1
|
da Silva Junior FC, Felipe MBMC, Castro DEFD, Araújo SCDS, Sisenando HCN, Batistuzzo de Medeiros SR. A look beyond the priority: A systematic review of the genotoxic, mutagenic, and carcinogenic endpoints of non-priority PAHs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116838. [PMID: 33714059 DOI: 10.1016/j.envpol.2021.116838] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Knowledge of the toxic potential of polycyclic aromatic hydrocarbons (PAHs) has increased over time. Much of this knowledge is about the 16 United States - Environmental Protection Agency (US - EPA) priority PAHs; however, there are other US - EPA non-priority PAHs in the environment, whose toxic potential is underestimated. We conducted a systematic review of in vitro, in vivo, and in silico studies to assess the genotoxicity, mutagenicity, and carcinogenicity of 13 US - EPA non-priority parental PAHs present in the environment. Electronic databases, such as Science Direct, PubMed, Scopus, Google Scholar, and Web of Science, were used to search for research with selected terms without time restrictions. After analysis, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, 249 articles, published between 1946 and 2020, were selected and the quality assessment of these studies was performed. The results showed that 5-methylchrysene (5-MC), 7,12-dimethylbenz[a]anthracene (7,12-DMBA), cyclopenta[cd]pyrene (CPP), and dibenzo[al]pyrene (Db[al]P) were the most studied PAHs. Moreover, 5-MC, 7,12-DMBA, benz[j]aceanthrylene (B[j]A), CPP, anthanthrene (ANT), dibenzo[ae]pyrene (Db[ae]P), and Db[al]P have been reported to cause mutagenic effects and have been being associated with a risk of carcinogenicity. Retene (RET) and benzo[c]fluorene (B[c]F), the least studied compounds, showed evidence of a strong influence on the mutagenicity and carcinogenicity endpoints. Overall, this systematic review provided evidence of the genotoxic, mutagenic, and carcinogenic endpoints of US - EPA non-priority PAHs. However, further studies are needed to improve the future protocols of environmental analysis and risk assessment in severely exposed populations.
Collapse
Affiliation(s)
- Francisco Carlos da Silva Junior
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | | | - Denis Elvis Farias de Castro
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Sinara Carla da Silva Araújo
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Herbert Costa Nóbrega Sisenando
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil.
| |
Collapse
|
2
|
Baiken Y, Kanayeva D, Taipakova S, Groisman R, Ishchenko AA, Begimbetova D, Matkarimov B, Saparbaev M. Role of Base Excision Repair Pathway in the Processing of Complex DNA Damage Generated by Oxidative Stress and Anticancer Drugs. Front Cell Dev Biol 2021; 8:617884. [PMID: 33553154 PMCID: PMC7862338 DOI: 10.3389/fcell.2020.617884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/17/2020] [Indexed: 01/22/2023] Open
Abstract
Chemical alterations in DNA induced by genotoxic factors can have a complex nature such as bulky DNA adducts, interstrand DNA cross-links (ICLs), and clustered DNA lesions (including double-strand breaks, DSB). Complex DNA damage (CDD) has a complex character/structure as compared to singular lesions like randomly distributed abasic sites, deaminated, alkylated, and oxidized DNA bases. CDD is thought to be critical since they are more challenging to repair than singular lesions. Although CDD naturally constitutes a relatively minor fraction of the overall DNA damage induced by free radicals, DNA cross-linking agents, and ionizing radiation, if left unrepaired, these lesions cause a number of serious consequences, such as gross chromosomal rearrangements and genome instability. If not tightly controlled, the repair of ICLs and clustered bi-stranded oxidized bases via DNA excision repair will either inhibit initial steps of repair or produce persistent chromosomal breaks and consequently be lethal for the cells. Biochemical and genetic evidences indicate that the removal of CDD requires concurrent involvement of a number of distinct DNA repair pathways including poly(ADP-ribose) polymerase (PARP)-mediated DNA strand break repair, base excision repair (BER), nucleotide incision repair (NIR), global genome and transcription coupled nucleotide excision repair (GG-NER and TC-NER, respectively), mismatch repair (MMR), homologous recombination (HR), non-homologous end joining (NHEJ), and translesion DNA synthesis (TLS) pathways. In this review, we describe the role of DNA glycosylase-mediated BER pathway in the removal of complex DNA lesions.
Collapse
Affiliation(s)
- Yeldar Baiken
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan.,National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Damira Kanayeva
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sabira Taipakova
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Regina Groisman
- Groupe ≪Mechanisms of DNA Repair and Carcinogenesis≫, Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - Alexander A Ishchenko
- Groupe ≪Mechanisms of DNA Repair and Carcinogenesis≫, Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bakhyt Matkarimov
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Murat Saparbaev
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, Kazakhstan.,Groupe ≪Mechanisms of DNA Repair and Carcinogenesis≫, Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
3
|
Chen KM, Sun YW, Cooper TK, Benitez G, Aliaga C, Zhu J, Gowda K, Amin S, El-Bayoumy K. Comparative Tumorigenicity and DNA Damage Induced by Dibenzo[ def,p]chrysene and Its Metabolites in the Mouse Ovary. Chem Res Toxicol 2018; 31:1111-1118. [PMID: 30260214 PMCID: PMC10627037 DOI: 10.1021/acs.chemrestox.8b00152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ovarian cancer ranked second in incidence among gynecologic cancers, but it causes more deaths than any other gynecologic cancer; at present there is no curative treatment beyond surgery. Animal models that employ carcinogens found in the human environment can provide a realistic platform to understand the mechanistic basis for disease development and to design rational chemopreventive/therapeutic strategies. We and others have shown that the administration of the environmental pollutant and tobacco smoke constituent dibenzo[ def,p]chrysene (DBP) to mice by several routes of exposure can induce tumors in multiple sites including the ovary. In the present study we compared, for the first time, the tumorigenicity and DNA damage induced by DBP and its metabolites DBP-dihydrodiol (DBPDHD) and DBP-dihydrodiol epoxide (DBPDE) in the mouse ovary. Compounds were dissolved in dimethyl sulfoxide (DMSO) as the vehicle and administered by topical application into the mouse oral cavity three times per week for 38 weeks. No tumors were observed in mice treated with DMSO. At equal dose (24 nmol/30 μL DMSO), the incidence of ovarian tumors induced by DBPDHD was higher (60.7%), although not significantly, than that induced by DBP (44.8%). Similarly the levels of DNA damage induced by DBPDHD in the ovary were higher than those observed with DBP. We did not observe any histological abnormality in the ovary of mice treated with DBPDE, which is consistent with lack of DNA damage. Our results suggested that both DBP and DBPDHD can be metabolized in the mouse ovary leading to the formation of DBPDE that can damage DNA, which is a prerequisite step in the initiation stage of carcinogenesis.
Collapse
Affiliation(s)
- Kun-Ming Chen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, Pennsylvania 17033, United States
| | - Yuan-Wan Sun
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, Pennsylvania 17033, United States
| | - Timothy K. Cooper
- Charles River Laboratories-Contractor Supporting: National Institute of Allergy and Infectious Diseases, Frederick, Maryland 21702, United States
| | - Gabrielle Benitez
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, Pennsylvania 17033, United States
| | - Cesar Aliaga
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, Pennsylvania 17033, United States
| | - Junjia Zhu
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, United States
| | - Krishne Gowda
- Department of Pharmacology, Pennsylvania State University, Hershey, Pennsylvania 17033, United States
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University, Hershey, Pennsylvania 17033, United States
| | - Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
4
|
Abstract
The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance.
Collapse
Affiliation(s)
- Nicholas E. Geacintov
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| | - Suse Broyde
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| |
Collapse
|
5
|
Sun YW, El-Bayoumy K, Aliaga C, Awad AS, Gowda K, Amin S, Chen KM. Tissue Distribution, Excretion and Pharmacokinetics of the Environmental Pollutant Dibenzo[def,p]chrysene in Mice. Chem Res Toxicol 2015; 28:1427-33. [PMID: 26034881 DOI: 10.1021/acs.chemrestox.5b00097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dibenzo[def,p]chrysene (DBP), a representative example of the class of polycyclic aromatic hydrocarbon (PAH), is known to induce tumors in multiple organ sites including the ovary, lung, mammary glands, and oral cavity in rodents. The goal of this study was to test the hypothesis that the levels of DBP and its metabolites that reach and retain the levels for an extended time in the target organs as well as the capacity of these organs to metabolize this carcinogen to active metabolites that can damage DNA may account for its tissue selective tumorigenicity. Therefore, we used the radiolabeled [(3)H] DBP to accurately assess the tissue distribution, excretion, and pharmacokinetics of this carcinogen. We also compared the levels of DBPDE-DNA adducts in a select target organ (ovary) and nontarget organs (kidney and liver) in mice treated orally with DBP. Our results showed that after 1 week, 91.40 ± 7.23% of the radioactivity was recovered in the feces; the corresponding value excreted in the urine was less than 2% after 1 week. After 24 h, the stomach had the highest radioactivity followed by the intestine and the liver; however, after 1 week, levels of the radioactivity in these organs were the lowest among tissues examined including the ovary and liver; the pharmacokinetic analysis of DBP was conducted using a one compartment open model. The level of (-)-anti-trans-DBPDE-dA in the ovaries (8.91 ± 0.08 adducts/10(7) dA) was significantly higher (p < 0.01) than the levels of adducts in kidneys (0.69 ± 0.09 adducts/10(7) dA) and livers (0.63 ± 0.11 adducts/10(7) dA). Collectively, the results of the tissue distribution and pharmacokinetic analysis may not fully support our hypothesis, but the capacity of the target organs vs nontarget organs to metabolize DBP to active intermediates that can damage DNA may account for its tissue selective tumorigenicity.
