1
|
Tomaselli A, Luca A, Ferini G, Umana GE, Chaurasia B, Scalia G. Cognitive Profiles and Determinants of Eligibility for Awake Surgery in Non-Dominant Hemisphere Gliomas: A Narrative Review. Brain Behav 2025; 15:e70604. [PMID: 40444665 PMCID: PMC12123447 DOI: 10.1002/brb3.70604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Awake surgery has become a crucial approach in glioma treatment, primarily aimed at maximizing tumor resection while preserving neurological functions. While its application to the dominant hemisphere has been well established, its use in the non-dominant hemisphere remains underexplored. The non-dominant hemisphere plays essential roles in visuospatial processing, social cognition, and executive functions, which can significantly impact a patient's quality of life. Despite increasing evidence of these functions, standardized protocols for intraoperative brain mapping (ioBM) in the non-dominant hemisphere are lacking. METHODS A systematic search of the PubMed database was conducted to identify studies published between 2015 and 2024 that examined cognitive outcomes and ioBM paradigms in awake surgery for right non-dominant hemisphere gliomas. The review included studies that assessed neuropsychological outcomes, tumor characteristics, and the extent of surgical resection. Exclusion criteria included case reports, reviews, and studies focused exclusively on dominant hemisphere gliomas. A total of 13 studies met the inclusion criteria. RESULTS The review identified key cognitive functions assessed during awake surgery, including speech/motor language, visuospatial cognition, executive functions, social cognition, working memory, and sensorimotor functions. Intraoperative neuropsychological assessment primarily used cortical and subcortical stimulation, with a variety of cognitive tests applied to different domains. Studies reported that direct electrical stimulation (DES) revealed functional roles for the right hemisphere in visuospatial attention, social cognition, and executive functions. Patients who underwent awake surgery demonstrated better long-term cognitive outcomes and extended tumor resection compared to those under general anesthesia. However, variability in assessment tools and inconsistent reporting of postoperative outcomes were noted. CONCLUSION Awake surgery combined with ioBM appears to be a viable approach for optimizing tumor resection while preserving cognitive functions in the non-dominant hemisphere. However, the lack of standardized cognitive assessment protocols remains a significant challenge. Future research should focus on establishing a unified set of cognitive tests for intraoperative assessment, conducting longitudinal studies on cognitive recovery, and integrating advanced neuroimaging techniques to refine surgical mapping. Standardizing intraoperative cognitive evaluations will be essential to improving patient outcomes and expanding the application of awake surgery for non-dominant hemisphere gliomas.
Collapse
Affiliation(s)
- Alice Tomaselli
- Department of Medicine and SurgeryKore University of EnnaEnnaItaly
| | - Antonina Luca
- Department of Medicine and SurgeryKore University of EnnaEnnaItaly
| | - Gianluca Ferini
- Department of Medicine and SurgeryKore University of EnnaEnnaItaly
- REM Radioterapia srlViagrandeItaly
| | - Giuseppe Emmanuele Umana
- Department of Medicine and SurgeryKore University of EnnaEnnaItaly
- Department of NeurosurgeryGamma Knife and Trauma Center, Cannizzaro HospitalCataniaItaly
| | - Bipin Chaurasia
- Department of NeurosurgeryBhawani Hospital and Research CentreBirguniNepal
| | - Gianluca Scalia
- Department of Medicine and SurgeryKore University of EnnaEnnaItaly
- Neurosurgery Unit, Department of Head and Neck SurgeryGaribaldi HospitalCataniaItaly
| |
Collapse
|
2
|
Ueda R, Uda H, Hatano K, Sakakura K, Kuroda N, Kitazawa Y, Kanno A, Lee MH, Jeong JW, Luat AF, Asano E. Millisecond-Scale White Matter Dynamics Underlying Visuomotor Integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646029. [PMID: 40236156 PMCID: PMC11996303 DOI: 10.1101/2025.03.28.646029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In the conventional neuropsychological model, nonverbal visuospatial processing is predominantly handled by the right hemisphere, whereas verbal processing occurs in the left, with right-hand responses governed by the left motor cortex. Using intracranial EEG and MRI tractography, we investigated the timing and white matter networks involved in processing nonverbal visuospatial stimuli, forming response decisions, and generating motor outputs. Within 200 ms of stimulus onset, we observed widespread increases in functional connectivity and bidirectional neural flows from visual to association cortices, predominantly in the right hemisphere. Engagement of the right anterior middle frontal gyrus improved response accuracy; however, the accompanying enhancement in intra-hemispheric connectivity delayed response times. In the final 100 ms before right-hand response, functional connectivity and bidirectional communication via the corpus callosum between the right and left motor cortices became prominent. These findings provide millisecond-level support for the established model of hemispheric specialization, while highlighting a trade-off between accuracy and speed governed by the right dorsolateral prefrontal network. They also underscore the critical timing of callosal transmission of response decisions formed in right-hemispheric networks to the left-hemispheric motor system. Highlights Neural information propagates through fasciculi during a visuomotor task.Non-verbal visuospatial analysis is mediated with right-hemispheric dominance.The right middle frontal gyrus improves response accuracy but delays responses.Interhemispheric information transfer occurs immediately before motor responses.This transfer between motor cortices is mediated by the corpus callosum.
Collapse
|
3
|
Li Y, Yin Y, Yu Y, Hu X, Liu X, Wu S. The potential predictors for treatment-resistance depression after selective serotonin reuptake inhibitors therapy in Han Chinese: A resting-state functional magnetic resonance imaging study. Early Interv Psychiatry 2024; 18:698-709. [PMID: 38320861 DOI: 10.1111/eip.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/26/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
AIM Selective serotonin reuptake inhibitors (SSRIs) are among the most important antidepressants. However, there is limited research on predicting the occurrence of treatment-resistant depression (TRD) after 5 years. Examining the predictive effect of TRD occurrence using resting-state fMRI in patients initiating SSRIs treatment at the onset of major depressive disorder (MDD) could potentially enhance TRD management. METHODS A total of 60 first-episode drug-naive MDD patients who met the criteria, along with 41 healthy controls of Han Chinese ethnicity, were recruited. All MDD patients received SSRIs as the initial treatment for relieving depressive symptoms. Resting-state fMRI scans were conducted for all subjects. Follow-up assessments were conducted over a period of five years, during which MDD patients were categorized into treatment-resistant depression (TRD) and non-treatment-resistant depression (NRD) groups based on disease progression. Amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), and Regional Homogeneity (ReHo) values were calculated and compared among the three groups. Additionally, receiver operating characteristic (ROC) curves were employed to identify potential predictors. RESULTS After 5 years of follow-up, it was found that 43 MDD patients were classified as NRD, while 17 were classified as TRD. In comparison to TRD, NRD exhibited decreased ALFF in the left middle cingulum gyrus (MCG.L) and in the right middle frontal gyrus (MFG.R), as well as decreased ReHo in MCG.L. Furthermore, NRD showed increased fALFF in the left precuneus (PCUN.L). The area under the curve (AUC) values were as follows: 0.724 (MCG.L by ALFF), 0.732 (MFG.R), 0.767 (PCUN.L), 0.774 (MCG.L by ReHo), 0.878 (combined), 0.547 (HAMD), and 0.408 (HAMA) respectively. CONCLUSION The findings suggest that PCUN.L, MFG.R, MCG.L, and the combined measures may indicate the possibility of developing TRD after 5 years when SSRIs are used as the initial therapy for relieving depressive symptoms in MDD patients.
