1
|
Popson P, Knowles JK. Zebrafish Provide Critical Insights in a Sea of Genes. Epilepsy Curr 2025; 25:58-60. [PMID: 39703932 PMCID: PMC11653375 DOI: 10.1177/15357597241301510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Zebrafish Models of Candidate Human Epilepsy-Associated Genes Provide Evidence of Hyperexcitability LaCoursiere CM, Ullmann JFP, Koh HY, Turner L, Baker CM, Robens B, Shao W, Rotenberg A, McGraw CM, Poduri AH. iScience . 2024 Jun 5;27(7):110172. doi: 10.1016/j.isci.2024.110172. PMID: 39021799; PMCID: PMC11253282. Hundreds of novel candidate human epilepsy-associated genes have been identified thanks to advancements in next-generation sequencing and large genome-wide association studies, but establishing genetic etiology requires functional validation. We generated a list of >2200 candidate epilepsy-associated genes, of which 48 were developed into stable loss-of-function zebrafish models. Of those 48, evidence of seizure-like behavior was present in 5 (arfgef1, kcnd2, kcnv1, ubr5, and wnt8b). Further characterization provided evidence for epileptiform activity via electrophysiology in kcnd2 and wnt8b mutants. Additionally, arfgef1 and wnt8b mutants showed a decrease in the number of inhibitory interneurons in the optic tectum of larval animals. Further, RNA sequencing revealed convergent transcriptional abnormalities between mutant lines, consistent with their developmental defects and hyperexcitable phenotypes. These zebrafish models provide strongest experimental evidence supporting the role of ARFGEF1, KCND2, and WNT8B in human epilepsy and further demonstrate the utility of this model system for evaluating candidate human epilepsy genes.
Collapse
Affiliation(s)
- Pierce Popson
- Stanford University Ringgold Standard Institution-Neurology
| | | |
Collapse
|
2
|
Salaria P, Niharika DG, N SRN, Ganapati PL, M AR. Deciphering the 4',7-Dihydroxy-3'-Methylflavone from Boerhavia, Agonist/Antagonist Interactions Against 5-HT 2 Receptors using Homology Modeling, Molecular Docking, and Dynamic Simulation Studies. Chem Biodivers 2024; 21:e202401559. [PMID: 39194300 DOI: 10.1002/cbdv.202401559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
Seizures, depression, and anxiety are neurological disorders that affected innumerable people worldwide. Recent research has revealed that targeting 5-hydroxytryptamine 2 (5-HT2) receptors can help suppress these conditions. An in-depth literature study has identified that phytocompounds from the Boerhavia genus could reduce seizures. Therefore, homology models of 5-HT2 receptors were generated and validated using techniques such as the alignment of amino acid sequences and the Ramachandran plot. Later, a comparison of modeled structures was made with a non-redundant set of PDB structures. The pharmacokinetics, drug-likeness, blood-brain barrier (BBB) permeability, and Lipinski's rule of five shed light on 22 phytocompounds, which are the potential candidates for molecular docking among 127 Boerhavia's bioactive. Notably, molecular docking analysis revealed 4',7-dihydroxy-3'-methylflavone as the most potent lead compound, which has a strong binding affinity to all modeled receptors. Additionally, with a remarkably high docking score of -9.1 kcal/mol, 4',7-dihydroxy-3'-methylflavone showed promising interactions, particularly with 5-HT2A receptor, as seen from the RMSD, SASA, Rg, and number of hydrogen bonds during 100 ns molecular dynamic (MD) simulation. Principal component analysis (PCA) and Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) further confirmed that 4',7-dihydroxy-3'-methylflavone is the best novel phytocompound in Boerhavia genus for 5-HT2 receptor as agonist/antagonist activity against seizures.
Collapse
Affiliation(s)
- Punam Salaria
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Desu Gayathri Niharika
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Subrahmanyeswara Rao N N
- Chemical Engineering, Gayatri Vidya Parishad College of Engineering (Autonomous), Visakhapatnam, Andhra Pradesh, India
| | - P Lakshmi Ganapati
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Amarendar Reddy M
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, 534101, India
| |
Collapse
|
3
|
Knowles JK, Warren AEL, Mohamed IS, Stafstrom CE, Koh HY, Samanta D, Shellhaas RA, Gupta G, Dixon‐Salazar T, Tran L, Bhatia S, McCabe JM, Patel AD, Grinspan ZM. Clinical trials for Lennox-Gastaut syndrome: Challenges and priorities. Ann Clin Transl Neurol 2024; 11:2818-2835. [PMID: 39440617 PMCID: PMC11572735 DOI: 10.1002/acn3.52211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE Lennox-Gastaut syndrome (LGS) is a severe, childhood-onset epilepsy that is typically refractory to treatment. We surveyed the current landscape of LGS treatment, aiming to identify challenges to the development of efficacious therapies, and to articulate corresponding priorities toward clinical trials that improve outcomes. METHODS The LGS Special Interest Group of the Pediatric Epilepsy Research Consortium integrated evidence from the literature and expert opinion, into a narrative review. RESULTS We provide an overview of approved and emerging medical, dietary, surgical and neuromodulation approaches for LGS. We note that quality of care could be improved by standardizing LGS treatment based on expert consensus and empirical data. Whereas LGS natural history is incompletely understood, prospective studies and use of large retrospective datasets to understand LGS across the lifespan would enable clinical trials that address these dynamics. Recent discoveries related to LGS pathophysiology should enable development of disease-modifying therapies, which are currently lacking. Finally, clinical trials have focused chiefly on seizures involving "drops," but should incorporate additional patient-centered outcomes, using emerging measures adapted to people with LGS. INTERPRETATION Clinicians and researchers should enact these priorities, with the goal of patient-centered clinical trials that are tailored to LGS pathophysiology and natural history.
Collapse
Affiliation(s)
- Juliet K. Knowles
- Department of NeurologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Aaron E. L. Warren
- Department of NeurosurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Carl E. Stafstrom
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hyun Yong Koh
- Department of Pediatrics, Section of Neurology and Developmental NeuroscienceBaylor College of MedicineHoustonTexasUSA
| | - Debopam Samanta
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Renée A. Shellhaas
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Gita Gupta
- Department of PediatricsUniversity of MichiganAnn ArborMichiganUSA
| | | | - Linh Tran
- Jane and John Justin Institute for Mind HealthCook Children's Medical CenterFort WorthTexasUSA
| | - Sonal Bhatia
- Division of Pediatric NeurologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | | | - Anup D. Patel
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
- The Center for Clinical ExcellenceNationwide Children's HospitalColumbusOhioUSA
| | | |
Collapse
|
4
|
Guo J, Min D, Farrell EK, Zhou Y, Faingold CL, Cotten JF, Feng HJ. Enhancing the action of serotonin by three different mechanisms prevents spontaneous seizure-induced mortality in Dravet mice. Epilepsia 2024; 65:1791-1800. [PMID: 38593237 PMCID: PMC11166528 DOI: 10.1111/epi.17966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) is an underestimated complication of epilepsy. Previous studies have demonstrated that enhancement of serotonergic neurotransmission suppresses seizure-induced sudden death in evoked seizure models. However, it is unclear whether elevated serotonin (5-HT) function will prevent spontaneous seizure-induced mortality (SSIM), which is characteristic of human SUDEP. We examined the effects of 5-HT-enhancing agents that act by three different pharmacological mechanisms on SSIM in Dravet mice, which exhibit a high incidence of SUDEP, modeling human Dravet syndrome. METHODS Dravet mice of both sexes were evaluated for spontaneous seizure characterization and changes in SSIM incidence induced by agents that enhance 5-HT-mediated neurotransmission. Fluoxetine (a selective 5-HT reuptake inhibitor), fenfluramine (a 5-HT releaser and agonist), SR 57227 (a specific 5-HT3 receptor agonist), or saline (vehicle) was intraperitoneally administered over an 8-day period in Dravet mice, and the effect of these treatments on SSIM was examined. RESULTS Spontaneous seizures in Dravet mice generally progressed from wild running to tonic seizures with or without SSIM. Fluoxetine at 30 mg/kg, but not at 20 or 5 mg/kg, significantly reduced SSIM compared with the vehicle control. Fenfluramine at 1-10 mg/kg, but not .2 mg/kg, fully protected Dravet mice from SSIM, with all mice surviving. Compared with the vehicle control, SR 57227 at 20 mg/kg, but not at 10 or 5 mg/kg, significantly lowered SSIM. The effect of these drugs on SSIM was independent of sex. SIGNIFICANCE Our data demonstrate that elevating serotonergic function by fluoxetine, fenfluramine, or SR 57227 significantly reduces or eliminates SSIM in Dravet mice in a sex-independent manner. These findings suggest that deficits in serotonergic neurotransmission likely play an important role in the pathogenesis of SSIM, and fluoxetine and fenfluramine, which are US Food and Drug Administration-approved medications, may potentially prevent SUDEP in at-risk patients.