Collapse
Affiliation(s)
- Yuan-Wan Sun
- †Department of Biochemistry and Molecular Biology, ‡Department of Medicine, and §Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Karam El-Bayoumy
- †Department of Biochemistry and Molecular Biology, ‡Department of Medicine, and §Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Cesar Aliaga
- †Department of Biochemistry and Molecular Biology, ‡Department of Medicine, and §Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Alaa S Awad
- †Department of Biochemistry and Molecular Biology, ‡Department of Medicine, and §Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Krishne Gowda
- †Department of Biochemistry and Molecular Biology, ‡Department of Medicine, and §Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Shantu Amin
- †Department of Biochemistry and Molecular Biology, ‡Department of Medicine, and §Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Kun-Ming Chen
- †Department of Biochemistry and Molecular Biology, ‡Department of Medicine, and §Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
6
|
Siddens LK, Bunde KL, Harper TA, McQuistan TJ, Löhr CV, Bramer LM, Waters KM, Tilton SC, Krueger SK, Williams DE, Baird WM. Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse. Toxicol Appl Pharmacol 2015; 287:149-160. [PMID: 26049101 DOI: 10.1016/j.taap.2015.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/12/2015] [Accepted: 05/29/2015] [Indexed: 01/05/2023]
Abstract
FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence, multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp 1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of select genes in skin from DBC-treated mice 2, 4 and 8h post-initiation. A significant reduction in levels of Cyp 1a1, Nqo1 at 8h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was observed in Gst a1, Nqo 1 at 2 and 4h or Akr 1c19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The major covalent DNA adducts, dibenzo[def,p]chrysene-(±)-11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8h post-initiation. Loss of Cyp1 b1 expression reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with BaP or CTE as initiators.
Collapse
Affiliation(s)
- Lisbeth K Siddens
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA
| | - Kristi L Bunde
- College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Tod A Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Tammie J McQuistan
- Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Christiane V Löhr
- Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA; College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Lisa M Bramer
- Applied Statistics and Computational Modeling, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Katrina M Waters
- Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA
| | - Sharon K Krueger
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - David E Williams
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA.
| | - William M Baird
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
7
|
Human aldo-keto reductases and the metabolic activation of polycyclic aromatic hydrocarbons. Chem Res Toxicol 2014; 27:1901-17. [PMID: 25279998 PMCID: PMC4237494 DOI: 10.1021/tx500298n] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Aldo-keto reductases (AKRs) are promiscuous
NAD(P)(H) dependent
oxidoreductases implicated in the metabolic activation of polycyclic
aromatic hydrocarbons (PAH). These enzymes catalyze the oxidation
of non-K-region trans-dihydrodiols to the corresponding o-quinones with the concomitant production of reactive oxygen
species (ROS). The PAH o-quinones are Michael acceptors
and can form adducts but are also redox-active and enter into futile
redox cycles to amplify ROS formation. Evidence exists to support
this metabolic pathway in humans. The human recombinant AKR1A1 and
AKR1C1–AKR1C4 enzymes all catalyze the oxidation of PAH trans-dihydrodiols to PAH o-quinones. Many
human AKRs also catalyze the NADPH-dependent reduction of the o-quinone products to air-sensitive catechols, exacerbating
ROS formation. Moreover, this pathway of PAH activation occurs in
a panel of human lung cell lines, resulting in the production of ROS
and oxidative DNA damage in the form of 8-oxo-2′-deoxyguanosine.
Using stable-isotope dilution liquid chromatography tandem mass spectrometry,
this pathway of benzo[a]pyrene (B[a]P) metabolism was found to contribute equally with the diol-epoxide
pathway to the activation of this human carcinogen in human lung cells.
Evaluation of the mutagenicity of anti-B[a]P-diol epoxide with B[a]P-7,8-dione on
p53 showed that the o-quinone produced by AKRs was
the more potent mutagen, provided that it was permitted to redox cycle,
and that the mutations observed were G to T transversions, reminiscent
of those observed in human lung cancer. It is concluded that there
is sufficient evidence to support the role of human AKRs in the metabolic
activation of PAH in human lung cell lines and that they may contribute
to the causation of human lung cancer.
Collapse
|
8
|
Rodríguez FA, Liu Z, Lin CH, Ding S, Cai Y, Kolbanovskiy A, Kolbanovskiy M, Amin S, Broyde S, Geacintov NE. Nuclear magnetic resonance studies of an N2-guanine adduct derived from the tumorigen dibenzo[a,l]pyrene in DNA: impact of adduct stereochemistry, size, and local DNA sequence on solution conformations. Biochemistry 2014; 53:1827-41. [PMID: 24617538 PMCID: PMC3985812 DOI: 10.1021/bi4017044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
The
dimensions and arrangements of aromatic rings (topology) in
adducts derived from the reactions of polycyclic aromatic hydrocarbon
(PAH) diol epoxide metabolites with DNA influence the distortions
and stabilities of double-stranded DNA, and hence their recognition
and processing by the human nucleotide excision repair (NER) system.
Dibenzo[a,l]pyrene (DB[a,l]P) is a highly tumorigenic six-ring PAH, which
contains a nonplanar and aromatic fjord region that is absent in the
structurally related bay region five-ring PAH benzo[a]pyrene (B[a]P). The PAH diol epoxide–DNA
adducts formed include the stereoisomeric 14S and
14Rtrans-anti-DB[a,l]P-N2-dG
and the stereochemically analogous 10S- and 10R-B[a]P-N2-dG
(B[a]P-dG) guanine adducts. However, nuclear magnetic
resonance (NMR) solution studies of the 14S-DB[a,l]P-N2-dG
adduct in DNA have not yet been presented. Here we have investigated
the 14S-DB[a,l]P-N2-dG adduct in two different sequence contexts
using NMR methods with distance-restrained molecular dynamics simulations.
In duplexes with dC opposite the adduct deleted, a well-resolved base-displaced
intercalative adduct conformation can be observed. In full duplexes,
in contrast to the intercalated 14R stereoisomeric
adduct, the bulky DB[a,l]P residue
in the 14S adduct is positioned in a greatly widened
and distorted minor groove, with significant disruptions and distortions
of base pairing at the lesion site and two 5′-side adjacent
base pairs. These unique structural features are significantly different
from those of the stereochemically analogous but smaller B[a]P-dG adduct. The greater size and different topology of
the DB[a,l]P aromatic ring system
lead to greater structurally destabilizing DNA distortions that are
partially compensated by stabilizing DB[a,l]P-DNA van der Waals interactions, whose combined effects
impact the NER response to the adduct. These structural results broaden
our understanding of the structure–function relationship in
NER.
Collapse
Affiliation(s)
- Fabián A Rodríguez
- Department of Chemistry, New York University , New York, New York 10003, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
In silico bioremediation of polycyclic aromatic hydrocarbon: A frontier in environmental chemistry. J Mol Graph Model 2013; 44:1-8. [DOI: 10.1016/j.jmgm.2013.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/24/2013] [Accepted: 04/27/2013] [Indexed: 11/23/2022]
|
10
|
Kropachev K, Kolbanovskiy M, Liu Z, Cai Y, Zhang L, Schwaid AG, Kolbanovskiy A, Ding S, Amin S, Broyde S, Geacintov NE. Adenine-DNA adducts derived from the highly tumorigenic Dibenzo[a,l]pyrene are resistant to nucleotide excision repair while guanine adducts are not. Chem Res Toxicol 2013; 26:783-93. [PMID: 23570232 DOI: 10.1021/tx400080k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The structural origins of differences in susceptibilities of various DNA lesions to nucleotide excision repair (NER) are poorly understood. Here we compared, in the same sequence context, the relative NER dual incision efficiencies elicited by two stereochemically distinct pairs of guanine (N(2)-dG) and adenine (N(6)-dA) DNA lesions, derived from enantiomeric genotoxic diol epoxides of the highly tumorigenic fjord region polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P). Remarkably, in cell-free HeLa cell extracts, the guanine adduct with R absolute chemistry at the N(2)-dG linkage site is ∼35 times more susceptible to NER dual incisions than the stereochemically identical N(6)-dA adduct. For the guanine and adenine adducts with S stereochemistry, a similar but somewhat smaller effect (factor of ∼15) is observed. The striking resistance of the bulky N(6)-dA in contrast to the modest to good susceptibilities of the N(2)-dG adducts to NER is interpreted in terms of the balance between lesion-induced DNA distorting and DNA stabilizing van der Waals interactions in their structures, that are partly reflected in the overall thermal stabilities of the modified duplexes. Our results are consistent with the hypothesis that the high genotoxic activity of DB[a,l]P is related to the formation of NER-resistant and persistent DB[a,l]P-derived adenine adducts in cellular DNA.