Collapse
Affiliation(s)
- Yi Li
- Department of Radiology, Zhejiang University School of Medicine Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Yan Yin
- Department of Psychosomatic, Zhejiang University School of Medicine Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Yingyi Yu
- Department of Radiology, Zhejiang University School of Medicine Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Xiwen Hu
- The sixth ward of Psychiatry Department, Zhejiang University School of Medicine Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Hangzhou, China
| | - XiaoYan Liu
- The fifth ward of Psychiatry Department, Zhejiang University School of Medicine Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Sha Wu
- Department of intensive care unit, Zhejiang University School of Medicine Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Hangzhou, China
| |
Collapse
|
4
|
Tariq R, Aziz HF, Paracha S, Ahmed N, Baqai MWS, Bakhshi SK, McAtee A, Ainger TJ, Mirza FA, Enam SA. Intraoperative mapping and preservation of executive functions in awake craniotomy: a systematic review. Neurol Sci 2024; 45:3723-3735. [PMID: 38520640 DOI: 10.1007/s10072-024-07475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Awake craniotomy (AC) allows intraoperative brain mapping (ioBM) for maximum lesion resection while monitoring and preserving neurological function. Conventionally, language, visuospatial assessment, and motor functions are mapped, while the assessment of executive functions (EF) is uncommon. Impaired EF may lead to occupational, personal, and social limitations, thus, a compromised quality of life. A comprehensive literature search was conducted through Scopus, Medline, and Cochrane Library using a pre-defined search strategy. Articles were selected after duplicate removal, initial screening, and full-text assessment. The demographic details, ioBM techniques, intraoperative tasks, and their assessments, the extent of resection (EOR), post-op EF and neurocognitive status, and feasibility and potential adverse effects of the procedure were reviewed. The correlations of tumor locations with intraoperative EF deficits were also assessed. A total of 13 studies with intraoperative EF assessment of 351 patients were reviewed. Awake-asleep-awake protocol was most commonly used. Most studies performed ioBM using bipolar stimulation, with a frequency of 60 Hz, pulse durations ranging 1-2 ms, and intensity ranging 2-6 mA. Cognitive function was monitored with the Stroop task, spatial-2-back test, line-bisection test, trail-making-task, and digit-span tests. All studies reported similar or better EOR in patients with ioBM for EF. When comparing the neuropsychological outcomes of patients with ioBM of EF to those without it, all studies reported significantly better EF preservation in ioBM groups. Most authors reported EF mapping as a feasible tool to obtain satisfactory outcomes. Adverse effects included intraoperative seizures which were easily controlled. AC with ioBM of EF is a safe, effective, and feasible technique that allows satisfactory EOR and improved neurocognitive outcomes with minimal adverse effects.
Collapse
Affiliation(s)
- Rabeet Tariq
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Hafiza Fatima Aziz
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Shahier Paracha
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Noman Ahmed
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Saqib Kamran Bakhshi
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Annabel McAtee
- College of Medicine, University of Kentucky, Lexington, USA
| | - Timothy J Ainger
- Department of Neurology, University of Kentucky College of Medicine, Kentucky Neuroscience Institute, Lexington, KY, USA
| | - Farhan A Mirza
- Department of Neurosurgery, Kentucky Neuroscience Institute (KNI), University of Kentucky, Lexington, USA
| | - Syed Ather Enam
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan.
| |
Collapse
|
5
|
Martín-Monzón I, Amores-Carrera L, Sabsevitz D, Herbet G. Intraoperative mapping of the right hemisphere: a systematic review of protocols that evaluate cognitive and social cognitive functions. Front Psychol 2024; 15:1415523. [PMID: 38966723 PMCID: PMC11222673 DOI: 10.3389/fpsyg.2024.1415523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
The right hemisphere of the brain is often referred to as the non-dominant hemisphere. Though this is meant to highlight the specialized role of the left hemisphere in language, the use of this term runs the risk of oversimplifying or minimizing the essential functions of the right hemisphere. There is accumulating evidence from functional MRI, clinical lesion studies, and intraoperative mapping data that implicate the right hemisphere in a diverse array of cognitive functions, including visuospatial functions, attentional processes, and social cognitive functions. Neuropsychological deficits following right hemisphere resections are well-documented, but there is a general paucity of literature focusing on how to best map these functions during awake brain surgery to minimize such deficits. To address this gap in the literature, a systematic review was conducted to examine the cognitive and emotional processes associated with the right hemisphere and the neuropsychological tasks frequently used for mapping the right hemisphere during awake brain tumor surgery. It was found that the most employed tests to assess language and speech functions in patients with lesions in the right cerebral hemisphere were the naming task and the Pyramids and Palm Trees Test (PPTT). Spatial cognition was typically evaluated using the line bisection task, while social cognition was assessed through the Reading the Mind in the Eyes (RME) test. Dual-tasking and the movement of the upper and lower limbs were the most frequently used methods to evaluate motor/sensory functions. Executive functions were typically assessed using the N-back test and Stroop test. To the best of our knowledge, this is the first comprehensive review to help provide guidance on the cognitive functions most at risk and methods to map such functions during right awake brain surgery. Systematic Review Registration PROSPERO database [CRD42023483324].
Collapse
Affiliation(s)
- Isabel Martín-Monzón
- Department of Experimental Psychology, Faculty of Psychology, Campus Santiago Ramón y Cajal, University of Seville, Seville, Spain
| | - Laura Amores-Carrera
- Department of Experimental Psychology, Faculty of Psychology, Campus Santiago Ramón y Cajal, University of Seville, Seville, Spain
| | - David Sabsevitz
- Department of Psychiatry and Psychology, Division of Neuropsychology, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier, France
- Praxiling Lab, UMR5267 CNRS & Paul Valéry University, Bâtiment de Recherche Marc Bloch, Montpellier, France
- Department of Medicine, University of Montpellier, Campus ADV, Montpellier, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
6
|
de Zwart B, Ruis C. An update on tests used for intraoperative monitoring of cognition during awake craniotomy. Acta Neurochir (Wien) 2024; 166:204. [PMID: 38713405 PMCID: PMC11076349 DOI: 10.1007/s00701-024-06062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Mapping higher-order cognitive functions during awake brain surgery is important for cognitive preservation which is related to postoperative quality of life. A systematic review from 2018 about neuropsychological tests used during awake craniotomy made clear that until 2017 language was most often monitored and that the other cognitive domains were underexposed (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). The field of awake craniotomy and cognitive monitoring is however developing rapidly. The aim of the current review is therefore, to investigate whether there is a change in the field towards incorporation of new tests and more complete mapping of (higher-order) cognitive functions. METHODS We replicated the systematic search of the study from 2018 in PubMed and Embase from February 2017 to November 2023, yielding 5130 potentially relevant articles. We used the artificial machine learning tool ASReview for screening and included 272 papers that gave a detailed description of the neuropsychological tests used during awake craniotomy. RESULTS Comparable to the previous study of 2018, the majority of studies (90.4%) reported tests for assessing language functions (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). Nevertheless, an increasing number of studies now also describe tests for monitoring visuospatial functions, social cognition, and executive functions. CONCLUSIONS Language remains the most extensively tested cognitive domain. However, a broader range of tests are now implemented during awake craniotomy and there are (new developed) tests which received more attention. The rapid development in the field is reflected in the included studies in this review. Nevertheless, for some cognitive domains (e.g., executive functions and memory), there is still a need for developing tests that can be used during awake surgery.
Collapse
Affiliation(s)
- Beleke de Zwart
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands.
| | - Carla Ruis
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Fornia L, Leonetti A, Puglisi G, Rossi M, Viganò L, Della Santa B, Simone L, Bello L, Cerri G. The parietal architecture binding cognition to sensorimotor integration: a multimodal causal study. Brain 2024; 147:297-310. [PMID: 37715997 PMCID: PMC10766244 DOI: 10.1093/brain/awad316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 09/18/2023] Open
Abstract
Despite human's praxis abilities are unique among primates, comparative observations suggest that these cognitive motor skills could have emerged from exploitation and adaptation of phylogenetically older building blocks, namely the parieto-frontal networks subserving prehension and manipulation. Within this framework, investigating to which extent praxis and prehension-manipulation overlap and diverge within parieto-frontal circuits could help in understanding how human cognition shapes hand actions. This issue has never been investigated by combining lesion mapping and direct electrophysiological approaches in neurosurgical patients. To this purpose, 79 right-handed left-brain tumour patient candidates for awake neurosurgery were selected based on inclusion criteria. First, a lesion mapping was performed in the early postoperative phase to localize the regions associated with an impairment in praxis (imitation of meaningless and meaningful intransitive gestures) and visuo-guided prehension (reaching-to-grasping) abilities. Then, lesion results were anatomically matched with intraoperatively identified cortical and white matter regions, whose direct electrical stimulation impaired the Hand Manipulation Task. The lesion mapping analysis showed that prehension and praxis impairments occurring in the early postoperative phase were associated with specific parietal sectors. Dorso-mesial parietal resections, including the superior parietal lobe and precuneus, affected prehension performance, while resections involving rostral intraparietal and inferior parietal areas affected praxis abilities (covariate clusters, 5000 permutations, cluster-level family-wise error correction P < 0.05). The dorsal bank of the rostral intraparietal sulcus was associated with both prehension and praxis (overlap of non-covariate clusters). Within praxis results, while resection involving inferior parietal areas affected mainly the imitation of meaningful gestures, resection involving intraparietal areas affected both meaningless and meaningful gesture imitation. In parallel, the intraoperative electrical stimulation of the rostral intraparietal and the adjacent inferior parietal lobe with their surrounding white matter during the hand manipulation task evoked different motor impairments, i.e. the arrest and clumsy patterns, respectively. When integrating lesion mapping and intraoperative stimulation results, it emerges that imitation of praxis gestures first depends on the integrity of parietal areas within the dorso-ventral stream. Among these areas, the rostral intraparietal and the inferior parietal area play distinct roles in praxis and sensorimotor process controlling manipulation. Due to its visuo-motor 'attitude', the rostral intraparietal sulcus, putative human homologue of monkey anterior intraparietal, might enable the visuo-motor conversion of the observed gesture (direct pathway). Moreover, its functional interaction with the adjacent, phylogenetic more recent, inferior parietal areas might contribute to integrate the semantic-conceptual knowledge (indirect pathway) within the sensorimotor workflow, contributing to the cognitive upgrade of hand actions.