Collapse
Affiliation(s)
- Jialing Guo
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Daniel Min
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Emory K. Farrell
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yupeng Zhou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Carl L. Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Joseph F. Cotten
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Whyte-Fagundes PA, Vance A, Carroll A, Figueroa F, Manukyan C, Baraban SC. Testing of putative antiseizure medications in a preclinical Dravet syndrome zebrafish model. Brain Commun 2024; 6:fcae135. [PMID: 38707709 PMCID: PMC11069116 DOI: 10.1093/braincomms/fcae135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Dravet syndrome is a severe genetic epilepsy primarily caused by de novo mutations in a voltage-activated sodium channel gene (SCN1A). Patients face life-threatening seizures that are largely resistant to available anti-seizure medications. Preclinical Dravet syndrome animal models are a valuable tool to identify candidate anti-seizure medications for these patients. Among these, scn1lab mutant zebrafish, exhibiting spontaneous seizure-like activity, are particularly amenable to large-scale drug screening. Thus far, we have screened more than 3000 drug candidates in scn1lab zebrafish mutants, identifying valproate, stiripentol, and fenfluramine e.g. Food and Drug Administration-approved drugs, with clinical application in the Dravet syndrome population. Successful phenotypic screening in scn1lab mutant zebrafish is rigorous and consists of two stages: (i) a locomotion-based assay measuring high-velocity convulsive swim behaviour and (ii) an electrophysiology-based assay, using in vivo local field potential recordings, to quantify electrographic seizure-like events. Historically, nearly 90% of drug candidates fail during translation from preclinical models to the clinic. With such a high failure rate, it becomes necessary to address issues of replication and false positive identification. Leveraging our scn1lab zebrafish assays is one approach to address these problems. Here, we curated a list of nine anti-seizure drug candidates recently identified by other groups using preclinical Dravet syndrome models: 1-Ethyl-2-benzimidazolinone, AA43279, chlorzoxazone, donepezil, lisuride, mifepristone, pargyline, soticlestat and vorinostat. First-stage locomotion-based assays in scn1lab mutant zebrafish identified only 1-Ethyl-2-benzimidazolinone, chlorzoxazone and lisuride. However, second-stage local field potential recording assays did not show significant suppression of spontaneous electrographic seizure activity for any of the nine anti-seizure drug candidates. Surprisingly, soticlestat induced frank electrographic seizure-like discharges in wild-type control zebrafish. Taken together, our results failed to replicate clear anti-seizure efficacy for these drug candidates highlighting a necessity for strict scientific standards in preclinical identification of anti-seizure medications.
Collapse
Affiliation(s)
- Paige A Whyte-Fagundes
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Anjelica Vance
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Aloe Carroll
- Behavioral Neurosciences, Northeastern University, Boston, MA 02115, USA
| | - Francisco Figueroa
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Catherine Manukyan
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Scott C Baraban
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Whyte-Fagundes P, Vance A, Carroll A, Figueroa F, Manukyan C, Baraban SC. Testing of putative antiseizure drugs in a preclinical Dravet syndrome zebrafish model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566723. [PMID: 38014342 PMCID: PMC10680609 DOI: 10.1101/2023.11.11.566723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Dravet syndrome (DS) is a severe genetic epilepsy primarily caused by de novo mutations in a voltage-activated sodium channel gene (SCN1A). Patients face life-threatening seizures that are largely resistant to available anti-seizure medications (ASM). Preclinical DS animal models are a valuable tool to identify candidate ASMs for these patients. Among these, scn1lab mutant zebrafish exhibiting spontaneous seizure-like activity are particularly amenable to large-scale drug screening. Prior screening in a scn1lab mutant zebrafish line generated using N-ethyl-Nnitrosourea (ENU) identified valproate, stiripentol, and fenfluramine e.g., Federal Drug Administration (FDA) approved drugs with clinical application in the DS population. Successful phenotypic screening in scn1lab mutant zebrafish consists of two stages: (i) a locomotion-based assay measuring high-velocity convulsive swim behavior and (ii) an electrophysiology-based assay, using in vivo local field potential (LFP) recordings, to quantify electrographic seizure-like events. Using this strategy more than 3000 drug candidates have been screened in scn1lab zebrafish mutants. Here, we curated a list of nine additional anti-seizure drug candidates recently identified in preclinical models: 1-EBIO, AA43279, chlorzoxazone, donepezil, lisuride, mifepristone, pargyline, soticlestat and vorinostat. First-stage locomotion-based assays in scn1lab mutant zebrafish identified only 1-EBIO, chlorzoxazone and lisuride. However, second-stage LFP recording assays did not show significant suppression of spontaneous electrographic seizure activity for any of the nine anti-seizure drug candidates. Surprisingly, soticlestat induced frank electrographic seizure-like discharges in wild-type control zebrafish. Taken together, our results failed to replicate clear anti-seizure efficacy for these drug candidates highlighting a necessity for strict scientific standards in preclinical identification of ASMs.