Collapse
Affiliation(s)
- Konstantin Kropachev
- Department of Chemistry, New York University , New York, New York 10003, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Shimada T, Murayama N, Yamazaki H, Tanaka K, Takenaka S, Komori M, Kim D, Guengerich FP. Metabolic activation of polycyclic aromatic hydrocarbons and aryl and heterocyclic amines by human cytochromes P450 2A13 and 2A6. Chem Res Toxicol 2013; 26:529-37. [PMID: 23432465 DOI: 10.1021/tx3004906] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human cytochrome P450 (P450) 2A13 was found to interact with several polycyclic aromatic hydrocarbons (PAHs) to produce Type I binding spectra, including acenaphthene, acenaphthylene, benzo[c]phenanthrene, fluoranthene, fluoranthene-2,3-diol, and 1-nitropyrene. P450 2A6 also interacted with acenaphthene and acenaphthylene, but not with fluoranthene, fluoranthene-2,3-diol, or 1-nitropyrene. P450 1B1 is well-known to oxidize many carcinogenic PAHs, and we found that several PAHs (i.e., 7,12-dimethylbenz[a]anthracene, 7,12-dimethylbenz[a]anthracene-5,6-diol, benzo[c]phenanthrene, fluoranthene, fluoranthene-2,3-diol, 5-methylchrysene, benz[a]pyrene-4,5-diol, benzo[a]pyrene-7,8-diol, 1-nitropyrene, 2-aminoanthracene, 2-aminofluorene, and 2-acetylaminofluorene) interacted with P450 1B1, producing Reverse Type I binding spectra. Metabolic activation of PAHs and aryl- and heterocyclic amines to genotoxic products was examined in Salmonella typhimurium NM2009, and we found that P450 2A13 and 2A6 (as well as P450 1B1) were able to activate several of these procarcinogens. The former two enzymes were particularly active in catalyzing 2-aminofluorene and 2-aminoanthracene activation, and molecular docking simulations supported the results with these procarcinogens, in terms of binding in the active sites of P450 2A13 and 2A6. These results suggest that P450 2A enzymes, as well as P450 Family 1 enzymes including P450 1B1, are major enzymes involved in activating PAHs and aryl- and heterocyclic amines, as well as tobacco-related nitrosamines.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Tang Y, Liu Z, Ding S, Lin CH, Cai Y, Rodriguez FA, Sayer JM, Jerina DM, Amin S, Broyde S, Geacintov NE. Nuclear magnetic resonance solution structure of an N(2)-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: intercalation from the minor groove with ruptured Watson-Crick base pairing. Biochemistry 2012; 51:9751-62. [PMID: 23121427 DOI: 10.1021/bi3013577] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the nonplanar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14 position with the exocyclic amino group of guanine. Here, we present the first nuclear magnetic resonance solution structure of a DB[a,l]P-derived adduct, the 14R-(+)-trans-anti-DB[a,l]P-N(2)-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N(2)-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3'-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3'-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE-DNA adduct conformation differs from (1) the classical intercalation motif in which Watson-Crick base pairing is intact at the lesion site and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix. The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed.
Collapse
Affiliation(s)
- Yijin Tang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cai Y, Ding S, Geacintov NE, Broyde S. Intercalative conformations of the 14R (+)- and 14S (-)-trans-anti-DB[a,l]P-N⁶-dA adducts: molecular modeling and MD simulations. Chem Res Toxicol 2011; 24:522-31. [PMID: 21361377 PMCID: PMC3079767 DOI: 10.1021/tx1004002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Among the polycyclic aromatic hydrocarbon class of chemical carcinogens, dibenzo[a,l]pyrene (DB[a,l]P) is the most potent tumorigen that has been identified to date. Structurally, it is bulky with six aromatic rings, and it contains the nonplanar fjord-region. The conformational properties of DB[a,l]P-derived DNA adducts responsible for its extraordinary carcinogenicity are hence of great interest. We have carried out molecular modeling and MD simulations for the 14R (+)- and 14S (-)-trans-anti-DB[a,l]P-N⁶-dA adducts derived from the reactions of the DB[a,l]P diol epoxides with adenine in double-stranded DNA. The structures are based on the classically intercalated NMR solution structures of the analogous fjord-region benzo[c]phenanthrene-derived-N⁶-dA adducts. One objective was to gain insight on the impact of the more bulky DB[a,l]P ring system on the structural characteristics of the intercalative adduct conformations. A further objective was to elucidate the effect of the flexible twist associated with the sterically hindered aromatic ring in the fjord-region on the intercalated conformations, for comparison with the intercalated but planar bay-region benzo[a]pyrene-derived-N⁶-dA adducts. For the DB[a,l]P-N⁶-dA adducts, our results show that the 14R (+)-adduct is more favorably intercalated on the 5'-side of the modified adenine than the stereoisomeric 14S (-)-adduct, intercalated on its 3'-side. The 14R (+)-adduct manifests better van der Waals stacking interactions with flanking base pairs, less perturbed Watson-Crick hydrogen bonding, less local groove enlargement, less unwinding, and a lower solvent exposure than the 14S (-)-adduct. These structural findings are consistent with observed thermodynamic melting data, UV absorption properties, and fluorescence quenching studies. By contrast, the NMR solution structures for the analogous but less bulky B[c]Ph-derived adducts reveal no such stereoisomeric effect, while the planar bay-region benzo[a]pyrene-derived-N⁶-dA adducts do. Differences in nucleotide excision repair susceptibilities of the fjord and bay region adducts stem from distinctions in their intercalative conformations, produced by the intrinsic topological variations in their polycyclic aromatic ring systems.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Biology, New York University, New York, N.Y. 10003, U.S.A
| | - Shuang Ding
- Department of Biology, New York University, New York, N.Y. 10003, U.S.A
| | | | - Suse Broyde
- Department of Biology, New York University, New York, N.Y. 10003, U.S.A
| |
Collapse
|
14
|
Kumar S, Saravanan S. A FACILE SYNTHESIS OF 11,12-DIMETHOXYDIBENZO[def,p]CHRYSENE, A PREFERRED PRECURSOR FOR THE SYNTHESIS OF THE PROXIMATE AND ULTIMATE CARCINOGENS OF DIBENZO[def,p]CHRYSENE (DBC). Polycycl Aromat Compd 2009. [DOI: 10.1080/10406630903299561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Borosky GL, Laali KK. A DFT Model Study of the Carbocations Formed via the Fjord- and Bay-Region Diol Epoxide Metabolites of Isomeric Dibenzopyrenes and Naphthopyrene. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
An efficient non-catalytic, regioselective approach to the synthesis of angularly fused polycyclic systems. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.04.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Anwar-Mohamed A, Elbekai RH, El-Kadi AOS. Regulation of CYP1A1 by heavy metals and consequences for drug metabolism. Expert Opin Drug Metab Toxicol 2009; 5:501-21. [DOI: 10.1517/17425250902918302] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Spencer WA, Singh J, Orren DK. Formation and differential repair of covalent DNA adducts generated by treatment of human cells with (+/-)-anti-dibenzo[a,l]pyrene-11,12-diol-13,14-epoxide. Chem Res Toxicol 2009; 22:81-9. [PMID: 19053321 DOI: 10.1021/tx8001675] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dibenzo[a,l]pyrene (DBP) is the most potent tumor initiating polycyclic aromatic hydrocarbon tested to date in rodent tumor models. To investigate how DBP adduct formation and removal might influence carcinogenesis, we have examined the effects of treatment of several nucleotide excision repair (NER)-proficient (NER(+)) and -deficient (NER(-)) cell lines with the carcinogenic metabolite (+/-)-anti-DBP-11,12-diol-13,14-epoxide (DBPDE). The treatment of NER(-) cells with (+/-)-anti-DBPDE for 0.5, 1, or 2 h yielded similar total adduct levels, indicating that adduct formation was essentially complete during a 2 h treatment period with no additional adducts produced after replacement of media. In all cell lines, treatment with (+/-)-anti-DBPDE generated five major and at least two minor adducts that were chromatographically identical to those formed by direct treatment of 3'-GMP and 3'-AMP with (+/-)-anti-DBPDE. When adduct levels were assessed in NER(-) cells, the number of adducts/10(9) nucleotides decreased over time, suggesting that DNA replication was ongoing, so we incorporated a normalization strategy based on DNA synthesis. This strategy indicated that DBPDE-DNA adduct levels in NER(-) cells are stable over time. After normalization for DNA synthesis in the NER(+) cells, our data indicated that three adducts showed biphasic repair kinetics. A faster rate of removal was observed during the first 6 h following DBPDE removal followed by a slower rate for up to 34 h. Importantly, two of the major guanine adducts were particularly refractory to removal in the NER(+) cells. Our results suggest that the extreme carcinogenicity of DBPDE may result from the ability of a substantial percentage of two structurally distinct DBPDE-DNA adducts to escape repair.