Collapse
Affiliation(s)
- Luca Fornia
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| | - Antonella Leonetti
- Department of Oncology and Hemato-Oncology, Neurosurgical Oncology Unit, Università degli Studi di Milano, Milano, 20122, Italy
| | - Guglielmo Puglisi
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| | - Marco Rossi
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| | - Luca Viganò
- Department of Oncology and Hemato-Oncology, Neurosurgical Oncology Unit, Università degli Studi di Milano, Milano, 20122, Italy
| | - Bianca Della Santa
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| | - Luciano Simone
- Department of Medicine and Surgery, Università Degli Studi di Parma, Parma, 43125, Italy
| | - Lorenzo Bello
- Department of Oncology and Hemato-Oncology, Neurosurgical Oncology Unit, Università degli Studi di Milano, Milano, 20122, Italy
| | - Gabriella Cerri
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| |
Collapse
|
8
|
Xie H, Yang Y, Sun Q, Li ZY, Ni MH, Chen ZH, Li SN, Dai P, Cui YY, Cao XY, Jiang N, Du LJ, Yu Y, Yan LF, Cui GB. Abnormalities of cerebral blood flow and the regional brain function in Parkinson's disease: a systematic review and multimodal neuroimaging meta-analysis. Front Neurol 2023; 14:1289934. [PMID: 38162449 PMCID: PMC10755479 DOI: 10.3389/fneur.2023.1289934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Background Parkinson's disease (PD) is a neurodegenerative disease with high incidence rate. Resting state functional magnetic resonance imaging (rs-fMRI), as a widely used method for studying neurodegenerative diseases, has not yet been combined with two important indicators, amplitude low-frequency fluctuation (ALFF) and cerebral blood flow (CBF), for standardized analysis of PD. Methods In this study, we used seed-based d-mapping and permutation of subject images (SDM-PSI) software to investigate the changes in ALFF and CBF of PD patients. After obtaining the regions of PD with changes in ALFF or CBF, we conducted a multimodal analysis to identify brain regions where ALFF and CBF changed together or could not synchronize. Results The final study included 31 eligible trials with 37 data sets. The main analysis results showed that the ALFF of the left striatum and left anterior thalamic projection decreased in PD patients, while the CBF of the right superior frontal gyrus decreased. However, the results of multimodal analysis suggested that there were no statistically significant brain regions. In addition, the decrease of ALFF in the left striatum and the decrease of CBF in the right superior frontal gyrus was correlated with the decrease in clinical cognitive scores. Conclusion PD patients had a series of spontaneous brain activity abnormalities, mainly involving brain regions related to the striatum-thalamic-cortex circuit, and related to the clinical manifestations of PD. Among them, the left striatum and right superior frontal gyrus are more closely related to cognition. Systematic review registration https://www.crd.york.ac.uk/ PROSPERO (CRD42023390914).
Collapse
Affiliation(s)
- Hao Xie
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Yang Yang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Qian Sun
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ze-Yang Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Min-Hua Ni
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Zhu-Hong Chen
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Si-Ning Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Pan Dai
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Yan-Yan Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Xin-Yu Cao
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Medical School of Yan’an University, Yan’an, Shaanxi, China
| | - Nan Jiang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Li-Juan Du
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ying Yu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Lin-Feng Yan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Inati SK, Zaghloul KA. Stop being so superficial: subcortical disconnection and long-term seizure outcomes. Brain 2023; 146:2203-2205. [PMID: 37132086 PMCID: PMC10232228 DOI: 10.1093/brain/awad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023] Open
Abstract
This scientific commentary refers to ‘Thalamostriatal disconnection underpins long-term seizure freedom in frontal lobe epilepsy surgery’ by Giampiccolo et al. (https://doi.org/10.1093/brain/awad085).
Collapse
Affiliation(s)
- Sara K Inati
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Giampiccolo D, Binding LP, Caciagli L, Rodionov R, Foulon C, de Tisi J, Granados A, Finn R, Dasgupta D, Xiao F, Diehl B, Torzillo E, Van Dijk J, Taylor PN, Koepp M, McEvoy AW, Baxendale S, Chowdhury F, Duncan JS, Miserocchi A. Thalamostriatal disconnection underpins long-term seizure freedom in frontal lobe epilepsy surgery. Brain 2023; 146:2377-2388. [PMID: 37062539 PMCID: PMC10232243 DOI: 10.1093/brain/awad085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/08/2023] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Around 50% of patients undergoing frontal lobe surgery for focal drug-resistant epilepsy become seizure free post-operatively; however, only about 30% of patients remain seizure free in the long-term. Early seizure recurrence is likely to be caused by partial resection of the epileptogenic lesion, whilst delayed seizure recurrence can occur even if the epileptogenic lesion has been completely excised. This suggests a coexistent epileptogenic network facilitating ictogenesis in close or distant dormant epileptic foci. As thalamic and striatal dysregulation can support epileptogenesis and disconnection of cortico-thalamostriatal pathways through hemispherotomy or neuromodulation can improve seizure outcome regardless of focality, we hypothesize that projections from the striatum and the thalamus to the cortex may contribute to this common epileptogenic network. To this end, we retrospectively reviewed a series of 47 consecutive individuals who underwent surgery for drug-resistant frontal lobe epilepsy. We performed voxel-based and tractography disconnectome analyses to investigate shared patterns of disconnection associated with long-term seizure freedom. Seizure freedom after 3 and 5 years was independently associated with disconnection of the anterior thalamic radiation and anterior cortico-striatal projections. This was also confirmed in a subgroup of 29 patients with complete resections, suggesting these pathways may play a critical role in supporting the development of novel epileptic networks. Our study indicates that network dysfunction in frontal lobe epilepsy may extend beyond the resection and putative epileptogenic zone. This may be critical in the pathogenesis of delayed seizure recurrence as thalamic and striatal networks may promote epileptogenesis and disconnection may underpin long-term seizure freedom.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Institute of Neuroscience, Cleveland Clinic London, London SW1X 7HY, UK
| | - Lawrence P Binding
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Computer Science, Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roman Rodionov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Chris Foulon
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Alejandro Granados
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Roisin Finn
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Debayan Dasgupta
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Fenglai Xiao
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Emma Torzillo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jan Van Dijk
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Peter N Taylor
- Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
| | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Andrew W McEvoy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Institute of Neuroscience, Cleveland Clinic London, London SW1X 7HY, UK
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Fahmida Chowdhury
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Anna Miserocchi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Institute of Neuroscience, Cleveland Clinic London, London SW1X 7HY, UK
| |
Collapse
|
11
|
Gallet C, Clavreul A, Bernard F, Menei P, Lemée JM. Frontal aslant tract in the non-dominant hemisphere: A systematic review of anatomy, functions, and surgical applications. Front Neuroanat 2022; 16:1025866. [DOI: 10.3389/fnana.2022.1025866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022] Open
Abstract
Knowledge of both the spatial organization and functions of white-matter fiber tracts is steadily increasing. We report here the anatomy and functions of the frontal aslant tract (FAT) in the non-dominant hemisphere (usually the right hemisphere). Despite the structural symmetry between the right and left FAT, these two tracts seem to display functional asymmetry, with several brain functions in common, but others, such as visuospatial and social cognition, music processing, shifting attention or working memory, more exclusively associated with the right FAT. Further studies are required to determine whether damage to the right FAT causes permanent cognitive impairment. Such studies will constitute the best means of testing whether this tract is a critical pathway that must be taken into account during neurosurgical procedures and the essential tasks to be incorporated into intraoperative monitoring during awake craniotomy.