Collapse
Affiliation(s)
- P Whyte-Fagundes
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - A Vance
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - A Carroll
- Behavioral Neurosciences, Northeastern University, Boston, MA, USA
| | - F Figueroa
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - C Manukyan
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - S C Baraban
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
7
|
Chauhan A, Singh J, Sangwan N, Dhawan R, Avti PK. An Atomic Level Investigation of Sodium Ions Regulating Agonist and Antagonist Binding in the Active Site of a Novel Target 5HT 2BR Against Drug-Resistant Epilepsy. Cell Biochem Biophys 2023:10.1007/s12013-023-01143-2. [PMID: 37266904 DOI: 10.1007/s12013-023-01143-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/08/2023] [Indexed: 06/03/2023]
Abstract
The study investigates the movement of sodium ions inside the ligand-binding pocket of the class-A GPCR serotonin receptor (5HT2BR), a primary target for modern drugs. The available PDBs are mutant chimeras, so a 3D structure is modeled and validated by structural similarity (84.05%), Ramachandran favorable residues (93.01%), and clash score. Using MD simulations (500 ns), the ion active site is tracked in the presence and absence of ions and ligands. The ions enter the active site along helices III, VI, and VII, and the primary residue (ASP3.32) interacts with ions via H-bond (stronger- ~2.4 Å). The radial distribution function around ASP3.32 rises promptly at intermediate distances (2 Å < r < 4 Å), suggesting a higher probability of finding sodium ions at these distances. The ions stabilize the receptor at a better RMSD and promote stronger interactions (3-H-bonds, 1-π-bond~3.35 Å) with the agonist, and not the antagonist (no H-bond). Simulating unrestrained ligands further confirms this pattern, suggesting that ions might promote agonist binding but not be a prerequisite for antagonist action. The study highlights the mechanistic evaluation of sodium ions mobility in 5HT2BR modulation and ligand binding, showing potential in drug development.
Collapse
Affiliation(s)
- Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Namrata Sangwan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Radhika Dhawan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
8
|
Chauhan A, Singh J, Sangwan N, Singh H, Prakash A, Medhi B, Avti PK. Designing the 5HT 2BR structure and its modulation as a therapeutic target for repurposing approach in drug-resistant epilepsy. Epilepsy Res 2023; 194:107168. [PMID: 37302343 DOI: 10.1016/j.eplepsyres.2023.107168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
The study intends to repurpose FDA drugs and investigate the mechanism of (5HT2BR) activation by comprehending inter-residue interactions. The 5HT2BR is a novel thread, and its role in reducing seizures in Dravet syndrome is emerging. The crystal structure (5HT2BR) is a chimera with mutations; hence 3D-structure is modeled (4IB4: 5HT2BRM). The structure is cross-validated to simulate the human receptor using enrichment analysis (ROC: 0.79) and SAVESv6.0. Virtual screening of 2456 approved drugs yielded the best hits that are subjected to MM/GBSA and molecular dynamic (MD) simulations. The 2 top drugs Cabergoline (-53.44 kcal/mol) and Methylergonovine (-40.42 kcal/mol), display strong binding affinity, and ADMET/SAR analysis also suggests their non-mutagenic or non-carcinogenic nature. Methylergonovine has a weaker binding affinity and lower potency than standards [Ergotamine (agonist) and Methysergide (antagonist)] due to its higher Ki (1.32 M) and Kd (6.44 ×10-8 M) values. Compared to standards, Cabergoline has moderate binding affinity and potency [Ki = 0.85 M and Kd = 5.53 × 10-8 M]. The top 2 drugs primarily interact with conserved residues (ASP135, LEU209, GLY221, ALA225, and THR140) as in agonists, unlike the antagonist. The top 2 drugs, upon binding to the 5HT2BRM, modify the helices VI, V, and III and shift the RMSD 2.48 Å and 3.07 Å. LEU209 forms a latch with residues 207-214 (forms a lid) in the 5HT2BRM receptor, which enhances agonist binding and prevents drug escape. Methylergonovine and Cabergoline interact more stongly with ALA225 than the antagonist. The post-MD analysis of Cabergoline suggests a better MM/GBSA value (-89.21 kcal/mol) than Methylergonovine (-63.54 kcal/mol). In this study, Cabergoline and Methylergonovine's agonistic mechanism and solid binding properties suggest their strong role in regulating the 5HT2BR and might target drug-resistant epilepsy.
Collapse
Affiliation(s)
| | | | | | | | - Ajay Prakash
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Pramod K Avti
- Department of Biophysics, PGIMER, Chandigarh, India.
| |
Collapse
|
9
|
Chauhan A, Sangwan N, Singh J, Prakash A, Medhi B, Avti PK. Allosteric modulation of conserved motifs and helices in 5HT 2BR: Advances drug discovery and therapeutic approach towards drug resistant epilepsy. J Biomol Struct Dyn 2023; 41:13113-13126. [PMID: 36809314 DOI: 10.1080/07391102.2023.2178508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/13/2023] [Indexed: 02/23/2023]
Abstract
The 5HT2BR, class-A GPCR is a new target, and its significance for seizure reduction in Dravet syndrome is just now gaining interest, suggesting its specific role in epileptic seizure management. Homology modeling of human 5HT2BR (P41595), was performed using a template 4IB4, the modeled structure was cross-validated (stereo chemical hindrance, Ramachandran plot, enrichment analysis) to mimic a closer native structure. Virtual screening (8532 compounds), drug-likeliness, mutagenicity, and carcinogenicity profiling prioritized six compounds for molecular dynamics (500 ns), Rgyr, DCCM. The receptor's C-alpha fluctuation upon bound agonist (6.91 Å), known antagonist (7.03 Å), and LAS 52115629 (5.83 Å) binding varies, leading to receptor stabilization. The residues C-alpha side-chain in active site strongly interacts (hydrogen bonds) with bound agonist (100% interaction: ASP135), known antagonist (95%:ASP135), and LAS 52115629 (100%:ASP135). The Rgyr for receptor-ligand complex, LAS 52115629 (25.68 Å), lies close to bound agonist-Ergotamine, and DCCM analysis also shows strong positive correlations for LAS 52115629 as compared to known drugs. LAS 52115629 is less likely to cause toxicity than known drugs. The structural parameters in the modeled receptor's conserved motifs (DRY, PIF, NPY) were altered for receptor activation upon ligand-binding, which otherwise was in the in-activated state. The ligand (LAS 52115629)-binding further alters the helices-III, V, VI (G-protein bound), and VII, which form potential interacting sites with the receptor and are proven necessary for activating the receptor. Therefore, LAS 52115629 can act as a potential 5HT2BR agonist, targeting drug-resistant epilepsy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Namrata Sangwan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
10
|
He Z, Li Y, Zhao X, Li B. Dravet Syndrome: Advances in Etiology, Clinical Presentation, and Treatment. Epilepsy Res 2022; 188:107041. [DOI: 10.1016/j.eplepsyres.2022.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/08/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
|
11
|
Ochenkowska K, Herold A, Samarut É. Zebrafish Is a Powerful Tool for Precision Medicine Approaches to Neurological Disorders. Front Mol Neurosci 2022; 15:944693. [PMID: 35875659 PMCID: PMC9298522 DOI: 10.3389/fnmol.2022.944693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 12/17/2022] Open
Abstract
Personalized medicine is currently one of the most promising tools which give hope to patients with no suitable or no available treatment. Patient-specific approaches are particularly needed for common diseases with a broad phenotypic spectrum as well as for rare and yet-undiagnosed disorders. In both cases, there is a need to understand the underlying mechanisms and how to counteract them. Even though, during recent years, we have been observing the blossom of novel therapeutic techniques, there is still a gap to fill between bench and bedside in a patient-specific fashion. In particular, the complexity of genotype-to-phenotype correlations in the context of neurological disorders has dampened the development of successful disease-modifying therapeutics. Animal modeling of human diseases is instrumental in the development of therapies. Currently, zebrafish has emerged as a powerful and convenient model organism for modeling and investigating various neurological disorders. This model has been broadly described as a valuable tool for understanding developmental processes and disease mechanisms, behavioral studies, toxicity, and drug screening. The translatability of findings obtained from zebrafish studies and the broad prospect of human disease modeling paves the way for developing tailored therapeutic strategies. In this review, we will discuss the predictive power of zebrafish in the discovery of novel, precise therapeutic approaches in neurosciences. We will shed light on the advantages and abilities of this in vivo model to develop tailored medicinal strategies. We will also investigate the newest accomplishments and current challenges in the field and future perspectives.