Collapse
Affiliation(s)
- Wendy A Spencer
- Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
19
|
Abstract
Cancer is as a highly complex and multifactorial disease responsible for the death of hundreds of thousands of people in the western countries every year. Since cancer is clonal and due to changes at the level of the genetic material, viruses, chemical mutagens and other exogenous factors such as short-waved electromagnetic radiation that alter the structure of DNA are among the principal causes. The focus of this present review lies on the influence of the molecular structure of two well-investigated chemical carcinogens from the group of polycyclic aromatic hydrocarbons (PAHs), benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP). Although there is only one additional benzo ring present in the latter compound, DBP exerts much stronger genotoxic and carcinogenic effects in certain tumor models as compared to BP. Actually, DBP has been identified as the most potent tumorigen among all carcinogenic PAHs tested to date. The genotoxic effects of both compounds investigated in mammalian cells in culture or in animal models are described. Comparison of enzymatic activation, DNA binding levels of reactive diol-epoxide metabolites, efficiency of DNA adduct repair and mutagenicity provides some clues on why this compound is about 100-fold more potent in inducing tumors than BP. The data published during the past 20 years support and strengthen the idea that compound-inherent physicochemical parameters, along with inefficient repair of certain kinds of DNA lesions formed upon metabolic activation, can be considered as strong determinants for high carcinogenic potency of a chemical.
Collapse
|
20
|
Wang Y, Schnetz-Boutaud NC, Kroth H, Yagi H, Sayer JM, Kumar S, Jerina DM, Stone MP. 3'-Intercalation of a N2-dG 1R-trans-anti-benzo[c]phenanthrene DNA adduct in an iterated (CG)3 repeat. Chem Res Toxicol 2008; 21:1348-58. [PMID: 18549249 PMCID: PMC2755548 DOI: 10.1021/tx7004103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conformation of the 1 R,2 S,3 R,4 S-benzo[ c]phenanthrene- N (2)-dG adduct, arising from trans opening of the (+)-1 S,2 R,3 R,4 S- anti-benzo[ c]phenanthrene diol epoxide, was examined in 5'- d(ATCGC XCGGCATG)-3'.5'-d(CATGCCG CGCGAT)-3', where X = 1 R,2 S,3 R,4 S-B[ c]P- N (2)-dG. This duplex, derived from the hisD3052 frameshift tester strain of Salmonella typhimurium, contains a (CG) 3 iterated repeat, a hotspot for frameshift mutagenesis. NMR experiments showed a disconnection in sequential NOE connectivity between X (4) and C (5), and in the complementary strand, they showed another disconnection between G (18) and C (19). In the imino region of the (1)H NMR spectrum, a resonance was observed at the adducted base pair X (4) x C (19). The X (4) N1H and G (18) N1H resonances shifted upfield as compared to the other guanine imino proton resonances. NOEs were observed between X (4) N1H and C (19) N (4)H and between C (5) N (4)H and G (18) N1H, indicating that base pairs X (4) x C (19) and C (5) x G (18) maintained Watson-Crick hydrogen bonding. No NOE connectivity was observed between X (4) and G (18) in the imino region of the spectrum. Chemical shift perturbations of greater than 0.1 ppm were localized at nucleotides X (4) and C (5) in the modified strand and G (18) and C (19) in the complementary strand. A total of 13 NOEs between the protons of the 1 R-B[ c]Ph moiety and the DNA were observed between B[ c]Ph and major groove aromatic or amine protons at base pairs X (4) x C (19) and 3'-neighbor C (5) x G (18). Structural refinement was achieved using molecular dynamics calculations restrained by interproton distances and torsion angle restraints obtained from NMR data. The B[ c]Ph moiety intercalated on the 3'-face of the X (4) x C (19) base pair such that the terminal ring of 1 R-B[ c]Ph threaded the duplex and faced into the major groove. The torsion angle alpha' [X (4)]-N3-C2-N2-B[ c]Ph]-C1 was calculated to be -177 degrees, maintaining an orientation in which the X (4) exocyclic amine remained in plane with the purine. The torsion angle beta' [X (4)]-C2-N2-[B[ c]Ph]-C1-C2 was calculated to be 75 degrees. This value governed the 3'-orientation of the B[ c]Ph moiety with respect to X (4). The helical rise between base pairs X (4) x C (19) and C (5) x G (18) increased and resulted in unwinding of the right-handed helix. The aromatic rings of the B[ c]Ph moiety were below the Watson-Crick hydrogen-bonding face of the modified base pair X (4) x C (19). The B[c]Ph moiety was stacked above nucleotide G (18), in the complementary strand.
Collapse
Affiliation(s)
- Yazhen Wang
- Department of Chemistry, Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Nathalie C. Schnetz-Boutaud
- Department of Chemistry, Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Heiko Kroth
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892
| | - Haruhiko Yagi
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892
| | - Jane M. Sayer
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892
| | - Subodh Kumar
- Environmental Toxicology and Chemistry Laboratory, Great Lakes Center, State University of New York College at Buffalo, Buffalo, New York 14222
| | - Donald M. Jerina
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892
| | - Michael P. Stone
- Department of Chemistry, Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
21
|
Myers SR, Hurst HE, Cunningham C, Ali MY, Wright T. KINETICS OF FORMATION OF (±)-ANTI-7, 8-DIHYDROXY-9α,10α -EPOXY-7, 8, 9, 10-TETRAHYDROBENZO[A]PYRENE ADDUCTS WITH MOUSE AND HUMAN HEMOGLOBIN. Polycycl Aromat Compd 2008. [DOI: 10.1080/10406630801970545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Steven R. Myers
- a Department of Pharmacology and Toxicology , University of Louisville School of Medicine , Louisville , Kentucky , USA
| | - Harrell E. Hurst
- a Department of Pharmacology and Toxicology , University of Louisville School of Medicine , Louisville , Kentucky , USA
| | - Christopher Cunningham
- a Department of Pharmacology and Toxicology , University of Louisville School of Medicine , Louisville , Kentucky , USA
| | - Md. Yeakub Ali
- a Department of Pharmacology and Toxicology , University of Louisville School of Medicine , Louisville , Kentucky , USA
| | - Terry Wright
- a Department of Pharmacology and Toxicology , University of Louisville School of Medicine , Louisville , Kentucky , USA
| |
Collapse
|
22
|
Shultz CA, Palackal NT, Mangal D, Harvey RG, Blair IA, Penning TM. Fjord-region benzo[g]chrysene-11,12-dihydrodiol and benzo[c]phenanthrene-3,4-dihydrodiol as substrates for rat liver dihydrodiol dehydrogenase (AKR1C9): structural basis for stereochemical preference. Chem Res Toxicol 2008; 21:668-77. [PMID: 18251511 PMCID: PMC2440589 DOI: 10.1021/tx7003695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study demonstrates that benzo[g]chrysene-11,12-dihydrodiol (B[g]C-11,12-dihydrodiol) derived from the fjord-region parent hydrocarbon B[g]C is oxidized by rat AKR1C9 with a k c a t/ K m 100 times greater than that observed with the commonly studied bay-region benzo[ a]pyrene-7,8-dihydrodiol (B[a]P-7,8-dihydrodiol). Conversely, despite its strikingly similar structure to B[ g]C-11,12-dihydrodiol, benzo[ c]phenanthrene-3,4-dihydrodiol (B[ c]Ph-3,4-dihydrodiol) is consumed by AKR1C9 at sluggish rates comparable to those observed with B[ a]P-7,8-dihydrodiol. CD spectroscopy revealed that only the (+)-B[ g]C-11,12-dihydrodiol stereoisomer was oxidized, while AKR1C9 oxidized both stereoisomers of B[a]P-7,8-dihydrodiol and B[ c]Ph-3,4-dihydrodiol. The (+)- S, S- and (-)- R, R-stereoisomers of B[g]C-11,12-dihydrodiol were purified by chiral RP-HPLC. The 11 S,12 S-stereoisomer was oxidized at the same rate as the racemate. The 11 R,12 R-stereoisomer did not act as an inhibitor to AKR1C9, indicating that the (-)- R, R-stereoisomer was excluded from the active site. To understand the basis of stereochemical preference, we screened alanine-scanning mutants of active site residues of AKR1C9. These studies revealed that in comparison to the wild type, F129A, W227A, and Y310A enabled the oxidation of both the B[g]C-11 S,12 S-dihydrodiol and the B[g]C-11 R,12 R-dihydrodiol. Molecular modeling revealed that unlike B[a]P-7,8-dihydrodiol and B[ c]Ph-3,4-dihydrodiol, B[g]C-11,12-dihydrodiol enantiomers are significantly bent out of plane. As a consequence, the (-)- R, R-stereoisomer was prevented from binding to the active site because of unfavorable interactions with F129, W227, or Y310. Additionally, LC/MS validated that the product of the reaction of B[g]C-11,12-dihydrodiol oxidation catalyzed by AKR1C9 was B[g]C-11,12-dione, which was trapped in vitro with the nucleophile 2-mercaptoethanol. The similarity between rates of trans-dihydrodiol oxidation by the rat and human liver specific AKRs (AKR1C9 and AKR1C4) implicate these enzymes in hepatocarcinogenesis in rats observed with the fjord-region PAH.
