1
|
Beraldo S, Ljungqvist J, Rodger R, Hanson B, Saavedra C. Effectiveness of an enhanced silver-containing dressing in hard-to-heal venous leg ulcers: a randomised controlled trial. J Wound Care 2025; 34:170-178. [PMID: 40047822 DOI: 10.12968/jowc.2025.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
OBJECTIVE To assess the efficacy and safety of a carboxymethylcellulose dressing containing ionic silver, ethylenediaminetetraacetic acid and benzethonium chloride (CISEB) versus a dialkylcarbamoyl chloride-coated dressing (DACC) in hard-to-heal venous leg ulcers (VLUs). METHOD In a multinational, multicentre, randomised controlled trial, patients with hard-to-heal VLUs were randomised 1:1 to receive CISEB (n=100) or DACC (n=103) for up to four weeks. VLUs that were not healed by week 4 were managed with standard of care for up to 12 weeks or until healed (whichever was sooner). The primary endpoint was complete wound closure at week 12. Additional endpoints included time to complete wound closure and incidence of adverse events (AEs). RESULTS The trial cohort included 203 patients. CISEB achieved a higher rate of complete wound closure by week 12 compared to DACC (74.8% versus 55.6%, respectively; p<0.0031), and was associated with a 35% increased likelihood of healing (risk ratio, 1.35; 95% confidence interval: 1.10-1.65). Median time to complete wound closure was shorter in the CISEB arm (56 days) compared to the DACC arm (70 days; p<0.0272). A smaller proportion of patients experienced an AE with CISEB compared to DACC (5.0% versus 17.6%, respectively). CONCLUSION Management of hard-to-heal VLUs with CISEB was associated with improved healing outcomes compared to DACC, without additional safety concerns. CISEB is a gelling fibre dressing with antimicrobial, metal-chelating and surfactant components that may promote an optimal healing environment to address the challenge of hard-to-heal wounds.
Collapse
|
2
|
Hurlow J, Wolcott RD, Bowler PG. Clinical management of chronic wound infections: The battle against biofilm. Wound Repair Regen 2025; 33:e13241. [PMID: 39600232 DOI: 10.1111/wrr.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Bacteria constitute the most abundant life form on earth, of which the majority exist in a protective biofilm state. Since the 1980s, we have learned much about the role of biofilm in human chronic infections, with associated global healthcare costs recently estimated at ~$386 billion. Chronic wound infection is a prominent biofilm-induced condition that is characterised by persistent inflammation and associated host tissue destruction, and clinical signs that are distinct from signs of acute wound infection. Biofilm also enables greater tolerance to antimicrobial agents in chronic wound infections compared with acute wound infections. Given the difficulty in eliminating wound biofilm, a multi-targeted strategy (namely biofilm-based wound care) involving debridement and antimicrobial therapies were introduced and have been practiced since the early 2000s. More recently, acknowledgement of the speed at which biofilm can develop and hence quickly interfere with wound healing has highlighted the need for an early anti-biofilm strategy to combat biofilm before it takes control and prevents wound healing. This strategy, referred to as wound hygiene, involves multiple tools in combination (debridement, cleansing, and antimicrobial dressings) to maximise success in biofilm removal and encourage wound healing. This review is intended to highlight the issues and challenges associated with biofilm-induced chronic infections, and specifically address the challenges in chronic wound management, and tools required to combat biofilm and encourage wound healing.
