence and progression of breast cancer. In the present study, the effects of propofol on TAM-resistant (TR) breast cancer cells were evaluated. MCF7-TR cells were treated with or without propofol. Subsequently, cell cycle progression and the induction of apoptosis were detected by flow cytometry, whereas cell proliferation was assessed using Cell Counting Kit-8 and colony formation assays. Furthermore, the potential transcriptional regulatory effects of propofol on MCF7-TR cells were investigated using RNA sequencing. The results indicated that propofol significantly promoted cell cycle arrest, induced apoptosis, and inhibited proliferation and colony formation in MCF7-TR cells. Furthermore, transcriptome sequencing analysis revealed 1,065 differentially expressed genes between propofol-treated MCF7-TR and untreated MCF7-TR cells. Gene Ontology annotation enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and Gene Set Enrichment Analysis indicated that propofol affected the expression levels of genes located on the 'plasma membrane' and 'cell periphery', while mainly regulating signals involved in cancer biology, immune response and metabolic pathways. These results identified the potential effects of propofol on TR breast cancer cells and provided a theoretical basis for clinical treatment, particularly for individuals with TAM resistance.
Collapse
Affiliation(s)
- Runyang Yin
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Jing Gao
- First Clinical Medical College, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Yang Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Chunyan Guo
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| |
Collapse
|
5
|
Wang P, Bi Y, Li M, Chen J, Wang Z, Wen H, Zhou M, Luo M, Zhang W. Cortico-striatal gamma oscillations are modulated by dopamine D3 receptors in dyskinetic rats. Neural Regen Res 2025; 20:1164-1177. [PMID: 38989954 PMCID: PMC11438323 DOI: 10.4103/nrr.nrr-d-23-01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/16/2024] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00031/figure1/v/2024-07-06T104127Z/r/image-tiff Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia. Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia. Currently, studies have reported increased oscillation power in cases of levodopa-induced dyskinesia. However, little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia. Furthermore, the role of the dopamine D3 receptor, which is implicated in levodopa-induced dyskinesia, in movement disorder-related changes in neural oscillations is unclear. We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson's disease. Furthermore, levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components, as well as bidirectional primary motor cortex (M1) ↔ dorsolateral striatum gamma flow. Administration of PD128907 (a selective dopamine D3 receptor agonist) induced dyskinesia and excessive gamma oscillations with a bidirectional M1 ↔ dorsolateral striatum flow. However, administration of PG01037 (a selective dopamine D3 receptor antagonist) attenuated dyskinesia, suppressed gamma oscillations and cortical gamma aperiodic components, and decreased gamma causality in the M1 → dorsolateral striatum direction. These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity, and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
Collapse
Affiliation(s)
- Pengfei Wang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Coventry BS, Luu CP, Bartlett EL. Focal Infrared Neural Stimulation Propagates Dynamical Transformations in Auditory Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642906. [PMID: 40161605 PMCID: PMC11952546 DOI: 10.1101/2025.03.12.642906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Significance Infrared neural stimulation (INS) has emerged as a potent neuromodulation technology, offering safe and focal stimulation with superior spatial recruitment profiles compared to conventional electrical methods. However, the neural dynamics induced by INS stimulation remain poorly understood. Elucidating these dynamics will help develop new INS stimulation paradigms and advance its clinical application. Aim In this study, we assessed the local network dynamics of INS entrainment in the auditory thalamocortical circuit using the chronically implanted rat model; our approach focused on measuring INS energy-based local field potential (LFP) recruitment induced by focal thalamocortical stimulation. We further characterized linear and nonlinear oscillatory LFP activity in response to single-pulse and periodic INS and performed spectral decomposition to uncover specific LFP band entrainment to INS. Finally, we examined spike-field transformations across the thalamocortical synapse using spike-LFP coherence coupling. Results We found that INS significantly increases LFP amplitude as a log-linear function of INS energy per pulse, primarily entraining to LFP β and γ bands with synchrony extending to 200 Hz in some cases. A subset of neurons demonstrated nonlinear, chaotic oscillations linked to information transfer across cortical circuits. Finally, we utilized spike-field coherences to correlate spike coupling to LFP frequency band activity and suggest an energy-dependent model of network activation resulting from INS stimulation. Conclusions We show that INS reliably drives robust network activity and can potently modulate cortical field potentials across a wide range of frequencies in a stimulus parameter-dependent manner. Based on these results, we propose design principles for developing full coverage, all-optical thalamocortical auditory neuroprostheses.
Collapse
Affiliation(s)
- Brandon S Coventry
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907 USA
- Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907 USA
| | - Cuong P Luu
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53907 USA
| | - Edward L Bartlett
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907 USA
- Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907 USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
7
|
Hu Y, Feng Y, Luo H, Zhu XN, Chen S, Yang K, Deng Z, Luo M, Du W, Wang Q, Wang S, Wei K, Hu J, Wang Y. Dissociation-related behaviors in mice emerge from the inhibition of retrosplenial cortex parvalbumin interneurons. Cell Rep 2025; 44:115086. [PMID: 39708317 DOI: 10.1016/j.celrep.2024.115086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
Dissociation, characterized by altered consciousness and perception, underlies multiple mental disorders, but the specific neuronal subtypes involved remain elusive. In mice, we find that dissociation-inducing doses of ketamine significantly inhibit retrosplenial cortex (RSC) parvalbumin interneurons (PV-INs), enhancing delta oscillations (1-3 Hz) and delta-gamma phase-amplitude coupling (δ-γ PAC) and inducing dissociation-like behaviors. Optogenetic inhibition of RSC PV-INs triggers delta oscillations, δ-γ PAC, and some dissociation-like behaviors without ketamine. Furthermore, activation of RSC PV-INs or knockdown of the N-methyl-D-aspartate receptor subunit NR1 and the hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) in RSC PV-INs attenuates ketamine-induced delta oscillations, δ-γ PAC, and certain dissociation-like behaviors. These findings reveal that PV-INs regulate delta oscillations and δ-γ PAC and identify NR1 and HCN1 as ketamine targets in PV-INs that may cooperatively affect dissociation, possibly providing potential therapeutic targets for dissociative symptoms.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yifan Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Na Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Siyu Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kexin Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziqing Deng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengqiang Luo
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenjie Du
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qi Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shubai Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kai Wei
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
8
|
Mazhari-Jensen DS, Jensen W, Muhammadee Janjua TA, Meijs S, Nørgaard Dos Santos Nielsen TG, Andreis FR. Pigs as a translational animal model for the study of peak alpha frequency. Neuroscience 2025; 565:567-576. [PMID: 39694317 DOI: 10.1016/j.neuroscience.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/20/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
The most characteristic feature of the human electroencephalogram is the peak alpha frequency (PAF). While PAF has been proposed as a biomarker in several diseases and disorders, the disease mechanisms modulating PAF, as well as its physiological substrates, remain elusive. This has partly been due to challenges related to experimental manipulation and invasive procedures in human neuroscience, as well as the scarcity of animal models where PAF is consistently present in resting-state. With the potential inclusion of PAF in clinical screening and decision-making, advancing the mechanistic understanding of PAF is warranted. In this paper, we propose the female Danish Landrace pig as a suitable animal model to probe the mechanisms of PAF and its feature as a biomarker. We show that somatosensory alpha oscillations are present in anesthetized pigs using electrocorticography and intracortical electrodes located at the sensorimotor cortex. This was evident when looking at the time-domain as well as the spectral morphology of spontaneous recordings. We applied the FOOOF-algorithm to extract the spectral characteristics and implemented a robustness threshold for any periodic component. Using this conservative threshold, PAF was present in 18/20 pigs with a normal distribution of the peak frequency between 8-12 Hz, producing similar findings to human recordings. We show that PAF was present in 69.6 % of epochs of approximately six-minute-long resting-state recordings. In sum, we propose that the pig is a suitable candidate for investigating the neural mechanisms of PAF as a biomarker for disease and disorders such as pain, neuropsychiatric disorders, and response to pharmacotherapy.
Collapse
Affiliation(s)
- Daniel Skak Mazhari-Jensen
- Neural Engineering and Neurophysiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| | - Winnie Jensen
- Neural Engineering and Neurophysiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Taha Al Muhammadee Janjua
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Suzan Meijs
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Felipe Rettore Andreis
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
9
|
Dai Y, He Q, Wang S, Cao T, Chai X, Wang N, Dong Y, Wong P, He J, Duan F, Yang Y. Deciphering network dysregulations and temporo-spatial dynamics in disorders of consciousness: insights from minimum spanning tree analysis. Front Psychol 2024; 15:1458339. [PMID: 39749272 PMCID: PMC11693494 DOI: 10.3389/fpsyg.2024.1458339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
Objectives The neural mechanism associated with impaired consciousness is not fully clear. We aim to explore the association between static and dynamic minimum spanning tree (MST) characteristics and neural mechanism underlying impaired consciousness. Methods MSTs were constructed based on full-length functional magnetic resonance imaging (fMRI) signals and fMRI signal segments within each time window. Global and local measures of static MSTs, as well as spatio-temporal interaction characteristics of dynamic MSTs were investigated. Results A disruption or an alteration in the functional connectivity, the decreased average coupling strength and the reorganization of hub nodes were observed in patients with minimally conscious state (MCS) and patients with vegetative state (VS). The analysis of global and local measures quantitatively supported altered static functional connectivity patterns and revealed a slower information transmission efficiency in both patient groups. From a dynamic perspective, the spatial distribution of hub nodes exhibited relative stability over time in both normal and patient populations. The increased temporal variability in multiple brain regions within resting-state networks associated with consciousness was detected in MCS patients and VS patients, especially thalamus. As well, the increased spatial variability in multiple brain regions within these resting-state networks was detected in MCS patients and VS patients. In addition, local measure and spatio-temporal variability analysis indicated that the differences in network structure between two groups of patients were mainly in frontoparietal network and auditory network. Conclusion Our findings suggest that altered static and dynamic MST characteristics may shed some light on neural mechanism underlying impaired consciousness.
Collapse
Affiliation(s)
- Yangyang Dai
- Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation, College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shan Wang
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Tianqing Cao
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Xiaoke Chai
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Nan Wang
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Yijun Dong
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiling Wong
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taiwan, China
| | - Jianghong He
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Feng Duan
- Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation, College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Beijing Institute of Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
10
|
Qin X, Chen X, Yao L, Lu F, Liang Z, He J, Guo X, Li X. Differential brain activity in patients with disorders of consciousness: a 3-month rs-fMRI study using amplitude of low-frequency fluctuation. Front Neurol 2024; 15:1477596. [PMID: 39734630 PMCID: PMC11673223 DOI: 10.3389/fneur.2024.1477596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Disorders of consciousness (DoC) from severe brain injuries have significant impacts. However, further research on nuanced biomarkers is needed to fully understand the condition. This study employed resting-state functional MRI (rs-fMRI) and the amplitude of low-frequency fluctuation (ALFF) to investigate differential brain activity in patients with DoC following spinal cord stimulation (SCS) therapy. It also assessed the predictive value of rs-fMRI and ALFF in determining the consciousness levels at 3 months post-therapy. Methods We analyzed rs-fMRI data from 31 patients with traumatic brain injury (TBI) and 22 with non-traumatic brain injury (non-TBI) diagnosed with DoC. ALFF was measured before SCS therapy, and clinical outcomes were assessed 3 months later using the Coma Recovery Scale-Revised. Results Patients with TBI showed increased ALFF in the thalamus and anterior cingulate cortex, whereas the middle occipital lobe showed decreased ALFF. In the non-TBI group, a higher ALFF was noted in the precuneus, with a reduced ALFF in the occipital and temporal lobes. Patients with improved consciousness post-SCS exhibited distinct ALFF patterns compared with those with unchanged consciousness, particularly in the posterior cingulate and occipital regions. Conclusion The application of ALFF in rs-fMRI may be a predictive tool for post-treatment outcomes in patients with DoC of varying etiologies. Differential ALFF in specific brain regions could indicate the likelihood of improvement in consciousness following SCS therapy. Clinical trial registration https://www.chictr.org.cn/, Identifier ChiCTR2300069756.