Collapse
Affiliation(s)
- Carol A Shultz
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
23
|
Sharma AK, Gowdahalli K, Krzeminski J, Amin S. Microwave-Assisted Suzuki Cross-Coupling Reaction, a Key Step in the Synthesis of Polycyclic Aromatic Hydrocarbons and Their Metabolites. J Org Chem 2007; 72:8987-9. [DOI: 10.1021/jo701665j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arun K. Sharma
- Department of Pharmacology, Chemical Carcinogenesis and Chemoprevention Program of Penn State Cancer Institute, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033
| | - Krishnegowda Gowdahalli
- Department of Pharmacology, Chemical Carcinogenesis and Chemoprevention Program of Penn State Cancer Institute, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033
| | - Jacek Krzeminski
- Department of Pharmacology, Chemical Carcinogenesis and Chemoprevention Program of Penn State Cancer Institute, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033
| | - Shantu Amin
- Department of Pharmacology, Chemical Carcinogenesis and Chemoprevention Program of Penn State Cancer Institute, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033
| |
Collapse
|
24
|
Nelson G, Ross JA, Pimentel M, Desai D, Sharma AK, Amin S, Nesnow S. Characterization of naphtho[1,2-a]pyrene and naphtho[1,2-e]pyrene DNA adducts in C3H10T1/2 fibroblasts. Cancer Lett 2007; 247:309-17. [PMID: 16814461 DOI: 10.1016/j.canlet.2006.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of carcinogenic chemicals that are ubiquitous in the environment. Fjord-region naphthopyrene isomers are structurally similar to the potent fjord-region PAH carcinogen dibenzo[a,l]pyrene and thus have the potential to be potent carcinogens. Naphtho[1,2-a]pyrene (N[1,2-a]P) exhibited similar bacterial mutagenicity and morphological cell transforming activity when compared to benzo[a]pyrene (B[a]P), whereas the structural isomer, naphtho[1,2-e]pyrene (N[1,2-e]P) was inactive is these bioassays. In this study, we examined the formation of DNA adducts in C3H10T1/2Cl8 (C3H10T1/2) mouse embryo fibroblasts exposed to N[1,2-a]P or N[1,2-e]P and their respective dihydrodiols. The DNA adducts were characterized by co-chromatography with reaction products from anti-N[1,2-a]P diol epoxide (DE) or anti-N[1,2-e]PDE and polydeoxyadenosine (dAdo) or oligodeoxyguanosine (dGuo). C3H10T1/2 fibroblasts exposed to N[1,2-a]P or N[1,2-a]P-9,10-diol produced both anti-N[1,2-a]P-DE-dAdo and -dGuo adducts with total DNA adduction levels of 22.2 to 33.3 pmol DNA adducts/mug DNA. C3H10T1/2 fibroblasts exposed to N[1,2-e]P produced 2 major and 1 minor adducts. C3H10T1/2 fibroblasts exposed to N[1,2-e]P-11,12-diol produced 2 major adducts. All of the identified adducts were anti-N[1,2-e]PDE-dGuo and -dAdo adducts. While the total DNA adduct level in N[1,2-e]P-11,12-diol-treated fibroblasts was extremely high, 105.9 pmol DNA adducts/mug DNA, the level in N[1,2-e]P-treated fibroblasts was 1.47 pmol DNA adducts/microg DNA. We conclude that lack of biological activity of N[1,2-e]P may be related to its inability to form sufficient amounts of N[1,2-e]P-11,12-diol, which would then be metabolized to sufficient amounts of anti-N[1,2-e]PDE needed to transform these fibroblasts.
Collapse
Affiliation(s)
- Garret Nelson
- Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, MD-B143-06, Research Triangle Park, NC 27711, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Svihálková-Sindlerová L, Machala M, Pencíková K, Marvanová S, Neca J, Topinka J, Sevastyanova O, Kozubík A, Vondrácek J. Dibenzanthracenes and benzochrysenes elicit both genotoxic and nongenotoxic events in rat liver ‘stem-like’ cells. Toxicology 2007; 232:147-59. [PMID: 17287060 DOI: 10.1016/j.tox.2006.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 12/20/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with molecular weight 278 are a group of PAHs that are mostly not covered by the current monitoring programs, despite their relative abundance in environmental samples and possible carcinogenicity. Although benzo[g]chrysene (BgChry) and dibenz[a,h]anthracene (DBahA) have been for a long time studied as genotoxic, tumour-initiating compounds, little is known about the potential tumour-promoting effects of this group of PAHs. In the present study, we investigated their impact on activation of the aryl hydrocarbon receptor (AhR), induction of enzymes involved in metabolic activation of PAHs, disruption of cell cycle control in confluent cell population and inhibition of gap junctional intercellular communication (GJIC), using the rat liver epithelial cell line WB-F344 as a model of liver progenitor cells. We found that BgChry was the weakest inducer of the AhR-mediated activity, while relative potencies of benzo[b]chrysene (BbChry) and benzo[c]chrysene (BcChry) were comparable to the previously reported values for dibenzanthracenes. All compounds increased expression of cytochromes P450 1A1 and 1B1, and aldo-keto reductase 1C9. BgChry was found to induce high amounts of DNA adducts, which corresponded with induction of p53 phosphorylation at Ser15, apoptosis and accumulation of cells in S-phase of cell cycle, leading to a decrease in cell numbers. All other compounds were found to stimulate cell proliferation in contact-inhibited WB-F344 cells in a dose-dependent manner. We found that only BgChry, and to a lesser extent also BcChry, inhibited GJIC at high concentrations. Taken together, dibenzanthracenes and benzochrysenes, with exception of BgChry, seem to act primarily through deregulation of cell proliferation in liver epithelial cells, which is related to their relatively high AhR-mediated activity. The disruption of cell cycle control might contribute to their carcinogenic effects, as well as to carcinogenicity of complex environmental mixtures containing high levels of PAHs with molecular weight 278.
Collapse
Affiliation(s)
- L Svihálková-Sindlerová
- Laboratory of Cytokinetics, Institute of Biophysics, Královopolská 135, 612 65 Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mahadevan B, Marston CP, Luch A, Dashwood WM, Brooks E, Pereira C, Doehmer J, Baird WM. Competitive inhibition of carcinogen-activating CYP1A1 and CYP1B1 enzymes by a standardized complex mixture of PAH extracted from coal tar. Int J Cancer 2007; 120:1161-8. [PMID: 17187366 DOI: 10.1002/ijc.22466] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A complex mixture of polycyclic aromatic hydrocarbons (PAH) extracted from coal tar, the Standard Reference Material (SRM) 1597, was recently shown to decrease the levels of DNA binding of the 2 strong carcinogens benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) in the human mammary carcinoma-derived cell line MCF-7 (Mahadevan et al., Chem Res Toxicol 2005;18:224-231). The present study was designed to further elucidate the biochemical mechanisms involved in this inhibition process. We examined the effects of SRM 1597 on the metabolic activation of BP and DBP toward DNA-binding derivatives in Chinese hamster cells expressing either human cytochrome P450 (CYP) 1A1 or CYP1B1. SRM 1597 inhibited BP-DNA adduct formation through the entire exposure time in cells expressing human CYP1A1, while it significantly inhibited adduct formation only up to 48 hr when co-treated with DBP. Conversely, human CYP1B1-expressing cells were unable to catalyze PAH-DNA adduct formation on treatment with SRM 1597 alone, and on co-treatment with BP or DBP. The data obtained from biochemical experiments revealed that SRM 1597 competitively inhibited the activity of both human enzymes as analyzed by 7-ethoxyresorufin O-deethylation assays. While the Michaelis-Menten constant (K(M)) was <0.4 microM in the absence of SRM 1597, this value increased up to 1.12 (CYP1A1) or 4.45 microM (CYP1B1) in the presence of 0.1 microg/ml SRM 1597. Hence the inhibitory effects of the complex mixture on human CYP1B1 were much stronger when compared to human CYP1A1. Taken together, the decreases in PAH-DNA adduct formation on co-treatment with SRM 1597 revealed inhibitory effects on the CYP enzymes that convert carcinogenic PAH into DNA-binding metabolites. The implications for the tumorigenicity of complex environmental PAH mixtures are discussed.
