1
|
Bakr MM, Al Ankily M, Shamel M. The Protective Effects of MSC-Derived Exosomes Against Chemotherapy-Induced Parotid Gland Cytotoxicity. Int J Dent 2025; 2025:5517092. [PMID: 40223864 PMCID: PMC11986938 DOI: 10.1155/ijod/5517092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Fluorouracil (5-FU) is one of the most popular chemotherapeutic agents used in various cancer therapy protocols. Cell-free therapy utilizing exosomes is gaining increased popularity as a safer option due to concerns over potential tumor progression following stem cell therapy. Methods: Parotid glands of albino were treated with a single bone marrow mesenchymal stem cell (BMMSC)-derived exosomes injection (100 μg/kg/dose suspended in 0.2 mL phosphate-buffered saline [PBS]), a single 5-Fu injection (20 mg/kg), and BMMSC-derived exosomes plus 5-FU and compared to control group (daily saline injections). After 30 days, the parotid glands were examined using qualitative histological evaluation, immunohistochemical evaluation using rabbit polyclonal mouse antibody to Ki-67, caspase 3, and iNOS, as well as quantitative real-time polymerase chain reaction (RT-PCR) to evaluate gene expression of TGFβ1, TNF-α, and BCL-2. Results: Histological examination of the parotid gland revealed that BMMSC-derived exosomes restored the glands' architecture and repaired most of the distortion created by 5-FU. Immunohistochemical expression of tumor proliferation and cell death markers were restored to normal levels in the exosome-treated groups that were similar to the control group. Furthermore, BMMSC-derived exosomes reversed the effects of 5-FU on quantitative gene expression levels and showed a significant decrease in TNF-α (p < 0.001) and a significant increase in TGFβ (p < 0.0001) and BCL-2 (p < 0.05) when compared to 5-FU treatment. Conclusion: Within the limitations of the current study, BMMSC-derived exosomes have the potential to counteract the cytotoxic effects of 5-FU on the parotid glands of rats in vivo. Further studies are deemed necessary to simulate clinical scenarios.
Collapse
Affiliation(s)
- Mahmoud M. Bakr
- General Dental Practice, School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland 4215, Australia
| | - Mahmoud Al Ankily
- Faculty of Dentistry, Oral Biology Department, The British University in Egypt, Cairo, Egypt
| | - Mohamed Shamel
- Faculty of Dentistry, Oral Biology Department, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
2
|
Sadeghi M, Tavakol Afshari J, Fadaee A, Dashti M, Kheradmand F, Dehnavi S, Mohammadi M. Exosomal miRNAs involvement in pathogenesis, diagnosis, and treatment of rheumatoid arthritis. Heliyon 2025; 11:e41983. [PMID: 39897907 PMCID: PMC11786886 DOI: 10.1016/j.heliyon.2025.e41983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/18/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Rheumatoid arthritis (RA) is the most common chronic autoimmune arthropathy worldwide. The initiation, and progression of RA involves multiple cellular and molecular pathways, and biological interactions. Micro RNAs (miRNAs) are characterized as a class of small non-coding RNAs that influence gene expression at the post-transcriptional level. Exosomes are biological nano-vesicles that are secreted by different types of cells. They facilitate communication and signalling between cells by transferring a variety of biological substances, such as proteins, lipids, and nucleic acids like mRNA and miRNA. Exosomal miRNAs were shown to be involved in normal and pathological conditions. In RA, deregulated exosomal miRNA expression was observed to be involved in the intercellular communication between synovial cells, and inflammatory or regulatory immune cells. Furthermore, circulating exosomal miRNAs were introduced as available diagnostic and prognostic biomarkers for RA pathology. The current review categorized and summarized dysregulated pathologically involved and circulating exosomal miRNAs in the context of RA. It highlighted present situation and future perspective of using exosomal miRNAs as biomarkers and a specific gene therapy approach for RA treatment.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Afsane Fadaee
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Dashti
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kheradmand
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Dukharan V, Shah M, Broughton L, Stegura C, Samman L, Schur N, Schlesinger T. The Role of Exosomes in Medical Dermatology: Literature Review and Update. J Cosmet Dermatol 2025; 24:e16761. [PMID: 39797525 PMCID: PMC11724262 DOI: 10.1111/jocd.16761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Exosomes are extracellular vesicles, composed of a phospholipid bilayer, that are primarily derived from stem cells. The contents of exosomes can be incorporated into the tissue in which they are introduced, which presents a unique therapeutic option. AIMS Exosomes have been investigated as a treatment for a number of medical ailments, but the literature supporting these indications is inconclusive. In addition, much of the study on exosomes and their uses has been recently completed. Thus, this review summarizes the efficacy and implications of exosomes in the treatment of different dermatologic conditions. METHODS A literature review surrounding the use of exosomes for multiple medical dermatological conditions was conducted. Additionally, we present numerous practical cases in which patients had been treated with exosomes. RESULTS Overall, the success of exosomes in treating medical dermatologic conditions demonstrated varying efficacy in the literature, but the preliminary evidence is generally positive. The patient cases also showed satisfactory clinical outcomes but further studies and cases will be necessary to fully characterize the efficacy of exosomes and the ideal modalities for their application, including formulation, mode of distribution, and frequency of treatment. CONCLUSIONS Exosomes may serve as an effective treatment option for wound healing, reconstruction of skin flaps, radiation dermatitis, acne vulgaris, psoriasis, atopic dermatitis, allergic contact dermatitis, lichen simplex chronicus, vulvar lichen sclerosis, systemic sclerosis, systemic lupus erythematosus, and vitiligo although additional studies are needed to confirm their efficacy and safety.