Collapse
Affiliation(s)
- Katarzyna Ochenkowska
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Aveeva Herold
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Éric Samarut
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada.,Modelis Inc., Montreal, QC, Canada
| |
Collapse
|
12
|
Moog M, Baraban SC. Clemizole and Trazodone are Effective Antiseizure Treatments in a Zebrafish Model of STXBP1 Disorder. Epilepsia Open 2022; 7:504-511. [PMID: 35451230 PMCID: PMC9436285 DOI: 10.1002/epi4.12604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 11/07/2022] Open
Abstract
CRISPR-Cas9-generated zebrafish carrying a 12 base-pair deletion in stxbpb1b, a paralog sharing 79% amino acid sequence identity with human, exhibit spontaneous electrographic seizures during larval stages of development. Zebrafish stxbp1b mutants provide an efficient preclinical platform to test antiseizure therapeutics. The present study was designed to test antiseizure medications approved for clinical use and two recently identified repurposed drugs with antiseizure activity. Larval homozygous stxbp1b zebrafish (4 days post-fertilization) were agarose-embedded and monitored for electrographic seizure activity using a local field recording electrode placed in midbrain. Frequency of ictal-like events was evaluated at baseline and following 45 min of continuous drug exposure (1 mM, bath application). Analysis was performed on coded files by an experimenter blinded to drug treatment and genotype. Phenytoin, valproate, ethosuximide, levetiracetam, and diazepam had no effect on ictal-like event frequency in stxbp1b mutant zebrafish. Clemizole and trazodone decreased ictal-like event frequency in stxbp1b mutant zebrafish by 80% and 83%, respectively. These results suggest that repurposed drugs with serotonin receptor binding affinities could be effective antiseizure treatments. Clemizole and trazodone were previously identified in a larval zebrafish model for Dravet syndrome. Based primarily on these preclinical zebrafish studies, compassionate-use and double-blind clinical trials with both drugs have progressed. The present study extends this approach to a preclinical zebrafish model representing STXBP1-related disorders, and suggests that future clinical studies may be warranted.
Collapse
Affiliation(s)
- Maia Moog
- Department of Neurological Surgery & Weill Institute for NeuroscienceUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Scott C. Baraban
- Department of Neurological Surgery & Weill Institute for NeuroscienceUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
13
|
Martin P, Maurice T, Gammaitoni A, Farfel G, Boyd B, Galer B. Fenfluramine modulates the anti-amnesic effects induced by sigma-1 receptor agonists and neuro(active)steroids in vivo. Epilepsy Behav 2022; 127:108526. [PMID: 35007961 DOI: 10.1016/j.yebeh.2021.108526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
Fenfluramine (N-ethyl-α-methl-3-(trifluoromethyl)phenethylamine) is an anti-seizure medication (ASM) particularly effective in patients with Dravet syndrome, a severe treatment-resistant epileptic encephalopathy. Fenfluramine acts not only as neuronal serotonin (5-HT) releaser but also as a positive modulator of the sigma-1 receptor (S1R). We here examined the modulatory activity of Fenfluramine on the S1R-mediated anti-amnesic response in mice using combination analyses. Fenfluramine and Norfenfluramine, racemate and isomers, were combined with either the S1R agonist (PRE-084) or the S1R-acting neuro(active)steroids, pregnenolone sulfate (PREGS), Dehydroepiandrosterone sulfate (DHEAS), or progesterone. We report that Fenfluramine racemate or (+)-Fenfluramine, in the 0.1-1 mg/kg dose range, attenuated the dizocilpine-induced learning deficits in spontaneous alternation and passive avoidance, and showed low-dose synergies in combination with PRE-084. These effects were blocked by the S1R antagonist NE-100. Dehydroepiandrosterone sulfate or PREGS attenuated dizocilpine-induced learning deficits in the 5-20 mg/kg dose range. Co-treatments at low dose between steroids and Fenfluramine or (+)-Fenfluramine were synergistic. Progesterone blocked Fenfluramine effect. Finally, Fenfluramine and (+)-Fenfluramine effects were prevented by the 5-HT1A receptor antagonist WAY-100635 or 5-HT2A antagonist RS-127445, but not by the 5-HT1B/1D antagonist GR 127935 or the 5-HT2C antagonist SB 242084, confirming a 5-HT1A and 5-HT2A receptor involvement in the drug effect on memory. We therefore confirmed the positive modulation of Fenfluramine racemate or dextroisomer on S1R and showed that, in physiological conditions, the drug potentiated the low dose effects of neuro(active)steroids, endogenous S1R modulators. The latter are potent modulators of the excitatory/inhibitory balance in the brain, and their levels must be considered in the antiepileptic action of Fenfluramine.
Collapse
Affiliation(s)
| | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France.
| | | | | | | | | |
Collapse
|
14
|
Sourbron J, Lagae L. Serotonin receptors in epilepsy: novel treatment targets? Epilepsia Open 2022; 7:231-246. [PMID: 35075810 PMCID: PMC9159250 DOI: 10.1002/epi4.12580] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the availability of over 30 antiseizure medications (ASMs), there is no “one size fits it all,” so there is a continuing search for novel ASMs. There are divergent data demonstrating that modulation of distinct serotonin (5‐hydroxytryptamine, 5‐HT) receptors subtypes could be beneficial in the treatment of epilepsy and its comorbidities, whereas only a few ASM, such as fenfluramine (FA), act via 5‐HT. There are 14 different 5‐HT receptor subtypes, and most epilepsy studies focus on one or a few of these subtypes, using different animal models and different ligands. We reviewed the available evidence of each 5‐HT receptor subtype using MEDLINE up to July 2021. Our search included medical subject heading (MeSH) and free terms of each “5‐HT subtype” separately and its relation to “epilepsy or seizures.” Most research underlines the antiseizure activity of 5‐HT1A,1D,2A,2C,3 agonism and 5‐HT6 antagonism. Consistently, FA, which has recently been approved for the treatment of seizures in Dravet syndrome, is an agonist of 5‐HT1D,2A,2C receptors. Even though each study focused on a distinct seizure/epilepsy type and generalization of different findings could lead to false interpretations, we believe that the available preclinical and clinical studies emphasize the role of serotonergic modulation, especially stimulation, as a promising avenue in epilepsy treatment.