Collapse
Affiliation(s)
- Jennifer Hurlow
- ProHeal Wound Clinic, Baptist Memorial Hospital, Memphis, Tennessee, USA
| | | | | |
Collapse
|
3
|
Shrestha S, Wang B, Dutta PK. Commercial Silver-Based Dressings: In Vitro and Clinical Studies in Treatment of Chronic and Burn Wounds. Antibiotics (Basel) 2024; 13:910. [PMID: 39335083 PMCID: PMC11429284 DOI: 10.3390/antibiotics13090910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic wounds are a major health problem because of delayed healing, causing hardships for the patient. The infection present in these wounds plays a role in delayed wound healing. Silver wound dressings have been used for decades, beginning in the 1960s with silver sulfadiazine for infection prevention for burn wounds. Since that time, there has been a large number of commercial silver dressings that have obtained FDA clearance. In this review, we examine the literature involving in vitro and in vivo (both animal and human clinical) studies with commercial silver dressings and attempt to glean the important characteristics of these dressings in treating infected wounds. The primary presentation of the literature is in the form of detailed tables. The narrative part of the review focuses on the different types of silver dressings, including the supporting matrix, the release characteristics of the silver into the surroundings, and their toxicity. Though there are many clinical studies of chronic and burn wounds using silver dressings that we discuss, it is difficult to compare the performances of the dressings directly because of the differences in the study protocols. We conclude that silver dressings can assist in wound healing, although it is difficult to provide general treatment guidelines. From a wound dressing point of view, future studies will need to focus on new delivery systems for silver, as well as the type of matrix in which the silver is deposited. Clearly, adding other actives to enhance the antimicrobial activity, including the disruption of mature biofilms is of interest. From a clinical point of view, the focus needs to be on the wound healing characteristics, and thus randomized control trials will provide more confidence in the results. The application of different wound dressings for specific wounds needs to be clarified, along with the application protocols. It is most likely that no single silver-based dressing can be used for all wounds.
Collapse
Affiliation(s)
| | - Bo Wang
- ZeoVation Inc., Columbus, OH 43212, USA; (S.S.); (B.W.)
| | - Prabir K. Dutta
- ZeoVation Inc., Columbus, OH 43212, USA; (S.S.); (B.W.)
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Dehbashi S, Tahmasebi H, Alikhani MY, Vidal JE, Seifalian A, Arabestani MR. The healing effect of Pseudomonas Quinolone Signal (PQS) with co-infection of Staphylococcus aureus and Pseudomonas aeruginosa: A preclinical animal co-infection model. J Infect Public Health 2024; 17:329-338. [PMID: 38194764 DOI: 10.1016/j.jiph.2023.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Because of the rise in antibiotic resistance and the control of pathogenicity, polymicrobial bacterial biofilms exacerbate wound infections. Since bacterial quorum sensing (QS) signals can dysregulate biofilm development, they are interesting therapeutic treatments. In this study, Pseudomonas Quinolone Signal (PQS) was used to treat an animal model of a wound that had both Staphylococcus aureus and Pseudomonas aeruginosa co-infection. METHODS S. aureus and P. aeruginosa mono- and co-infection models were developed in vitro on the L-929 cell line and in an animal model of wound infection. Moreover, PQS was extracted and purified using liquid chromatography. Then, the mono- and co-infection models were treated by PQS in vitro and in vivo. RT-PCR analysis was used to look into changes in biofilm, QS, tissue regeneration, and apoptosis genes after the treatment. RESULTS PQS significantly disrupted established biofilm up to 90% in both in vitro and in vivo models. Moreover, a 93% reduction in the viability of S. aureus and P. aeruginosa was detected during the 10 days of treatment in comparison to control groups. In addition, the biofilm-encoding and QS-regulating genes were down-regulated to 75% in both microorganisms. Also, fewer epithelial cells died when treated with PQS compared to control groups in both mono- and co-infection groups. CONCLUSION According to this study, PQS may facilitate wound healing by stimulating the immune system and reducing apoptosis. It seems to be a potential medication to use in conjunction with antibiotics to treat infections that are difficult to treat.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- Department of Laboratory Sciences, Varastegan Institute of Medical Sciences, Mashhad, Iran
| | - Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jorge E Vidal
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, United Kingdom
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Infectious Disease Research center, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Astrada A, Pamungkas RA, Abidin KR. Advancements in Managing Wound Biofilm: A Systematic Review and Meta-analysis of Randomized Controlled Trials on Topical Modalities. Foot Ankle Spec 2024:19386400231225708. [PMID: 38282327 DOI: 10.1177/19386400231225708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Despite numerous available agents claiming anti-biofilm properties on wounds, the substantiating evidence remains inconclusive. This study aimed to assess the immediate impact of topical wound treatments on wound biofilm and healing outcomes in acute and chronic ulcers. We comprehensively searched PubMed, ClinicalTrials.gov, and Google Scholar. In addition, eligible gray literature was incorporated. English-language randomized controlled trials (RCTs), observational, cohort, and case-control studies targeting biofilm prevention, inhibition, or elimination across diverse wound types were included. Primary outcomes included biofilm presence and elimination, supplemented by secondary outcomes encompassing reduced wound size, complete closure, and diminished infection indicators. Bacterial load reduction and biofilm presence were also assessed. Twenty-eight articles met the inclusion criteria. Various modalities were identified, including biofilm-visualization techniques, such as wound blotting and handheld autofluorescence imaging. Pooled analysis for the primary outcomes was infeasible due to limited eligible studies and data-reporting challenges. As for the secondary outcomes, the pooled analysis for complete surgical wound closure (2 RCTs, yielding n=284) and presence of surgical site infections/inflammation (2 RCTs, yielding n=284) showed no significant difference, with a log odds ratio (LOD) of 0.58 (95% confidence interval [CI]: -.33, 1.50) and LOD -0.95 (95% CI: -3.54, 1.64; τ2 = 2.32, Q = 2.71, P = .10), respectively. Our findings suggest insufficient evidence to support anti-biofilm claims of topical modalities. Clinicians' skill appears to play a pivotal role in biofilm elimination and wound healing enhancement, with potential optimization through visual-guided techniques, such as wound blotting and autofluorescence imaging. More rigorous clinical trials are warranted to ascertain the efficacy of these techniques.Level of Evidence: Therapeutic, 1A.