Collapse
Affiliation(s)
- Xuewei Qin
- Department of Anesthesiology, Peking University International Hospital, Beijing, China
| | - Xuanling Chen
- Department of Anesthesiology, Peking University International Hospital, Beijing, China
| | - Lan Yao
- Department of Anesthesiology, Peking University International Hospital, Beijing, China
| | - Fa Lu
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Zhenhu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
11
|
Hu Y, Wang Y, Zhang L, Luo M, Wang Y. Neural Network Mechanisms Underlying General Anesthesia: Cortical and Subcortical Nuclei. Neurosci Bull 2024; 40:1995-2011. [PMID: 39168960 PMCID: PMC11625048 DOI: 10.1007/s12264-024-01286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/10/2024] [Indexed: 08/23/2024] Open
Abstract
General anesthesia plays a significant role in modern medicine. However, the precise mechanism of general anesthesia remains unclear, posing a key scientific challenge in anesthesiology. Advances in neuroscience techniques have enabled targeted manipulation of specific neural circuits and the capture of brain-wide neural activity at high resolution. These advances hold promise for elucidating the intricate mechanisms of action of general anesthetics. This review aims to summarize our current understanding of the role of cortical and subcortical nuclei in modulating general anesthesia, providing new evidence of cortico-cortical and thalamocortical networks in relation to anesthesia and consciousness. These insights contribute to a comprehensive understanding of the neural network mechanisms underlying general anesthesia.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yun Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lingjing Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Mengqiang Luo
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
12
|
Toker D, Thum JA, Guang J, Miyamoto H, Yamakawa K, Vespa PM, Schnakers C, Bari AA, Hudson A, Pouratian N, Monti MM. An AI-Driven Model of Consciousness, Its Disorders, and Their Treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618720. [PMID: 39463979 PMCID: PMC11507942 DOI: 10.1101/2024.10.16.618720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Understanding the neural signatures of consciousness and the mechanisms underlying its disorders, such as coma and unresponsive wakefulness syndrome, remains a critical challenge in neuroscience. In this study, we present a novel computational approach for the in silico discovery of neural correlates of consciousness, the mechanisms driving its disorders, and potential treatment strategies. Inspired by generative adversarial networks, which have driven recent advancements in generative artificial intelligence (AI), we trained deep neural networks to detect consciousness across multiple brain areas and species, including humans. These networks were then integrated with a genetic algorithm to optimize a brain-wide mean-field model of neural electrodynamics. The result is a realistic simulation of conscious brain states and disorders of consciousness (DOC), which not only recapitulates known mechanisms of unconsciousness but also predicts novel causes expected to lead to these conditions. Beyond simulating DOC, our model provides a platform for exploring therapeutic interventions, specifically deep brain stimulation (DBS), which has shown promise in improving levels of awareness in DOC in over five decades of study. We systematically applied simulated DBS to various brain regions at a wide range of frequencies to identify an optimal paradigm for reigniting consciousness in this cohort. Our findings suggest that in addition to previously studied thalamic and pallidal stimulation, high-frequency stimulation of the subthalamic nucleus, a relatively underexplored target in DOC, may hold significant promise for restoring consciousness in this set of disorders.
Collapse
|
13
|
Bardon AG, Ballesteros JJ, Brincat SL, Roy JE, Mahnke MK, Ishizawa Y, Brown EN, Miller EK. Convergent effects of different anesthetics on changes in phase alignment of cortical oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585943. [PMID: 38562734 PMCID: PMC10983946 DOI: 10.1101/2024.03.20.585943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Many anesthetics cause loss of responsiveness despite having diverse underlying molecular and circuit actions. To explore the convergent effects of these drugs, we examined how anesthetic doses of ketamine and dexmedetomidine affected oscillations in the prefrontal cortex of nonhuman primates. Both anesthetics caused increases in phase locking in the ventrolateral and dorsolateral prefrontal cortex, within and across hemispheres. However, the nature of the phase locking varied. Activity in different subregions within a hemisphere became more anti-phase with both drugs. Local analyses within a region suggested that this finding could be explained by broad cortical distance-based effects, such as large traveling waves. By contrast, homologous areas across hemispheres became more in-phase. Our results suggest that both anesthetics induce strong patterns of cortical phase alignment that are markedly different from those in the awake state, and that these patterns may be a common feature driving loss of responsiveness from different anesthetic drugs.
Collapse
|
14
|
Zhou P, Deng H, Zeng J, Ran H, Yu C. Unconscious classification of quantitative electroencephalogram features from propofol versus propofol combined with etomidate anesthesia using one-dimensional convolutional neural network. Front Med (Lausanne) 2024; 11:1447951. [PMID: 39359920 PMCID: PMC11445052 DOI: 10.3389/fmed.2024.1447951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Objective Establishing a convolutional neural network model for the recognition of characteristic raw electroencephalogram (EEG) signals is crucial for monitoring consciousness levels and guiding anesthetic drug administration. Methods This trial was conducted from December 2023 to March 2024. A total of 40 surgery patients were randomly divided into either a propofol group (1% propofol injection, 10 mL: 100 mg) (P group) or a propofol-etomidate combination group (1% propofol injection, 10 mL: 100 mg, and 0.2% etomidate injection, 10 mL: 20 mg, mixed at a 2:1 volume ratio) (EP group). In the P group, target-controlled infusion (TCI) was employed for sedation induction, with an initial effect site concentration set at 5-6 μg/mL. The EP group received an intravenous push with a dosage of 0.2 mL/kg. Six consciousness-related EEG features were extracted from both groups and analyzed using four prediction models: support vector machine (SVM), Gaussian Naive Bayes (GNB), artificial neural network (ANN), and one-dimensional convolutional neural network (1D CNN). The performance of the models was evaluated based on accuracy, precision, recall, and F1-score. Results The power spectral density (94%) and alpha/beta ratio (72%) demonstrated higher accuracy as indicators for assessing consciousness. The classification accuracy of the 1D CNN model for anesthesia-induced unconsciousness (97%) surpassed that of the SVM (83%), GNB (81%), and ANN (83%) models, with a significance level of p < 0.05. Furthermore, the mean and mean difference ± standard error of the primary power values for the EP and P groups during the induced period were as follows: delta (23.85 and 16.79, 7.055 ± 0.817, p < 0.001), theta (10.74 and 8.743, 1.995 ± 0.7045, p < 0.02), and total power (24.31 and 19.72, 4.588 ± 0.7107, p < 0.001). Conclusion Large slow-wave oscillations, power spectral density, and the alpha/beta ratio are effective indicators of changes in consciousness during intravenous anesthesia with a propofol-etomidate combination. These indicators can aid anesthesiologists in evaluating the depth of anesthesia and adjusting dosages accordingly. The 1D CNN model, which incorporates consciousness-related EEG features, represents a promising tool for assessing the depth of anesthesia. Clinical Trial Registration https://www.chictr.org.cn/index.html.
Collapse
Affiliation(s)
- Pan Zhou
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Haixia Deng
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zeng
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Haosong Ran
- College of Artificial Intelligent, Chongqing University of Technology, Chongqing, China
| | - Cong Yu
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
15
|
Huang Z, Mashour GA, Hudetz AG. Propofol disrupts the functional core-matrix architecture of the thalamus in humans. Nat Commun 2024; 15:7496. [PMID: 39251579 PMCID: PMC11384736 DOI: 10.1038/s41467-024-51837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Research into the role of thalamocortical circuits in anesthesia-induced unconsciousness is difficult due to anatomical and functional complexity. Prior neuroimaging studies have examined either the thalamus as a whole or focused on specific subregions, overlooking the distinct neuronal subtypes like core and matrix cells. We conducted a study of heathy volunteers and functional magnetic resonance imaging during conscious baseline, deep sedation, and recovery. We advanced the functional gradient mapping technique to delineate the functional geometry of thalamocortical circuits, within a framework of the unimodal-transmodal functional axis of the cortex. Here we show a significant shift in this geometry during deep sedation, marked by a transmodal-deficient geometry. This alteration is closely linked to the spatial variations in the matrix cell composition within the thalamus. This research bridges cellular and systems-level understanding, highlighting the crucial role of thalamic core-matrix functional architecture in understanding the neural mechanisms of states of consciousness.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA.
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, USA.
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
| | - George A Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anthony G Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Vaz A, Wathen C, Miranda S, Thomas R, Darlington T, Jabarkheel R, Tomlinson S, Arena J, Bond K, Salwi S, Ajmera S, Bachschmid-Romano L, Gugger J, Sandsmark D, Diaz-Arrastia R, Schuster J, Ramayya AG, Cajigas I, Pesaran B, Chen HI, Petrov D. Return of intracranial beta oscillations and traveling waves with recovery from traumatic brain injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604293. [PMID: 39091808 PMCID: PMC11291083 DOI: 10.1101/2024.07.19.604293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Traumatic brain injury (TBI) remains a pervasive clinical problem associated with significant morbidity and mortality. However, TBI remains clinically and biophysically ill-defined, and prognosis remains difficult even with the standardization of clinical guidelines and advent of multimodality monitoring. Here we leverage a unique data set from TBI patients implanted with either intracranial strip electrodes during craniotomy or quad-lumen intracranial bolts with depth electrodes as part of routine clinical practice. By extracting spectral profiles of this data, we found that the presence of narrow-band oscillatory activity in the beta band (12-30 Hz) closely corresponds with the neurological exam as quantified with the standard Glasgow Coma Scale (GCS). Further, beta oscillations were distributed over the cortical surface as traveling waves, and the evolution of these waves corresponded to recovery from coma, consistent with the putative role of waves in perception and cognitive activity. We consequently propose that beta oscillations and traveling waves are potential biomarkers of recovery from TBI. In a broader sense, our findings suggest that emergence from coma results from recovery of thalamo-cortical interactions that coordinate cortical beta rhythms.
Collapse
Affiliation(s)
- Alex Vaz
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Connor Wathen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen Miranda
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rachel Thomas
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Timothy Darlington
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rashad Jabarkheel
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel Tomlinson
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Arena
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kamila Bond
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sanjana Salwi
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sonia Ajmera
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - James Gugger
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Danielle Sandsmark
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James Schuster
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ashwin G Ramayya
- Department of Neurosurgery, Stanford University, Palo Alto, CA, 94305, USA
| | - Iahn Cajigas
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bijan Pesaran
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - H Isaac Chen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Dmitriy Petrov
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
17
|
Muheyati A, Jiang S, Wang N, Yu G, Su R. Extrasynaptic GABA A receptors in central medial thalamus mediate anesthesia in rats. Eur J Pharmacol 2024; 972:176561. [PMID: 38580182 DOI: 10.1016/j.ejphar.2024.176561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Neuronal depression in the thalamus underlies anesthetic-induced loss of consciousness, while the precise sub-thalamus nuclei and molecular targets involved remain to be elucidated. The present study investigated the role of extrasynaptic GABAA receptors in the central medial thalamic nucleus (CM) in anesthesia induced by gaboxadol (THIP) and diazepam (DZP) in rats. Local lesion of the CM led to a decrease in the duration of loss of righting reflex induced by THIP and DZP. CM microinjection of THIP but not DZP induced anesthesia. The absence of righting reflex in THIP-treated rats was consistent with the increase of low frequency oscillations in the delta band in the medial prefrontal cortex. CM microinjection of GABAA receptor antagonist SR95531 significantly attenuated the anesthesia induced by systemically-administered THIP, but not DZP. Moreover, the rats with declined expression of GABAA receptor δ-subunit in the CM were less responsive to THIP or DZP. These findings explained a novel mechanism of THIP-induced loss of consciousness and highlighted the role of CM extrasynaptic GABAA receptors in mediating anesthesia.