Collapse
Affiliation(s)
- Victoria Dukharan
- Department of DermatologyKansas City University – GME Consortium/Advanced Dermatology and Cosmetic SurgeryOrlandoFloridaUSA
| | - Milaan Shah
- Department of DermatologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Luke Broughton
- School of Medicine, Medical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Carol Stegura
- School of Medicine, Medical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Luna Samman
- Lake Erie College of Osteopathic MedicineBradentonFloridaUSA
| | - Nina Schur
- Department of DermatologyGarnet Health Medical CenterMiddletownNew YorkUSA
| | - Todd Schlesinger
- Clinical Research Center of the CarolinasCharlestonSouth CarolinaUSA
| |
Collapse
|
4
|
Vučemilović A. Exosomes: intriguing mediators of intercellular communication in the organism's response to noxious agents. Arh Hig Rada Toksikol 2024; 75:228-239. [PMID: 39718095 PMCID: PMC11667715 DOI: 10.2478/aiht-2024-75-3923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/01/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Exosomes are small extracellular vesicles that range from 30 to 150 nm in size and are formed through cellular endocytosis. They consist of proteins, lipids, and nucleic acids at varying ratios and quantities. The composition and spatiotemporal dynamics of exosomes suggest that they play a crucial role in intercellular communication. The information conveyed by exosomes significantly impacts the regulation of health and disease states in the organism. The term "noxious" refers to all harmful environmental agents and conditions that can disrupt the physiological equilibrium and induce pathological states, regardless whether of radiological, biological, or chemical origin. This review comprehensively examines the presence of such noxious agents within the organism in relation to exosome formation and function. Furthermore, it explores the cause-effect relationship between noxious agents and exosomes, aiming to restore physiological homeostasis and prepare the organism for defence against harmful agents. Regardless of the specific bioinformatic content associated with each noxious agent, synthesis of data on the interactions between various types of noxious agents and exosomes reveals that an organized defence against these agents is unachievable without the support of exosomes. Consequently, exosomes are identified as the primary communication and information system within an organism, with their content being pivotal in maintaining the health-disease balance.
Collapse
|
5
|
Kirti, Sharma AK, Yashavarddhan MH, Kumar R, Shaw P, Kalonia A, Shukla SK. Exosomes: A new perspective for radiation combined injury as biomarker and therapeutics. Tissue Cell 2024; 91:102563. [PMID: 39270512 DOI: 10.1016/j.tice.2024.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Radiation Combined Injuries (RCI) pose formidable public health risks, particularly in the context of nuclear incidents, necessitating specialized treatments and development of biomarkers. RCI encompasses instances where ionizing radiation exposure coincides with burns, wounds, or trauma. However, the limited understanding of cellular responses hinders progress in developing effective therapies. This article underscores the pivotal role of exosomes, nano-sized particles (30-120 nm) actively secreted by cells, in addressing the intricate challenges posed by RCI. Exosomes serve as vehicles for the transportation of bioactive molecules, including proteins, lipids, and miRNA, thereby facilitating processes critical to radiotherapy, burn injury, and wound healing. Exosomes hold significant promise for the transformation of RCI management by reducing inflammation, promoting wound healing, managing sepsis, altering immunological responses, and modulating signal transduction pathways. Moreover, exosomes are also being explored as biomarker for various diseases and stress conditions including radiation exposure and associated injuries. This comprehensive review highlights the burgeoning potential of exosomes in advancing the management of RCI, thereby enhancing public health preparedness and response.
