1
|
Hernandez-Gutierrez E, Coronado-Leija R, Edde M, Dumont M, Houde JC, Barakovic M, Magon S, Ramirez-Manzanares A, Descoteaux M. Multi-tensor fixel-based metrics in tractometry: application to multiple sclerosis. Front Neurosci 2024; 18:1467786. [PMID: 39758886 PMCID: PMC11697428 DOI: 10.3389/fnins.2024.1467786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/04/2024] [Indexed: 01/07/2025] Open
Abstract
Traditional Diffusion Tensor Imaging (DTI) metrics are affected by crossing fibers and lesions. Most of the previous tractometry works use the single diffusion tensor, which leads to limited sensitivity and challenging interpretation of the results in crossing fiber regions. In this work, we propose a tractometry pipeline that combines white matter tractography with multi-tensor fixel-based metrics. These multi-tensors are estimated using the stable, accurate and robust to noise Multi-Resolution Discrete Search method (MRDS). The spatial coherence of the multi-tensor field estimated with MRDS, which includes up to three anisotropic and one isotropic tensors, is tractography-regularized using the Track Orientation Density Imaging method. Our end-to-end tractometry pipeline goes from raw data to track-specific multi-tensor-metrics tract profiles that are robust to noise and crossing fibers. A comprehensive evaluation conducted in a phantom simulating healthy and damaged tissue with the standard model, as well as in a healthy cohort of 20 individuals scanned along 5 time points, demonstrates the advantages of using multi-tensor metrics over traditional single-tensor metrics in tractometry. Qualitative assessment in a cohort of patients with relapsing-remitting multiple sclerosis reveals that the pipeline effectively detects white matter anomalies in the presence of crossing fibers and lesions.
Collapse
Affiliation(s)
- Erick Hernandez-Gutierrez
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Ricardo Coronado-Leija
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine (NYU), New York, NY, United States
| | - Manon Edde
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, Sherbrooke, QC, Canada
| | | | | | - Muhamed Barakovic
- Pharma Research and Early Development, Neuroscience and Rare Diseases Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stefano Magon
- Pharma Research and Early Development, Neuroscience and Rare Diseases Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Alonso Ramirez-Manzanares
- Computer Science Department, Centro de Investigación en Matemáticas A.C. (CIMAT), Guanajuato, Mexico
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, Sherbrooke, QC, Canada
- Imeka Solutions Inc., Sherbrooke, QC, Canada
| |
Collapse
|
2
|
Wu W, Francis H, Lucien A, Wheeler TA, Gandy M. The Prevalence of Cognitive Impairment in Relapsing-Remitting Multiple Sclerosis: A Systematic Review and Meta-analysis. Neuropsychol Rev 2024:10.1007/s11065-024-09640-8. [PMID: 38587704 DOI: 10.1007/s11065-024-09640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
It is increasingly recognized that cognitive symptoms are a common sequelae of relapsing-remitting multiple sclerosis and are associated with adverse functional consequences. However, estimates of cognitive impairment (CIm) prevalence vary widely. This study aimed to determine the pooled prevalence of CIm among adults with RRMS and investigate moderators of prevalence rates. Following prospective registration (PROSPERO; CRD42021281815), electronic databases (Embase, Scopus, Medline, and PsycINFO) were searched from inception until March 2023. Eligible studies reported the prevalence of CIm among adults with RRMS, as determined through standardized neuropsychological testing and defined as evidence of reduced performance across at least two cognitive domains (e.g., processing speed, attention) relative to normative samples, healthy controls, or premorbid estimates. The electronic database search yielded 8695 unique records, of which 50 met selection criteria. The pooled prevalence of cognitive impairment was 32.5% (95% confidence interval 29.3-36.0%) across 5859 participants. Mean disease duration and age were significant predictors of cognitive impairment prevalence, with samples with longer disease durations and older age reporting higher prevalence rates. Studies which administered more extensive test batteries also reported significantly higher cognitive impairment prevalence. Approximately one third of adults with RRMS experience clinical levels of CIm. This finding supports the use of routine cognitive testing to enable early detection of CIm, and to identify individuals who may benefit from additional cognitive and functional support during treatment planning.