Collapse
Affiliation(s)
- Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Crouzier L, Richard EM, Sourbron J, Lagae L, Maurice T, Delprat B. Use of Zebrafish Models to Boost Research in Rare Genetic Diseases. Int J Mol Sci 2021; 22:13356. [PMID: 34948153 PMCID: PMC8706563 DOI: 10.3390/ijms222413356] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Rare genetic diseases are a group of pathologies with often unmet clinical needs. Even if rare by a single genetic disease (from 1/2000 to 1/more than 1,000,000), the total number of patients concerned account for approximatively 400 million peoples worldwide. Finding treatments remains challenging due to the complexity of these diseases, the small number of patients and the challenge in conducting clinical trials. Therefore, innovative preclinical research strategies are required. The zebrafish has emerged as a powerful animal model for investigating rare diseases. Zebrafish combines conserved vertebrate characteristics with high rate of breeding, limited housing requirements and low costs. More than 84% of human genes responsible for diseases present an orthologue, suggesting that the majority of genetic diseases could be modelized in zebrafish. In this review, we emphasize the unique advantages of zebrafish models over other in vivo models, particularly underlining the high throughput phenotypic capacity for therapeutic screening. We briefly introduce how the generation of zebrafish transgenic lines by gene-modulating technologies can be used to model rare genetic diseases. Then, we describe how zebrafish could be phenotyped using state-of-the-art technologies. Two prototypic examples of rare diseases illustrate how zebrafish models could play a critical role in deciphering the underlying mechanisms of rare genetic diseases and their use to identify innovative therapeutic solutions.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Elodie M. Richard
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| |
Collapse
|
16
|
Pejčić A, Janković SM, Đešević M, Gojak R, Lukić S, Marković N, Milosavljević M. Novel and emerging therapeutics for genetic epilepsies. Expert Rev Neurother 2021; 21:1283-1301. [PMID: 34633254 DOI: 10.1080/14737175.2021.1992275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Disease-specific treatments are available only for a minority of patients with genetic epilepsies, while the rest are treated with anticonvulsants, which are ineffective in almost one-third of patients. AREAS COVERED Recently approved and the most effective emerging therapeutics under development for the treatment of genetic epilepsies are overviewed after systematic search and analysis of relevant literature. EXPERT OPINION New and emerging drugs for genetic epilepsies exploit one of the two approaches: inhibiting hyperactive brain foci through blocking excitatory or augmenting inhibitory neurotransmission, or correcting the underlying genetic defect. The first is limited by insufficient selectivity of available compounds, and the second by imperfection of currently used vectors of genetic material, unselective and transient transgene expression. Besides, the treatment may come too late, after structural abnormalities and epilepsy deterioration takes place. However, with recent improvements, we can expect to see soon gradual decline in the number of patients with therapy-resistant genetic epilepsies.
Collapse
Affiliation(s)
- Ana Pejčić
- University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| | | | - Miralem Đešević
- Private Policlinic Center Eurofar Sarajevo, Cardiology Department, Sarajevo, Bosnia and Herzegovina
| | - Refet Gojak
- Infectious diseases Clinic, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Snežana Lukić
- University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| | - Nenad Marković
- University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| | | |
Collapse
|
17
|
Myers KA, Scheffer IE. Precision Medicine Approaches for Infantile-Onset Developmental and Epileptic Encephalopathies. Annu Rev Pharmacol Toxicol 2021; 62:641-662. [PMID: 34579535 DOI: 10.1146/annurev-pharmtox-052120-084449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epilepsy is an etiologically heterogeneous condition; however, genetic factors are thought to play a role in most patients. For those with infantile-onset developmental and epileptic encephalopathy (DEE), a genetic diagnosis is now obtained in more than 50% of patients. There is considerable motivation to utilize these molecular diagnostic data to help guide treatment, as children with DEEs often have drug-resistant seizures as well as developmental impairment related to cerebral epileptiform activity. Precision medicine approaches have the potential to dramatically improve the quality of life for these children and their families. At present, treatment can be targeted for patients with diagnoses in many genetic causes of infantile-onset DEE, including genes encoding sodium or potassium channel subunits, tuberous sclerosis, and congenital metabolic diseases. Precision medicine may refer to more intelligent choices of conventional antiseizure medications, repurposed agents previously used for other indications, novel compounds, enzyme replacement, or gene therapy approaches. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kenneth A Myers
- Research Institute of the McGill University Health Centre, Division of Child Neurology, Department of Pediatrics, and Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Quebec H4A 3J1, Canada;
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia; .,Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Parkville, Victoria 3052, Australia.,The Florey Institute of Neuroscience and Mental Health and Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| |
Collapse
|
18
|
Choo BKM, Kundap UP, Faudzi SMM, Abas F, Shaikh MF, Samarut É. Identification of curcumin analogues with anti-seizure potential in vivo using chemical and genetic zebrafish larva seizure models. Biomed Pharmacother 2021; 142:112035. [PMID: 34411917 DOI: 10.1016/j.biopha.2021.112035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/19/2021] [Accepted: 08/07/2021] [Indexed: 11/28/2022] Open
Abstract
Seizures are the outward manifestation of abnormally excessive or synchronous brain activity. While seizures can be somewhat symptomatically managed with anti-epileptic drugs (AEDs), many patients are still refractory to the currently available AEDs. As a result, there is a need to identify new molecules with anti-seizure properties. Curcumin is the principle curcuminoid of Curcuma longa, or colloquially turmeric, and has been experimentally proven to have anti-convulsive properties, but its poor bioavailability has dampened further therapeutic interest. Hence, this study aimed to ask if structural analogues of curcumin with an adequate bioavailability could have an anti-seizure effect in vivo. To do so, we tested these analogues following a multipronged approach combining the use of several zebrafish seizure models (chemically-induced and genetic) and complementary assays (behavioural and brain activity). Overall, from the 68 analogues tested, we found 15 different derivatives that were able to significantly decrease the behavioural hyperactivity induced by pentylenetetrazol. Of those, only a few showed an effect on the hyperactivity phenotype of two genetic models of brain seizures that are the gabra1 and gabrg2 knockouts. Two analogues, CA 80(1) and CA 74(1), were able to significantly alleviate brain seizures of gabrg2-mutant larvae. As a result, these analogues are good candidates as novel anti-seizure agents.
Collapse
Affiliation(s)
- Brandon Kar Meng Choo
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Uday Praful Kundap
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; Institute Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Éric Samarut
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center (CRCHUM), Université de Montréal, Montréal, QC, Canada; Modelis inc., Montreal, QC, Canada.
| |
Collapse
|
19
|
Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov 2021; 20:611-628. [PMID: 34117457 PMCID: PMC9210578 DOI: 10.1038/s41573-021-00210-8] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/03/2023]
Abstract
Numerous drug treatments that have recently entered the clinic or clinical trials have their genesis in zebrafish. Zebrafish are well established for their contribution to developmental biology and have now emerged as a powerful preclinical model for human disease, as their disease characteristics, aetiology and progression, and molecular mechanisms are clinically relevant and highly conserved. Zebrafish respond to small molecules and drug treatments at physiologically relevant dose ranges and, when combined with cell-specific or tissue-specific reporters and gene editing technologies, drug activity can be studied at single-cell resolution within the complexity of a whole animal, across tissues and over an extended timescale. These features enable high-throughput and high-content phenotypic drug screening, repurposing of available drugs for personalized and compassionate use, and even the development of new drug classes. Often, drugs and drug leads explored in zebrafish have an inter-organ mechanism of action and would otherwise not be identified through targeted screening approaches. Here, we discuss how zebrafish is an important model for drug discovery, the process of how these discoveries emerge and future opportunities for maximizing zebrafish potential in medical discoveries.
Collapse
Affiliation(s)
- E Elizabeth Patton
- MRC Human Genetics Unit and Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, Western General Hospital Campus, University of Edinburgh, Edinburgh, UK.
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School; Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA.
| | - David M Langenau
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, USA.
- Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Boston, MA, USA.
- Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
20
|
Gogou M, Cross JH. Fenfluramine as antiseizure medication for epilepsy. Dev Med Child Neurol 2021; 63:899-907. [PMID: 33565102 DOI: 10.1111/dmcn.14822] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Fenfluramine hydrochloride has classically been described as acting pharmacologically through a serotonergic mechanism. Therefore, it was initially used as an anorectic drug, given that impaired serotonin homeostasis may be associated with increased food intake. Although positive results were documented, cardiovascular concerns resulted in its temporary withdrawal. Nevertheless, a novel role in patients with epilepsy was later suggested by isolated clinical observations. The wide application of genetic testing allowed the classification (predominantly as Dravet syndrome) of patients in whom benefit was seen, while with the development of zebrafish models, its antiepileptic properties were confirmed at a molecular level. Data from randomized clinical trials have shown a beneficial effect of fenfluramine, as an adjunct therapy, on seizure control for children with Dravet syndrome, though there is still uncertainty about the impact on neurodevelopment in these patients. No signs of heart valve disease have been documented to date. Long-term and appropriately designed clinical studies will verify whether fenfluramine is a therapeutic agent of high importance, living up to the promise shown so far. What this paper adds Fenfluramine is a very promising repurposed therapy specifically for seizures in Dravet syndrome. The long-term effect of fenfluramine on neurodevelopmental prognosis requires further investigation.
Collapse
Affiliation(s)
- Maria Gogou
- Department of Neurology, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - J Helen Cross
- Department of Neurology, Great Ormond Street Hospital for Children NHS Trust, London, UK.,Developmental Neurosciences, University College London NIHR BRC Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
21
|
Abstract
Danio rerio (zebrafish) are a powerful experimental model for genetic and developmental studies. Adaptation of zebrafish to study seizures was initially established using the common convulsant agent pentylenetetrazole (PTZ). Larval PTZ-exposed zebrafish exhibit clear behavioral convulsions and abnormal electrographic activity, reminiscent of interictal and ictal epileptiform discharge. By using this model, our laboratory developed simple locomotion-based and electrophysiological assays to monitor and quantify seizures in larval zebrafish. Zebrafish also offer multiple advantages for rapid genetic manipulation and high-throughput phenotype-based drug screening. Combining these seizure assays with genetically modified zebrafish that represent Dravet syndrome, a rare genetic epilepsy, ultimately contributed to a phenotype-based screen of over 3500 drugs. Several drugs identified in these zebrafish screens are currently in clinical or compassionate-use trials. The emergence of this 'aquarium-to-bedside' approach suggests that broader efforts to adapt and improve upon this zebrafish-centric strategy can drive a variety of exciting new discoveries.
Collapse
Affiliation(s)
- Scott C Baraban
- Department of Neurological Surgery and Weill Institute for Neuroscience, University of California, San Francisco,CA 94143-0350, USA
| |
Collapse
|
22
|
Evaluation of lorcaserin as an anticonvulsant in juvenile Fmr1 knockout mice. Epilepsy Res 2021; 175:106677. [PMID: 34130255 DOI: 10.1016/j.eplepsyres.2021.106677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
Recent preclinical and clinical studies suggest that lorcaserin, a preferential serotonin 2C receptor (5-HT2CR) agonist that was approved for the treatment of obesity, possesses antiepileptic properties. Here, we tested whether lorcaserin (1, 3, 5.6, 10 mg/kg) is prophylactic against audiogenic seizures (AGSs) in juvenile Fmr1 knockout mice, a mouse model of fragile X syndrome (FXS). MPEP (30 mg/kg), a non-competitive mGluR5 receptor antagonist, was used as a positive control. As lorcaserin likely engages 5-HT2ARs at therapeutic doses, we pretreated one group of mice with the selective 5-HT2AR antagonist/inverse agonist, M100907 (0.03 mg/kg), alone or before administering lorcaserin (5.6 mg/kg), to discern putative contributions of 5-HT2ARs to AGSs. We also assessed lorcaserin's in vitro pharmacology at human (h) and mouse (m) 5-HT2CRs and 5-HT2ARs and its in vivo interactions at m5-HT2CRs and m5-HT2ARs. MPEP significantly decreased AGS prevalence (P = 0.011) and lethality (P = 0.038). Lorcaserin, 3 mg/kg, attenuated AGS prevalence and lethality by 14 % and 32 %, respectively, however, results were not statistically significant (P = 0.5 and P = 0.06); other doses and M100907 alone or with lorcaserin also did not significantly affect AGSs. Lorcaserin exhibited full efficacy agonist activity at h5-HT2CRs and m5-HT2CRs, and near full efficacy agonist activity at h5-HT2ARs and m5-HT2ARs; selectivity for activation of 5-HT2CRs over 5-HT2ARs was greater for human (38-fold) compared to mouse (13-fold) receptors. Lorcaserin displayed relatively low affinities at antagonist-labeled 5-HT2CRs and 5-HT2ARs, regardless of species. Lorcaserin (3 and 5.6 mg/kg) increased the 5-HT2AR-dependent head-twitch response (HTR) elicited by (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) in mice (P = 0.03 and P = 0.02). At 3 mg/kg, lorcaserin alone did not elicit an HTR. If mice were treated with the selective 5-HT2CR antagonist SB 242084 (0.5 or 1 mg/kg) plus lorcaserin (3 mg/kg), a significantly increased HTR was observed, relative to vehicle (P = 0.01 and P = 0.03), however, the HTR was much lower than what was elicited by DOI or DOI plus lorcaserin. Lorcaserin, 3 mg/kg, significantly reduced locomotor activity on its own, an effect reversed by SB 242084, and lorcaserin also dose-dependently reduced locomotor activity when administered prior to DOI (Ps<0.002). These data suggest that lorcaserin may engage 5-HT2CRs as well as 5-HT2ARs in mice at doses as low as 3 mg/kg. The similar activity at m5-HT2CRs and m5-HT2ARs suggests careful dosing of lorcaserin is necessary to selectively engage 5-HT2CRs in vivo. In conclusion, lorcaserin was ineffective at preventing AGSs in Fmr1 knockout mice. Lorcaserin may not be a suitable pharmacotherapy for seizures in FXS.
Collapse
|
23
|
In vivo calcium imaging reveals disordered interictal network dynamics in epileptic stxbp1b zebrafish. iScience 2021; 24:102558. [PMID: 34142057 PMCID: PMC8184515 DOI: 10.1016/j.isci.2021.102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
STXBP1 mutations are associated with encephalopathy, developmental delay, intellectual disability, and epilepsy. While neural networks are known to operate at a critical state in the healthy brain, network behavior during pathological epileptic states remains unclear. Examining activity during periods between well-characterized ictal-like events (i.e., interictal period) could provide a valuable step toward understanding epileptic networks. To study these networks in the context of STXBP1 mutations, we combine a larval zebrafish model with in vivo fast confocal calcium imaging and extracellular local field potential recordings. Stxbp1b mutants display transient periods of elevated activity among local clusters of interacting neurons. These network "cascade" events were significantly larger in size and duration in mutants. At mesoscale resolution, cascades exhibit neurodevelopmental abnormalities. At single-cell scale, we describe spontaneous hyper-synchronized neuronal ensembles. That calcium imaging reveals uniquely disordered brain states during periods between pathological ictal-like seizure events is striking and represents a potential interictal biomarker.