Collapse
Affiliation(s)
- Adam Astrada
- School of Nursing, Faculty of Health Sciences, Esa Unggul University, Jakarta Barat, Indonesia
| | - Rian Adi Pamungkas
- School of Nursing, Faculty of Health Sciences, Esa Unggul University, Jakarta Barat, Indonesia
- School of Nursing, University of Michigan, Ann Arbor, Michigan
| | - Khoirul Rista Abidin
- Department of Medical Laboratory Technology, Politeknik 'Aisyiyah Pontianak, Pontianak City, Indonesia
- Department of Biotechnology, Postgraduate School, Padjadjaran University, Indonesia
| |
Collapse
|
6
|
Swetha Menon NP, Kamaraj M, Anish Sharmila M, Govarthanan M. Recent progress in polysaccharide and polypeptide based modern moisture-retentive wound dressings. Int J Biol Macromol 2024; 256:128499. [PMID: 38048932 DOI: 10.1016/j.ijbiomac.2023.128499] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/05/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Wounds were considered as defects in the tissues of the human skin and wound healing is said to be a tedious process as there are possibilities of infection or inflammation due to microorganisms. Modern moisture-retentive wound dressing (MMRWD) is opening a new window toward wound therapy. It comprises different types of wound dressing that has classified based on their functionality. Selective polysaccharide-polypeptide fiber composite materials such as hydrogels, hydrocolloids, hydro fibers, transparent-film dressing, and alginate dressing are discussed in this review as a type of MMRWD. The highlight of this polysaccharide and polypeptide based MMRWD is that it supports and enhances the healing of different types of wounds by moisture absorption thus preventing infection. This study has given enlightenment on the application of selected polysaccharide and polypeptide based MMRWD that enhances wound healing actions still it has been observed that the composite wound healing dressing is more effective than the single one. The nano-sized materials (synthetic nano drugs and phyto drugs) were found to increase the efficiency of healing action while coated in the wound dressing material. Future research is required to find out more possibilities of the different composite types of wound dressing in the healing action.
Collapse
Affiliation(s)
- N P Swetha Menon
- Department of Fashion Designing, Faculty of Science and Humanities, SRM Institute of Science and Technology -Ramapuram, Chennai 600089, Tamil Nadu, India; Department of Fashion Design and Arts, Hindustan Institute of Technology and Science, Deemed to be University, Chennai 603103, Tamil Nadu, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology -Ramapuram, Chennai 600089, Tamil Nadu, India; Life Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia.