Collapse
Affiliation(s)
- Wendy Wu
- The School of Psychological Sciences, Australian Hearing Hub, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
| | - Heather Francis
- The School of Psychological Sciences, Australian Hearing Hub, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Neurology Department, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Abbie Lucien
- The School of Psychological Sciences, Australian Hearing Hub, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Tyler-Ann Wheeler
- The School of Psychological Sciences, Australian Hearing Hub, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Milena Gandy
- The School of Psychological Sciences, Australian Hearing Hub, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| |
Collapse
|
3
|
Schilling KG, Archer D, Rheault F, Lyu I, Huo Y, Cai LY, Bunge SA, Weiner KS, Gore JC, Anderson AW, Landman BA. Superficial white matter across development, young adulthood, and aging: volume, thickness, and relationship with cortical features. Brain Struct Funct 2023; 228:1019-1031. [PMID: 37074446 PMCID: PMC10320929 DOI: 10.1007/s00429-023-02642-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/08/2023] [Indexed: 04/20/2023]
Abstract
Superficial white matter (SWM) represents a significantly understudied part of the human brain, despite comprising a large portion of brain volume and making up a majority of cortico-cortical white matter connections. Using multiple, high-quality datasets with large sample sizes (N = 2421, age range 5-100) in combination with methodological advances in tractography, we quantified features of SWM volume and thickness across the brain and across development, young adulthood, and aging. We had four primary aims: (1) characterize SWM thickness across brain regions (2) describe associations between SWM volume and age (3) describe associations between SWM thickness and age, and (4) quantify relationships between SWM thickness and cortical features. Our main findings are that (1) SWM thickness varies across the brain, with patterns robust across individuals and across the population at the region-level and vertex-level; (2) SWM volume shows unique volumetric trajectories with age that are distinct from gray matter and other white matter trajectories; (3) SWM thickness shows nonlinear cross-sectional changes across the lifespan that vary across regions; and (4) SWM thickness is associated with features of cortical thickness and curvature. For the first time, we show that SWM volume follows a similar trend as overall white matter volume, peaking at a similar time in adolescence, leveling off throughout adulthood, and decreasing with age thereafter. Notably, the relative fraction of total brain volume of SWM continuously increases with age, and consequently takes up a larger proportion of total white matter volume, unlike the other tissue types that decrease with respect to total brain volume. This study represents the first characterization of SWM features across the large portion of the lifespan and provides the background for characterizing normal aging and insight into the mechanisms associated with SWM development and decline.
Collapse
Affiliation(s)
- Kurt G Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.
| | - Derek Archer
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Francois Rheault
- Department of Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ilwoo Lyu
- Computer Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Yuankai Huo
- Department of Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Silvia A Bunge
- Department of Psychology, University of California at Berkeley, Berkeley, USA
| | - Kevin S Weiner
- Department of Psychology, University of California at Berkeley, Berkeley, USA
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, USA
| | - John C Gore
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Computer Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| |
Collapse
|
4
|
Degraeve B, Sequeira H, Mecheri H, Lenne B. Corpus callosum damage to account for cognitive, affective, and social-cognitive dysfunctions in multiple sclerosis: A model of callosal disconnection syndrome? Mult Scler 2023; 29:160-168. [PMID: 35475386 DOI: 10.1177/13524585221091067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The corpus callosum (CC) is the major commissure interconnecting the two hemispheres and is particularly affected in multiple sclerosis (MS). In the present review, we aimed to investigate the role played by callosal damages in the pathogenesis of MS-related dysfunctions and examine whether a model of callosal disconnection syndrome is a valid model for MS. For this purpose, we will first review structural and functional evidence of callosal pathology in MS. Second, we will account for the potential role of CC abnormalities in MS-related dysfunctions. Finally, we will report data concurring with a "multiple disconnection hypothesis" that has been proposed to explain those dysfunctions, and we will examine evidence pointing toward MS as a "callosal disconnection syndrome." We will end by discussing the contribution of this interpretation to the understanding of MS and MS-related deficits.