Collapse
Affiliation(s)
- Brinda Mahadevan
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mahadevan B, Luch A, Atkin J, Nguyen T, Sharma AK, Amin S, Baird. WM. Investigation of the genotoxicity of dibenzo[c,p]chrysene in human carcinoma MCF-7 cells in culture. Chem Biol Interact 2006; 164:181-91. [PMID: 17094953 PMCID: PMC1794669 DOI: 10.1016/j.cbi.2006.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/27/2006] [Accepted: 09/27/2006] [Indexed: 10/23/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants that have been linked to certain human cancers. The fjord region PAH dibenzo[a,l]pyrene exhibits the highest levels of carcinogenic activity of all PAH as yet tested in rodent tumor models. Another hexacyclic aromatic hydrocarbon, dibenzo[c,p]chrysene (DBC), is a unique PAH that possesses one bay region and two fjord regions within the same molecule. Due to its structure, which is a merger of the fjord region PAHs benzo[c]phenanthrene, benzo[c]chrysene, and benzo[g]chrysene, DBC is of considerable research interest. In order to investigate the pathway of regioselective metabolism we have studied the cytotoxicity, metabolic activation and DNA adduct formation of DBC in human mammary carcinoma MCF-7 cells in culture. The cytotoxicity assay indicated undisturbed cell proliferation even at concentrations as high as 4.5 microM (1.5 micro g/ml) DBC. Concurrently, DNA adducts were detected in MCF-7 cells treated with DBC only in low amounts (0.6 pmol adducts/mg DNA). On the contrary, exposure to anti-DBC-1,2-diol-3,4-epoxide and anti-DBC-11,12-diol-13,14-epoxide, two putatively genotoxic metabolites of DBC, resulted in high levels of DNA adducts (33 and 51 pmol adducts/mg DNA, respectively). Although DBC was not efficiently transformed into DNA-reactive metabolites in MCF-7 cells in culture, the results from our study indicate that the two fjord region diol-epoxide derivatives of DBC may serve as ultimate genotoxic metabolites once they are enzymatically generated under certain circumstances in vitro or in vivo.
Collapse
Affiliation(s)
- Brinda Mahadevan
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Andreas Luch
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jennifer Atkin
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Tuan Nguyen
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Arun K. Sharma
- Penn State College of Medicine, Department of Pharmacology, 500 University Drive, Hershey, PA 17033, USA
| | - Shantu Amin
- Penn State College of Medicine, Department of Pharmacology, 500 University Drive, Hershey, PA 17033, USA
| | - William M. Baird.
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
28
|
Shimada T. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet 2006; 21:257-76. [PMID: 16946553 DOI: 10.2133/dmpk.21.257] [Citation(s) in RCA: 426] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental carcinogens and metabolized by a variety of xenobiotic-metabolizing enzymes such as cytochrome P450 (P450 or CYP), epoxide hydrolase, glutathione transferase, UDP-glucuronosyltransferase, sulfotransferase, NAD(P)H quinone oxidoreductase 1, and aldo-keto reductase. These enzymes mainly participate in the conversion of PAHs to more polar and water-soluble metabolites, and the resultant metabolites are readily excreted from the body. However, during the course of metabolism, a variety of unstable and reactive intermediates of PAHs are formed, and these metabolites attack DNA, causing cell toxicity and transformation. P450s and epoxide hydrolase convert PAHs to proximate carcinogenic metabolites, PAH-diols, and these products are further metabolized by P450s to ultimate carcinogenic metabolites, PAH diol-epoxides, or by aldo-keto reductase to reactive PAH o-quinones. PAHs are also activated by P450 and peroxidases to reactive radical cations that bind covalently to DNA. The oxygenated and reactive metabolites of PAHs are usually converted to more polar and detoxified products by phase II enzymes. Inter-individual differences exist in levels of expression and catalytic activities of a variety of enzymes that activate and/or detoxify PAHs in various organs of humans and these phenomena are thought to be critical in understanding the basis of individual differences in response to PAHs. Factors affecting such variations include induction and inhibition of enzymes by diverse chemicals and, more importantly, genetic polymorphisms of enzymes in humans.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Department of Chemical Biology, Osaka City University Medical School, Osaka, Japan.
| |
Collapse
|
29
|
Scicchitano DA. Transcription past DNA adducts derived from polycyclic aromatic hydrocarbons. Mutat Res 2005; 577:146-54. [PMID: 15922365 DOI: 10.1016/j.mrfmmm.2005.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 12/20/2022]
Abstract
The ability of a DNA lesion to block transcription is a function of many variables: (1) the ability of the RNA polymerase active site to accommodate the damaged base; (2) the size and shape of the adduct, which includes the specific modified base; (3) the stereochemistry of the adduct; (4) the base incorporated into the growing transcript; (5) and the local DNA sequence. Each of these parameters, either alone or in combination, can influence how a particular lesion in the genome will affect transcription elongation, resulting in potential clearance of the lesion via transcription-coupled DNA repair or in the formation of truncated or full-length transcripts that might encode defective proteins.
Collapse
Affiliation(s)
- David A Scicchitano
- Department of Biology, 1009 Silver Center, 100 Washington Square East, New York University, New York, NY 10003, USA.
| |
Collapse
|
30
|
Sharma AK, Amin S. Synthesis and Identification of Major Metabolites of Environmental Pollutant Dibenzo[c,mno]chrysene. Chem Res Toxicol 2005; 18:1438-43. [PMID: 16167836 DOI: 10.1021/tx050109q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dibenzo[c,mno]chrysene commonly known as naphtho[1,2-a]pyrene (N[1,2-a]P) is an environmental pollutant, recently identified in coal tar extract, in air-borne particulate matter, in marine sediment, and in cigarette-smoke condensate. We recently reported an efficient synthesis of N[1,2-a]P and examined its in vitro metabolism by male Sprague Dawley rat liver S9 fraction, which resulted in a number of dihydrodiol and phenolic metabolites. The synthesis of 10-hydroxy-N[1,2-a]P and fjord region N[1,2-a]P trans-9,10-dihydrodiol, which were identified among the various metabolites, was assigned earlier by comparing with the synthetic standards. The other major metabolites were separated by HPLC and, based on the 1H NMR analysis, were tentatively suggested to be the two K-region dihydrodiols, that is, N[1,2-a]P trans-4,5-dihydrodiol (6) and N[1,2-a]P trans-7,8-dihydrodiol (7), and the hydroxy derivatives of N[1,2-a]P. To unequivocally assign the structure to each of the peaks and to have them in larger amounts for toxicological studies, we have now synthesized the two K-region dihydrodiols and the 1-/3-hydroxy-N[1,2-a]P, short-listed based on the proton NMR of the collected peaks. The K-region dihydrodiols 6 and 7 were prepared by the treatment of N[1,2-a]P with OsO(4) to give a mixture of cis dihydrodiols 2 and 3, followed by pyridinium chlorochromate-assisted oxidation to quinones 4 and 5, and finally reduction with NaBH(4) to afford the dihydrodiols 6 and 7 with the desired trans stereochemistry. The 1-hydroxy-N[1,2-a]P (22) and 3-hydroxy-N[1,2-a]P (23) were synthesized using a photochemical approach. As expected, all the synthesized dihydrodiol and phenolic derivatives of N[1,2-a]P identified with those obtained from in vitro metabolism enabling the assignment of all the major metabolites.
Collapse
Affiliation(s)
- Arun K Sharma
- Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Department of Pharmacology, H078, 500 University Drive, Hershey, Pennsylvania 17033, USA.
| | | |
Collapse
|
31
|
Sharma AK, Lin JM, Desai D, Amin S. Convenient syntheses of dibenzo[c,p]chrysene and its possible proximate and ultimate carcinogens: in vitro metabolism and DNA adduction studies. J Org Chem 2005; 70:4962-70. [PMID: 15960493 DOI: 10.1021/jo040291k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dibenzo[c,p]chrysene (DB[c,p]C) is the only hexacyclic polycyclic aromatic hydrocarbon having two fjord regions, both in different chemical environments. Its environmental presence and relative tumorigenic potency are not known due to the lack of synthetic standards. We report here the synthesis of dibenzo[c,p]chrysene (1), its proximate carcinogens, i.e., trans-1,2-dihydroxy-1,2-dihydro-DB[c,p]C (2) and trans-11,12-dihydroxy-11,12-dihydro-DB[c,p]C (3), and possible ultimate carcinogens, i.e., anti-trans-1,2-dihydroxy-3,4-epoxy-1,2,3,4-tetrahydro-DB[c,p]C (4) and anti-trans-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydro-DB[c,p]C (5). The syntheses of 1 and the appropriately methoxy-substituted DB[c,p]C (12 and 27), key intermediates for the synthesis of its proximate and ultimate metabolites, were tried first using a Suzuki cross-coupling reaction. However, the cyclization of olefins (10 and 11) gave poor yields of the desired products. An alternate method was thus developed employing a photochemical approach. The in vitro metabolism of DB[c,p]C was established with the S9 fraction of liver homogenate from phenobarbital/beta-naphthoflavone-induced Sprague-Dawley rats. The major dihydrodiol formed was identified as the fjord region 11,12-dihydroxy-11,12-dihydro-DB[c,p]C, while the major and minor phenols were identified as 11-hydroxy-DB[c,p]C and 12-hydroxy-DB[c,p]C, respectively. Further, the DNA adduction studies with the calf thymus DNA led to a mixture of dA and dG adducts for both fjord region diol epoxides (4 and 5). Interestingly, the dA to dG ratio for 1,2-dihydroxy-3,4-epoxide was much higher (3.2) compared to that of 11,12-dihydroxy-13,14-epoxide (0.5).