Collapse
|
12
|
Zangrossi A, Silvestri E, Bisio M, Bertoldo A, De Pellegrin S, Vallesi A, Della Puppa A, D'Avella D, Denaro L, Scienza R, Mondini S, Semenza C, Corbetta M. Presurgical predictors of early cognitive outcome after brain tumor resection in glioma patients. Neuroimage Clin 2022; 36:103219. [PMID: 36209618 PMCID: PMC9668620 DOI: 10.1016/j.nicl.2022.103219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
Abstract
Gliomas are commonly characterized by neurocognitive deficits that strongly impact patients' and caregivers' quality of life. Surgical resection is the mainstay of therapy, and it can also cause cognitive impairment. An important clinical problem is whether patients who undergo surgery will show post-surgical cognitive impairment above and beyond that present before surgery. The relevant rognostic factors are largely unknown. This study aims to quantify the cognitive impairment in glioma patients 1-week after surgery and to compare different pre-surgical information (i.e., cognitive performance, tumor volume, grading, and lesion topography) towards predicting early post-surgical cognitive outcome. We retrospectively recruited a sample of N = 47 patients affected by high-grade and low-grade glioma undergoing brain surgery for tumor resection. Cognitive performance was assessed before and immediately after (∼1 week) surgery with an extensive neurocognitive battery. Multivariate linear regression models highlighted the combination of predictors that best explained post-surgical cognitive impairment. The impact of surgery on cognitive functioning was relatively small (i.e., 85% of test scores across the whole sample indicated no decline), and pre-operative cognitive performance was the main predictor of early post-surgical cognitive outcome above and beyond information from tumor topography and volume. In fact, structural lesion information did not significantly improve the accuracy of prediction made from cognitive data before surgery. Our findings suggest that post-surgery neurocognitive deficits are only partially explained by preoperative brain damage. The present results suggest the possibility to make reliable, individualized, and clinically relevant predictions from relatively easy-to-obtain information.
Collapse
Affiliation(s)
- Andrea Zangrossi
- Department of Neuroscience, University of Padova, Italy,Padova Neuroscience Center (PNC), University of Padova, Italy,Corresponding author at: Padova Neuroscience Center (PNC), University of Padova, Italy.
| | - Erica Silvestri
- Padova Neuroscience Center (PNC), University of Padova, Italy,Department of Information Engineering, University of Padova, Italy
| | - Marta Bisio
- Padova Neuroscience Center (PNC), University of Padova, Italy,Department of Biomedical Sciences, University of Padova, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center (PNC), University of Padova, Italy,Department of Information Engineering, University of Padova, Italy
| | | | | | - Alessandro Della Puppa
- Neurosurgery Clinical Unit, Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi University Hospital and University of Florence, Florence, Italy
| | - Domenico D'Avella
- Academic Neurosurgery, Department of Neuroscience, University of Padova, Italy
| | - Luca Denaro
- Academic Neurosurgery, Department of Neuroscience, University of Padova, Italy
| | - Renato Scienza
- Academic Neurosurgery, Department of Neuroscience, University of Padova, Italy
| | - Sara Mondini
- Department of Philosophy, Sociology, Pedagogy and Applied Psychology, University of Padova, Padova, Italy
| | - Carlo Semenza
- Padova Neuroscience Center (PNC), University of Padova, Italy
| | - Maurizio Corbetta
- Department of Neuroscience, University of Padova, Italy,Padova Neuroscience Center (PNC), University of Padova, Italy,Neurology Clinical Unit, University Hospital of Padova, Padova, Italy,Venetian Institute of Molecular Medicine, VIMM, Foundation for Advanced Biomedical Research, Padova, Italy
| |
Collapse
|
13
|
Segregated circuits for phonemic and semantic fluency: A novel patient-tailored disconnection study. Neuroimage Clin 2022; 36:103149. [PMID: 35970113 PMCID: PMC9400120 DOI: 10.1016/j.nicl.2022.103149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/14/2022]
Abstract
Phonemic and semantic fluency are neuropsychological tests widely used to assess patients' language and executive abilities and are highly sensitive tests in detecting language deficits in glioma patients. However, the networks that are involved in these tasks could be distinct and suggesting either a frontal (phonemic) or temporal (semantic) involvement. 42 right-handed patients (26 male, mean age = 52.5 years, SD=±13.3) were included in this retrospective study. Patients underwent awake (54.8%) or asleep (45.2%) surgery for low-grade (16.7%) or high-grade-glioma (83.3%) in the frontal (64.3%) or temporal lobe (35.7%) of the left (50%) or right (50%) hemisphere. Pre-operative tractography was reconstructed for each patient, with segmentation of the inferior fronto-occipital fasciculus (IFOF), arcuate fasciculus (AF), uncinate fasciculus (UF), inferior longitudinal fasciculus (ILF), third branch of the superior longitudinal fasciculus (SLF-III), frontal aslant tract (FAT), and cortico-spinal tract (CST). Post-operative percentage of damage and disconnection of each tract, based on the patients' surgical cavities, were correlated with verbal fluencies scores at one week and one month after surgery. Analyses of differences between fluency scores at these timepoints (before surgery, one week and one month after surgery) were performed; lesion-symptom mapping was used to identify the correlation between cortical areas and post-operative scores. Immediately after surgery, a transient impairment of verbal fluency was observed, that improved within a month. Left hemisphere lesions were related to a worse verbal fluency performance, being a damage to the left superior frontal or temporal gyri associated with phonemic or semantic fluency deficit, respectively. At a subcortical level, disconnection analyses revealed that fluency scores were associated to the involvement of the left FAT and the left frontal part of the IFOF for phonemic fluency, and the association was still present one month after surgery. For semantic fluency, the correlation between post-surgery performance emerged for the left AF, UF, ILF and the temporal part of the IFOF, but disappeared at the follow-up. This approach based on the patients' pre-operative tractography, allowed to trace for the first time a dissociation between white matter pathways integrity and verbal fluency after surgery for glioma resection. Our results confirm the involvement of a frontal anterior pathway for phonemic fluency and a ventral temporal pathway for semantic fluency. Finally, our longitudinal results suggest that the frontal executive pathway requires a longer interval to recover compared to the semantic one.
Collapse
|
14
|
Group-level stability but individual variability of neurocognitive status after awake resections of right frontal IDH-mutated glioma. Sci Rep 2022; 12:6126. [PMID: 35413966 PMCID: PMC9005659 DOI: 10.1038/s41598-022-08702-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
Awake surgery for low-grade gliomas is currently considered the best procedure to improve the extent of resection and guarantee a "worth living life" for patients, meaning avoiding not only motor but also cognitive deficits. However, tumors located in the right hemisphere, especially in the right frontal lobe, are still rarely operated on in awake condition; one of the reasons possibly being that there is little information in the literature describing the rates and nature of long-lasting neuropsychological deficits following resection of right frontal glioma. To investigate long-term cognitive deficits after awake surgery in right frontal IDH-mutated glioma. We retrospectively analyzed a consecutive series of awake surgical resections between 2012 and 2020 for right frontal IDH-mutated glioma. We studied the patients' subjective complaints and objective neuropsychological evaluations, both before and after surgery. Our results were then put in perspective with the literature. Twenty surgical cases (including 5 cases of redo surgery) in eighteen patients (medium age: 42.5 [range 26-58]) were included in the study. The median preoperative volume was 37 cc; WHO grading was II, III and IV in 70%, 20%, and 10% of cases, respectively. Preoperatively, few patients had related subjective cognitive or behavioral impairment, while evaluations revealed mild deficits in 45% of cases, most often concerning executive functions, attention, working memory and speed processing. Immediate postoperative evaluations showed severe deficits of executive functions in 75% of cases but also attentional deficits (65%), spatial neglect (60%) and behavioral disturbances (apathy, aprosodia/amimia, emotional sensitivity, anosognosia). Four months after surgery, although psychometric z-scores were unchanged at the group level, individual evaluations showed a slight decrease of performance in 9/20 cases for at least one of the following domains: executive functions, speed processing, attention, semantic cognition, social cognition. Our results are generally consistent with those of the literature, confirming that the right frontal lobe is a highly eloquent area and suggesting the importance of operating these patients in awake conditions.