Collapse
Affiliation(s)
- Alai Muheyati
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shanshan Jiang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Na Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Gang Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
18
|
Thum JA, Malekmohammadi M, Toker D, Sparks H, Alijanpourotaghsara A, Choi JW, Hudson AE, Monti MM, Pouratian N. Globus pallidus externus drives increase in network-wide alpha power with propofol-induced loss-of-consciousness in humans. Cereb Cortex 2024; 34:bhae243. [PMID: 38850214 PMCID: PMC11161864 DOI: 10.1093/cercor/bhae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
States of consciousness are likely mediated by multiple parallel yet interacting cortico-subcortical recurrent networks. Although the mesocircuit model has implicated the pallidocortical circuit as one such network, this circuit has not been extensively evaluated to identify network-level electrophysiological changes related to loss of consciousness (LOC). We characterize changes in the mesocircuit in awake versus propofol-induced LOC in humans by directly simultaneously recording from sensorimotor cortices (S1/M1) and globus pallidus interna and externa (GPi/GPe) in 12 patients with Parkinson disease undergoing deep brain stimulator implantation. Propofol-induced LOC is associated with increases in local power up to 20 Hz in GPi, 35 Hz in GPe, and 100 Hz in S1/M1. LOC is likewise marked by increased pallidocortical alpha synchrony across all nodes, with increased alpha/low beta Granger causal (GC) flow from GPe to all other nodes. In contrast, LOC is associated with decreased network-wide beta coupling and beta GC from M1 to the rest of the network. Results implicate an important and possibly central role of GPe in mediating LOC-related increases in alpha power, supporting a significant role of the GPe in modulating cortico-subcortical circuits for consciousness. Simultaneous LOC-related suppression of beta synchrony highlights that distinct oscillatory frequencies act independently, conveying unique network activity.
Collapse
Affiliation(s)
- Jasmine A Thum
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite 540, Los Angeles, CA 90095, United States
| | - Mahsa Malekmohammadi
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite 540, Los Angeles, CA 90095, United States
| | - Daniel Toker
- Department of Psychology, University of California, Los Angeles, 6522 Pritzker Hall, Los Angeles, CA 90095, United States
| | - Hiro Sparks
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite 540, Los Angeles, CA 90095, United States
| | - Amirreza Alijanpourotaghsara
- Department of Neurological Surgery, UT Southwestern Medical Center, 5323 Harry Hines Blvd MC8855, Dallas, TX 75390, United States
| | - Jeong Woo Choi
- Department of Neurological Surgery, UT Southwestern Medical Center, 5323 Harry Hines Blvd MC8855, Dallas, TX 75390, United States
| | - Andrew E Hudson
- Department of Anesthesiology, University of California, Los Angeles, 747 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Martin M Monti
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite 540, Los Angeles, CA 90095, United States
- Department of Psychology, University of California, Los Angeles, 6522 Pritzker Hall, Los Angeles, CA 90095, United States
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, 5323 Harry Hines Blvd MC8855, Dallas, TX 75390, United States
| |
Collapse
|
19
|
Yi R, Cheng S, Zhong F, Luo D, You Y, Yu T, Wang H, Zhou L, Zhang Y. GABAergic neurons of anterior thalamic reticular nucleus regulate states of consciousness in propofol- and isoflurane-mediated general anesthesia. CNS Neurosci Ther 2024; 30:e14782. [PMID: 38828651 PMCID: PMC11145368 DOI: 10.1111/cns.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The thalamus system plays critical roles in the regulation of reversible unconsciousness induced by general anesthetics, especially the arousal stage of general anesthesia (GA). But the function of thalamus in GA-induced loss of consciousness (LOC) is little known. The thalamic reticular nucleus (TRN) is the only GABAergic neurons-composed nucleus in the thalamus, which is composed of parvalbumin (PV) and somatostatin (SST)-expressing GABAergic neurons. The anterior sector of TRN (aTRN) is indicated to participate in the induction of anesthesia, but the roles remain unclear. This study aimed to reveal the role of the aTRN in propofol and isoflurane anesthesia. METHODS We first set up c-Fos straining to monitor the activity variation of aTRNPV and aTRNSST neurons during propofol and isoflurane anesthesia. Subsequently, optogenetic tools were utilized to activate aTRNPV and aTRNSST neurons to elucidate the roles of aTRNPV and aTRNSST neurons in propofol and isoflurane anesthesia. Electroencephalogram (EEG) recordings and behavioral tests were recorded and analyzed. Lastly, chemogenetic activation of the aTRNPV neurons was applied to confirm the function of the aTRN neurons in propofol and isoflurane anesthesia. RESULTS c-Fos straining showed that both aTRNPV and aTRNSST neurons are activated during the LOC period of propofol and isoflurane anesthesia. Optogenetic activation of aTRNPV and aTRNSST neurons promoted isoflurane induction and delayed the recovery of consciousness (ROC) after propofol and isoflurane anesthesia, meanwhile chemogenetic activation of the aTRNPV neurons displayed the similar effects. Moreover, optogenetic and chemogenetic activation of the aTRN neurons resulted in the accumulated burst suppression ratio (BSR) during propofol and isoflurane GA, although they represented different effects on the power distribution of EEG frequency. CONCLUSION Our findings reveal that the aTRN GABAergic neurons play a critical role in promoting the induction of propofol- and isoflurane-mediated GA.
Collapse
Affiliation(s)
- Rulan Yi
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Shiyu Cheng
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Fuwang Zhong
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Dan Luo
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Ying You
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Tian Yu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Haiying Wang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Liang Zhou
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Yu Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| |
Collapse
|
20
|
Choi JW, Malekmohammadi M, Niketeghad S, Cross KA, Ebadi H, Alijanpourotaghsara A, Aron A, Rutishauser U, Pouratian N. Prefrontal-subthalamic theta signaling mediates delayed responses during conflict processing. Prog Neurobiol 2024; 236:102613. [PMID: 38631480 PMCID: PMC11149786 DOI: 10.1016/j.pneurobio.2024.102613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/29/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
While medial frontal cortex (MFC) and subthalamic nucleus (STN) have been implicated in conflict monitoring and action inhibition, respectively, an integrated understanding of the spatiotemporal and spectral interaction of these nodes and how they interact with motor cortex (M1) to definitively modify motor behavior during conflict is lacking. We recorded neural signals intracranially across presupplementary motor area (preSMA), M1, STN, and globus pallidus internus (GPi), during a flanker task in 20 patients undergoing deep brain stimulation implantation surgery for Parkinson disease or dystonia. Conflict is associated with sequential and causal increases in local theta power from preSMA to STN to M1 with movement delays directly correlated with increased STN theta power, indicating preSMA is the MFC locus that monitors conflict and signals STN to implement a 'break.' Transmission of theta from STN-to-M1 subsequently results in a transient increase in M1-to-GPi beta flow immediately prior to movement, modulating the motor network to actuate the conflict-related action inhibition (i.e., delayed response). Action regulation during conflict relies on two distinct circuits, the conflict-related theta and movement-related beta networks, that are separated spatially, spectrally, and temporally, but which interact dynamically to mediate motor performance, highlighting complex parallel yet interacting networks regulating movement.
Collapse
Affiliation(s)
- Jeong Woo Choi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mahsa Malekmohammadi
- Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA
| | - Soroush Niketeghad
- Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA
| | - Katy A Cross
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| | - Hamasa Ebadi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Adam Aron
- Department of Psychology, University of California, San Diego, CA 92093, USA
| | - Ueli Rutishauser
- Departments of Neurosurgery and Neurology, and Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
21
|
Wang TC, Li WY, Lai JCY, Kuo TBJ, Yang CCH. Nociception Effect on Frontal Electroencephalogram Waveform and Phase-Amplitude Coupling in Laparoscopic Surgery. Anesth Analg 2024; 138:1070-1080. [PMID: 37428681 DOI: 10.1213/ane.0000000000006609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
BACKGROUND Electroencephalographic pattern changes during anesthesia reflect the nociception-analgesia balance. Alpha dropout, delta arousal, and beta arousal with noxious stimulation have been described during anesthesia; however, data on the reaction of other electroencephalogram signatures toward nociception are scarce. Analyzing the effects of nociception on different electroencephalogram signatures may help us find new nociception markers in anesthesia and understand the neurophysiology of pain in the brain. This study aimed to analyze the electroencephalographic frequency pattern and phase-amplitude coupling change during laparoscopic surgeries. METHODS This study evaluated 34 patients who underwent laparoscopic surgery. The electroencephalogram frequency band power and phase-amplitude coupling of different frequencies were analyzed across 3 stages of laparoscopy: incision, insufflation, and opioid stages. Repeated-measures analysis of variance with a mixed model and the Bonferroni method for multiple comparisons were used to analyze the changes in the electroencephalogram signatures between the preincision and postincision/postinsufflation/postopioid phases. RESULTS During noxious stimulation, the frequency spectrum showed obvious decreases in the alpha power percentage after the incision (mean ± standard error of the mean [SEM], 26.27 ± 0.44 and 24.37 ± 0.66; P < .001) and insufflation stages (26.27 ± 0.44 and 24.40 ± 0.68; P = .002), which recovered after opioid administration. Further phase-amplitude analyses showed that the modulation index (MI) of the delta-alpha coupling decreased after the incision stage (1.83 ± 0.22 and 0.98 ± 0.14 [MI × 10 3 ]; P < .001), continued to be suppressed during the insufflation stage (1.83 ± 0.22 and 1.17 ± 0.15 [MI × 10 3 ]; P = .044), and recovered after opioid administration. CONCLUSIONS Alpha dropout during noxious stimulation is observed in laparoscopic surgeries under sevoflurane. In addition, the modulation index of delta-alpha coupling decreases during noxious stimulation and recovers after the administration of rescue opioids. Phase-amplitude coupling of the electroencephalogram may be a new approach for evaluating the nociception-analgesia balance during anesthesia.