Collapse
|
24
|
Li HL, Deng ZR, Zhang J, Ding CH, Shi XG, Wang L, Chen X, Cao L, Wang Y. Sonographic hypoechogenicity of brainstem raphe nucleus is correlated with electroencephalographic spike frequency in patients with epilepsy. Epilepsy Behav 2021; 117:107884. [PMID: 33714930 DOI: 10.1016/j.yebeh.2021.107884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Brainstem raphe nucleus (BRN) hypoechogenicity in transcranial sonography (TCS) has been demonstrated in patients with major depression, possibly representing a sonographic manifestation of serotonergic dysfunction in depression. Most patients with epilepsy with comorbid depression exhibit hypoechogenic BRN in TCS. However, the role of BRN in the pathogenesis of epilepsy is unclear. This study aimed to evaluate the correlation of BRN echogenicity with epilepsy itself, and the echogenicity of other midbrain structures and the size of lateral ventricle (LV) will also be evaluated in patients with epilepsy. METHODS Thirty-six patients with epilepsy without depression and 37 healthy controls were recruited. Sonographic echogenicity of BRN, caudate nucleus (CN), lentiform nucleus (LN), substantia nigra (SN), and the width of frontal horns of the lateral ventricles (LV) and the third ventricle (TV) were evaluated with TCS. The frequency of interictal epileptiform discharges (IEDs) was assessed with ambulatory electroencephalogram (AEEG). RESULTS Hypoechogenicity of BRN was depicted in 36.1% of patients with epilepsy and 18.9% of controls, showing no significant difference. Patients with epilepsy with BRN hypoechogenicity had higher epileptic discharge index (EDI) than those with normal BRN echogenecity. Especially, higher EDI in patients with BRN hypoechogenicity was observed during the sleep period but not during awake period. The width of TV was significantly larger in patients with epilepsy than that in controls. We did not find any difference between patients with epilepsy and controls in the echogenicity of CN, LN, and SN, as well as in the width of frontal horn of LV. CONCLUSIONS Hypoechogenic BRN is correlated with a high frequency of epileptic discharges in electroencephalogram (EEG), especially during sleep period but not during awake period, indicating that BRN alterations may play a potential role in the pathogenesis of epilepsy in association with sleep cycle.
Collapse
Affiliation(s)
- Han-Li Li
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Zi-Ru Deng
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Juan Zhang
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Chu-Han Ding
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Xue-Gong Shi
- Department of Echocardiography, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Long Wang
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Xin Chen
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Li Cao
- Department of Electrocardiogram, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Yu Wang
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The serotonergic system is implicated in multiple aspects of epilepsy, including seizure susceptibility, sudden unexpected death in epilepsy (SUDEP), and comorbid depression. Despite the complexity of serotonin's effects on various neuronal networks, ongoing research provides considerable insight into the role of serotonin in human epilepsy. This review explores the potential roles of serotonergic therapies to improve clinical outcomes in epilepsy. RECENT FINDINGS In recent decades, research has markedly increased our knowledge of the diverse effects of serotonin on brain function. Animal models of epilepsy have identified the influence of serotonin on seizure threshold in specific brain regions, serotoninergic augmentation's protective effects on terminal apnea and mortality in SUDEP, and mechanisms underlying behavioral improvement in some models of comorbid depression. Human clinical studies are largely consistent with animal data but the translation into definitive treatment decisions has moved less rapidly. SUMMARY Evidence for serotonergic therapy is promising for improvement in seizure control and prevention of SUDEP. For some epilepsies, such as Dravet syndrome, basic research on serotonin receptor agonists has translated into a positive clinical trial for fenfluramine. The cumulative results of safety and efficacy studies support the routine use of SSRIs for comorbid depression in epilepsy.
Collapse
Affiliation(s)
| | | | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky
| |
Collapse
|
26
|
Wilson MM, Henshall DC, Byrne SM, Brennan GP. CHD2-Related CNS Pathologies. Int J Mol Sci 2021; 22:E588. [PMID: 33435571 PMCID: PMC7827033 DOI: 10.3390/ijms22020588] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Epileptic encephalopathies (EE) are severe epilepsy syndromes characterized by multiple seizure types, developmental delay and even regression. This class of disorders are increasingly being identified as resulting from de novo genetic mutations including many identified mutations in the family of chromodomain helicase DNA binding (CHD) proteins. In particular, several de novo pathogenic mutations have been identified in the gene encoding chromodomain helicase DNA binding protein 2 (CHD2), a member of the sucrose nonfermenting (SNF-2) protein family of epigenetic regulators. These mutations in the CHD2 gene are causative of early onset epileptic encephalopathy, abnormal brain function, and intellectual disability. Our understanding of the mechanisms by which modification or loss of CHD2 cause this condition remains poorly understood. Here, we review what is known and still to be elucidated as regards the structure and function of CHD2 and how its dysregulation leads to a highly variable range of phenotypic presentations.
Collapse
Affiliation(s)
- Marc-Michel Wilson
- Department of Physiology and Medical Physics, RCSI, University of Medicine and Health Sciences, Dublin 02, Ireland; (M.-M.W.); (D.C.H.)
- FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland;
| | - David C. Henshall
- Department of Physiology and Medical Physics, RCSI, University of Medicine and Health Sciences, Dublin 02, Ireland; (M.-M.W.); (D.C.H.)
- FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland;
| | - Susan M. Byrne
- FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland;
- Department of Paediatrics, RCSI, University of Medicine and Health Sciences, Dublin 02, Ireland
- Department of Paediatric Neurology, Our Ladies Children’s Hospital Crumlin, Dublin 12, Ireland
| | - Gary P. Brennan
- FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland;
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 04, Ireland
| |
Collapse
|
27
|
Guery D, Rheims S. Clinical Management of Drug Resistant Epilepsy: A Review on Current Strategies. Neuropsychiatr Dis Treat 2021; 17:2229-2242. [PMID: 34285484 PMCID: PMC8286073 DOI: 10.2147/ndt.s256699] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Drug resistant epilepsy (DRE) is defined as the persistence of seizures despite at least two syndrome-adapted antiseizure drugs (ASD) used at efficacious daily dose. Despite the increasing number of available ASD, about a third of patients with epilepsy still suffer from drug resistance. Several factors are associated with the risk of evolution to DRE in patients with newly diagnosed epilepsy, including epilepsy onset in the infancy, intellectual disability, symptomatic epilepsy and abnormal neurological exam. Pharmacological management often consists in ASD polytherapy. However, because quality of life is driven by several factors in patients with DRE, including the tolerability of the treatment, ASD management should try to optimize efficacy while anticipating the risks of drug-related adverse events. All patients with DRE should be evaluated at least once in a tertiary epilepsy center, especially to discuss eligibility for non-pharmacological therapies. This is of paramount importance in patients with drug resistant focal epilepsy in whom epilepsy surgery can result in long-term seizure freedom. Vagus nerve stimulation, deep brain stimulation or cortical stimulation can also improve seizure control. Lastly, considering the effect of DRE on psychologic status and social integration, comprehensive care adaptations are always needed in order to improve patients' quality of life.