Collapse
|
15
|
A systematic review of the use of subcortical intraoperative electrical stimulation mapping for monitoring of executive deficits and neglect: what is the evidence so far? Acta Neurochir (Wien) 2022; 164:177-191. [PMID: 34674026 PMCID: PMC8761150 DOI: 10.1007/s00701-021-05012-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/21/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Over the past decade, the functional importance of white matter pathways has been increasingly acknowledged in neurosurgical planning. A method to directly study anatomo-functional correlations is direct electrical stimulation (DES). DES has been widely accepted by neurosurgeons as a reliable tool to minimize the occurrence of permanent postoperative motor, vision, and language deficits. In recent years, DES has also been used for stimulation mapping of other cognitive functions, such as executive functions and visuospatial awareness. METHODS The aim of this review is to summarize the evidence so far from DES studies on subcortical pathways that are involved in visuospatial awareness and in the following three executive functions: (1) inhibitory control, (2) working memory, and (3) cognitive flexibility. RESULTS Eleven articles reported on intraoperative electrical stimulation of white matter pathways to map the cognitive functions and explicitly clarified which subcortical tract was stimulated. The results indicate that the right SLF-II is involved in visuospatial awareness, the left SLF-III and possibly the right SLF-I are involved in working memory, and the cingulum is involved in cognitive flexibility. CONCLUSIONS We were unable to draw any more specific conclusions, nor unequivocally establish the critical involvement of pathways in executive functions or visuospatial awareness due to the heterogeneity of the study types and methods, and the limited number of studies that assessed these relationships. Possible approaches for future research to obtain converging and more definite evidence for the involvement of pathways in specific cognitive functions are discussed.
Collapse
|
16
|
Giampiccolo D, Nunes S, Cattaneo L, Sala F. Functional Approaches to the Surgery of Brain Gliomas. Adv Tech Stand Neurosurg 2022; 45:35-96. [PMID: 35976447 DOI: 10.1007/978-3-030-99166-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the surgery of gliomas, recent years have witnessed unprecedented theoretical and technical development, which extensively increased indication to surgery. On one hand, it has been solidly demonstrated the impact of gross total resection on life expectancy. On the other hand, the paradigm shift from classical cortical localization of brain function towards connectomics caused by the resurgence of awake surgery and the advent of tractography has permitted safer surgeries focused on subcortical white matter tracts preservation and allowed for surgical resections within regions, such as Broca's area or the primary motor cortex, which were previously deemed inoperable. Furthermore, new asleep electrophysiological techniques have been developed whenever awake surgery is not an option, such as operating in situations of poor compliance (including paediatric patients) or pre-existing neurological deficits. One such strategy is the use of intraoperative neurophysiological monitoring (IONM), enabling the identification and preservation of functionally defined, but anatomically ambiguous, cortico-subcortical structures through mapping and monitoring techniques. These advances tie in with novel challenges, specifically risk prediction and the impact of neuroplasticity, the indication for tumour resection beyond visible borders, or supratotal resection, and most of all, a reappraisal of the importance of the right hemisphere from early psychosurgery to mapping and preservation of social behaviour, executive control, and decision making.Here we review current advances and future perspectives in a functional approach to glioma surgery.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Institute of Neurosciences, Cleveland Clinic London, London, UK
| | - Sonia Nunes
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
| | - Luigi Cattaneo
- Center for Mind and Brain Sciences (CIMeC) and Center for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy.
| |
Collapse
|
17
|
Samandouras G. Extended testing for cognition: has awake brain mapping moved to the next level? Acta Neurochir (Wien) 2022; 164:173-176. [PMID: 34757476 DOI: 10.1007/s00701-021-05010-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Affiliation(s)
- George Samandouras
- The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
18
|
Nakajima R, Kinoshita M, Okita H, Nakada M. Quality of life following awake surgery depends on ability of executive function, verbal fluency, and movement. J Neurooncol 2021; 156:173-183. [PMID: 34800211 DOI: 10.1007/s11060-021-03904-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022]
Abstract
INTRODUCTION The outcome of awake surgery has been evaluated based on functional factors, return to work, and oncological aspects, and there have been no reports directly examining QOL. This study aimed to investigate the outcome of QOL following awake surgery and to determine the functional factors influencing QOL. METHODS Seventy patients with WHO grade II/III gliomas were included. For the assessment of QOL, we used the SF-36 and calculated summary and sub-component scores. Three summary component scores, including physical (PCS), mental (MCS), and role/social summary (RCS) component scores, were computed based on sub-component scores. Additionally, various assessments of neurological/neuropsychological function were performed. We performed univariate and multiple regression analyses to investigate the functional factors influencing the SF-36. RESULTS PCS and MCS were maintained, but only RCS was low to 42.0 ± 16.1. We then focused on the RCS and its sub-components: general health (GH), role physical (RP), social functioning (SF), and role emotional (RE). Multiple regression analysis showed following significant correlations between the sub-component scores and brain functions: GH to executive function and movement (p = 0.0033 and 0.032), RP to verbal fluency and movement (p = 0.0057 and 0.0010), and RE to verbal fluency (p = 0.020). Furthermore, when the sub-component scores were compared between groups with and without functional deficits related to GH, RP, and RE, each score was significantly lower in the groups with functional deficits (p = 0.012, 0.014, and 0.0049, respectively). CONCLUSIONS In patients who underwent awake surgery, a subset of patients had low QOL because of poor RCS. Functional factors influencing QOL included executive function, verbal fluency, and movement.
Collapse
Affiliation(s)
- Riho Nakajima
- Department of Occupational Therapy, Faculty of Health Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hirokazu Okita
- Department of Physical Medicine and Rehabilitation, Kanazawa University Hospital, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| |
Collapse
|
19
|
White matter variability, cognition, and disorders: a systematic review. Brain Struct Funct 2021; 227:529-544. [PMID: 34731328 PMCID: PMC8844174 DOI: 10.1007/s00429-021-02382-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
Inter-individual differences can inform treatment procedures and—if accounted for—have the potential to significantly improve patient outcomes. However, when studying brain anatomy, these inter-individual variations are commonly unaccounted for, despite reports of differences in gross anatomical features, cross-sectional, and connectional anatomy. Brain connections are essential to facilitate functional organization and, when severed, cause impairments or complete loss of function. Hence, the study of cerebral white matter may be an ideal compromise to capture inter-individual variability in structure and function. We reviewed the wealth of studies that associate cognitive functions and clinical symptoms with individual tracts using diffusion tractography. Our systematic review indicates that tractography has proven to be a sensitive method in neurology, psychiatry, and healthy populations to identify variability and its functional correlates. However, the literature may be biased, as the most commonly studied tracts are not necessarily those with the highest sensitivity to cognitive functions and pathologies. Additionally, the hemisphere of the studied tract is often unreported, thus neglecting functional laterality and asymmetries. Finally, we demonstrate that tracts, as we define them, are not correlated with one, but multiple cognitive domains or pathologies. While our systematic review identified some methodological caveats, it also suggests that tract–function correlations might still be a promising tool in identifying biomarkers for precision medicine. They can characterize variations in brain anatomy, differences in functional organization, and predicts resilience and recovery in patients.
Collapse
|
20
|
Landers MJF, Meesters SPL, van Zandvoort M, de Baene W, Rutten GJM. The frontal aslant tract and its role in executive functions: a quantitative tractography study in glioma patients. Brain Imaging Behav 2021; 16:1026-1039. [PMID: 34716878 PMCID: PMC9107421 DOI: 10.1007/s11682-021-00581-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/03/2021] [Indexed: 11/29/2022]
Abstract
Focal white matter lesions can cause cognitive impairments due to disconnections within or between networks. There is some preliminary evidence that there are specific hubs and fiber pathways that should be spared during surgery to retain cognitive performance. A tract potentially involved in important higher-level cognitive processes is the frontal aslant tract. It roughly connects the posterior parts of the inferior frontal gyrus and the superior frontal gyrus. Functionally, the left frontal aslant tract has been associated with speech and the right tract with executive functions. However, there currently is insufficient knowledge about the right frontal aslant tract’s exact functional importance. The aim of this study was to investigate the role of the right frontal aslant tract in executive functions via a lesion-symptom approach. We retrospectively examined 72 patients with frontal glial tumors and correlated measures from tractography (distance between tract and tumor, and structural integrity of the tract) with cognitive test performances. The results indicated involvement of the right frontal aslant tract in shifting attention and letter fluency. This involvement was not found for the left tract. Although this study was exploratory, these converging findings contribute to a better understanding of the functional frontal subcortical anatomy. Shifting attention and letter fluency are important for healthy cognitive functioning, and when impaired they may greatly influence a patient’s wellbeing. Further research is needed to assess whether or not damage to the right frontal aslant tract causes permanent cognitive impairments, and consequently identifies this tract as a critical pathway that should be taken into account during neurosurgical procedures.