Collapse
Affiliation(s)
- Tzu Chun Wang
- From the Department of Anaesthesia, Taitung MacKay Memorial Hospital, Taitung, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei Yi Li
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jerry Cheng-Yen Lai
- Department of Medical Research, Taitung MacKay Memorial Hospital, Taitung, Taiwan
- Master Program in Biomedicine, College of Science and Engineering, National Taitung University, Taitung, Taiwan
| | - Terry B J Kuo
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
- Tsoutun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
| | - Cheryl C H Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
22
|
Ryu J, Choi JW, Niketeghad S, Torres EB, Pouratian N. Irregularity of instantaneous gamma frequency in the motor control network characterize visuomotor and proprioceptive information processing. J Neural Eng 2024; 21:10.1088/1741-2552/ad2e1d. [PMID: 38417152 PMCID: PMC11025688 DOI: 10.1088/1741-2552/ad2e1d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Objective.The study aims to characterize movements with different sensory goals, by contrasting the neural activity involved in processing proprioceptive and visuo-motor information. To accomplish this, we have developed a new methodology that utilizes the irregularity of the instantaneous gamma frequency parameter for characterization.Approach.In this study, eight essential tremor patients undergoing an awake deep brain stimulation implantation surgery repetitively touched the clinician's finger (forward visually-guided/FV movement) and then one's own chin (backward proprioceptively-guided/BP movement). Neural electrocorticographic recordings from the motor (M1), somatosensory (S1), and posterior parietal cortex (PPC) were obtained and band-pass filtered in the gamma range (30-80 Hz). The irregularity of the inter-event intervals (IEI; inverse of instantaneous gamma frequency) were examined as: (1) auto-information of the IEI time series and (2) correlation between the amplitude and its proceeding IEI. We further explored the network connectivity after segmenting the FV and BP movements by periods of accelerating and decelerating forces, and applying the IEI parameter to transfer entropy methods.Main results.Conceptualizing that the irregularity in IEI reflects active new information processing, we found the highest irregularity in M1 during BP movement, highest in PPC during FV movement, and the lowest during rest at all sites. Also, connectivity was the strongest from S1 to M1 and from S1 to PPC during FV movement with accelerating force and weakest during rest.Significance. We introduce a novel methodology that utilize the instantaneous gamma frequency (i.e. IEI) parameter in characterizing goal-oriented movements with different sensory goals, and demonstrate its use to inform the directional connectivity within the motor cortical network. This method successfully characterizes different movement types, while providing interpretations to the sensory-motor integration processes.
Collapse
Affiliation(s)
- Jihye Ryu
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jeong Woo Choi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Soroush Niketeghad
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Elizabeth B. Torres
- Psychology Department, Rutgers University Center for Cognitive Science, Computational Biomedicine Imaging and Modeling Center at Computer Science Department, Rutgers University, Piscataway, NJ 08854
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
23
|
Zhang Q, Lu H, Wang J, Yang T, Bi W, Zeng Y, Yu B. Hierarchical rhythmic propagation of corticothalamic interactions for consciousness: A computational study. Comput Biol Med 2024; 169:107843. [PMID: 38141448 DOI: 10.1016/j.compbiomed.2023.107843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
Clarifying the mechanisms of loss and recovery of consciousness in the brain is a major challenge in neuroscience, and research on the spatiotemporal organization of rhythms at the brain region scale at different levels of consciousness remains scarce. By applying computational neuroscience, an extended corticothalamic network model was developed in this study to simulate the altered states of consciousness induced by different concentration levels of propofol. The cortex area containing oscillation spread from posterior to anterior in four successive time stages, defining four groups of brain regions. A quantitative analysis showed that hierarchical rhythm propagation was mainly due to heterogeneity in the inter-brain region connections. These results indicate that the proposed model is an anatomically data-driven testbed and a simulation platform with millisecond resolution. It facilitates understanding of activity coordination across multiple areas of the conscious brain and the mechanisms of action of anesthetics in terms of brain regions.
Collapse
Affiliation(s)
- Qian Zhang
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jihang Wang
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taoyi Yang
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weida Bi
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yi Zeng
- Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
24
|
Bogacki-Rychlik W, Gawęda K, Bialy M. Neurophysiology of male sexual arousal-Behavioral perspective. Front Behav Neurosci 2024; 17:1330460. [PMID: 38333545 PMCID: PMC10851294 DOI: 10.3389/fnbeh.2023.1330460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 02/10/2024] Open
Abstract
In the presented review, we analyzed the physiology of male sexual arousal and its relation to the motivational aspects of this behavior. We highlighted the distinction between these processes based on observable physiological and behavioral parameters. Thus, we proposed the experimentally applicable differentiation between sexual arousal (SA) and sexual motivation (SM). We propose to define sexual arousal as an overall autonomic nervous system response leading to penile erection, triggered selectively by specific sexual cues. These autonomic processes include both spinal and supraspinal neuronal networks, activated by sensory pathways including information from sexual partner and sexual context, as well as external and internal genital organs. To avoid misinterpretation of experimental data, we also propose to precise the term "sexual motivation" as all actions performed by the individual that increase the probability of sexual interactions or increase the probability of exposition to sexual context cues. Neuronal structures such as the amygdala, bed nucleus of stria terminalis, hypothalamus, nucleus raphe, periaqueductal gray, and nucleus paragigantocellularis play crucial roles in controlling the level of arousal and regulating peripheral responses via specific autonomic effectors. On the highest level of CNS, the activity of cortical structures involved in the regulation of the autonomic nervous system, such as the insula and anterior cingulate cortex, can visualize an elevated level of SA in both animal and human brains. From a preclinical perspective, we underlie the usefulness of the non-contact erection test (NCE) procedure in understanding factors influencing sexual arousal, including studies of sexual preference in animal models. Taken together results obtained by different methods, we wanted to focus attention on neurophysiological aspects that are distinctly related to sexual arousal and can be used as an objective parameter, leading to higher translational transparency between basic, preclinical, and clinical studies.
Collapse
Affiliation(s)
| | | | - Michal Bialy
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Huang Z, Mashour GA, Hudetz AG. Propofol Disrupts the Functional Core-Matrix Architecture of the Thalamus in Humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576934. [PMID: 38328136 PMCID: PMC10849566 DOI: 10.1101/2024.01.23.576934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Research into the role of thalamocortical circuits in anesthesia-induced unconsciousness is difficult due to anatomical and functional complexity. Prior neuroimaging studies have examined either the thalamus as a whole or focused on specific subregions, overlooking the distinct neuronal subtypes like core and matrix cells. We conducted a study of heathy volunteers and functional magnetic resonance imaging during conscious baseline, deep sedation, and recovery. We advanced the functional gradient mapping technique to delineate the functional geometry of thalamocortical circuits, within a framework of the unimodal-transmodal functional axis of the cortex. We observed a significant shift in this geometry during unconsciousness, marked by the dominance of unimodal over transmodal geometry. This alteration was closely linked to the spatial variations in the density of matrix cells within the thalamus. This research bridges cellular and systems-level understanding, highlighting the crucial role of thalamic core-matrix functional architecture in understanding the neural mechanisms of states of consciousness.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - George A Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anthony G Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Toker D, Müller E, Miyamoto H, Riga MS, Lladó-Pelfort L, Yamakawa K, Artigas F, Shine JM, Hudson AE, Pouratian N, Monti MM. Criticality supports cross-frequency cortical-thalamic information transfer during conscious states. eLife 2024; 13:e86547. [PMID: 38180472 PMCID: PMC10805384 DOI: 10.7554/elife.86547] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Consciousness is thought to be regulated by bidirectional information transfer between the cortex and thalamus, but the nature of this bidirectional communication - and its possible disruption in unconsciousness - remains poorly understood. Here, we present two main findings elucidating mechanisms of corticothalamic information transfer during conscious states. First, we identify a highly preserved spectral channel of cortical-thalamic communication that is present during conscious states, but which is diminished during the loss of consciousness and enhanced during psychedelic states. Specifically, we show that in humans, mice, and rats, information sent from either the cortex or thalamus via δ/θ/α waves (∼1-13 Hz) is consistently encoded by the other brain region by high γ waves (52-104 Hz); moreover, unconsciousness induced by propofol anesthesia or generalized spike-and-wave seizures diminishes this cross-frequency communication, whereas the psychedelic 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) enhances this low-to-high frequency interregional communication. Second, we leverage numerical simulations and neural electrophysiology recordings from the thalamus and cortex of human patients, rats, and mice to show that these changes in cross-frequency cortical-thalamic information transfer may be mediated by excursions of low-frequency thalamocortical electrodynamics toward/away from edge-of-chaos criticality, or the phase transition from stability to chaos. Overall, our findings link thalamic-cortical communication to consciousness, and further offer a novel, mathematically well-defined framework to explain the disruption to thalamic-cortical information transfer during unconscious states.
Collapse
Affiliation(s)
- Daniel Toker
- Department of Neurology, University of California, Los AngelesLos AngelesUnited States
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Eli Müller
- Brain and Mind Centre, University of SydneySydneyAustralia
| | - Hiroyuki Miyamoto
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceSaitamaJapan
- PRESTO, Japan Science and Technology AgencySaitamaJapan
- International Research Center for Neurointelligence, University of TokyoNagoyaJapan
| | - Maurizio S Riga
- Andalusian Center for Molecular Biology and Regenerative MedicineSevilleSpain
| | - Laia Lladó-Pelfort
- Departament de Ciències Bàsiques, Universitat de Vic-Universitat Central de CatalunyaBarcelonaSpain
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceSaitamaJapan
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical ScienceNagoyaJapan
| | - Francesc Artigas
- Departament de Neurociències i Terapèutica Experimental, CSIC-Institut d’Investigacions Biomèdiques de BarcelonaBarcelonaSpain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos IIIMadridSpain
| | - James M Shine
- Brain and Mind Centre, University of SydneySydneyAustralia
| | - Andrew E Hudson
- Department of Anesthesiology, Veterans Affairs Greater Los Angeles Healthcare SystemLos AngelesUnited States
- Department of Anesthesiology and Perioperative Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical CenterDallasUnited States
| | - Martin M Monti
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
- Department of Neurosurgery, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
27
|
Jiang X, Wen X, Ou G, Li S, Chen Y, Zhang J, Liang Z. Propofol modulates neural dynamics of thalamo-cortical system associated with anesthetic levels in rats. Cogn Neurodyn 2023; 17:1541-1559. [PMID: 37974577 PMCID: PMC10640503 DOI: 10.1007/s11571-022-09912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/14/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
The thalamocortical system plays an important role in consciousness. How anesthesia modulates the thalamocortical interactions is not completely known. We simultaneously recorded local field potentials(LFPs) in thalamic reticular nucleus(TRN) and ventroposteromedial thalamic nucleus(VPM), and electrocorticographic(ECoG) activities in frontal and occipital cortices in freely moving rats (n = 11). We analyzed the changes in thalamic and cortical local spectral power and connectivities, which were measured with phase-amplitude coupling (PAC), coherence and multivariate Granger causality, at the states of baseline, intravenous infusion of propofol 20, 40, 80 mg/kg/h and after recovery of righting reflex. We found that propofol-induced burst-suppression results in a synchronous decrease of spectral power in thalamus and cortex (p < 0.001 for all frequency bands). The cross-frequency PAC increased by propofol, characterized by gradually stronger 'trough-max' pattern in TRN and stronger 'peak-max' pattern in cortex. The cross-region PAC increased in the phase of TRN modulating the amplitude of cortex. The functional connectivity (FC) between TRN and cortex for α/β bands also significantly increased (p < 0.040), with increased directional connectivity from TRN to cortex under propofol anesthesia. In contrast, the corticocortical FC significantly decreased (p < 0.047), with decreased directional connectivity from frontal cortex to occipital cortex. However, the thalamothalamic functional and directional connectivities remained largely unchanged by propofol anesthesia. The spectral powers and connectivities are differentially modulated with the changes of propofol doses, suggesting the changes in neural dynamics in thalamocortical system could be used for distinguishing different vigilance levels caused by propofol. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09912-0.