Collapse
Affiliation(s)
- Deborah Guery
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon and University of Lyon, Lyon, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon and University of Lyon, Lyon, France.,Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France.,Epilepsy Institute, Lyon, France
| |
Collapse
|
28
|
Miziak B, Czuczwar S. Advances in the design and discovery of novel small molecule drugs for the treatment of Dravet Syndrome. Expert Opin Drug Discov 2020; 16:579-593. [PMID: 33275464 DOI: 10.1080/17460441.2021.1857722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Dravet syndrome (severe myoclonic epilepsy in infancy) begins in the first year of life characterized by generalized or unilateral clonic seizures that are frequently triggered by high fever. A subsequent worsening stage occurs (in years 1-4 of life) and seizure activity is accompanied by disturbed psychomotor development. The third stage of the disease, known as the 'stabilization phase,' is associated with seizures and intellectual impairment. Of note, a mutation in the voltage-gated sodium-channel gene α 1 subunit (SCN1A) has been found in around 85% of patients with Dravet syndrome.Areas covered: The authors review the current treatment strategies as well as potential drugs in the initial stages of clinical evaluation. The authors also review drugs with protective activity in mice models of Dravet syndrome.Expert opinion: Experimental data and results from initial clinical studies have brought attention to several drugs with various mechanisms of action including: ataluren (a suppressant of premature stop codons; under clinical evaluation), EPX-100, EPX-200, fenfluramine (serotonin modulators), soticlestat (an 24-hydroxylase cholesterol enzyme inhibitor), SPN-817 (an inhibitor of acetylcholinesterase), verapamil (a voltage-dependent calcium channel inhibitor) and STK-001 (an antisense oligonucleotide). The latter is scheduled for clinical evaluation.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Stanisław Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
29
|
An Unbiased Drug Screen for Seizure Suppressors in Duplication 15q Syndrome Reveals 5-HT 1A and Dopamine Pathway Activation as Potential Therapies. Biol Psychiatry 2020; 88:698-709. [PMID: 32507391 PMCID: PMC7554174 DOI: 10.1016/j.biopsych.2020.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Duplication 15q (Dup15q) syndrome is a rare neurogenetic disorder characterized by autism and pharmacoresistant epilepsy. Most individuals with isodicentric duplications have been on multiple medications to control seizures. We recently developed a model of Dup15q in Drosophila by elevating levels of fly Dube3a in glial cells using repo-GAL4, not neurons. In contrast to other Dup15q models, these flies develop seizures that worsen with age. METHODS We screened repo>Dube3a flies for approved compounds that can suppress seizures. Flies 3 to 5 days old were exposed to compounds in the fly food during development. Flies were tested using a bang sensitivity assay for seizure recovery time. At least 40 animals were tested per experiment, with separate testing for male and female flies. Studies of K+ content in glial cells of the fly brain were also performed using a fluorescent K+ indicator. RESULTS We identified 17 of 1280 compounds in the Prestwick Chemical Library that could suppress seizures. Eight compounds were validated in secondary screening. Four of these compounds regulated either serotonergic or dopaminergic signaling, and subsequent experiments confirmed that seizure suppression occurred primarily through stimulation of serotonin receptor 5-HT1A. Additional studies of K+ levels showed that Dube3a regulation of the Na+/K+ exchanger ATPα (adenosine triphosphatase α) in glia may be modulated by serotonin/dopamine signaling, causing seizure suppression. CONCLUSIONS Based on these pharmacological and genetic studies, we present an argument for the use of 5-HT1A agonists in the treatment of Dup15q epilepsy.
Collapse
|
30
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
31
|
Dozières-Puyravel B, Auvin S. Fenfluramine hydrochloride for the treatment of Dravet syndrome. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1758930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Stéphane Auvin
- APHP, Service de Neurologie Pédiatrique, Hôpital Robert Debré, Paris, France
- INSERM NeuroDiderot, Université De Paris, Paris, France
| |
Collapse
|
32
|
Griffin A, Anvar M, Hamling K, Baraban SC. Phenotype-Based Screening of Synthetic Cannabinoids in a Dravet Syndrome Zebrafish Model. Front Pharmacol 2020; 11:464. [PMID: 32390835 PMCID: PMC7193054 DOI: 10.3389/fphar.2020.00464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/25/2020] [Indexed: 12/24/2022] Open
Abstract
Dravet syndrome is a catastrophic epilepsy of childhood, characterized by cognitive impairment, severe seizures, and increased risk for sudden unexplained death in epilepsy (SUDEP). Although refractory to conventional antiepileptic drugs, emerging preclinical and clinical evidence suggests that modulation of the endocannabinoid system could be therapeutic in these patients. Preclinical research on this topic is limited as cannabis, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), are designated by United States Drug Enforcement Agency (DEA) as illegal substances. In this study, we used a validated zebrafish model of Dravet syndrome, scn1lab homozygous mutants, to screen for anti-seizure activity in a commercially available library containing 370 synthetic cannabinoid (SC) compounds. SCs are intended for experimental use and not restricted by DEA designations. Primary phenotype-based screening was performed using a locomotion-based assay in 96-well plates, and a secondary local field potential recording assay was then used to confirm suppression of electrographic epileptiform events. Identified SCs with anti-seizure activity, in both assays, included five SCs structurally classified as indole-based cannabinoids JWH 018 N-(5-chloropentyl) analog, JWH 018 N-(2-methylbutyl) isomer, 5-fluoro PB-22 5-hydroxyisoquinoline isomer, 5-fluoro ADBICA, and AB-FUBINACA 3-fluorobenzyl isomer. Our approach demonstrates that two-stage phenotype-based screening in a zebrafish model of Dravet syndrome successfully identifies SCs with anti-seizure activity.
Collapse
Affiliation(s)
- Aliesha Griffin
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Mana Anvar
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Kyla Hamling
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Scott C Baraban
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
33
|
Steriade C, French J, Devinsky O. Epilepsy: key experimental therapeutics in early clinical development. Expert Opin Investig Drugs 2020; 29:373-383. [DOI: 10.1080/13543784.2020.1743678] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Claude Steriade
- Division of Epilepsy, Department of Neurology, NYU Comprehensive Epilepsy Center, New York, NY, USA
| | - Jacqueline French
- Division of Epilepsy, Department of Neurology, NYU Comprehensive Epilepsy Center, New York, NY, USA
| | - Orrin Devinsky
- Division of Epilepsy, Department of Neurology, NYU Comprehensive Epilepsy Center, New York, NY, USA
| |
Collapse
|
34
|
Abstract
A major goal of translational toxicology is to identify adverse chemical effects and determine whether they are conserved or divergent across experimental systems. Translational toxicology encompasses assessment of chemical toxicity across multiple life stages, determination of toxic mode-of-action, computational prediction modeling, and identification of interventions that protect or restore health following toxic chemical exposures. The zebrafish is increasingly used in translational toxicology because it combines the genetic and physiological advantages of mammalian models with the higher-throughput capabilities and genetic manipulability of invertebrate models. Here, we review recent literature demonstrating the power of the zebrafish as a model for addressing all four activities of translational toxicology. Important data gaps and challenges associated with using zebrafish for translational toxicology are also discussed.
Collapse
Affiliation(s)
- Tamara Tal
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research – UFZ, Permoserstraβe 15 04318 Leipzig, Germany
- Corresponding authors: Pamela Lein, Department of Molecular Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616 USA, +1-530-752-1970, ; Tamara Tal, Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany, +49-341-236-1524,
| | - Bianca Yaghoobi
- Department of Molecular Sciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616 USA
| | - Pamela J. Lein
- Department of Molecular Sciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616 USA
- Corresponding authors: Pamela Lein, Department of Molecular Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616 USA, +1-530-752-1970, ; Tamara Tal, Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany, +49-341-236-1524,
| |
Collapse
|