Collapse
Affiliation(s)
- Maud J F Landers
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands. .,Department of Neurology & Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Stephan P L Meesters
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands.,Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Martine van Zandvoort
- Department of Neurology & Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Wouter de Baene
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Geert-Jan M Rutten
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| |
Collapse
|
21
|
Mandonnet E. Should Complex Cognitive Functions Be Mapped With Direct Electrostimulation in Wide-Awake Surgery? A Commentary. Front Neurol 2021; 12:721038. [PMID: 34512531 PMCID: PMC8426436 DOI: 10.3389/fneur.2021.721038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/15/2021] [Indexed: 01/12/2023] Open
Affiliation(s)
- Emmanuel Mandonnet
- Hôpital Lariboisière, Paris, France
- INSERM U1127 Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
- Université de Paris, Paris, France
| |
Collapse
|
22
|
Erez Y, Assem M, Coelho P, Romero-Garcia R, Owen M, McDonald A, Woodberry E, Morris RC, Price SJ, Suckling J, Duncan J, Hart MG, Santarius T. Intraoperative mapping of executive function using electrocorticography for patients with low-grade gliomas. Acta Neurochir (Wien) 2021; 163:1299-1309. [PMID: 33222010 PMCID: PMC8053659 DOI: 10.1007/s00701-020-04646-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/09/2020] [Indexed: 01/03/2023]
Abstract
Background Intraoperative functional mapping with direct electrical stimulation during awake surgery for patients with diffuse low-grade glioma has been used in recent years to optimize the balance between surgical resection and quality of life following surgery. Mapping of executive functions is particularly challenging because of their complex nature, with only a handful of reports published so far. Here, we propose the recording of neural activity directly from the surface of the brain using electrocorticography to map executive functions and demonstrate its feasibility and potential utility. Methods To track a neural signature of executive function, we recorded neural activity using electrocorticography during awake surgery from the frontal cortex of three patients judged to have an appearance of diffuse low-grade glioma. Based on existing functional magnetic resonance imaging (fMRI) evidence from healthy participants for the recruitment of areas associated with executive function with increased task demands, we employed a task difficulty manipulation in two counting tasks performed intraoperatively. Following surgery, the data were extracted and analyzed offline to identify increases in broadband high-gamma power with increased task difficulty, equivalent to fMRI findings, as a signature of activity related to executive function. Results All three patients performed the tasks well. Data were recorded from five electrode strips, resulting in data from 15 channels overall. Eleven out of the 15 channels (73.3%) showed significant increases in high-gamma power with increased task difficulty, 26.6% of the channels (4/15) showed no change in power, and none of the channels showed power decrease. High-gamma power increases with increased task difficulty were more likely in areas that are within the canonical frontoparietal network template. Conclusions These results are the first step toward developing electrocorticography as a tool for mapping of executive function complementarily to direct electrical stimulation to guide resection. Further studies are required to establish this approach for clinical use.
Collapse
|
23
|
Distinct Functional and Structural Connectivity of the Human Hand-Knob Supported by Intraoperative Findings. J Neurosci 2021; 41:4223-4233. [PMID: 33827936 DOI: 10.1523/jneurosci.1574-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/02/2021] [Accepted: 01/10/2021] [Indexed: 12/15/2022] Open
Abstract
Fine motor skills rely on the control of hand muscles exerted by a region of primary motor cortex (M1) that has been extensively investigated in monkeys. Although neuroimaging enables the exploration of this system also in humans, indirect measurements of brain activity prevent causal definitions of hand motor representations, which can be achieved using data obtained during brain mapping in tumor patients. High-frequency direct electrical stimulation delivered at rest (HF-DES-Rest) on the hand-knob region of the precentral gyrus has identified two sectors showing differences in cortical excitability. Using quantitative analysis of motor output elicited with HF DES-Rest, we characterized two sectors based on their excitability, higher in the posterior and lower in the anterior sector. We studied whether the different cortical excitability of these two regions reflected differences in functional connectivity (FC) and structural connectivity (SC). Using healthy adults from the Human Connectome Project (HCP), we computed FC and SC of the anterior and the posterior hand-knob sectors identified within a large cohort of patients. The comparison of FC of the two seeds showed that the anterior hand-knob, relative to the posterior hand-knob, showed stronger functional connections with a bilateral set of parietofrontal areas responsible for integrating perceptual and cognitive hand-related sensorimotor processes necessary for goal-related actions. This was reflected in different patterns of SC between the two sectors. Our results suggest that the human hand-knob is a functionally and structurally heterogeneous region organized along a motor-cognitive gradient.SIGNIFICANCE STATEMENT The capability to perform complex manipulative tasks is one of the major characteristics of primates and relies on the fine control of hand muscles exerted by a highly specialized region of the precentral gyrus, often termed the "hand-knob" sector. Using intraoperative brain mapping, we identify two hand-knob sectors (posterior and anterior) characterized by differences in cortical excitability. Based on resting-state functional connectivity (FC) and tractography in healthy subjects, we show that posterior and anterior hand-knob sectors differ in their functional connectivity (FC) and structural connectivity (SC) with frontoparietal regions. Thus, anteroposterior differences in cortical excitability are paralleled by differences in FC and SC that likely reflect a motor (posterior) to cognitive (anterior) organization of this cortical region.
Collapse
|
24
|
Bu L, Lu J, Zhang J, Wu J. Intraoperative Cognitive Mapping Tasks for Direct Electrical Stimulation in Clinical and Neuroscientific Contexts. Front Hum Neurosci 2021; 15:612891. [PMID: 33762913 PMCID: PMC7982856 DOI: 10.3389/fnhum.2021.612891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Direct electrical stimulation (DES) has been widely applied in both guidance of lesion resection and scientific research; however, the design and selection of intraoperative cognitive mapping tasks have not been updated in a very long time. We introduce updated mapping tasks for language and non-language functions and provide recommendations for optimal design and selection of intraoperative mapping tasks. In addition, with DES becoming more critical in current neuroscientific research, a task design that has not been widely used in DES yet (subtraction and conjunction paradigms) was introduced for more delicate mapping of brain functions especially for research purposes. We also illustrate the importance of designing a common task series for DES and other non-invasive mapping techniques. This review gives practical updated guidelines for advanced application of DES in clinical and neuroscientific research.
Collapse
Affiliation(s)
- Linghao Bu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Zhangjiang Lab, Institute of Brain-Intelligence Technology, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Junfeng Lu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Zhangjiang Lab, Institute of Brain-Intelligence Technology, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jie Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Zhangjiang Lab, Institute of Brain-Intelligence Technology, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Zhangjiang Lab, Institute of Brain-Intelligence Technology, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| |
Collapse
|
25
|
Hsieh S, Yao ZF, Yang MH. Multimodal Imaging Analysis Reveals Frontal-Associated Networks in Relation to Individual Resilience Strength. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1123. [PMID: 33513995 PMCID: PMC7908187 DOI: 10.3390/ijerph18031123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/17/2021] [Accepted: 01/23/2021] [Indexed: 11/17/2022]
Abstract
Psychological resilience is regarded as a critical protective factor for preventing the development of mental illness from experienced adverse events. Personal strength is one key element of resilience that reflects an individual's reactions to negative life events and is crucial for successful adaptation. Previous studies have linked unimodal imaging measures with resilience. However, applying multimodal imaging measures could provide comprehensive organization information at the system level to examine whether an individual's resilience strength is reflected in the brain's structural and functional network. In this study, MRI was used to acquire multimodal imaging properties and subscales of personal strength in terms of resilience from 109 participants (48 females and 61 males). We employed a method of fusion independent component analysis to link the association between multimodal imaging components and personal strength of psychological resilience. The results reveal that a fusion component involving multimodal frontal networks in connecting with the parietal, occipital, and temporal regions is associated with the resilience score for personal strength. A multiple regression model further explains the predictive role of frontal-associated regions that cover a visual-related network regulating cognition and emotion to discern the perceived adverse experience. Overall, this study suggests that frontal-associated regions are related to individual resilience strength.