Collapse
Affiliation(s)
| | - Henrique Sequeira
- UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, CNRS, University of Lille, Lille, France
| | - Halima Mecheri
- ETHICS (EA7446), Lille Catholic University, FLSH, Lille, France
| | - Bruno Lenne
- ETHICS (EA7446), Lille Catholic University, FLSH, Lille, France; Neurology Department, Groupement des hôpitaux de l'institut catholique de Lille (GHICL), Lille, France
| |
Collapse
|
5
|
Schilling KG, Archer D, Yeh FC, Rheault F, Cai LY, Shafer A, Resnick SM, Hohman T, Jefferson A, Anderson AW, Kang H, Landman BA. Short superficial white matter and aging: a longitudinal multi-site study of 1293 subjects and 2711 sessions. AGING BRAIN 2023; 3:100067. [PMID: 36817413 PMCID: PMC9937516 DOI: 10.1016/j.nbas.2023.100067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is estimated that short association fibers running immediately beneath the cortex may make up as much as 60% of the total white matter volume. However, these have been understudied relative to the long-range association, projection, and commissural fibers of the brain. This is largely because of limitations of diffusion MRI fiber tractography, which is the primary methodology used to non-invasively study the white matter connections. Inspired by recent anatomical considerations and methodological improvements in superficial white matter (SWM) tractography, we aim to characterize changes in these fiber systems in cognitively normal aging, which provide insight into the biological foundation of age-related cognitive changes, and a better understanding of how age-related pathology differs from healthy aging. To do this, we used three large, longitudinal and cross-sectional datasets (N = 1293 subjects, 2711 sessions) to quantify microstructural features and length/volume features of several SWM systems. We find that axial, radial, and mean diffusivities show positive associations with age, while fractional anisotropy has negative associations with age in SWM throughout the entire brain. These associations were most pronounced in the frontal, temporal, and temporoparietal regions. Moreover, measures of SWM volume and length decrease with age in a heterogenous manner across the brain, with different rates of change in inter-gyri and intra-gyri SWM, and at slower rates than well-studied long-range white matter pathways. These features, and their variations with age, provide the background for characterizing normal aging, and, in combination with larger association pathways and gray matter microstructural features, may provide insight into fundamental mechanisms associated with aging and cognition.
Collapse
Affiliation(s)
- Kurt G Schilling
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Derek Archer
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francois Rheault
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Leon Y Cai
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Andrea Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Timothy Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN
| | - Angela Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam W Anderson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, United States
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
6
|
Aging and white matter microstructure and macrostructure: a longitudinal multi-site diffusion MRI study of 1218 participants. Brain Struct Funct 2022; 227:2111-2125. [PMID: 35604444 DOI: 10.1007/s00429-022-02503-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
Abstract
Quantifying the microstructural and macrostructural geometrical features of the human brain's connections is necessary for understanding normal aging and disease. Here, we examine brain white matter diffusion magnetic resonance imaging data from one cross-sectional and two longitudinal data sets totaling in 1218 subjects and 2459 sessions of people aged 50-97 years. Data was drawn from well-established cohorts, including the Baltimore Longitudinal Study of Aging data set, Cambridge Centre for Ageing Neuroscience data set, and the Vanderbilt Memory & Aging Project. Quantifying 4 microstructural features and, for the first time, 11 macrostructure-based features of volume, area, and length across 120 white matter pathways, we apply linear mixed effect modeling to investigate changes in pathway-specific features over time, and document large age associations within white matter. Conventional diffusion tensor microstructure indices are the most age-sensitive measures, with positive age associations for diffusivities and negative age associations with anisotropies, with similar patterns observed across all pathways. Similarly, pathway shape measures also change with age, with negative age associations for most length, surface area, and volume-based features. A particularly novel finding of this study is that while trends were homogeneous throughout the brain for microstructure features, macrostructural features demonstrated heterogeneity across pathways, whereby several projection, thalamic, and commissural tracts exhibited more decline with age compared to association and limbic tracts. The findings from this large-scale study provide a comprehensive overview of the age-related decline in white matter and demonstrate that macrostructural features may be more sensitive to heterogeneous white matter decline. Therefore, leveraging macrostructural features may be useful for studying aging and could facilitate comparisons in a variety of diseases or abnormal conditions.