Collapse
Affiliation(s)
- Xuliang Jiang
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Xin Wen
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004 People’s Republic of China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, 066004 People’s Republic of China
| | - Guoyao Ou
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040 People’s Republic of China
| | - Shitong Li
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040 People’s Republic of China
| | - Yali Chen
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Jun Zhang
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Zhenhu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004 People’s Republic of China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, 066004 People’s Republic of China
| |
Collapse
|
28
|
He J, Zhang H, Dang Y, Zhuang Y, Ge Q, Yang Y, Xu L, Xia X, Laureys S, Yu S, Zhang W. Electrophysiological characteristics of CM-pf in diagnosis and outcome of patients with disorders of consciousness. Brain Stimul 2023; 16:1522-1532. [PMID: 37778457 DOI: 10.1016/j.brs.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) in the centromedian-parafascicular complex (CM-pf) has been reported as a potential therapeutic option for disorders of consciousness (DoC). However, the lack of understanding of its electrophysiological characteristics limits the improvement of therapeutic effect. OBJECTIVE To investigate the CM-pf electrophysiological characteristics underlying disorders of consciousness (DoC) and its recovery. METHODS We collected the CM-pf electrophysiological signals from 23 DoC patients who underwent central thalamus DBS (CT-DBS) surgery. Five typical electrophysiological features were extracted, including neuronal firing properties, multiunit activity (MUA) properties, signal stability, spike-MUA synchronization strength (syncMUA), and the background noise level. Their correlations with the consciousness level, the outcome, and the primary clinical factors of DoC were analyzed. RESULTS 11 out of 23 patients (0/2 chronic coma, 5/13 unresponsive wakefulness syndrome/vegetative state (UWS/VS), 6/8 minimally conscious state minus (MCS-)) exhibited an improvement in the level of consciousness after CT-DBS. In CM-pf, significantly stronger gamma band syncMUA strength and alpha band normalized MUA power were found in MCS- patients. In addition, higher firing rates, stronger high-gamma band MUA power and alpha band normalized power, and more stable theta oscillation were correlated with better outcomes. Besides, we also identified electrophysiological properties that are correlated with clinical factors, including etiologies, age, and duration of DoC. CONCLUSION We provide comprehensive analyses of the electrophysiological characteristics of CM-pf in DoC patients. Our results support the 'mesocircuit' hypothesis, one proposed mechanism of DoC recovery, and reveal CM-pf electrophysiological features that are crucial for understanding the pathogenesis of DoC, predicting its recovery, and explaining the effect of clinical factors on DoC.
Collapse
Affiliation(s)
- Jianghong He
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Haoran Zhang
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Dang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yutong Zhuang
- Department of Neurosurgery, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Long Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaoyu Xia
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, China
| | - Steven Laureys
- CERVO Brain Research Centre, Laval University, Canada; Coma Science Group, GIGA Consciousness Research Unit, Liège University Hospital, Belgium; International Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shan Yu
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wangming Zhang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, China.
| |
Collapse
|
29
|
Zhang X, Li A, Wang S, Wang T, Liu T, Wang Y, Fu J, Zhao G, Yang Q, Dong H. Differences in the EEG Power Spectrum and Cross-Frequency Coupling Patterns between Young and Elderly Patients during Sevoflurane Anesthesia. Brain Sci 2023; 13:1149. [PMID: 37626505 PMCID: PMC10452117 DOI: 10.3390/brainsci13081149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Electroencephalography (EEG) is widely used for monitoring the depth of anesthesia in surgical patients. Distinguishing age-related EEG features under general anesthesia will help to optimize anesthetic depth monitoring during surgery for elderly patients. This retrospective cohort study included 41 patients aged from 18 to 79 years undergoing noncardiac surgery under general anesthesia. We compared the power spectral signatures and phase-amplitude coupling patterns of the young and elderly groups under baseline and surgical anesthetic depth. General anesthesia by sevoflurane significantly increased the spectral power of delta, theta, alpha, and beta bands and strengthened the cross-frequency coupling both in young and elderly patients. However, the variation in EEG power spectral density and the modulation of alpha amplitudes on delta phases was relatively weaker in elderly patients. In conclusion, the EEG under general anesthesia using sevoflurane exhibited similar dynamic features between young and elderly patients, and the weakened alteration of spectral power and cross-frequency coupling patterns could be utilized to precisely quantify the depth of anesthesia in elderly patients.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
| | - Ao Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Sa Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
| | - Tingting Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
| | - Tiantian Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
| | - Yonghui Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
| | - Jingwen Fu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
| | - Guangchao Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
| | - Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China; (X.Z.); (A.L.); (S.W.); (T.W.); (T.L.); (Y.W.); (J.F.); (G.Z.)
| |
Collapse
|
30
|
Soplata AE, Adam E, Brown EN, Purdon PL, McCarthy MM, Kopell N. Rapid thalamocortical network switching mediated by cortical synchronization underlies propofol-induced EEG signatures: a biophysical model. J Neurophysiol 2023; 130:86-103. [PMID: 37314079 PMCID: PMC10312318 DOI: 10.1152/jn.00068.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
Propofol-mediated unconsciousness elicits strong alpha/low-beta and slow oscillations in the electroencephalogram (EEG) of patients. As anesthetic dose increases, the EEG signal changes in ways that give clues to the level of unconsciousness; the network mechanisms of these changes are only partially understood. Here, we construct a biophysical thalamocortical network involving brain stem influences that reproduces transitions in dynamics seen in the EEG involving the evolution of the power and frequency of alpha/low-beta and slow rhythm, as well as their interactions. Our model suggests that propofol engages thalamic spindle and cortical sleep mechanisms to elicit persistent alpha/low-beta and slow rhythms, respectively. The thalamocortical network fluctuates between two mutually exclusive states on the timescale of seconds. One state is characterized by continuous alpha/low-beta-frequency spiking in thalamus (C-state), whereas in the other, thalamic alpha spiking is interrupted by periods of co-occurring thalamic and cortical silence (I-state). In the I-state, alpha colocalizes to the peak of the slow oscillation; in the C-state, there is a variable relationship between an alpha/beta rhythm and the slow oscillation. The C-state predominates near loss of consciousness; with increasing dose, the proportion of time spent in the I-state increases, recapitulating EEG phenomenology. Cortical synchrony drives the switch to the I-state by changing the nature of the thalamocortical feedback. Brain stem influence on the strength of thalamocortical feedback mediates the amount of cortical synchrony. Our model implicates loss of low-beta, cortical synchrony, and coordinated thalamocortical silent periods as contributing to the unconscious state.NEW & NOTEWORTHY GABAergic anesthetics induce alpha/low-beta and slow oscillations in the EEG, which interact in dose-dependent ways. We constructed a thalamocortical model to investigate how these interdependent oscillations change with propofol dose. We find two dynamic states of thalamocortical coordination, which change on the timescale of seconds and dose-dependently mirror known changes in EEG. Thalamocortical feedback determines the oscillatory coupling and power seen in each state, and this is primarily driven by cortical synchrony and brain stem neuromodulation.
Collapse
Affiliation(s)
- Austin E Soplata
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| | - Elie Adam
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Michelle M McCarthy
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| | - Nancy Kopell
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
31
|
Yang Y, Dai Y, He Q, Wang S, Chen X, Geng X, He J, Duan F. Altered brain functional connectivity in vegetative state and minimally conscious state. Front Aging Neurosci 2023; 15:1213904. [PMID: 37469954 PMCID: PMC10352323 DOI: 10.3389/fnagi.2023.1213904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/06/2023] [Indexed: 07/21/2023] Open
Abstract
Objectives The pathological mechanism for a disorder of consciousness (DoC) is still not fully understood. Based on traditional behavioral scales, there is a high rate of misdiagnosis for subtypes of DoC. We aimed to explore whether topological characterization may explain the pathological mechanisms of DoC and be effective in diagnosing the subtypes of DoC. Methods Using resting-state functional magnetic resonance imaging data, the weighted brain functional networks for normal control subjects and patients with vegetative state (VS) and minimally conscious state (MCS) were constructed. Global and local network characteristics of each group were analyzed. A support vector machine was employed to identify MCS and VS patients. Results The average connection strength was reduced in DoC patients and roughly equivalent in MCS and VS groups. Global efficiency, local efficiency, and clustering coefficients were reduced, and characteristic path length was increased in DoC patients (p < 0.05). For patients of both groups, global network measures were not significantly different (p > 0.05). Nodal efficiency, nodal local efficiency, and nodal clustering coefficient were reduced in frontoparietal brain areas, limbic structures, and occipital and temporal brain areas (p < 0.05). The comparison of nodal centrality suggested that DoC causes reorganization of the network structure on a large scale, especially the thalamus. Lobal network measures emphasized that the differences between the two groups of patients mainly involved frontoparietal brain areas. The accuracy, sensitivity, and specificity of the classifier for identifying MCS and VS patients were 89.83, 78.95, and 95%, respectively. Conclusion There is an association between altered network structures and clinical symptoms of DoC. With the help of network metrics, it is feasible to differentiate MCS and VS patients.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Beijing Institute of Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yangyang Dai
- Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation, College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shan Wang
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Xueling Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Duan
- Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation, College of Artificial Intelligence, Nankai University, Tianjin, China
| |
Collapse
|
32
|
Lawn T, Martins D, O'Daly O, Williams S, Howard M, Dipasquale O. The effects of propofol anaesthesia on molecular-enriched networks during resting-state and naturalistic listening. Neuroimage 2023; 271:120018. [PMID: 36935083 PMCID: PMC10410200 DOI: 10.1016/j.neuroimage.2023.120018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Placing a patient in a state of anaesthesia is crucial for modern surgical practice. However, the mechanisms by which anaesthetic drugs, such as propofol, impart their effects on consciousness remain poorly understood. Propofol potentiates GABAergic transmission, which purportedly has direct actions on cortex as well as indirect actions via ascending neuromodulatory systems. Functional imaging studies to date have been limited in their ability to unravel how these effects on neurotransmission impact the system-level dynamics of the brain. Here, we leveraged advances in multi-modal imaging, Receptor-Enriched Analysis of functional Connectivity by Targets (REACT), to investigate how different levels of propofol-induced sedation alter neurotransmission-related functional connectivity (FC), both at rest and when individuals are exposed to naturalistic auditory stimulation. Propofol increased GABA-A- and noradrenaline transporter-enriched FC within occipital and somatosensory regions respectively. Additionally, during auditory stimulation, the network related to the dopamine transporter showed reduced FC within bilateral regions of temporal and mid/posterior cingulate cortices, with the right temporal cluster showing an interaction between auditory stimulation and level of consciousness. In bringing together these micro- and macro-scale systems, we provide support for both direct GABAergic and indirect noradrenergic and dopaminergic-related network changes under propofol sedation. Further, we delineate a cognition-related reconfiguration of the dopaminergic network, highlighting the utility of REACT to explore the molecular substrates of consciousness and cognition.
Collapse
Affiliation(s)
- Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK.