Collapse
Affiliation(s)
- Kirti
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Ajay Kumar Sharma
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India.
| | - M H Yashavarddhan
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Rishav Kumar
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Priyanka Shaw
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Aman Kalonia
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Sandeep Kumar Shukla
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India.
| |
Collapse
|
6
|
Zang Y, Li J, Wan B, Tai Y, Liu H, Li Q, Ji Y, Wang G. LOC730101 transmitted by exosomes facilitates laryngeal squamous cell carcinoma tumorigenesis via regulation of p38 MAPK gamma. Cell Signal 2024; 122:111336. [PMID: 39121975 DOI: 10.1016/j.cellsig.2024.111336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a prevalent human cancer with a complex pathogenesis that remains incompletely understood. Here, we unveil a long non-coding RNA (lncRNA) associated with LSCC tumorigenesis and progression. LOC730101 exhibits significant overexpression in human LSCC tissues, and elevated LOC730101 levels correlate with malignant clinicopathological characteristics. Moreover, we demonstrate that LOC730101 is encapsulated into exosomes in an hnRNPA2B1-dependent manner, serving as a promising plasma biomarker for discriminating LSCC patients from healthy individuals (AUC = 0.92 with 89.36% sensitivity and 86.36% specificity). Exosomes derived from LSCC cells enhance the viability, DNA synthesis rate, and invasiveness of normal nasopharynx epithelial cells, with pronounced effects observed upon LOC730101 overexpression. Additionally, exosomal LOC730101 promotes tumor growth in vivo. Mechanistically, exosomal LOC730101 internalization by normal nasopharynx epithelial cells leads to increased H3K4me3 levels on the p38 MAPK gamma (p38γ) promoter via direct interaction with hnRNPA2B1. This interaction activates p38γ transcription, ultimately driving LSCC tumorigenesis. Collectively, our findings uncover a novel exosomal lncRNA that mediates communication between normal and LSCC cells during LSCC carcinogenesis, suggesting that targeting LOC730101 may represent a promising therapeutic strategy for LSCC treatment.
Collapse
Affiliation(s)
- Yanzi Zang
- Department of Otolaryngology, People's Hospital of Henan Province, Zhengzhou City, 450003, China
| | - Jing Li
- Department of Otolaryngology, People's Hospital of Henan Province, Zhengzhou City, 450003, China
| | - Baoluo Wan
- Department of Otolaryngology, People's Hospital of Henan Province, Zhengzhou City, 450003, China
| | - Yong Tai
- Department of Otolaryngology, People's Hospital of Henan Province, Zhengzhou City, 450003, China
| | - Hongjian Liu
- Department of Otolaryngology, People's Hospital of Henan Province, Zhengzhou City, 450003, China
| | - Qian Li
- Department of Otolaryngology, People's Hospital of Henan Province, Zhengzhou City, 450003, China
| | - Yuzi Ji
- Department of Otolaryngology, People's Hospital of Henan Province, Zhengzhou City, 450003, China
| | - Guangke Wang
- Department of Otolaryngology, People's Hospital of Henan Province, Zhengzhou City, 450003, China.