| | - M Anish Sharmila
- Department of Fashion Design and Arts, Hindustan Institute of Technology and Science, Deemed to be University, Chennai 603103, Tamil Nadu, India.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| |
Collapse
|
7
|
Dissemond J, Aare K, Ozer K, Gandhi D, Ryan JL, DeKoven M. Aquacel Ag Advantage/Ag+ Extra and Cutimed Sorbact in the management of hard-to-heal wounds: a cohort study. J Wound Care 2023; 32:624-633. [PMID: 37830837 DOI: 10.12968/jowc.2023.32.10.624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
OBJECTIVE To compare Aquacel Ag Advantage/Ag+ Extra (Aquacel Ag+) (Convatec, UK) and Cutimed Sorbact (Sorbact) (Essity, US) dressings indicated for the treatment of patients with venous leg ulcers (VLUs), diabetes foot ulcers (DFUs) and pressure injuries (PIs) for clinical performance and outcomes using real-world evidence in Germany and the US. METHOD This study was a chart audit review of patients who used either Aquacel Ag+ or Sorbact dressings in the 24 months prior to October 2022. Healthcare providers with access to electronic medical records and charts were asked to capture data via patient record forms. The quantitative data were analysed. RESULTS Findings in Germany were comparable between Aquacel Ag+ and Sorbact with regards to wound description, management and treatment outcomes, including percent area reduction and wound closure. A difference was that a greater proportion of Sorbact patients required surgery (0% versus 11%; p=0.039). In the US, a greater proportion of wounds were worsening before dressing in the Aquacel Ag+ cohort (49% versus 34%; p=0.010). A multinomial logistic regression yielded the result that patients who received Aquacel Ag+ were 3.53 times more likely to have the wound completely healed (p=0.033). CONCLUSION Both Aquacel Ag+ and Sorbact dressings are widely used in Germany and the US for patients with VLUs, DFUs and PIs. Our study found two important differences: patients who used Aquacel Ag+ were less likely to need further surgery in Germany; and in the US, there were significantly higher odds that wounds would completely heal with Aquacel Ag+ dressings compared to Sorbact.
Collapse
Affiliation(s)
- Joachim Dissemond
- Department of Dermatology, Essen University Hospital, Essen, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Razdan K, Garcia-Lara J, Sinha VR, Singh KK. Pharmaceutical strategies for the treatment of bacterial biofilms in chronic wounds. Drug Discov Today 2022; 27:2137-2150. [PMID: 35489675 DOI: 10.1016/j.drudis.2022.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/28/2022] [Accepted: 04/21/2022] [Indexed: 01/10/2023]
Abstract
Biofilms are sessile communities of microorganisms, mainly bacteria, that grow on biotic and abiotic surfaces. These microorganisms are embedded within an extracellular polymeric substance that provides enhanced protection from antimicrobials. Chronic wounds provide an ideal habitat for biofilm formation. Bacteria can easily attach to wound debris and can infect the wound due to an impaired host immune response. This review highlights the mechanism of biofilm formation and the role of biofilms in the pathophysiology of chronic wounds. Our major focus is on various formulation strategies and delivery systems that are employed to eradicate or disperse biofilms, thereby effectively managing acute and chronic wounds. We also discuss clinical research that has studied or is studying the treatment of biofilm-infected chronic wounds. Teaser: Innovative pharmaceutical strategies such as hydrogels, nanofibers, films and various nanoscale materials can provide promising approaches for the treatment of biofilm-mediated chronic wound infections, offering the potential to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Karan Razdan
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; Pharmaceutics Division, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160014, India
| | - Jorge Garcia-Lara
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston PR1 2HE, UK; UCLan Research Centre for Translational Biosciences and Behavior, University of Central Lancashire, Preston PR1 2HE, UK
| | - V R Sinha
- Pharmaceutics Division, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160014, India.
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston PR1 2HE, UK; UCLan Research Centre for Translational Biosciences and Behavior, University of Central Lancashire, Preston PR1 2HE, UK.
| |
Collapse
|
9
|
Murphy C, Mrozikiewicz-Rakowska B, Kuberka I, Czupryniak L, Gómez PB, Vega de Ceniga M, Walker A, Tomkins A, Hurlow J, Abdo R, Sandroni S, Marinelli E. Implementation of Wound Hygiene in clinical practice: early use of an antibiofilm strategy promotes positive patient outcomes. J Wound Care 2022; 31:S1-S32. [PMID: 35113669 DOI: 10.12968/jowc.2022.31.sup1.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Non-healing wounds are devastating for patients, potentially causing long-term morbidity and an impaired quality of life. They also incur a huge health economic burden for health-care services. Understanding of the causes of non-healing wounds has increased significantly. While the need to address the underlying aetiology has always been acknowledged, the role of biofilm in delaying or preventing healing is now accepted. There is a consensus on the need to debride the wound to remove biofilm and then prevent its reformation, to kickstart healing. The potential benefits of incorporating an antibiofilm component within the wound bed preparation framework are clear. However, such a strategy needs to be flexible enough so that it can be implemented by all practitioners, regardless of their expertise or specialty. Wound Hygiene does this. This supplement describes the Wound Hygiene protocol, and includes a selection of case studies on different wound types, demonstrating its ease of use and effectiveness in clinical practice.