Collapse
|
7
|
Jandric D, Parker GJM, Haroon H, Tomassini V, Muhlert N, Lipp I. A tractometry principal component analysis of white matter tract network structure and relationships with cognitive function in relapsing-remitting multiple sclerosis. Neuroimage Clin 2022; 34:102995. [PMID: 35349892 PMCID: PMC8958271 DOI: 10.1016/j.nicl.2022.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 10/25/2022]
Abstract
Understanding the brain changes underlying cognitive dysfunction is a key priority in multiple sclerosis (MS) to improve monitoring and treatment of this debilitating symptom. Functional connectivity network changes are associated with cognitive dysfunction, but it is less well understood how changes in normal appearing white matter relate to cognitive symptoms. If white matter tracts have network structure it would be expected that tracts within a network share susceptibility to MS pathology. In the present study, we used a tractometry approach to explore patterns of variance in white matter metrics across white matter (WM) tracts, and assessed how such patterns relate to neuropsychological test performance across cognitive domains. A sample of 102 relapsing-remitting MS patients and 27 healthy controls underwent MRI and neuropsychological testing. Tractography was performed on diffusion MRI data to extract 40 WM tracts and microstructural measures were extracted from each tract. Principal component analysis (PCA) was used to decompose metrics from all tracts to assess the presence of any co-variance structure among the tracts. Similarly, PCA was applied to cognitive test scores to identify the main cognitive domains. Finally, we assessed the ability of tract co-variance patterns to predict test performance across cognitive domains. We found that a single co-variance pattern which captured microstructure across all tracts explained the most variance (65% variance explained) and that there was little evidence for separate, smaller network patterns of pathology. Variance in this pattern was explained by effects related to lesions, but one main co-variance pattern persisted after this effect was regressed out. This main WM tract co-variance pattern contributed to explaining a modest degree of variance in one of our four cognitive domains in MS. These findings highlight the need to investigate the relationship between the normal appearing white matter and cognitive impairment further and on a more granular level, to improve the understanding of the network structure of the brain in MS.
Collapse
Affiliation(s)
- Danka Jandric
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Geoff J M Parker
- Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering and Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, UK; Bioxydyn Limited, Manchester, UK
| | - Hamied Haroon
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Valentina Tomassini
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK; Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; Multiple Sclerosis Centre, Department of Neurology, SS. Annunziata University Hospital, Chieti, Italy
| | - Nils Muhlert
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ilona Lipp
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK; Department of Neurophysics, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany.
| |
Collapse
|
8
|
Beaudoin AM, Rheault F, Theaud G, Laberge F, Whittingstall K, Lamontagne A, Descoteaux M. Modern Technology in Multi-Shell Diffusion MRI Reveals Diffuse White Matter Changes in Young Adults With Relapsing-Remitting Multiple Sclerosis. Front Neurosci 2021; 15:665017. [PMID: 34447292 PMCID: PMC8383891 DOI: 10.3389/fnins.2021.665017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Objective To characterize microstructural white matter changes related to relapsing-remitting multiple sclerosis using advanced diffusion MRI modeling and tractography. The association between imaging data and patient’s cognitive performance, fatigue severity and depressive symptoms is also explored. Methods In this cross-sectional study, 24 relapsing-remitting multiple sclerosis patients and 11 healthy controls were compared using high angular resolution diffusion imaging (HARDI). The imaging method includes a multi-shell scheme, free water correction to obtain tissue-specific measurements, probabilistic tracking algorithm robust to crossing fibers and white matter lesions, automatic streamlines and bundle dissection and tract-profiling with tractometry. The neuropsychological evaluation included the Symbol Digit Modalities Test, Paced Auditory Serial Addition Test, Modified Fatigue Impact Scale and Beck Depression Inventory-II. Results Bundle-wise analysis by tractometry revealed a difference between patients and controls for 11 of the 14 preselected white matter bundles. In patients, free water corrected fractional anisotropy was significantly reduced while radial and mean diffusivities were increased, consistent with diffuse demyelination. The fornix and left inferior fronto-occipital fasciculus exhibited a higher free water fraction. Eight bundles showed an increase in total apparent fiber density and four bundles had a higher number of fiber orientations, suggesting axonal swelling and increased organization complexity, respectively. In the association study, depressive symptoms were associated with diffusion abnormalities in the right superior longitudinal fasciculus. Conclusion Tissue-specific diffusion measures showed abnormalities along multiple cerebral white matter bundles in patients with relapsing-remitting multiple sclerosis. The proposed methodology combines free-water imaging, advanced bundle dissection and tractometry, which is a novel approach to investigate cerebral pathology in multiple sclerosis. It opens a new window of use for HARDI-derived measures and free water corrected diffusion measures. Advanced diffusion MRI provides a better insight into cerebral white matter changes in relapsing-remitting multiple sclerosis, namely diffuse demyelination, edema and increased fiber density and complexity.
Collapse
Affiliation(s)
- Ann-Marie Beaudoin
- Department of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Rheault
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Frédéric Laberge
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Kevin Whittingstall
- Department of Radiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Albert Lamontagne
- Department of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|