Collapse
Affiliation(s)
- Arun K Sharma
- Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Department of Pharmacology, H078, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
32
|
Sharma AK, Kumar S, Amin S. A Highly Abbreviated Synthesis of Dibenzo[def,p]chrysene and Its 12-Methoxy Derivative, a Key Precursor for the Synthesis of the Proximate and Ultimate Carcinogens of Dibenzo[def,p]chrysene. J Org Chem 2004; 69:3979-82. [PMID: 15153038 DOI: 10.1021/jo0303822] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dibenzo[def,p]chrysene (DBC) (1), is by far the most mutagenic and toxic polycyclic aromatic hydrocarbon identified. Its metabolic activation leads to trans-11,12-dihydroxy-11,12-dihydro-DBC (2), which is further metabolized to the ultimate metabolite, anti-trans-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydro-DBC (3), that binds to DNA causing mutations and ultimately tumor induction. We report a facile route for the syntheses of DBC (1) and its 12-methoxy derivative (12-methoxy-DBC) (13), a key intermediate for the synthesis of 2 and 3, using a Suzuki cross-coupling approach.
Collapse
Affiliation(s)
- Arun K Sharma
- Institute for Cancer Prevention, American Health Foundation Cancer Center, 1 Dana Road, Valhalla, New York 10595, USA.
| | | | | |
Collapse
|
33
|
Platt KL, Dienes HP, Tommasone M, Luch A. Tumor formation in the neonatal mouse bioassay indicates that the potent carcinogen dibenzo[def,p]chrysene (dibenzo[a,l]pyrene) is activated in vivo via its trans-11,12-dihydrodiol. Chem Biol Interact 2004; 148:27-36. [PMID: 15223354 DOI: 10.1016/j.cbi.2004.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2004] [Indexed: 11/25/2022]
Abstract
The hexacyclic aromatic hydrocarbon dibenzo[def,p]chrysene, better known as dibenzo[a,l]pyrene (DBP) in the field of chemical carcinogenesis, is present in the environment as a combustion product of organic matter. This compound is probably the strongest chemical carcinogen ever tested. As ultimate genotoxic metabolites of DBP two electrophilically reactive species are discussed: (i) radical cations generated by one-electron oxidation, and (ii) fjord region dihydrodiol epoxides formed via the trans-11,12-dihydroxy 11,12-dihydro derivative of DBP (11,12-dihydrodiol). In order to delineate the metabolic pathway(s) involved in tumor formation by DBP, newborn Crl:CD-1(ICR)BR mice were intraperitoneally treated with the parent compound, its 11,12-dihydrodiol, and the two diastereomeric fjord region dihydrodiol epoxides. Due to severe acute and chronic toxicity, the total dose of DBP and of the 11,12-dihydrodiol was limited to 40 nmol. For the same reason the dihydrodiol epoxides could only be applied in doses up to 0.4 nmol. The tumor incidence was determined 55 +/- 1 weeks after treatment. Under these conditions, DBP and its 11,12-dihydrodiol induced lung tumors (incidence: 86.5% versus 92.0%; yield: 2.88 versus 7.44 tumors per mouse), liver (incidence: 57.7% versus 60.0%; yield: 3.63 versus 5.28 tumors per mouse) and other organs (incidence: 36.5% versus 32.0%; yield: 0.56 versus 0.52 tumors per mouse). By contrast, only lung tumors at low incidence were detected in mice treated with solvent only (incidence: 28.8%; yield: 0.58 tumors per mouse). As with the parent hydrocarbon, mice treated with low doses of diastereomeric syn- and anti-dihydrodiol epoxides of DBP showed increased tumor incidences in liver (incidence: 19.0 and 46.7%; yield: 0.36 and 1.47 tumors per mouse, respectively), and in various other organs (incidence: 7.1 and 20.0%; yield: 0.07 and 0.20 tumors per mouse, respectively). In consideration of the 100-fold differences in the doses of compounds applied in this study, the tumor-inducing potency increases in the order DBP < 11,12-dihydrodiol < anti-dihydrodiol epoxide. This result provides strong evidence that the potent carcinogen DBP is activated in vivo in the mouse via its 11,12-dihydrodiol and not preferentially through alternative pathways.
Collapse
Affiliation(s)
- Karl L Platt
- Institute of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131, Germany.
| | | | | | | |
Collapse
|
34
|
Amin S, Lin JM, Krzeminski J, Boyiri T, Desai D, El-Bayoumy K. Metabolism of benzo[c]chrysene and comparative mammary gland tumorigenesis of benzo[c]chrysene bay and fjord region diol epoxides in female CD rats. Chem Res Toxicol 2003; 16:227-31. [PMID: 12588194 DOI: 10.1021/tx0200921] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzo[c]chrysene (BcC), an environmental pollutant, is a unique polycyclic aromatic hydrocarbon that possesses both a bay region and a fjord region in the same molecule. We previously demonstrated that both bay region and fjord region terminal rings are involved in the in vitro metabolism of BcC. In the present investigation, we prepared [14-(3)H]BcC and tested the hypothesis that BcC can be activated to both bay region and fjord region diol epoxides in female CD rats. At 6 weeks of age, rats were gavaged with a single dose of [14-(3)H]BcC (5 mg/rat; specific activity, 6.7 Ci/mmol) in 0.5 mL of trioctanoin. During the first 48 h, 20.3% of the dose was eliminated in the feces and 2.8% was eliminated in the urine. After 1 week, cumulatively, 23.2 and 3.5%, respectively, were eliminated. 3-Hydroxybenzo[c]chrysene, 10-hydroxybenzo[c]chrysene, and trans-7,8-dihydroxy-7,8-dihydrobenzo[c]chrysene were the major fecal metabolites. In urine, trans-1,2-dihydroxy-1,2-dihydrobenzo[c]chrysene, 2-hydroxybenzo[c]chrysene, (+/-)-1,t-2,t-3,c-4-tetrahydroxy-1,2,3,4-tetrahydrobenzo[c]chrysene, and (+/-)-9,t-10,t-11,c-12-tetrahydroxy-9,10,11,12-tetrahydrobenzo[c]chrysene were detected, primarily as glucuronic acid and sulfate conjugates. The identification of the two tetraols clearly indicates that both bay region and fjord region diol epoxides are formed as intermediates in the metabolism of BcC in vivo. The second goal of this study was to test the hypothesis that the location of the epoxide moiety (fjord vs bay region) determines the carcinogenic activity. Thus, we compared the carcinogenicity of the bay region (+/-)-anti-1,2-dihydroxy-3,4-epoxy-1,2,3,4-tetrahydrobenzo[c]chrysene and the fjord region (+/-)-anti-9,10-dihydroxy-11,12-epoxy-9,10,11,12-tetrahydrobenzo[c]chrysene in the rat mammary gland. The results clearly showed that the fjord region diol epoxide is a potent mammary carcinogen, while the bay region diol epoxide lacks activity in this model assay. This is the first report on a comparison of mammary cancer induction by fjord and bay region diol epoxides derived from the same molecule. It further supports previous observations that fjord region diol epoxides are more carcinogenic than structurally related bay region diol epoxides.
Collapse
Affiliation(s)
- Shantu Amin
- American Health Foundation Cancer Center, Institute For Cancer Prevention, 1 Dana Road, Valhalla, New York 10595, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Spitsbergen JM, Kent ML. The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations. Toxicol Pathol 2003; 31 Suppl:62-87. [PMID: 12597434 PMCID: PMC1909756 DOI: 10.1080/01926230390174959] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The zebrafish (Danio rerio) is now the pre-eminent vertebrate model system for clarification of the roles of specific genes and signaling pathways in development. The zebrafish genome will be completely sequenced within the next 1-2 years. Together with the substantial historical database regarding basic developmental biology, toxicology, and gene transfer, the rich foundation of molecular genetic and genomic data makes zebrafish a powerful model system for clarifying mechanisms in toxicity. In contrast to the highly advanced knowledge base on molecular developmental genetics in zebrafish, our database regarding infectious and noninfectious diseases and pathologic lesions in zebrafish lags far behind the information available on most other domestic mammalian and avian species, particularly rodents. Currently, minimal data are available regarding spontaneous neoplasm rates or spontaneous aging lesions in any of the commonly used wild-type or mutant lines of zebrafish. Therefore, to fully utilize the potential of zebrafish as an animal model for understanding human development, disease, and toxicology we must greatly advance our knowledge on zebrafish diseases and pathology.