| |
Collapse
|
7
|
Chelnokova IA, Nikitina IA, Starodubtseva MN. Mechanical properties of blood exosomes and lipoproteins after the rat whole blood irradiation with X-rays in vitro explored by atomic force microscopy. Micron 2024; 184:103662. [PMID: 38838454 DOI: 10.1016/j.micron.2024.103662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Blood is a two-component system with two levels of hierarchy: the macrosystem of blood formed elements and the dispersed system of blood nanoparticles. Biological nanoparticles are the key participants in communication between the irradiated and non-irradiated cells and inducers of the non-targeted effects of ionizing radiation. The work aimed at studying by atomic force microscopy the structural, mechanical, and electrical properties of exosomes and lipoproteins (LDL/VLDL) isolated from rat blood after its exposure to X-rays in vitro. MATERIALS AND METHODS The whole blood of Wistar rats fed with a high-fat diet was irradiated with X-rays (1 and 100 Gy) in vitro. The structural and mechanical properties (the elastic modulus and nonspecific adhesion force) of exosome and lipoprotein isolates from the blood by ultracentrifugation method were studied using Bruker Bioscope Resolve atomic force microscope in PF QNM mode, their electric properties (the zeta-potential) was measured by electrophoretic mobility. RESULTS Lipoproteins isolated from non-irradiated blood were softer (Me(LQ; UQ): 7.8(4.9;12.1) MPa) compared to blood nanoparticles of its exosome fraction (34.8(22.6;44.9) MPa) containing both exosomes and non-membrane nanoparticles. X-ray blood irradiation with a dose of 1 Gy significantly weakened the elastic properties of lipoproteins. Exposure of the blood to 100 Gy X-rays made lipoproteins stiffer and their nonspecific adhesive properties stronger. The radiation effects on the mechanical parameters of exosomes and non-membrane nanoparticles in exosome fractions differed. The significant radiation-induced change in electric properties of the studied nanoparticles was detected only for lipoproteins in the blood irradiated with 1 Gy X-rays. The low-dose radiation-induced changes in zeta-potential and increase in lipoprotein size with the appearance of a soft thick surface layer indicate the formation of the modified lipoproteins covered with a corona from macromolecules of irradiated blood. CONCLUSION Our data obtained using the nanomechanical mapping mode of AFM are the first evidence of the significant radiation-induced changes in the structural and mechanical properties of the dispersed system of blood nanoparticles after the X-ray irradiation of the blood.
Collapse
Affiliation(s)
- Irina A Chelnokova
- Institute of Radiobiology of the National Academy of Sciences of Belarus, Gomel, Belarus.
| | | | | |
Collapse
|
8
|
Luo Z, Zhu J, Fang Z, Xu R, Wan R, He Y, Chen Y, Chen S, Wang Q, Liu Q, Chen S. Exercise-augmented THSD7B exhibited a positive prognostic implication and tumor-suppressed functionality in pan-cancer. Front Immunol 2024; 15:1440226. [PMID: 39161765 PMCID: PMC11330788 DOI: 10.3389/fimmu.2024.1440226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Breast cancer, one of the most prevalent malignancies among women worldwide, has rising incidence rates. Physical activity, particularly exercise, has emerged as a significant modifier of cancer prognosis, influencing both tumor biology and patient outcomes. METHODS In this study, we utilized a murine breast cancer model, dividing mice into a control group and an exercise group; the latter underwent 21 days of voluntary running. We conducted RNA sequencing, bioinformatics analysis, pan-cancer analysis, and cellular experiments to investigate the underlying mechanisms influenced by exercise. RESULTS Exercise led to a significant reduction in tumor size and weight. Post-exercise mRNA sequencing indicated a notable upregulation of THSD7B in the exercised mice, with significant alterations observed in pathways such as MicroRNAs in cancers and the Calcium signaling pathway. In a broader cancer context, THSD7B showed considerable expression variability, being significantly downregulated in several cancers, correlating with positive prognostic outcomes in PRAD, LAML, KIRC, and GBM and highlighting its potential role as a prognostic marker and therapeutic target. THSD7B expression was also negatively associated with processes of breast cancer cell proliferation, migration, and invasion. CONCLUSION This study underscores the dual role of exercise in modulating gene expression relevant to tumor growth and highlights the potential of THSD7B as a therapeutic target in cancer. Future research should further explore the specific mechanisms by which exercise and THSD7B influence cancer progression and develop immunotherapy-enhanced strategies to change patient outcomes in clinical settings.