Collapse
Affiliation(s)
- Shulan Hsieh
- CASE Lab, Department of Psychology, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan;
- Institute of Allied Health Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Department and Institute of Public Health, National Cheng Kung University, Tainan 701, Taiwan
| | - Zai-Fu Yao
- Brain and Cognition, Department of Psychology, University of Amsterdam, 1001 NK Amsterdam, The Netherlands;
| | - Meng-Heng Yang
- CASE Lab, Department of Psychology, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan;
| |
Collapse
|
26
|
Executive functional deficits during electrical stimulation of the right frontal aslant tract. Brain Imaging Behav 2021; 15:2731-2735. [PMID: 33462780 PMCID: PMC8500906 DOI: 10.1007/s11682-020-00439-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 10/29/2022]
Abstract
Direct electrical stimulation mapping was used to map executive functions during awake surgery of a patient with a right frontal low-grade glioma. We specifically targeted the frontal aslant tract, as this pathway had been infiltrated by the tumor. The right frontal aslant tract has been implicated in executive functions in the neuroscientific literature, but is yet of unknown relevance for clinical practice. Guided by tractography, electrical stimulation of the frontal aslant tract disrupted working memory and inhibitory functions. In this report we illustrate the dilemmas that neurosurgeons face when balancing maximal tumor resection against optimal cognitive performance. In particular, we emphasize that intraoperative tasks that target cognitive functions should be carefully introduced in clinical practice to prevent clinically irrelevant responses and too early termination of the resection.
Collapse
|
27
|
Mao Y, Liao Z, Liu X, Li T, Hu J, Le D, Pei Y, Sun W, Lin J, Qiu Y, Zhu J, Chen Y, Qi C, Su H, Yu E. Disrupted balance of long and short-range functional connectivity density in Alzheimer's disease (AD) and mild cognitive impairment (MCI) patients: a resting-state fMRI study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:65. [PMID: 33553358 PMCID: PMC7859805 DOI: 10.21037/atm-20-7019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background Alzheimer’s disease (AD) is an age-progressive neurodegenerative disorder that affects cognitive function. There have been several functional connectivity (FC) strengths; however, FC density needs more development in AD. Therefore, this study wanted to determine the alternations in resting-state functional connectivity density (FCD) induced by Alzheimer’s and mild cognitive impairment (MCI). Methods One hundred and eleven AD patients, 29 MCI patients, and 73 healthy controls (age- and sex-matched) were recruited and assessed using resting-state functional magnetic resonance imaging (MRI) scanning. The ultra-fast graph theory called FCD mapping was used to calculate the voxel-wise short- and long-range FCD values of the brain. We performed voxel-based between-group comparisons of FCD values to show the cerebral regions with significant FCD alterations. We performed Pearson’s correlation analyses between aberrant functional connectivity densities and several clinical variables with adjustment for age and sex. Results Patients with cognition decline showed significantly abnormal long-range FCD in the cerebellum crus I, right insula, left inferior frontal gyrus, left superior frontal gyrus, left inferior frontal gyrus, and right middle frontal gyrus. The short-range FCD changed in the cerebellum crus I, left inferior frontal gyrus, left superior occipital gyrus, and right middle frontal gyrus. The long- and short-range functional connectivity in the left inferior frontal gyrus was positively correlated with Mini-mental State Examination (MMSE) scores. Conclusions FCD in the identified regions reflects mechanism and compensation for loss of cognitive function. These findings could improve the pathology of AD and MCI and supply a neuroimaging marker for AD and MCI.
Collapse
Affiliation(s)
- Yanping Mao
- Department of Clinical Psychology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhengluan Liao
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaozheng Liu
- Department of Radiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ting Li
- Medical Department, Qingdao University, Qingdao, China
| | - Jiaojiao Hu
- Department of Clinical Psychology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dansheng Le
- The Second school of Medical, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangliu Pei
- Graduate Department, Bengbu Medical College, Bengbu, China
| | - Wangdi Sun
- The Second school of Medical, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jixin Lin
- Department of Internal Medicine, Shengsi County People's Hospital, Zhoushan, China
| | - Yaju Qiu
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Junpeng Zhu
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yan Chen
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chang Qi
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Heng Su
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Enyan Yu
- Department of Clinical Psychology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
28
|
Morshed RA, Young JS, Kroliczek AA, Berger MS, Brang D, Hervey-Jumper SL. A Neurosurgeon's Guide to Cognitive Dysfunction in Adult Glioma. Neurosurgery 2020; 89:1-10. [PMID: 33289504 DOI: 10.1093/neuros/nyaa400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/02/2020] [Indexed: 11/13/2022] Open
Abstract
Cognitive decline is common among patients with low- and high-grade glioma and can significantly impact quality of life. Although cognitive outcomes have been studied after therapeutic interventions such as surgery and radiation, it is important to understand the impact of the disease process itself prior to any interventions. Neurocognitive domains of interest in this disease context include intellectual function and premorbid ability, executive function, learning and memory, attention, language function, processing speed, visuospatial function, motor function, and emotional function. Here, we review oncologic factors associated with more neurocognitive impairment, key neurocognitive tasks relevant to glioma patient assessment, as well as the relevance of the human neural connectome in understanding cognitive dysfunction in glioma patients. A contextual understanding of glioma-functional network disruption and its impact on cognition is critical in the surgical management of eloquent area tumors.
Collapse
Affiliation(s)
- Ramin A Morshed
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Jacob S Young
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Arlena A Kroliczek
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - David Brang
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| |
Collapse
|
29
|
Abstract
Intraoperative functional mapping of tumor and peri-tumor tissue is a well-established technique for avoiding permanent neurologic deficits and maximizing extent of resection. Motor, language, and other cognitive domains may be assessed with intraoperative tasks. This article describes techniques used for motor and language mapping including awake mapping considerations in addition to less traditional intraoperative testing paradigms for cognition. It also discusses complications associated with mapping and insights into complication avoidance.
Collapse
|
30
|
Wen HJ, Tsai CL. Effects of Acute Aerobic Exercise Combined with Resistance Exercise on Neurocognitive Performance in Obese Women. Brain Sci 2020; 10:brainsci10110767. [PMID: 33105799 PMCID: PMC7690637 DOI: 10.3390/brainsci10110767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022] Open
Abstract
To the best of the author’s knowledge, there have been no previous studies conducted on the effects of a combination of acute aerobic and resistance exercise on deficit of inhibitory control in obese individuals. The aim of this study was, thus, to examine the effect of a single bout of such an exercise mode on behavioral and cognitive electrophysiological performance involving cognitive interference inhibition in obese women. After the estimated VO2max and percentage fat (measured with dual-energy X-ray absorptiometry (Hologic, Bedford, MA, USA) were assessed, 32 sedentary obese female adults were randomly assigned to an exercise group (EG) and a control group (CG), with their behavioral performance being recorded with concomitant electrophysiological signals when performing a Stroop task. Then, the EG engaged in 30 min of moderate-intensity aerobic exercise combined with resistance exercise, and the CG rested for a similar duration of time without engaging in any type of exercise. After the interventions, the neurocognitive performance was measured again in the two groups. The results revealed that although acute exercise did not enhance the behavioral indices (e.g., accuracy rates (ARs) and reaction times (RTs)), cognitive electrophysiological signals were improved (e.g., shorter N2 and P3 latencies, smaller N2 amplitudes, and greater P3 amplitudes) in the Stroop task after the exercise intervention in the EG. The findings indicated that a combination of acute moderate-intensity aerobic and resistance exercise may improve the neurophysiological inhibitory control performance of obese women.
