1
|
Antonioni A, Raho EM, Spampinato DA, Granieri E, Fadiga L, Di Lorenzo F, Koch G. The cerebellum in frontotemporal dementia: From neglected bystander to potential neuromodulatory target. A narrative review. Neurosci Biobehav Rev 2025; 174:106194. [PMID: 40324708 DOI: 10.1016/j.neubiorev.2025.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/29/2024] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Though cortical changes in frontotemporal dementia (FTD) are well-documented, the cerebellum's role, closely linked to these areas, remains unclear. OBJECTIVES To provide evidence on cerebellar involvement in FTD across clinical, genetic, imaging, neuropathological, and neurophysiological perspectives. Additionally, we sought evidence supporting the application of cerebellar non-invasive brain stimulation (NIBS) in FTD for both diagnostic and therapeutic purposes. METHODS We performed a literature review using MEDLINE (via PubMed), Scopus, and Web of Science databases. RESULTS We emphasized the involvement of specific cerebellar regions which differentiate each FTD subtypes and may account for some of the characteristic symptoms. Furthermore, we highlighted peculiarities in FTD genetic alterations. Finally, we outlined neurophysiological evidence supporting a role for the cerebellum in FTD pathogenesis. CONCLUSION The cerebellum is critically involved in the FTD spectrum. Moreover, it can be speculated that cerebellar modulation, as already shown in other neurodegenerative disorders, could restore the interneuronal intracortical circuits typically impaired in FTD patients, providing clinical improvements and fundamental outcome measures in clinical trials.
Collapse
Affiliation(s)
- Annibale Antonioni
- Doctoral Program in Translational Neurosciences and Neurotechnologies, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy.
| | - Emanuela Maria Raho
- University Unit of Neurology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Danny Adrian Spampinato
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy
| | - Enrico Granieri
- University Unit of Neurology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara 44121, Italy; Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Francesco Di Lorenzo
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy; Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara 44121, Italy; Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| |
Collapse
|
2
|
Bampton A, McHutchison C, Talbot K, Benatar M, Thompson AG, Turner MR. The Basis of Cognitive and Behavioral Dysfunction in Amyotrophic Lateral Sclerosis. Brain Behav 2024; 14:e70115. [PMID: 39501538 PMCID: PMC11538089 DOI: 10.1002/brb3.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 11/09/2024] Open
Abstract
OBJECTIVE To summarize and evaluate evidence pertaining to the clinical, genetic, histopathological, and neuroimaging correlates of cognitive and behavioral dysfunction in amyotrophic lateral sclerosis (ALS). METHODOLOGY We comprehensively reviewed the literature on cognitive and behavioral manifestations of ALS, narrating findings from both cross-sectional and longitudinal studies. We discussed knowledge gaps in the evidence base and key limitations affecting studies to date, before formulating a framework for future research paradigms aimed at investigating clinicopathological correlates of neuropsychological dysfunction in ALS. RESULTS Studies have demonstrated clinical associations with cognitive dysfunction in ALS e.g., bulbar-onset of symptoms, pathological associations (extramotor TDP-43 deposition), and imaging associations (frontotemporal involvement). The most common behavioral deficit, apathy, is highly associated with verbal fluency, but longitudinal studies assessing behavioral dysfunction in ALS are comparatively lacking. CONCLUSION Longitudinal studies have been helpful in identifying several potential correlates of cognitive and behavioral dysfunction but have frequently been confounded by selection bias and inappropriate testing platforms. This review provides a framework for more robust assessment of clinicopathological associations of neuropsychological abnormalities in ALS in the future, advocating for greater utilization of pre-symptomatic C9orf72 repeat expansion-carrying cohorts.
Collapse
Affiliation(s)
- Alexander Bampton
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | | | - Kevin Talbot
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Michael Benatar
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | | | - Martin R. Turner
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Lehto A, Schumacher J, Kasper E, Teipel S, Hermann A, Kurth J, Krause BJ, Prudlo J. Cerebral glucose metabolic correlates of cognitive and behavioural impairments in amyotrophic lateral sclerosis. J Neurol 2024; 271:5290-5300. [PMID: 38861034 PMCID: PMC11319432 DOI: 10.1007/s00415-024-12388-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE Half of ALS patients are cognitively and/or behaviourally impaired. As cognition/behaviour and cerebral glucose metabolism can be correlated by means of 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET), we aimed to utilise FDG-PET, first, to replicate group-level differences in glucose metabolism between non-demented ALS patients separated into non-impaired (ALSni), cognitively impaired (ALSci), behaviourally impaired (ALSbi), and cognitively and behaviourally impaired (ALScbi) groups; second, to investigate glucose metabolism and performance in various cognitive domains; and third, to examine the impact of partial volume effects correction (PVEC) of the FDG-PET data on the results. METHODS We analysed neuropsychological, clinical, and imaging data from 67 ALS patients (30 ALSni, 21 ALSci, 5 ALSbi, and 11 ALScbi). Cognition was assessed with the Edinburgh Cognitive and Behavioural ALS Screen, and two social cognition tests. FDG-PET and structural MRI scans were acquired for each patient. Voxel-based statistical analyses were undertaken on grey matter volume (GMV) and non-corrected vs. PVE-corrected FDG-PET scans. RESULTS ALSci and ALScbi had lower cognitive scores than ALSni. In contrast to both ALSni and ALSci, ALScbi showed widespread hypometabolism in the superior- and middle-frontal gyri in addition to the right temporal pole. Correlations were observed between the GMV, the FDG-PET signal, and various cognitive scores. The FDG-PET results were largely unaffected by PVEC. INTERPRETATION Our study identified widespread differences in hypometabolism in the ALScbi-ni but not in the ALSci-ni group comparison, raising the possibility that cerebral metabolism may be more closely related to the presence of behavioural changes than to mild cognitive deficits.