Collapse
Affiliation(s)
- Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinguo Zhu
- Department of Orthopaedics, Nantong Tongzhou Hospital of Traditional Chinese Medicine, Tongzhou, Jiangsu, China
| | - Zhengyuan Fang
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, Liaoning, China
| | - Rui Xu
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, China
| | - Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanwei He
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuo Chen
- Internal Medicine of Chinese Medicine, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Qing Wang
- Department of Orthopaedics, Kunshan Hospital of Chinese Medicine, Kunshan, Jiangsu, China
| | - Qizhi Liu
- Internal Medicine of Chinese Medicine, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Luo Z, Zhu J, Xu R, Wan R, He Y, Chen Y, Wang Q, Chen S, Chen S. Exercise-downregulated CD300E acted as a negative prognostic implication and tumor-promoted role in pan-cancer. Front Immunol 2024; 15:1437068. [PMID: 39144140 PMCID: PMC11321962 DOI: 10.3389/fimmu.2024.1437068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Breast cancer ranks as one of the most prevalent malignancies among women globally, with increasing incidence rates. Physical activity, particularly exercise, has emerged as a potentially significant modifier of cancer prognosis, influencing tumor biology and patient outcomes. METHODS Using a murine breast cancer model, we established a control and an exercise group, where the latter was subjected to 21 days of voluntary running. RNA Sequencing, bioinformatics analysis, pan-cancer analysis, and cell experiments were performed to validate the underlying mechanisms. RESULTS We observed that exercise significantly reduced tumor size and weight, without notable changes in body weight, suggesting that physical activity can modulate tumor dynamics. mRNA sequencing post-exercise revealed substantial downregulation of CD300E in the exercise group, accompanied by alterations in critical pathways such as MicroRNAs in cancers and the Calcium signaling pathway. Expanding our analysis to a broader cancer spectrum, CD300E demonstrated significant expression variability across multiple cancer types, with pronounced upregulation in myeloma, ovarian, lung, and colorectal cancers. This upregulation was correlated with poorer prognostic outcomes, emphasizing CD300E's potential role as a prognostic marker and therapeutic target. Moreover, CD300E expression was associated with cancer cell proliferation and apoptosis. CONCLUSION The study highlights the dual role of exercise in modulating gene expression relevant to tumor growth and the potential of CD300E as a target in cancer therapeutics. Further research is encouraged to explore the mechanisms by which exercise and CD300E influence cancer progression and to develop targeted strategies that could enhance patient outcomes in clinical settings.
Collapse
Affiliation(s)
- Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinguo Zhu
- Department of Orthopaedics, Nantong Tongzhou Hospital of Traditional Chinese Medicine, Tongzhou, Jiangsu, China
| | - Rui Xu
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, China
| | - Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanwei He
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Wang
- Department of Orthopaedics, Kunshan Hospital of Chinese Medicine, Kunshan, Jiangsu, China
| | - Shuo Chen
- Department of Sports Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Hushmandi K, Saadat SH, Raei M, Aref AR, Reiter RJ, Nabavi N, Taheriazam A, Hashemi M. The science of exosomes: Understanding their formation, capture, and role in cellular communication. Pathol Res Pract 2024; 259:155388. [PMID: 38850846 DOI: 10.1016/j.prp.2024.155388] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Extracellular vesicles (EVs) serve as a crucial method for transferring information among cells, which is vital in multicellular organisms. Among these vesicles, exosomes are notable for their small size, ranging from 20 to 150 nm, and their role in cell-to-cell communication. They carry lipids, proteins, and nucleic acids between cells. The creation of exosomes begins with the inward budding of the cell membrane, which then encapsulates various macromolecules as cargo. Once filled, exosomes are released into the extracellular space and taken up by target cells via endocytosis and similar processes. The composition of exosomal cargo varies, encompassing diverse macromolecules with specific functions. Because of their significant roles, exosomes have been isolated from various cell types, including cancer cells, endothelial cells, macrophages, and mesenchymal cells, with the aim of harnessing them for therapeutic applications. Exosomes influence cellular metabolism, and regulate lipid, glucose, and glutamine pathways. Their role in pathogenesis is determined by their cargo, which can manipulate processes such as apoptosis, proliferation, inflammation, migration, and other molecular pathways in recipient cells. Non-coding RNA transcripts, a common type of cargo, play a pivotal role in regulating disease progression. Exosomes are implicated in numerous biological and pathological processes, including inflammation, cancer, cardiovascular diseases, diabetes, wound healing, and ischemic-reperfusion injury. As a result, they hold significant potential in the treatment of both cancerous and non-cancerous conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
11
|
Wan R, Chen P, Guo S, Zhu J, Mei J, Mai CW, Luo Z. Editorial: The immunological regulation of extracellular vesicles on chronic diseases. Front Immunol 2024; 15:1442387. [PMID: 38957467 PMCID: PMC11217511 DOI: 10.3389/fimmu.2024.1442387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Affiliation(s)
- Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Chen
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shicheng Guo
- Department of Medical Genetics, University of Wisconsin (UW)-Madison, Madison, WI, United States
| | - Jinhong Zhu