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Steve Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Matthew Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| |
Collapse
|
33
|
Ding Z, Guan L, He W, Gu H, Wang Y, Li X. Spatial characteristics of closed-loop TMS-EEG with occipital alpha-phase synchronized. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Weiner VS, Zhou DW, Kahali P, Stephen EP, Peterfreund RA, Aglio LS, Szabo MD, Eskandar EN, Salazar-Gomez AF, Sampson AL, Cash SS, Brown EN, Purdon PL. Propofol disrupts alpha dynamics in functionally distinct thalamocortical networks during loss of consciousness. Proc Natl Acad Sci U S A 2023; 120:e2207831120. [PMID: 36897972 PMCID: PMC10089159 DOI: 10.1073/pnas.2207831120] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/14/2023] [Indexed: 03/12/2023] Open
Abstract
During propofol-induced general anesthesia, alpha rhythms measured using electroencephalography undergo a striking shift from posterior to anterior, termed anteriorization, where the ubiquitous waking alpha is lost and a frontal alpha emerges. The functional significance of alpha anteriorization and the precise brain regions contributing to the phenomenon are a mystery. While posterior alpha is thought to be generated by thalamocortical circuits connecting nuclei of the sensory thalamus with their cortical partners, the thalamic origins of the propofol-induced alpha remain poorly understood. Here, we used human intracranial recordings to identify regions in sensory cortices where propofol attenuates a coherent alpha network, distinct from those in the frontal cortex where it amplifies coherent alpha and beta activities. We then performed diffusion tractography between these identified regions and individual thalamic nuclei to show that the opposing dynamics of anteriorization occur within two distinct thalamocortical networks. We found that propofol disrupted a posterior alpha network structurally connected with nuclei in the sensory and sensory associational regions of the thalamus. At the same time, propofol induced a coherent alpha oscillation within prefrontal cortical areas that were connected with thalamic nuclei involved in cognition, such as the mediodorsal nucleus. The cortical and thalamic anatomy involved, as well as their known functional roles, suggests multiple means by which propofol dismantles sensory and cognitive processes to achieve loss of consciousness.
Collapse
Affiliation(s)
- Veronica S. Weiner
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - David W. Zhou
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
- Center for Neurotechnology and Recovery, Department of Neurology, Massachusetts General Hospital, Boston, MA02114
| | - Pegah Kahali
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Emily P. Stephen
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Robert A. Peterfreund
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
- Harvard Medical School, Boston, MA02115
| | - Linda S. Aglio
- Harvard Medical School, Boston, MA02115
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Michele D. Szabo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Emad N. Eskandar
- Harvard Medical School, Boston, MA02115
- Department of Neurological Surgery, Massachusetts General Hospital, Boston, MA02114
| | - Andrés F. Salazar-Gomez
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Aaron L. Sampson
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Sydney S. Cash
- Center for Neurotechnology and Recovery, Department of Neurology, Massachusetts General Hospital, Boston, MA02114
- Harvard Medical School, Boston, MA02115
| | - Emery N. Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
- Harvard Medical School, Boston, MA02115
- Division of Health Sciences and Technology, Harvard Medical School/Massachusetts Institute of Technology, Cambridge, MA02139
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Patrick L. Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
- Harvard Medical School, Boston, MA02115
| |
Collapse
|
35
|
Wang YL, Wang L, Xu W, He M, Dong H, Shi HY, Chen YQ, Huang ZL. Paraventricular thalamus controls consciousness transitions during propofol anaesthesia in mice. Br J Anaesth 2023; 130:698-708. [PMID: 36828739 DOI: 10.1016/j.bja.2023.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/20/2022] [Accepted: 01/04/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND The neuronal mechanisms underlying propofol-induced modulation of consciousness are poorly understood. Neuroimaging studies suggest a potential role for non-specific thalamic nuclei in propofol-induced loss of consciousness. We investigated the contribution of the paraventricular thalamus (PVT), a midline thalamic nucleus that has been implicated in arousal control and general anaesthesia with inhaled anaesthetics, to loss and recovery of consciousness during propofol anaesthesia. METHODS Polysomnographic recordings and righting reflex test were used to determine the transitions of loss and recovery of righting reflex, used as a measure of consciousness in mice, during propofol anaesthesia in mice under conditions mimicking clinical propofol administration. PVT neuronal activities were monitored using fibre photometry and regulated using optogenetic and chemogenetic methods. RESULTS Population activities of PVT glutamatergic neurones began to decrease before propofol-induced loss of consciousness and rapidly increased to a peak at the onset of recovery of consciousness. Chemogenetic inhibition of PVT calretinin-expressing (PVTCR) neurones shortened onset (from 176 [35] to 127 [26] s; P=0.001) and prolonged return (from 1568 [611] to 3126 [1616] s; P=0.002) of righting reflex. Conversely, chemogenetic activation of PVTCR neurones exerted opposite effects. Furthermore, optogenetic silencing of PVTCR neurones accelerated transitions to loss of consciousness (from 205 [35] to 158 [44] s; P=0.027) and slowed transitions to recovery of consciousness (from 230 [78] to 370 [99] s; P=0.041). During a steady period of unconsciousness maintained with continuous propofol infusion, brief optical activation of PVTCR neurones restored cortical activity and arousal with a latency of about 5 s. CONCLUSIONS The paraventricular thalamus contributes to the control of consciousness transitions in propofol anaesthesia in mice. This provides a potential neuroanatomical target for controlling consciousness to reduce anaesthetic dose requirements and side effects.
Collapse
Affiliation(s)
- Yu-Long Wang
- Department of Anaesthesiology, Yijishan Hospital, Wannan Medical College, Wuhu, China; Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lu Wang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Wei Xu
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Miao He
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Dong
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Huan-Ying Shi
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yong-Quan Chen
- Department of Anaesthesiology, Yijishan Hospital, Wannan Medical College, Wuhu, China.
| | - Zhi-Li Huang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
36
|
Choe M, Jin SH, Kim JS, Chung CK. Propofol anesthesia-induced spatiotemporal changes in cortical activity with loss of external and internal awareness: An electrocorticography study. Clin Neurophysiol 2023; 149:51-60. [PMID: 36898318 DOI: 10.1016/j.clinph.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/17/2023]
Abstract
OBJECTIVE To understand the underlying mechanism of consciousness, investigating spatiotemporal changes in the cortical activity during the induction phase of unconsciousness is important. Loss of consciousness induced by general anesthesia is not necessarily accompanied by a uniform inhibition of all cortical activities. We hypothesized that cortical regions involved in internal awareness would be suppressed after disruption of cortical regions involved in external awareness. Thus, we investigated temporal changes in cortex during induction of unconsciousness. METHODS We recorded electrocorticography data of 16 epilepsy patients and investigated power spectral changes during induction phase from awake state to unconsciousness. Temporal changes were assessed at 1) the start point and 2) the interval of normalized time between start and end of power change (Δ tnormalized). RESULTS We found that the power increased at frequencies < 46 Hz, and decreased in range of 62-150 Hz, in global channels. In temporal changes of power change, superior parietal lobule and dorsolateral prefrontal cortex started to change early, but the changes were completed over a prolonged interval, whereas angular gyrus and associative visual cortex showed a delayed change and rapid completion. CONCLUSIONS Loss of consciousness induced by general anesthesia results first from disrupted communication between self and external world, followed by disrupted communication within self, with decreased activities of superior parietal lobule and dorsolateral prefrontal cortex, and later, attenuated activities of angular gyrus. SIGNIFICANCE Our findings provided neurophysiological evidence for the temporal changes in consciousness components induced by general anesthesia.
Collapse
Affiliation(s)
- Mikyung Choe
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hyun Jin
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - June Sic Kim
- The Research Institute of Basic Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chun Kee Chung
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neurosurgery, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Dong K, Zhang D, Wei Q, Wang G, Chen X, Zhang L, Liu J. An integrated information theory index using multichannel EEG for evaluating various states of consciousness under anesthesia. Comput Biol Med 2023; 153:106480. [PMID: 36630828 DOI: 10.1016/j.compbiomed.2022.106480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND The integrated information theory (IIT) of consciousness introduces a measure Φ to quantify consciousness in a physical system. Directly related to this, general anesthesia aims to induce reversible and safe loss of consciousness (LOC). We sought to propose an electroencephalogram (EEG)-based IIT index ΦEEG to evaluate various states of consciousness under general anesthesia. METHODS Based on the definition of mutual information, we estimated the ΦEEG by maximizing the integrated information under various time lags. We used the binning method to cut the nonGaussian EEG data for estimating mutual information. We tested two EEG databases collected from propofol- (n=20) and sevoflurane-induced (n=15) anesthesia, and especially, we compared the ΦEEG of drowsy (n=7) and responsive participants (n=13) under propofol anesthesia. We compared the effectiveness of ΦEEG with the estimated bispectral index (eBIS). RESULTS In all EEG frequency bands, we observed a negative correlation between ΦEEG and end-tidal sevoflurane concentration under sevoflurane-induced anesthesia (p<0.001,BF10>6000). Under propofol-induced anesthesia, drowsy participants in moderate sedation (6.96±0.26(mean±SD)) showed decreased alpha-band ΦEEG compared with baseline (7.40±0.53,p=0.016,BF10=3.58), no significant difference was observed for responsive participants. Oppositely, the responsive participants in moderate sedation (-5.32±0.38) showed decreased eBIS compared with baseline (-4.94±0.40,p=0.03,BF10=2.41). CONCLUSIONS These findings may enable monitors of the anesthetic state that can distinguish consciousness and unconsciousness rather than the changes of anesthetic concentrations. The alpha-band ΦEEG is promising for deriving the gold standard for depth of anesthesia monitoring.
Collapse
Affiliation(s)
- Kangli Dong
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, Zhejiang, China.
| | - Delin Zhang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Qishun Wei
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Guozheng Wang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Xing Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Lu Zhang
- The Department of Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Jun Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, Zhejiang, China; Research Institute of Zhejiang University-Taizhou, Taizhou 318012, Zhejiang, China.
| |
Collapse
|
38
|
Li H, Zhang X, Sun X, Dong L, Lu H, Yue S, Zhang H. Functional networks in prolonged disorders of consciousness. Front Neurosci 2023; 17:1113695. [PMID: 36875660 PMCID: PMC9981972 DOI: 10.3389/fnins.2023.1113695] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
Prolonged disorders of consciousness (DoC) are characterized by extended disruptions of brain activities that sustain wakefulness and awareness and are caused by various etiologies. During the past decades, neuroimaging has been a practical method of investigation in basic and clinical research to identify how brain properties interact in different levels of consciousness. Resting-state functional connectivity within and between canonical cortical networks correlates with consciousness by a calculation of the associated temporal blood oxygen level-dependent (BOLD) signal process during functional MRI (fMRI) and reveals the brain function of patients with prolonged DoC. There are certain brain networks including the default mode, dorsal attention, executive control, salience, auditory, visual, and sensorimotor networks that have been reported to be altered in low-level states of consciousness under either pathological or physiological states. Analysis of brain network connections based on functional imaging contributes to more accurate judgments of consciousness level and prognosis at the brain level. In this review, neurobehavioral evaluation of prolonged DoC and the functional connectivity within brain networks based on resting-state fMRI were reviewed to provide reference values for clinical diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Hui Li
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Xiaonian Zhang
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Xinting Sun
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Linghui Dong
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Haitao Lu
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Hao Zhang
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| |
Collapse
|
39
|
Understanding, detecting, and stimulating consciousness recovery in the ICU. Acta Neurochir (Wien) 2022; 165:809-828. [PMID: 36242637 DOI: 10.1007/s00701-022-05378-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/07/2022] [Indexed: 11/01/2022]
Abstract
Coma is a medical and socioeconomic emergency. Although underfunded, research on coma and disorders of consciousness has made impressive progress. Lesion-network-mapping studies have delineated the precise brainstem regions that consistently produce coma when damaged. Functional neuroimaging has revealed how mechanisms like "communication through coherence" and "inhibition by gating" work in synergy to enable cortico-cortical processing and how this information transfer is disrupted in brain injury. On the cellular level, break-down of intracellular communication between the layer 5 pyramidal cell soma and the apical dendritic part impairs dendritic information integration, with up-stream effects on microcircuits in local neuronal populations and on large-scale fronto-parietal networks, which correlates with loss of consciousness. A breakthrough in clinical concepts occurred when fMRI, and later EEG, studies revealed that 15% of clinically unresponsive patients in acute and chronic settings are in fact awake and aware, as shown by their command following abilities revealed by brain activation during motor and locomotion imagery tasks. This condition is now termed "cognitive motor dissociation." Furthermore, epidemiological data on coma were literally non-existent until recently because of difficulties related to case ascertainment with traditional methods, but crowdsourcing of family observations enabled the first estimates of how frequent coma is in the general population (pooled annual incidence of 201 coma cases per 100,000 population in the UK and the USA). Diagnostic guidelines on coma and disorders of consciousness by the American Academy of Neurology and the European Academy of Neurology provide ambitious clinical frameworks to accommodate these achievements. As for therapy, a broad range of medical and non-medical treatment options is now being tested in increasingly larger trials; in particular, amantadine and transcranial direct current stimulation appear promising in this regard. Major international initiatives like the Curing Coma Campaign aim to raise awareness for coma and disorders of consciousness in the public, with the ultimate goal to make more brain-injured patients recover consciousness after a coma. To highlight all these accomplishments, this paper provides a comprehensive overview of recent progress and future challenges related to understanding, detecting, and stimulating consciousness recovery in the ICU.