Collapse
Affiliation(s)
- Huei-Jhen Wen
- Physical Education Center, College of Education and Communication, Tzu Chi University, Hualien 97004, Taiwan
- Sports Medicine Center, Tzu Chi Hospital, Hualien 97004, Taiwan
- Correspondence: (H.-J.W.); (C.-L.T.); Tel.: +886-3-8565-301 (ext. 1217) (H.-J.W.); +886-6-2757-575 (ext. 81809) (C.-L.T.)
| | - Chia-Liang Tsai
- Institution of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (H.-J.W.); (C.-L.T.); Tel.: +886-3-8565-301 (ext. 1217) (H.-J.W.); +886-6-2757-575 (ext. 81809) (C.-L.T.)
| |
Collapse
|
31
|
Pflugshaupt T, Bauer D, Frey J, Vanbellingen T, Kaufmann BC, Bohlhalter S, Nyffeler T. The right anterior temporal lobe critically contributes to magnitude knowledge. Brain Commun 2020; 2:fcaa157. [PMID: 33225278 PMCID: PMC7667527 DOI: 10.1093/braincomms/fcaa157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 11/14/2022] Open
Abstract
Cognitive estimation is a mental ability applied to solve numerical problems when precise facts are unknown, unavailable or impractical to calculate. It has been associated with several underlying cognitive components, most often with executive functions and semantic memory. Little is known about the neural correlates of cognitive estimation. To address this issue, the present cross-sectional study applied lesion-symptom mapping in a group of 55 patients with left hemineglect due to right-hemisphere stroke. Previous evidence suggests a high prevalence of cognitive estimation impairment in these patients, as they might show a general bias towards large magnitudes. Compared to 55 age- and gender-matched healthy controls, the patient group demonstrated impaired cognitive estimation. However, the expected large magnitude bias was not found. Lesion-symptom mapping related their general estimation impairment predominantly to brain damage in the right anterior temporal lobe. Also critically involved were the right uncinate fasciculus, the anterior commissure and the right inferior frontal gyrus. The main findings of this study emphasize the role of semantic memory in cognitive estimation, with reference to a growing body of neuroscientific literature postulating a transmodal hub for semantic cognition situated in the bilateral anterior temporal lobe. That such semantic hub function may also apply to numerical knowledge is not undisputed. We here propose a critical contribution of the right anterior temporal lobe to at least one aspect of number processing, i.e. the knowledge about real-world numerical magnitudes.
Collapse
Affiliation(s)
| | - Daniel Bauer
- Neurocenter, Luzerner Kantonsspital, Luzern, Switzerland
| | - Julia Frey
- Neurocenter, Luzerner Kantonsspital, Luzern, Switzerland
| | - Tim Vanbellingen
- Neurocenter, Luzerner Kantonsspital, Luzern, Switzerland
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Brigitte C Kaufmann
- Neurocenter, Luzerner Kantonsspital, Luzern, Switzerland
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | | | - Thomas Nyffeler
- Neurocenter, Luzerner Kantonsspital, Luzern, Switzerland
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Conti Nibali M, Leonetti A, Puglisi G, Rossi M, Sciortino T, Gay LG, Arcidiacono UA, Howells H, Viganò L, Zito PC, Riva M, Bello L. Preserving Visual Functions During Gliomas Resection: Feasibility and Efficacy of a Novel Intraoperative Task for Awake Brain Surgery. Front Oncol 2020; 10:1485. [PMID: 32983985 PMCID: PMC7492569 DOI: 10.3389/fonc.2020.01485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: The intraoperative identification and preservation of optic radiations (OR) during tumor resection requires the patient to be awake. Different tasks are used. However, they do not grant the maintenance of foveal vision during all testing, limiting the ability to constantly monitor the peripheral vision and to inform about the portion of the peripheral field that is encountered. Although hemianopia can be prevented, quadrantanopia cannot be properly avoided. To overcome these limitations, we developed an intra-operative Visual field Task (iVT) to monitor the foveal vision, alerting about the likelihood of injuring the OR during task administration, and to inform about the portion of the peripheral field that is explored. Data on feasibility and efficacy in preventing visual field deficits are reported, comparing the outcome with the standard available task (Double-Picture-Naming-Task, DPNT). Methods: Patients with a temporal and/or parietal lobe tumor in close morphological relationship with the OR, or where the resection can involve the OR at any extent, without pre-operative visual-field deficits (Humphrey) were enrolled. Fifty-four patients were submitted to iVT, 38 to DPNT during awake surgery with brain mapping neurophysiological techniques. Feasibility was assessed as ease of administration, training and mapping time, and ability to alert about the loss of foveal vision. Type and location of evoked interferences were registered. Functional outcome was evaluated by manual and Humphrey test; extent of resection was recorded. Tractography was performed in a sample of patients to compare patient anatomy with intraoperative stimulation site(s). Results: The test was easy to administer and detected the loss of foveal vision in all cases. Stimulation induced visual-field interferences, detected in all patients, classified as detection or discrimination errors. Detection was mostly observed in temporal tumors, discrimination in temporo-parietal ones. Immediate visual disturbances in DPNT group were registered in 84 vs. 24% of iVT group. At 1-month Humphrey evaluation, 26% of iVT vs. 63% of DPNT had quadrantanopia (32% symptomatic); 10% of DPNT had hemianopia. EOR was similar. Detection errors were induced for stimulation of OR; discrimination also for other visual processing tract (ILF). Conclusion: iVT was feasible and sensitive to preserve the functional integrity of the OR.
Collapse
Affiliation(s)
- Marco Conti Nibali
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Antonella Leonetti
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy.,Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Guglielmo Puglisi
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy.,Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Marco Rossi
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Gabriel Gay
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Umberto Aldo Arcidiacono
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Luca Viganò
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy.,Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Paola Cosma Zito
- Department of Anesthesia and Intensive Care, Humanitas Research Hospital, IRCCS, Rozzano, Italy
| | - Marco Riva
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Bello
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
33
|
Direct electrical stimulation of the premotor cortex shuts down awareness of voluntary actions. Nat Commun 2020; 11:705. [PMID: 32019940 PMCID: PMC7000749 DOI: 10.1038/s41467-020-14517-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/23/2019] [Indexed: 11/26/2022] Open
Abstract
A challenge for neuroscience is to understand the conscious and unconscious processes underlying construction of willed actions. We investigated the neural substrate of human motor awareness during awake brain surgery. In a first experiment, awake patients performed a voluntary hand motor task and verbally monitored their real-time performance, while different brain areas were transiently impaired by direct electrical stimulation (DES). In a second experiment, awake patients retrospectively reported their motor performance after DES. Based on anatomo-clinical evidence from motor awareness disorders following brain damage, the premotor cortex (PMC) was selected as a target area and the primary somatosensory cortex (S1) as a control area. In both experiments, DES on both PMC and S1 interrupted movement execution, but only DES on PMC dramatically altered the patients’ motor awareness, making them unconscious of the motor arrest. These findings endorse PMC as a crucial hub in the anatomo-functional network of human motor awareness. Here, using electrical stimulation on patients undergoing awake brain surgery, the authors show that disruption of the premotor cortex makes patients unconscious of motor arrest. This finding suggests the premotor cortex is crucial for motor awareness.
Collapse
|
34
|
Chen Y, Fan C, Yang W, Nie K, Wu X, Yang Y, Yang Y, Wang L, Zhang Y, Huang B. Cortical hypoperfusion in patients with idiopathic rapid eye movement sleep behavior disorder detected with arterial spin-labeled perfusion MRI. Neurol Sci 2019; 41:809-815. [PMID: 31792718 DOI: 10.1007/s10072-019-04118-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/19/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Idiopathic rapid eye movement sleep behavior disorder (iRBD) is an important risk factor for α-synucleinopathy. OBJECTIVE We investigated alterations in the cerebral blood flow (CBF) based on arterial spin-labeled (ASL) imaging in patients with iRBD to determine brain perfusion changes associated with the disorder. METHODS Fifteen patients with iRBD and twenty age-gender-matched healthy controls were enrolled. Cortical perfusions were compared between the two groups after the ASL data was co-registered to the high-resolution T1-weighted images. RESULTS No significant differences were detected between the groups in regard to age, gender, education, or UPDRS-III score. The iRBD group showed a lower MMSE score than the healthy controls (27.07 ± 2.25 vs. 28.55 ± 1.23, p < 0.05). Compared with the healthy controls, the iRBD group showed significantly decreased CBF values in the right inferior frontal gyrus, right middle frontal gyrus, and right insula (p < 0.05 corrected). CONCLUSION The cortical hypoperfusion areas in patients with iRBD were similar to the patterns in patients with α -synucleinopathies. ASL perfusion MRI is a potential approach to find biomarkers in preclinical stages of α -synucleinopathies.
Collapse
Affiliation(s)
- Yonglu Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.,Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Changhe Fan
- Guangdong Provincial Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Wanqun Yang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Kun Nie
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xiaoling Wu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yuelong Yang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yunjun Yang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Lijuan Wang
- Guangdong Provincial Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yuhu Zhang
- Guangdong Provincial Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Biao Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China. .,Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|