- Department of Laboratory Medicine, Biobank Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jie Mei
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, China
| | - Chun Wai Mai
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, University College Sedaya International (UCSI), Kuala Lumpur, Malaysia
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Wang H, Zhang N, Wang X, Tian J, Yi J, Yao L, Huang G. Emerging role of mesenchymal stem cell-derived exosome microRNA in radiation injury. Int J Radiat Biol 2024; 100:996-1008. [PMID: 38776447 DOI: 10.1080/09553002.2024.2347348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Radiation injury (RI) is a common occurrence in malignant tumors patients receiving radiation therapy. While killing tumor cells, normal tissue surrounding the target area is inevitably irradiated at a certain dose, which can cause varying results of radiation injury. Currently, there are limited clinical treatments available for radiation injuries. In recent years, the negative effects of stem cell therapy have been reported more clearly and non-cellular therapies such as exosomes have become a focus of attention for researchers. As a type of vesicle-like substances secreted by mesenchymal stem cells (MSC), MSC derived exosomes (MSC-exo) carry DNA, mRNA, microRNA (miRNAs), specific proteins, lipids, and other active substances involved in intercellular information exchange. miRNAs released by MSC-exo are capable of alleviating and repairing damaged tissues through anti-apoptosis, modulating immune response, regulating inflammatory response and promoting angiogenesis, which indicates that MSC-exo miRNAs have great potential for application in the prevention and treatment of radiation injury. Therefore, it is necessary to explore the underlying therapeutic mechanisms of MSC-exo miRNAs in this process, which may shed new lights on the treatment of radiation injury. CONCLUSIONS Increasing evidence confirms that MSC-exo has shown encouraging applications in tissue repair due to the anti-apoptotic, immunoreactive, and pro-angiogenesis effects of the miRNAs it carries as intercellular communication carriers. However, miRNA-based therapeutics are still in their infancy and many practical issues remain to be addressed for clinical applications.
Collapse
Affiliation(s)
- Huike Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Nini Zhang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Xue Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jia Tian
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jie Yi
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | | | - Guilin Huang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
13
|
Prescher H, Froimson JR, Hanson SE. Deconstructing Fat to Reverse Radiation Induced Soft Tissue Fibrosis. Bioengineering (Basel) 2023; 10:742. [PMID: 37370673 PMCID: PMC10295516 DOI: 10.3390/bioengineering10060742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Adipose tissue is composed of a collection of cells with valuable structural and regenerative function. Taken as an autologous graft, these cells can be used to address soft tissue defects and irregularities, while also providing a reparative effect on the surrounding tissues. Adipose-derived stem or stromal cells are primarily responsible for this regenerative effect through direct differentiation into native cells and via secretion of numerous growth factors and cytokines that stimulate angiogenesis and disrupt pro-inflammatory pathways. Separating adipose tissue into its component parts, i.e., cells, scaffolds and proteins, has provided new regenerative therapies for skin and soft tissue pathology, including that resulting from radiation. Recent studies in both animal models and clinical trials have demonstrated the ability of autologous fat grafting to reverse radiation induced skin fibrosis. An improved understanding of the complex pathologic mechanism of RIF has allowed researchers to harness the specific function of the ASCs to engineer enriched fat graft constructs to improve the therapeutic effect of AFG.
Collapse
Affiliation(s)
| | | | - Summer E. Hanson
- Section of Plastic & Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL 60615, USA
| |
Collapse
|
14
|
Ceyzériat K, Zilli T, Millet P, Koutsouvelis N, Dipasquale G, Fossey C, Cailly T, Fabis F, Frisoni GB, Garibotto V, Tournier BB. Low-dose brain irradiation normalizes TSPO and CLUSTERIN levels and promotes the non-amyloidogenic pathway in pre-symptomatic TgF344-AD rats. J Neuroinflammation 2022; 19:311. [PMID: 36550510 PMCID: PMC9783748 DOI: 10.1186/s12974-022-02673-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Preclinical studies have recently evaluated the impact of low-dose brain radiation therapy (LD-RT) in animal models of Alzheimer's disease (AD) showing anti-amyloid and anti-inflammatory effects of this treatment. Its effectiveness varied, however, depending on the LD-RT protocol used and the stage when the treatment was applied. In this study, we aimed to evaluate the therapeutic potential of 10 Gy delivered in five daily fractions of 2 Gy (a protocol previously shown to induce an improvement of cognitive performances) in 9-month-old TgF344-AD rats, modeling at a pre-symptomatic stage of the disease. We showed that at an early stage, LD-RT was able to lower levels of the 18-kDa translocator protein (TSPO)-mediated neuroinflammation to normal ranges in addition to the secreted CLUSTERIN, another inflammatory protein also involved in Aβ aggregation. In addition, we demonstrated that LD-RT reduces all amyloid forms (~ - 60 to - 80%, P < 0.01; soluble and aggregated forms of Aβ40, Aβ42, and Aβoligomers). Interestingly, we showed for the first time that sAPPα levels were improved by the treatment, showing a higher activation of the non-amyloidogenic pathway, that could favor neuronal survival. The current evidence confirms the capacity of LD-RT to successfully modulate two pathological hallmarks of AD, namely amyloid and neuroinflammation, when applied before symptoms onset.
