1
|
Cahart MS, Giampietro V, O’Daly O. Atypical attentional network dynamics in adolescent depression during emotional movie viewing. Soc Cogn Affect Neurosci 2025; 20:nsaf011. [PMID: 39945676 PMCID: PMC11823115 DOI: 10.1093/scan/nsaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/11/2024] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Emotion studies have commonly reported atypical emotional processing in clinically depressed adolescents in the context of short-lasting emotional cues. However, interindividual differences in the moment-to-moment brain network dynamics that underlie this impaired emotional reactivity remain unclear, and the use of poorly matched controls and relatively small sample sizes represents major limitations in most neuroimaging depression studies to date. Here, we address these concerns by using the temporal features of a rich naturalistic paradigm (i.e. a clip from the movie 'Despicable Me') to investigate brain network dynamics in 42 clinically depressed and 42 nondepressed adolescents aged 16-21 years, matched for age, gender, and psychiatric comorbidities. Using a dynamics functional connectivity analysis technique called Leading Eigenvector Dynamics Analysis, we found that the clinical group exhibited significantly higher probability of occurrence of the dorsal attention network and lower recruitment of the fronto-parietal, default mode network, ventral attention, and somato-motor networks throughout the task. This brain/behaviour relationship was prominent during less emotional moments of the movie, consistent with previous findings. Our findings demonstrate the key role of continuous affective measures in providing information about how activity in the depressed brain evolves as emotional intensity unfolds throughout the movie. Future studies with a larger sample size are needed in order to corroborate the present findings.
Collapse
Affiliation(s)
- Marie-Stephanie Cahart
- *Corresponding author. Neuroimaging department, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London SE5 8AB, UK.
| | - Vincent Giampietro
- Neuroimaging department, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London SE5 8AB, UK
| | - Owen O’Daly
- Neuroimaging department, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London SE5 8AB, UK
| |
Collapse
|
2
|
Ruffini G, Castaldo F, Lopez-Sola E, Sanchez-Todo R, Vohryzek J. The Algorithmic Agent Perspective and Computational Neuropsychiatry: From Etiology to Advanced Therapy in Major Depressive Disorder. ENTROPY (BASEL, SWITZERLAND) 2024; 26:953. [PMID: 39593898 PMCID: PMC11592617 DOI: 10.3390/e26110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Major Depressive Disorder (MDD) is a complex, heterogeneous condition affecting millions worldwide. Computational neuropsychiatry offers potential breakthroughs through the mechanistic modeling of this disorder. Using the Kolmogorov theory (KT) of consciousness, we developed a foundational model where algorithmic agents interact with the world to maximize an Objective Function evaluating affective valence. Depression, defined in this context by a state of persistently low valence, may arise from various factors-including inaccurate world models (cognitive biases), a dysfunctional Objective Function (anhedonia, anxiety), deficient planning (executive deficits), or unfavorable environments. Integrating algorithmic, dynamical systems, and neurobiological concepts, we map the agent model to brain circuits and functional networks, framing potential etiological routes and linking with depression biotypes. Finally, we explore how brain stimulation, psychotherapy, and plasticity-enhancing compounds such as psychedelics can synergistically repair neural circuits and optimize therapies using personalized computational models.
Collapse
Affiliation(s)
- Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Francesca Castaldo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Edmundo Lopez-Sola
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
| | - Roser Sanchez-Todo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
| | - Jakub Vohryzek
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK
| |
Collapse
|
3
|
Dagnino PC, Galadí JA, Càmara E, Deco G, Escrichs A. Inducing a meditative state by artificial perturbations: A mechanistic understanding of brain dynamics underlying meditation. Netw Neurosci 2024; 8:517-540. [PMID: 38952817 PMCID: PMC11168722 DOI: 10.1162/netn_a_00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 07/03/2024] Open
Abstract
Contemplative neuroscience has increasingly explored meditation using neuroimaging. However, the brain mechanisms underlying meditation remain elusive. Here, we implemented a mechanistic framework to explore the spatiotemporal dynamics of expert meditators during meditation and rest, and controls during rest. We first applied a model-free approach by defining a probabilistic metastable substate (PMS) space for each condition, consisting of different probabilities of occurrence from a repertoire of dynamic patterns. Moreover, we implemented a model-based approach by adjusting the PMS of each condition to a whole-brain model, which enabled us to explore in silico perturbations to transition from resting-state to meditation and vice versa. Consequently, we assessed the sensitivity of different brain areas regarding their perturbability and their mechanistic local-global effects. Overall, our work reveals distinct whole-brain dynamics in meditation compared to rest, and how transitions can be induced with localized artificial perturbations. It motivates future work regarding meditation as a practice in health and as a potential therapy for brain disorders.
Collapse
Affiliation(s)
- Paulina Clara Dagnino
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier A. Galadí
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
4
|
Vohryzek J, Cabral J, Timmermann C, Atasoy S, Roseman L, Nutt DJ, Carhart-Harris RL, Deco G, Kringelbach ML. The flattening of spacetime hierarchy of the N,N-dimethyltryptamine brain state is characterized by harmonic decomposition of spacetime (HADES) framework. Natl Sci Rev 2024; 11:nwae124. [PMID: 38778818 PMCID: PMC11110867 DOI: 10.1093/nsr/nwae124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 05/25/2024] Open
Abstract
The human brain is a complex system, whose activity exhibits flexible and continuous reorganization across space and time. The decomposition of whole-brain recordings into harmonic modes has revealed a repertoire of gradient-like activity patterns associated with distinct brain functions. However, the way these activity patterns are expressed over time with their changes in various brain states remains unclear. Here, we investigate healthy participants taking the serotonergic psychedelic N,N-dimethyltryptamine (DMT) with the Harmonic Decomposition of Spacetime (HADES) framework that can characterize how different harmonic modes defined in space are expressed over time. HADES demonstrates significant decreases in contributions across most low-frequency harmonic modes in the DMT-induced brain state. When normalizing the contributions by condition (DMT and non-DMT), we detect a decrease specifically in the second functional harmonic, which represents the uni- to transmodal functional hierarchy of the brain, supporting the leading hypothesis that functional hierarchy is changed in psychedelics. Moreover, HADES' dynamic spacetime measures of fractional occupancy, life time and latent space provide a precise description of the significant changes of the spacetime hierarchical organization of brain activity in the psychedelic state.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08005, Spain
| | - Joana Cabral
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Selen Atasoy
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
- Departments of Neurology and Psychiatry, University of California San Francisco, San Francisco 94143, USA
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08005, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
5
|
Çatal Y, Northoff G. Where do the symptoms come from in depression? Topography and dynamics matter. Brain Commun 2024; 6:fcae067. [PMID: 38515441 PMCID: PMC10957125 DOI: 10.1093/braincomms/fcae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/24/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
This scientific commentary refers to 'Brain dynamics predictive of response to psilocybin for treatment-resistant depression', by Vohryzek et al. (https://doi.org/10.1093/braincomms/fcae049).
Collapse
Affiliation(s)
- Yasir Çatal
- The Royal’s Institute of Mental Health Research & University of Ottawa, Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1Z 7K412, Canada
| | - Georg Northoff
- The Royal’s Institute of Mental Health Research & University of Ottawa, Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1Z 7K412, Canada
| |
Collapse
|