Collapse
Affiliation(s)
- Annaliis Lehto
- Department of Neurology, Translational Neurodegeneration Section "Albrecht Kossel", Rostock University Medical Center, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock-Greifswald, Rostock, Germany
| | - Julia Schumacher
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock-Greifswald, Rostock, Germany
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Elisabeth Kasper
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock-Greifswald, Rostock, Germany
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Stefan Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock-Greifswald, Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Andreas Hermann
- Department of Neurology, Translational Neurodegeneration Section "Albrecht Kossel", Rostock University Medical Center, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock-Greifswald, Rostock, Germany
| | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Bernd Joachim Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Johannes Prudlo
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock-Greifswald, Rostock, Germany.
- Department of Neurology, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
4
|
Ai Y, Li F, Hou Y, Li X, Li W, Qin K, Suo X, Lei D, Shang H, Gong Q. Differential cortical gray matter changes in early- and late-onset patients with amyotrophic lateral sclerosis. Cereb Cortex 2024; 34:bhad426. [PMID: 38061694 DOI: 10.1093/cercor/bhad426] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 01/19/2024] Open
Abstract
Age at onset may be an important feature associated with distinct subtypes of amyotrophic lateral sclerosis (ALS). Little is known about the neuropathological mechanism of early-onset ALS (EO-ALS) and late-onset ALS (LO-ALS). Ninety ALS patients were divided into EO-ALS and LO-ALS group, and 128 healthy controls were matched into young controls(YCs) and old controls (OCs). A voxel-based morphometry approach was employed to investigate differences in gray matter volume (GMV). Significant age at onset-by-diagnosis interactions were found in the left parietal operculum, left precentral gyrus, bilateral postcentral gyrus, right occipital gyrus, and right orbitofrontal cortex. Post hoc analysis revealed a significant decrease in GMV in all affected regions of EO-ALS patients compared with YCs, with increased GMV in 5 of the 6 brain regions, except for the right orbitofrontal cortex, in LO-ALS patients compared with OCs. LO-ALS patients had a significantly increased GMV than EO-ALS patients after removing the aging effect. Correspondingly, GMV of the left postcentral gyrus correlated with disease severity in the 2 ALS groups. Our findings suggested that the pathological mechanisms in ALS patients with different ages at onset might differ. These findings provide unique insight into the clinical and biological heterogeneity of the 2 ALS subtypes.
Collapse
Affiliation(s)
- Yuan Ai
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Fei Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Xiuli Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Wenbin Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Kun Qin
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Xueling Suo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Du Lei
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, 699 Jinyuan Xi Road, Jimei District, Xiamen, Fujian 361021, China
| |
Collapse
|
5
|
Hypometabolic and hypermetabolic brain regions in patients with ALS-FTD show distinct patterns of grey and white matter degeneration: A pilot multimodal neuroimaging study. Eur J Radiol 2023; 158:110616. [PMID: 36493498 DOI: 10.1016/j.ejrad.2022.110616] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/05/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Up to 50% of amyotrophic lateral sclerosis (ALS) patients develop some degree of cognitive dysfunction and a small proportion of these develop frontotemporal dementia (FTD). Non-invasive techniques of magnetic resonance imaging (MRI) and [18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron emission tomography (PET) have demonstrated structural and metabolic abnormalities, respectively, in the brains of such patients with ALS-FTD. Although initial 18F-FDG PET studies in ALS patients showed only hypometabolism of motor and extramotor brain regions, subsequent studies have demonstrated hypermetabolic changes as well. Such contrasting findings prompted us to hypothesize that hypo- and hypermetabolic brain regions in ALS-FTD patients are associated with divergent degeneration of structural grey matter (GM) and white matter (WM). METHODS Cerebral glucose metabolic rate (CMRglc), cortical thickness (CT), fractal dimension (FD), and graph theory WM network analyses were performed on clinical MRI and 18F-FDG PET images from 8 ALS-FTD patients and 14 neurologic controls to explore the relationship between GM-WM degeneration and hypo- and hypermetabolic brain regions. RESULTS CMRglc revealed significant hypometabolism in frontal and precentral gyrus brain regions, with hypermetabolism in temporal, occipital and cerebellar regions. Cortical thinning was noted in both hypo- and hypermetabolic brain areas. Unlike CT, FD did not reveal widespread GM degeneration in hypo- and hypermetabolic brain regions of ALS-FTD patients. Graph theory analysis showed severe WM degeneration in hypometabolic but not hypermetabolic areas, especially in the right hemisphere. CONCLUSION Our multimodal MRI-PET study provides insights into potentially differential pathophysiological mechanisms between hypo- and hypermetabolic brain regions of ALS-FTD patients.
Collapse
|