Collapse
|
40
|
Dynamic alpha-gamma phase-amplitude coupling signatures during sevoflurane-induced loss and recovery of consciousness. Neurosci Res 2022; 185:20-28. [PMID: 36084701 DOI: 10.1016/j.neures.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/20/2022]
Abstract
Phase-amplitude coupling (PAC) plays an important role in anesthetic-induced unconsciousness. The delta-alpha PAC signature during anesthetic-induced unconsciousness is gradually becoming known; however, the frequency dependence and spatial characteristics of PAC are still unclear. Multi-channel electroencephalography (EEG) was performed during the loss and recovery phases of consciousness in patients undergoing general anesthesia using sevoflurane. First, a spectral analysis was used to investigate the power change of the different frequency bands in the EEG signals. Second, PAC comodulogram analysis was performed to confirm the frequencies of the PAC phase drivers. Finally, to investigate the spatial characteristics of PAC, a novel PAC network was constructed using within- and cross-lead PAC, and a K-means clustering algorithm was used to identify PAC network patterns. Our results show that, in addition to the delta-alpha PAC, unconsciousness induced by sevoflurane was accompanied by spatial non-uniform alpha-gamma PAC in the cortical network, and dynamic PAC patterns between the anterior and posterior brain were observed during the unconscious phase. The dynamic transition of PAC network patterns indicates that brain states under sevoflurane-induced unconsciousness emerge from the regulation of functional integration and segregation instantiated by delta-alpha and alpha-gamma PAC.
Collapse
|
41
|
Xie T, Wu Z, Schalk G, Tong Y, Vato A, Raviv N, Guo Q, Ye H, Sheng X, Zhu X, Brunner P, Chen L. Automated intraoperative central sulcus localization and somatotopic mapping using median nerve stimulation. J Neural Eng 2022; 19. [PMID: 35785769 PMCID: PMC9534515 DOI: 10.1088/1741-2552/ac7dfd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/04/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Accurate identification of functional cortical regions is essential in neurological resection. The central sulcus (CS) is an important landmark that delineates functional cortical regions. Median nerve stimulation (MNS) is a standard procedure to identify the position of the CS intraoperatively. In this paper, we introduce an automated procedure that uses MNS to rapidly localize the CS and create functional somatotopic maps. APPROACH We recorded electrocorticographic signals from 13 patients who underwent MNS in the course of an awake craniotomy. We analyzed these signals to develop an automated procedure that determines the location of the CS and that also produces functional somatotopic maps. MAIN RESULTS The comparison between our automated method and visual inspection performed by the neurosurgeon shows that our procedure has a high sensitivity (89%) in identifying the CS. Further, we found substantial concordance between the functional somatotopic maps generated by our method and passive functional mapping (92% sensitivity). SIGNIFICANCE Our automated MNS-based method can rapidly localize the CS and create functional somatotopic maps without imposing additional burden on the clinical procedure. With additional development and validation, our method may lead to a diagnostic tool that guides neurosurgeon and reduces postoperative morbidity in patients undergoing resective brain surgery.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurosurgery, Washington University School of Medicine in Saint Louis, 660 S. Euclid Avenue, St Louis, Missouri, 63110-1010, UNITED STATES
| | - Zehan Wu
- Dept. of Neurosurgery, Huashan Hospital Fudan University, 12 Wulumuqi Middle Rd, Shanghai, 200040, CHINA
| | - Gerwin Schalk
- National Center for Adaptive Neurotechnologies, 113 Holland Avenue, Albany, New York, 12208, UNITED STATES
| | - Yusheng Tong
- Dept. of Neurosurgery, Huashan Hospital Fudan University, 12 Wulumuqi Middle Rd, Shanghai, 200040, CHINA
| | - Alessandro Vato
- National Center for Adaptive Neurotechnologies, 113 Holland Avenue, Albany, New York, 12208, UNITED STATES
| | - Nataly Raviv
- National Center for Adaptive Neurotechnologies, 113 Holland Avenue, Albany, New York, 12208, UNITED STATES
| | - Qinglong Guo
- Dept. of Neurosurgery, Huashan Hospital Fudan University, 12 Wulumuqi Middle Rd, Shanghai, 200040, CHINA
| | - Huanpeng Ye
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, CHINA
| | - Xinjun Sheng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, CHINA
| | - Xiangyang Zhu
- State Key Laboratory of Mechanical System and Vibration , Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, CHINA
| | - Peter Brunner
- Department of Neurosurgery, Washington University School of Medicine in Saint Louis, 660 S. Euclid Avenue, St Louis, Missouri, 63110-1010, UNITED STATES
| | - Liang Chen
- Dept. of Neurosurgery, Huashan Hospital Fudan University, 12 Wulumuqi Middle Rd, Shanghai, 200040, CHINA
| |
Collapse
|
42
|
Jiang J, Zhao Y, Liu J, Yang Y, Liang P, Huang H, Wu Y, Kang Y, Zhu T, Zhou C. Signatures of Thalamocortical Alpha Oscillations and Synchronization With Increased Anesthetic Depths Under Isoflurane. Front Pharmacol 2022; 13:887981. [PMID: 35721144 PMCID: PMC9204038 DOI: 10.3389/fphar.2022.887981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Electroencephalography (EEG) recordings under propofol exhibit an increase in slow and alpha oscillation power and dose-dependent phase-amplitude coupling (PAC), which underlie GABAA potentiation and the central role of thalamocortical entrainment. However, the exact EEG signatures elicited by volatile anesthetics and the possible neurophysiological mechanisms remain unclear. Methods: Cortical EEG signals and thalamic local field potential (LFP) were recorded in a mouse model to detect EEG signatures induced by 0.9%, 1.5%, and 2.0% isoflurane. Then, the power of the EEG spectrum, thalamocortical coherence, and slow-alpha phase-amplitude coupling were analyzed. A computational model based on the thalamic network was used to determine the primary neurophysiological mechanisms of alpha spiking of thalamocortical neurons under isoflurane anesthesia. Results: Isoflurane at 0.9% (light anesthesia) increased the power of slow and delta oscillations both in cortical EEG and in thalamic LFP. Isoflurane at 1.5% (surgery anesthesia) increased the power of alpha oscillations both in cortical EEG and in thalamic LFP. Isoflurane at 2% (deep anesthesia) further increased the power of cortical alpha oscillations, while thalamic alpha oscillations were unchanged. Thalamocortical coherence of alpha oscillation only exhibited a significant increase under 1.5% isoflurane. Isoflurane-induced PAC modulation remained unchanged throughout under various concentrations of isoflurane. By adjusting the parameters in the computational model, isoflurane-induced alpha spiking in thalamocortical neurons was simulated, which revealed the potential molecular targets and the thalamic network involved in isoflurane-induced alpha spiking in thalamocortical neurons. Conclusion: The EEG changes in the cortical alpha oscillation, thalamocortical coherence, and slow-alpha PAC may provide neurophysiological signatures for monitoring isoflurane anesthesia at various depths.
Collapse
Affiliation(s)
- Jingyao Jiang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoxin Yang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Han Huang
- Department of Anesthesiology, West China Second Hospital of Sichuan University, Chengdu, China
| | - Yongkang Wu
- Intelligent Manufacturing Institute, Chengdu Jincheng College, Chengdu, China
| | - Yi Kang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Dong K, Zhang D, Wei Q, Wang G, Huang F, Chen X, Muhammad KG, Sun Y, Liu J. Intrinsic phase-amplitude coupling on multiple spatial scales during the loss and recovery of consciousness. Comput Biol Med 2022; 147:105687. [PMID: 35687924 DOI: 10.1016/j.compbiomed.2022.105687] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Recent studies have demonstrated that changes in brain information processing during anesthetic-induced loss of consciousness (LOC) might be influenced by phase-amplitude coupling (PAC) in electroencephalogram (EEG). However, most anesthesia research on PAC typically focuses on delta and alpha oscillations. Studies of spatial-frequency characteristics by PAC for EEG may yield additional insights into understanding the impaired information processing under anesthesia unconsciousness and provide potential improvements in anesthesia monitoring. OBJECTIVE Considering different frequency bands of EEG represent neural activities on different spatial scales, we hypothesized that functional coupling simultaneously appears in multiple frequency bands and specific brain regions during anesthesia unconsciousness. In this paper, PAC analysis on whole-brain EEG besides delta and alpha oscillations was investigated to understand the influence of multiple cross-frequency coordination coupling on information processing during the loss and recovery of consciousness. METHOD EEG data from fifteen patients without cognitive diseases (7 males/8 females, aged 43.8 ± 13.4 years, weighing 63.3 ± 14.9 kilograms) undergoing lower limb surgery and sevoflurane anesthesia was recorded. To investigate the spatial-frequency characteristics of EEG source signals during loss and recovery of consciousness, the time-resolved PAC (tPAC) was calculated to reflect cross-frequency coordination in different frequency bands (delta, theta, alpha, beta, gamma) and different functional regions (Visual, Limbic, Dorsal attention, Ventral attention, Default, Somatomotor, Control, Salience networks). Furthermore, different patterns (peak-max and trough-max) of PAC were examined by constructing phase-amplitude histograms using phase bins to investigate the different information processing during LOC. The multivariate analysis of variance (MANOVA) and trend analysis were used for statistical analysis. RESULTS Theta-alpha and alpha-beta PAC were observed during sevoflurane-induced LOC, which significantly changed during loss and recovery of consciousness (F4,70 = 16.553, p < 0.001 for theta-alpha PAC and F4,70 = 12.446, p < 0.001 for alpha-beta PAC, MANOVA test). Simultaneously, PAC was distributed in specific functional regions, i.e., Visual, Limbic, Default, Somatomotor, etc. Furthermore, peak-max patterns of theta-alpha PAC were observed while alpha-beta PAC showed trough-max patterns and vice versa. CONCLUSION Theta-alpha and alpha-beta PAC observed in specific brain regions represent information processing on multiple spatial scales, and the opposite patterns of PAC indicate opposite information processing on multiple spatial scales during LOC. Our study demonstrates the regulation of local-global information processing during sevoflurane-induced LOC. It suggests the utility of evaluating the balance of functional integration and segregation in monitoring anesthetized states.