Collapse
Affiliation(s)
- Chris Murphy
- Nurse Specialist, Vascular Wounds, The Ottawa Hospital Limb Preservation Centre, Ottawa, Canada
| | | | - Izabela Kuberka
- Department of Nervous System Diseases, Wroclaw Medical University, Poland
| | - Leszek Czupryniak
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, Poland.,Department of Nervous System Diseases, Wroclaw Medical University, Poland
| | | | - Melina Vega de Ceniga
- Angiologist and Vascular Surgeon, Wound Unit, OSI Barrualde and Department of Angiology and Vascular Surgery, Hospital de Galdakao-Usansolo, Bizkaia, Spain
| | - Angela Walker
- Podiatry Lead Clinical Specialist, Birmingham Community Health Care NHS Foundation Trust
| | - Annabelle Tomkins
- Highly Specialist Podiatrist, Birmingham Community Health Care NHS Foundation Trust
| | - Jenny Hurlow
- Wound Specialised Nurse Practitioner, Advanced Wound Care, Southaven, Mississippi, US
| | - Raymond Abdo
- Podiatrist, St Louis Foot and Ankle, St Louis, Missouri, US
| | - Sara Sandroni
- Nurse Manager, Network Wound Care, Azienda USL, Toscana Sud Est, Arezzo, Italy
| | - Elisa Marinelli
- Nurse Specialist, Network Wound Care, Azienda USL Toscana Sud Est, Arezzo, Italy
| |
Collapse
|
10
|
Abstract
Chronic wounds have always been a tough fight in clinical practice, which can not only make patients suffer from pain physically and mentally but also impose a heavy burden on the society. More than one factor is relevant to each step of the development of chronic wounds. Along with the in-depth research, we have realized that figuring out the pathophysiological mechanism of chronic wounds is the foundation of treatment, while wound infection is the key point concerned. The cause of infection should be identified and prevented promptly once diagnosed. This paper mainly describes the mechanism, diagnosis and therapeutic strategies of chronic wound infection, and will put an emphasis on the principle of debridement.
Collapse
|
11
|
Peng Z, Zhang X, Yuan L, Li T, Chen Y, Tian H, Ma D, Deng J, Qi X, Yin X. Integrated endotoxin-adsorption and antibacterial properties of platelet-membrane-coated copper silicate hollow microspheres for wound healing. J Nanobiotechnology 2021; 19:383. [PMID: 34809612 PMCID: PMC8607565 DOI: 10.1186/s12951-021-01130-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Serious infection caused by drug-resistant gram-negative bacteria and their secreted toxins (e.g., lipopolysaccharide) is a serious threat to human health. Thus, treatment strategies that efficiently kill bacteria and reducing the impact of their toxins simultaneously are urgently required. Herein, a novel antibacterial platform composed of a mesoporous copper silicate microsphere (CSO) core and a platelet membrane (PM) shell was prepared (CSO@PM). CSO@PM specifically targets bacteria owing to formyl peptide receptors on the PM and, combined with photothermal therapy (PTT), exhibits highly effective bacter icidal activity. Importantly, CSO@PM can adsorb lipopolysaccharide secreted by gram-negative bacteria, resulting in inflammation reduction. Thus, CSO@PM stimulates re-epithelialization and granulation-tissue formation, promoting wound healing. Moreover, this antibacterial platform exhibits no obvious toxicity at all the test concentrations in vitro and in vivo. Thus, CSO@PM exhibits a robust antibacterial effect and a strong toxin-adsorption capacity, facilitating the clinical treatment of many bacterial infections and the development of next-generation antibacterial nanoagents.