Collapse
Affiliation(s)
- Kelly Ceyzériat
- grid.8591.50000 0001 2322 4988Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, and Faculty of Medicine, Geneva University, Avenue de La Roseraie 64, 1205 Geneva, Switzerland ,grid.8591.50000 0001 2322 4988Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, and NimtLab, Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland ,grid.8591.50000 0001 2322 4988CIBM Center for BioMedical Imaging, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Thomas Zilli
- Department of Radiation Oncology, Oncology Institute of Southern Switzerland, EOC, 6500 Bellinzona, Switzerland ,grid.8591.50000 0001 2322 4988Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland ,grid.150338.c0000 0001 0721 9812Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Philippe Millet
- grid.8591.50000 0001 2322 4988Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, and Faculty of Medicine, Geneva University, Avenue de La Roseraie 64, 1205 Geneva, Switzerland
| | - Nikolaos Koutsouvelis
- grid.150338.c0000 0001 0721 9812Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Giovanna Dipasquale
- grid.150338.c0000 0001 0721 9812Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Christine Fossey
- grid.412043.00000 0001 2186 4076Centre d’Études et de Recherche Sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 1400 Caen, France
| | - Thomas Cailly
- grid.412043.00000 0001 2186 4076Centre d’Études et de Recherche Sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 1400 Caen, France ,grid.411149.80000 0004 0472 0160Department of Nuclear Medicine, CHU Cote de Nacre, 1400 Caen, France ,grid.412043.00000 0001 2186 4076Normandie Univ, UNICAEN, IMOGERE, 1400 Caen, France ,Institut Blood and Brain @Caen-Normandie (BB@C), Boulevard Henri Becquerel, 14074 Caen, France
| | - Frédéric Fabis
- grid.412043.00000 0001 2186 4076Centre d’Études et de Recherche Sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 1400 Caen, France
| | - Giovanni B. Frisoni
- grid.8591.50000 0001 2322 4988Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, and NimtLab, Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland
| | - Valentina Garibotto
- grid.8591.50000 0001 2322 4988Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, and NimtLab, Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland ,grid.8591.50000 0001 2322 4988CIBM Center for BioMedical Imaging, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Benjamin B. Tournier
- grid.8591.50000 0001 2322 4988Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, and Faculty of Medicine, Geneva University, Avenue de La Roseraie 64, 1205 Geneva, Switzerland
| |
Collapse
|
15
|
Yang Z, Zhong W, Yang L, Wen P, Luo Y, Wu C. The emerging role of exosomes in radiotherapy. Cell Commun Signal 2022; 20:171. [PMCID: PMC9620591 DOI: 10.1186/s12964-022-00986-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022] Open
Abstract
Presently, more than half of cancer patients receive radiotherapy to cure localized cancer, palliate symptoms, or control the progression of cancer. However, radioresistance and radiation-induced bystander effects (RIBEs) are still challenging problems in cancer treatment. Exosomes, as a kind of extracellular vesicle, have a significant function in mediating and regulating intercellular signaling pathways. An increasing number of studies have shown that radiotherapy can increase exosome secretion and alter exosome cargo. Furthermore, radiation-induced exosomes are involved in the mechanism of radioresistance and RIBEs. Therefore, exosomes hold great promise for clinical application in radiotherapy. In this review, we not only focus on the influence of radiation on exosome biogenesis, secretion and cargoes but also on the mechanism of radiation-induced exosomes in radioresistance and RIBEs, which may expand our insight into the cooperative function of exosomes in radiotherapy.