Collapse
Affiliation(s)
- Kangli Dong
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Delin Zhang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Qishun Wei
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Guozheng Wang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Fan Huang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xing Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Kanhar G Muhammad
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Yu Sun
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Jun Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
44
|
Sgourdou P. The Consciousness of Pain: A Thalamocortical Perspective. NEUROSCI 2022; 3:311-320. [PMID: 39483367 PMCID: PMC11523681 DOI: 10.3390/neurosci3020022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 11/03/2024] Open
Abstract
Deep, dreamless sleep is considered the only "normal" state under which consciousness is lost. The main reason for the voluntary, external induction of an unconscious state, via general anesthesia, is to silence the brain circuitry of nociception. In this article, I describe the perception of pain as a neural and behavioral correlate of consciousness. I briefly mention the brain areas and parameters that are connected to the presence of consciousness, mainly by virtue of their absence under deep anesthesia, and parallel those to brain areas responsible for the perception of pain. Activity in certain parts of the cortex and thalamus, and the interaction between them, will be the main focus of discussion as they represent a common ground that connects our general conscious state and our ability to sense the environment around us, including the painful stimuli. A plethora of correlative and causal evidence has been described thus far to explain the brain's involvement in consciousness and nociception. Despite the great advancement in our current knowledge, the manifestation and true nature of the perception of pain, or any conscious experience, are far from being fully understood.
Collapse
Affiliation(s)
- Paraskevi Sgourdou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA; or
| |
Collapse
|
45
|
Dorsal visual stream is preferentially engaged during externally guided action selection in Parkinson Disease. Clin Neurophysiol 2021; 136:237-246. [PMID: 35012844 PMCID: PMC8941338 DOI: 10.1016/j.clinph.2021.11.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/01/2021] [Accepted: 11/28/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE In patients with Parkinson Disease (PD), self-imitated or internally cued (IC) actions are thought to be compromised by the disease process, as exemplified by impairments in action initiation. In contrast, externally-cued (EC) actions which are made in response to sensory prompts can restore a remarkable degree of movement capability in PD, particularly alleviating freezing-of-gait. This study investigates the electrophysiological underpinnings of movement facilitation in PD through visuospatial cuing, with particular attention to the dynamics within the posterior parietal cortex (PPC) and lateral premotor cortex (LPMC) axis of the dorsal visual stream. METHODS Invasive cortical recordings over the PPC and LPMC were obtained during deep brain stimulation lead implantation surgery. Thirteen PD subjects performed an action selection task, which was constituted by left or right joystick movement with directional visual cuing in the EC condition and internally generated direction selection in the IC condition. Time-resolved neural activities within and between the PPC and LPMC were compared between EC and IC conditions. RESULTS Reaction times (RT) were significantly faster in the EC condition relative to the IC condition (paired t-test, p = 0.0015). PPC-LPMC inter-site phase synchrony within the β-band (13-35 Hz) was significantly greater in the EC relative to the IC condition. Greater PPC-LPMC β debiased phase lag index (dwPLI) prior to movement onset was correlated with faster reaction times only in the EC condition. Multivariate granger causality (GC) was greater in the EC condition relative to the IC condition, prior to and during movement. CONCLUSION Relative to IC actions, we report relative increase in inter-site phase synchrony and directional PPC to LPMC connectivity in the β-band during preparation and execution of EC actions. Furthermore, increased strength of connectivity is predictive of faster RT, which are pathologically slow in PD patients. Stronger engagement of the PPC-LPMC cortical network by an EC specifically through the channel of β-modulation is implicated in correcting the pathological slowing of action initiation seen in Parkinson's patients. SIGNIFICANCE These findings shed light on the electrophysiological mechanisms that underlie motor facilitation in PD patients through visuospatial cuing.
Collapse
|
46
|
Zhang L, Fan S, Zhang J, Fang K, Wang L, Cao Y, Chen L, Liu X, Gu E. Electroencephalographic dynamics of etomidate-induced loss of consciousness. BMC Anesthesiol 2021; 21:108. [PMID: 33832426 PMCID: PMC8028814 DOI: 10.1186/s12871-021-01308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Highly structured electroencephalography (EEG) oscillations can occur in adults during etomidate-induced general anesthesia, but the link between these two phenomena is poorly understood. Therefore, in the present study, we investigated the electroencephalogram dynamics of etomidate-induced loss of consciousness (LOC) in order to understand the neurological mechanism of etomidate-induced LOC. METHODS This study is a prospective observational study. Etomidate-induced anesthesia was performed on eligible patients undergoing elective surgery. We analyzed EEG data from 20 patients who received etomidate for the induction of general anesthesia. We used power spectra and coherence methods to process and analyze the EEG data. Our study was based on 4-channel EEG recordings. RESULTS Compared with the baseline (awake period), etomidate induced an increase in power in delta, theta, alpha and beta waves during LOC. Compared with the awake period, the delta-wave (1-4 Hz), alpha-wave(8-13 Hz), and theta-wave(4-8 Hz) coherence increased significantly during LOC, while the slow-wave (< 1 Hz) coherence decreased. However, the delta wave (1.0-4.0 Hz) during etomidate-induced LOC was more coherent than during the awake period (1.86-3.17 Hz, two-group test for coherence, p < 0.001). CONCLUSIONS The neural circuit mechanism of etomidate-induced LOC is closely related to the induction of oscillation in delta, theta, alpha and beta waves and the enhancement of delta-wave coherence. TRIAL REGISTRATION ChiCTR1800017110.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi road, Anhui province, 230022, Hefei, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Shunqin Fan
- The First Medical College of Anhui Medical University, 230032, Hefei, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jiawei Zhang
- The First Medical College of Anhui Medical University, 230032, Hefei, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Kun Fang
- The First Medical College of Anhui Medical University, 230032, Hefei, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Lei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi road, Anhui province, 230022, Hefei, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yuanyuan Cao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi road, Anhui province, 230022, Hefei, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi road, Anhui province, 230022, Hefei, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi road, Anhui province, 230022, Hefei, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Erwei Gu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi road, Anhui province, 230022, Hefei, China. .,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
47
|
Zhao X, Wang Y, Zhang Y, Wang H, Ren J, Yan F, Song D, Du R, Wang Q, Huang L. Propofol-Induced Anesthesia Alters Corticocortical Functional Connectivity in the Human Brain: An EEG Source Space Analysis. Neurosci Bull 2021; 37:563-568. [PMID: 33687648 DOI: 10.1007/s12264-021-00633-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Xue Zhao
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Yun Zhang
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Haidong Wang
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Junchan Ren
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Fei Yan
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dawei Song
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruini Du
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qiang Wang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China.
| |
Collapse
|
48
|
Areshenkoff CN, Nashed JY, Hutchison RM, Hutchison M, Levy R, Cook DJ, Menon RS, Everling S, Gallivan JP. Muting, not fragmentation, of functional brain networks under general anesthesia. Neuroimage 2021; 231:117830. [PMID: 33549746 DOI: 10.1016/j.neuroimage.2021.117830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/21/2021] [Accepted: 01/30/2021] [Indexed: 12/01/2022] Open
Abstract
Changes in resting-state functional connectivity (rs-FC) under general anesthesia have been widely studied with the goal of identifying neural signatures of consciousness. This work has commonly revealed an apparent fragmentation of whole-brain network structure during unconsciousness, which has been interpreted as reflecting a break-down in connectivity and a disruption of the brain's ability to integrate information. Here we show, by studying rs-FC under varying depths of isoflurane-induced anesthesia in nonhuman primates, that this apparent fragmentation, rather than reflecting an actual change in network structure, can be simply explained as the result of a global reduction in FC. Specifically, by comparing the actual FC data to surrogate data sets that we derived to test competing hypotheses of how FC changes as a function of dose, we found that increases in whole-brain modularity and the number of network communities - considered hallmarks of fragmentation - are artifacts of constructing FC networks by thresholding based on correlation magnitude. Taken together, our findings suggest that deepening levels of unconsciousness are instead associated with the increasingly muted expression of functional networks, an observation that constrains current interpretations as to how anesthesia-induced FC changes map onto existing neurobiological theories of consciousness.
Collapse
Affiliation(s)
- Corson N Areshenkoff
- Centre for Neuroscience Studies, Queens University, Kingston, ON, Canada; Department of Psychology, Queens University, Kingston, ON, Canada.
| | - Joseph Y Nashed
- Centre for Neuroscience Studies, Queens University, Kingston, ON, Canada
| | | | | | - Ron Levy
- Centre for Neuroscience Studies, Queens University, Kingston, ON, Canada; Department of Surgery, Queens University, Kingston, ON, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queens University, Kingston, ON, Canada; Department of Surgery, Queens University, Kingston, ON, Canada
| | - Ravi S Menon
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, ON, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queens University, Kingston, ON, Canada; Department of Psychology, Queens University, Kingston, ON, Canada
| |
Collapse
|
49
|
Xiao J, Chen Z, Yu B. A Potential Mechanism of Sodium Channel Mediating the General Anesthesia Induced by Propofol. Front Cell Neurosci 2020; 14:593050. [PMID: 33343303 PMCID: PMC7746837 DOI: 10.3389/fncel.2020.593050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
General anesthesia has revolutionized healthcare over the past 200 years and continues to show advancements. However, many phenomena induced by general anesthetics including paradoxical excitation are still poorly understood. Voltage-gated sodium channels (NaV) were believed to be one of the proteins targeted during general anesthesia. Based on electrophysiological measurements before and after propofol treatments of different concentrations, we mathematically modified the Hodgkin–Huxley sodium channel formulations and constructed a thalamocortical model to investigate the potential roles of NaV. The ion channels of individual neurons were modeled using the Hodgkin–Huxley type equations. The enhancement of propofol-induced GABAa current was simulated by increasing the maximal conductance and the time-constant of decay. Electroencephalogram (EEG) was evaluated as the post-synaptic potential from pyramidal (PY) cells. We found that a left shift in activation of NaV was induced primarily by a low concentration of propofol (0.3–10 μM), while a left shift in inactivation of NaV was induced by an increasing concentration (0.3–30 μM). Mathematical simulation indicated that a left shift of NaV activation produced a Hopf bifurcation, leading to cell oscillations. Left shift of NaV activation around a value of 5.5 mV in the thalamocortical models suppressed normal bursting of thalamocortical (TC) cells by triggering its chaotic oscillations. This led to irregular spiking of PY cells and an increased frequency in EEG readings. This observation suggests a mechanism leading to paradoxical excitation during general anesthesia. While a left shift in inactivation led to light hyperpolarization in individual cells, it inhibited the activity of the thalamocortical model after a certain depth of anesthesia. This finding implies that high doses of propofol inhibit the network partly by accelerating NaV toward inactivation. Additionally, this result explains why the application of sodium channel blockers decreases the requirement for general anesthetics. Our study provides an insight into the roles that NaV plays in the mechanism of general anesthesia. Since the activation and inactivation of NaV are structurally independent, it should be possible to avoid side effects by state-dependent binding to the NaV to achieve precision medicine in the future.
Collapse
Affiliation(s)
- Jinglei Xiao
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengguo Chen
- College of Computer, National University of Defence Technology, Changsha, China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Wozny TA, Wang DD, Starr PA. Simultaneous cortical and subcortical recordings in humans with movement disorders: Acute and chronic paradigms. Neuroimage 2020; 217:116904. [PMID: 32387742 DOI: 10.1016/j.neuroimage.2020.116904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 11/20/2022] Open
Abstract
Invasive basal ganglia recordings in humans have significantly advanced our understanding of the neurophysiology of movement disorders. A recent technical advance has been the addition of electrocorticography to basal ganglia recording, for evaluating distributed motor networks. Here we review the rationale, results, and ethics of this multisite recording technique in movement disorders, as well as its application in chronic recording paradigms utilizing implantable neural interfaces that include a sensing function.
Collapse
Affiliation(s)
- Thomas A Wozny
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Doris D Wang
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|