Collapse
Affiliation(s)
- Zaihui Peng
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xiaochun Zhang
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China
| | - Long Yuan
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Ting Li
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China
| | - Yajie Chen
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China
| | - Hao Tian
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Dandan Ma
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China.
| | - Xiaowei Qi
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Xuntao Yin
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China.
| |
Collapse
|
12
|
Ghoreishi FS, Roghanian R, Emtiazi G. Novel Chronic Wound Healing by Anti-biofilm Peptides and Protease. Adv Pharm Bull 2021; 12:424-436. [PMID: 35935044 PMCID: PMC9348543 DOI: 10.34172/apb.2022.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/23/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
Chronic wounds have made a challenge in medical healthcare due to their biofilm infections, which reduce the penetrance of the antibacterial agents in the injury site. In infected wounds, the most common bacterial strains are Staphylococcus aureus and Pseudomonas aeruginosa. Biofilm disruption in chronic wounds is crucial in wound healing. Due to their broad-spectrum antibacterial properties and fewer side effects, anti-biofilm peptides, especially bacteriocins, are promising in the healing of chronic wounds by biofilm destruction. This study reviews the effects of antimicrobial and anti-biofilm agents, including bacteriocins and protease enzymes as a novel approach, on wound healing, along with analyzing the molecular docking between a bacterial protease and biofilm components. Among a large number of anti-biofilm bacteriocins identified up to now, seven types have been registered in the antimicrobial peptides (AMPs) database. Although it is believed that bacterial proteases are harmful in wound healing, it has recently been demonstrated that these proteases like the human serine protease, in combination with AMPs, can improve wound healing by biofilm destruction. In this work, docking results between metalloprotease from Paenibacillus polymyxa and proteins of S. aureus and P. aeruginosa involved in biofilm production, showed that this bacterial protease could efficiently interact with biofilm components. Infected wound healing is an important challenge in clinical trials due to biofilm production by bacterial pathogens. Therefore, simultaneous use of proteases or anti-biofilm peptides with antimicrobial agents could be a promising method for chronic wound healing.
Collapse
Affiliation(s)
- Fatemeh Sadat Ghoreishi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Rasoul Roghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Giti Emtiazi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
13
|
Zhou L, Zheng H, Liu Z, Wang S, Liu Z, Chen F, Zhang H, Kong J, Zhou F, Zhang Q. Conductive Antibacterial Hemostatic Multifunctional Scaffolds Based on Ti 3C 2T x MXene Nanosheets for Promoting Multidrug-Resistant Bacteria-Infected Wound Healing. ACS NANO 2021; 15:2468-2480. [PMID: 33565857 DOI: 10.1021/acsnano.0c06287] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chronic bacterial-infected wound healing/skin regeneration remains a challenge due to drug resistance and the poor quality of wound repair. The ideal strategy is combating bacterial infection, while facilitating satisfactory wound healing. However, the reported strategy hardly achieves these two goals simultaneously without the help of antibiotics or bioactive molecules. In this work, a two-dimensional (2D) Ti3C2Tx MXene with excellent conductivity, biocompatibility, and antibacterial ability was applied in developing multifunctional scaffolds (HPEM) for methicillin-resistant Staphylococcus aureus (MRSA)-infected wound healing. HPEM scaffolds were fabricated by the reaction between the poly(glycerol-ethylenimine), Ti3C2Tx MXene@polydopamine (MXene@PDA) nanosheets, and oxidized hyaluronic acid (HCHO). HPEM scaffolds presented multifunctional properties containing self-healing behavior, electrical conductivity, tissue-adhesive feature, antibacterial activity especially for MRSA resistant to many commonly used antibiotics (antibacterial efficiency was 99.03%), and rapid hemostatic capability. HPEM scaffolds enhanced the proliferation of normal skin cells with negligible toxicity. Additionally, HPEM scaffolds obviously accelerated the MRSA-infected wound healing (wound closure ratio was 96.31%) by efficient anti-inflammation effects, promoting cell proliferation, and the angiogenic process, stimulating granulation tissue formation, collagen deposition, vascular endothelial differentiation, and angiogenesis. This study indicates the important role of multifunctional 2D MXene@PDA nanosheets in infected wound healing. HPEM scaffolds with multifunctional properties provide a potential strategy for MRSA-infected wound healing/skin regeneration.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Hua Zheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zongxu Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Shenqiang Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zhao Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Fang Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Hepeng Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Jie Kong
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Fengtao Zhou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|