Video abstract
Collapse
Affiliation(s)
- Zhenyi Yang
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Wen Zhong
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Liang Yang
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Ping Wen
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Yixuan Luo
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Chunli Wu
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| |
Collapse
|
16
|
Cheng H, Chen L, Huang M, Hou J, Chen Z, Yang X. Hunting down NLRP3 inflammasome: An executioner of radiation-induced injury. Front Immunol 2022; 13:967989. [PMID: 36353625 PMCID: PMC9637992 DOI: 10.3389/fimmu.2022.967989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the mainstream treatment modalities for several malignancies. However, radiation-induced injury to surrounding normal tissues limits its efficacy. The NLRP3 inflammasome is an essential mechanism of innate immunity that reacts to challenges from endogenous danger signals and pathological microbes. A growing body of evidence has demonstrated a key role of NLRP3 inflammasome in the pathogenesis of radiation-induced tissue injury. Despite accumulating evidence, the potential value of the NLRP3 inflammasome in the management of radiation-induced tissue injury is not adequately recognized. We conducted a literature review to characterize the relationship between NLRP3 inflammasome and radiation injury. By analyzing recent evidence, we identify NLRP3 inflammasome as one of the executioners of radiation-induced injury, since it responds to the challenges of radiation, induces cell pyroptosis and tissue dysfunction, and initiates non-resolving inflammation and fibrosis. Based on these concepts, we propose early intervention/prevention strategies targeting NLRP3 inflammasome in a radiation context, which may help resolve imperative clinical problems.
Collapse
Affiliation(s)
- Han Cheng
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingling Chen
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minchun Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhifeng Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Xiaojun Yang, ; Zhifeng Chen,
| | - Xiaojun Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Xiaojun Yang, ; Zhifeng Chen,
| |
Collapse
|
17
|
Xiao M, Yang S, Zhou A, Li T, Liu J, Chen Y, Luo Y, Qian C, Yang F, Tang B, Li C, Su N, Li J, Jiang M, Yang S, Lin H. MiR-27a-3p and miR-30b-5p inhibited-vitamin D receptor involved in the progression of tuberculosis. Front Microbiol 2022; 13:1020542. [PMID: 36304947 PMCID: PMC9593098 DOI: 10.3389/fmicb.2022.1020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Background MicroRNAs (miRNAs) play a vital role in tuberculosis (TB). Vitamin D receptor (VDR), an miRNA target gene, and its ligand, vitamin D3 (VitD3), have been reported to exert protective effects against TB. However, whether miRNAs can affect the progression of TB by targeting VDR has not been reported. Materials and methods Research subjects were selected according to defined inclusion criteria. A clinical database of 360 samples was established, including the subjects’ demographic information, miRNA expression profiles and cellular experimental results. Two candidate miRNAs, miR-27a-3p, and miR-30b-5p, were identified by a high-throughput sequencing screen and validated by qRT–PCR assays. Univariate and multivariate statistical analyses were performed. VDR and NF-kB p65 protein levels were detected by Western blot assays. Proinflammatory cytokine expression levels were detected by enzyme-linked immunosorbent assay (ELISA). Luciferase assays and fluorescence-activated cell sorting (FACS) were further applied to elucidate the detailed mechanisms. Results Differential miRNA expression profiles were obtained, and miR-27a-3p and miR-30b-5p were highly expressed in patients with TB. These results showed that the two miRNAs were able to induce M1 macrophage differentiation and inhibit M2 macrophage differentiation. Further experiments showed that the two miRNAs decreased the VDR protein level and increased proinflammatory cytokine secretion by macrophages. Mechanistically, the miRNAs targeted the 3′ untranslated region (3′UTR) of the VDR mRNA and thereby downregulated VDR protein levels by post-transcriptional regulation. Then, due to the reduction in VDR protein levels, the NF-kB inflammatory cytokine signaling pathway was activated, thus promoting the progression of TB. Conclusion Our study not only identified differentially expressed miRNAs between the TB and control groups but also revealed that miR-27a-3p and miR-30b-5p regulate proinflammatory cytokine secretion and macrophage differentiation through VDR in macrophages. Thus, these two miRNAs influence the progression of TB.
Collapse
Affiliation(s)
- Min Xiao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Song Yang
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - An Zhou
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Tongxin Li
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yang Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ya Luo
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chunfang Qian
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - Fuping Yang
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chunhua Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Na Su
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - Jing Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Mingying Jiang
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
- *Correspondence: Mingying Jiang,
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
- Shiming Yang,
| | - Hui Lin
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
- Hui Lin,
| |
Collapse
|