Collapse
Affiliation(s)
- Jan M Spitsbergen
- Department of Environmental and Molecular Toxicology and Marine/Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, Oregon 97333, USA.
| | | |
Collapse
|
36
|
Mahadevan B, Dashwood WM, Luch A, Pecaj A, Doehmer J, Seidel A, Pereira C, Baird WM. Mutations induced by (-)-anti-11R,12S-dihydrodiol 13S,14R-epoxide of dibenzo[a,l]pyrene in the coding region of the hypoxanthine phosphoribosyltransferase (Hprt) gene in Chinese hamster V79 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 41:131-139. [PMID: 12605383 DOI: 10.1002/em.10136] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P) is an exceptionally potent carcinogen. Its direct DNA-reactive metabolite, the fjord region (-)-anti-11R,12S-dihydrodiol 13S,14R-epoxide [(-)-anti-DB[a,l]PDE], was used to investigate induction of mutations in the coding region of the hypoxanthine phosphoribosyltransferase (Hprt) gene in Chinese hamster V79 cells. Cells exposed to 1-10 nM (-)-anti-DB[a,l]PDE exhibited a close dose-responsive increase in the frequency of mutant clones resistant to 6-thioguanine. RNA was isolated from mutant clones and cDNAs were prepared by reverse transcription. The coding region of the cDNA of the Hprt gene was amplified by polymerase chain reaction and sequenced. Analysis of the DNA base sequence changes induced by (-)-anti-DB[a,l]PDE indicated that base substitutions were the most prevalent mutations, followed by exon deletions. Among the groups of V79 cells treated with low concentrations of (-)-anti-DB[a,l]PDE, most displayed high selectivity for both A:T-->T:A transversions and A:T-->G:C transitions, while cells exposed to a higher dose (10 nM) formed predominantly G:C-->T:A transversions. Also, the number of base substitutions per mutant clone increased with dose. In general, the mutation profiles induced by (-)-anti-DB[a,l]PDE exhibited a wide spectrum; in addition to base substitutions, deletions, insertions, frameshift mutations, as well as tandem mutations were detected. Analysis of the DNA adduct levels induced by (-)-anti-DB[a,l]PDE revealed that a concentration-dependent increase in the level of adduct formation preceded the concentration-dependent increase in mutational events in these cells and that an increasing proportion of DNA adducts at deoxyadenosine were formed with dose. The results of this study demonstrate a correspondence between the concentration and types of DNA adducts and the frequency and types of mutations induced by (-)-anti-DB[a,l]PDE in V79 cells.
Collapse
Affiliation(s)
- Brinda Mahadevan
- Department of Environmental & Molecular Toxicology, Agricultural and Life Sciences 1007, Oregon State University, Corvallis 97331-7302, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Buters JTM, Mahadevan B, Quintanilla-Martinez L, Gonzalez FJ, Greim H, Baird WM, Luch A. Cytochrome P450 1B1 determines susceptibility to dibenzo[a,l]pyrene-induced tumor formation. Chem Res Toxicol 2002; 15:1127-35. [PMID: 12230405 DOI: 10.1021/tx020017q] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabolic activation, DNA binding, and tumorigenicity of the carcinogenic polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P) catalyzed by murine cytochrome P450 (P450) enzymes were investigated. DNA binding of DB[a,l]P in human mammary carcinoma MCF-7 and human P450-expressing Chinese hamster V79 cell lines was previously shown to occur preferentially with metabolically generated fjord region DB[a,l]P-11,12-dihydrodiol 13,14-epoxides (DB[a,l]PDE). To elucidate different capabilities of murine P450 1A1 and 1B1 for metabolic activation of DB[a,l]P, V79 cell cultures stably expressing P450s 1A1 or 1B1 from mice were exposed to 10 or 100 nM DB[a,l]P. Both cell lines transformed DB[a,l]P to DNA binding intermediates. As with V79 cells expressing the corresponding human P450 enzyme [Luch et al. (1998) Chem. Res. Toxicol. 11, 686-695], murine P450 1B1-catalyzed metabolism and DNA binding proceeded exclusively through generation of fjord region DB[a,l]PDE. In addition, only DB[a,l]PDE-derived DNA adducts were found in V79 cells expressing P450 1A1 from mice. This is in contrast to our recent findings with V79 cells expressing P450 1A1 from humans or rats which catalyzed the formation of both highly polar DNA adducts as well as nonpolar DB[a,l]PDE-DNA adducts. To establish the role of P450 1B1 in DB[a,l]P-induced tumor formation in vivo, we treated P450 1B1-null and wild-type mice intragastrically and monitored survival rates and appearance of neoplasias in various organs. All wild-type mice (n = 17) used in this study developed at least one tumor at one site (tumor rate of 100%). In contrast, 5 of 13 P450 1B1-null mice were observed to be free from any tumor (tumor rate of 62%). The organ sites of tumor formation and the dignity of tumors were different between wild-type and P450 1B1-null mice. Wild-type mice were diagnosed with both benign and malignant tumors of the ovaries, lymphoid tissues, as well as with skin and endometrial hyperplasias, whereas P450 1B1-null mice developed only lung adenomas and endometrial hyperplasias. DNA binding studies using embryonic fibroblasts isolated from these animals provided further evidence that P450 1B1-catalyzed formation of fjord region DB[a,l]PDE-DNA adducts is the critical step in DB[a,l]P-mediated carcinogenesis in mice, and probably also in man.
Collapse
Affiliation(s)
- Jeroen T M Buters
- Institut für Toxikologie und Umwelthygiene, Technische Universität München, Lazarettstrasse 62, 80636 München, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Palackal NT, Lee SH, Harvey RG, Blair IA, Penning TM. Activation of polycyclic aromatic hydrocarbon trans-dihydrodiol proximate carcinogens by human aldo-keto reductase (AKR1C) enzymes and their functional overexpression in human lung carcinoma (A549) cells. J Biol Chem 2002; 277:24799-808. [PMID: 11978787 DOI: 10.1074/jbc.m112424200] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAH) are environmental pollutants and suspected human lung carcinogens. In patients with non-small cell lung carcinoma, differential display shows that aldo-keto reductase (AKR1C) transcripts are dramatically overexpressed. However, whether AKR1C isoforms contribute to the carcinogenic process and oxidize potent PAH trans-dihydrodiols (proximate carcinogens) to reactive and redox active o-quinones is unknown; nor is it known whether these reactions occur in human lungs. We now show that four homogeneous human recombinant aldo-keto reductases (AKR1C1-AKR1C4) are regioselective and oxidize only the relevant non-K region trans-dihydrodiols. However, these enzymes are not stereo-selective, since they oxidized 100% of these racemic substrates. The highest utilization ratios (V(max)/K(m)) were observed for some of the most potent proximate carcinogens known (e.g. 7,12-dimethylbenz[a]anthracene-3,4-diol (DMBA-3,4-diol) and benzo[g]chrysene-11,12-diol). In vitro, DMBA-3,4-diol was oxidized by AKR1C4 to the highly reactive 7,12-dimethylbenz[a]anthracene-3,4-dione (DMBA-3,4-dione), which was trapped in situ as its mono- and bis-thioether conjugates, which arise from the sequential 1,6- and 1,4-Michael addition of thiol nucleophiles. Human multiple tissue expression array analysis showed that AKR1C isoform transcripts were highly expressed in the human lung carcinoma cell line A549. Isoform-specific reverse transcriptase-PCR showed that AKR1C1, AKR1C2, and AKR1C3 transcripts were all expressed. Western blot analysis and functional assays confirmed high expression of AKR1C protein and enzyme activity in these lung cells. A549 cell lysates were found to convert DMBA-3,4-diol to the corresponding o-quinone. In trapping experiments, LC/MS analysis identified peaks in the cell lysates that corresponded to the synthetically prepared mono- and bis-thioether conjugates of DMBA-3,4-dione. This quinone is one of the most electrophilic and redox-active o-quinones produced by AKRs. Its unique ability to form bis-thioether conjugates parallels the formation of bis- and tris-glutathionyl conjugates of hydroquinone, which display end organ toxicity. The ability to measure DMBA-3,4-dione formation in A549 cells implicates the AKR pathway in the metabolic activation of PAH in human lung.
Collapse
Affiliation(s)
- Nisha T Palackal
- Departments of Biochemistry and Biophysics and Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
39
|
Dreij K, Sundberg K, Johansson AS, Nordling E, Seidel A, Persson B, Mannervik B, Jernström B. Catalytic activities of human alpha class glutathione transferases toward carcinogenic dibenzo[a,l]pyrene diol epoxides. Chem Res Toxicol 2002; 15:825-31. [PMID: 12067250 DOI: 10.1021/tx025519i] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, human glutathione transferases (GSTs) of alpha class have been assayed with the ultimate carcinogenic (-)-anti- and (+)-syn-diol epoxides (DEs) derived from the nonplanar dibenzo[a,l]pyrene (DBPDE) and the (+)-anti-diol epoxide of the planar benzo[a]pyrene [(+)-anti-BPDE] in the presence of glutathione (GSH). In all DEs, the benzylic oxirane carbon reacting with GSH, possess R-absolute configuration. GSTA1-1 demonstrated activity with all DEs tested whereas A2-2 and A3-3 only were active with the DBPDE enantiomers. With GSTA4-4, no detectable activity was observed. GSTA1-1 was found to be the most efficient enzyme and demonstrated a catalytic efficiency (k(cat)/K(m)) of 464 mM(-)(1) s(-)(1) with (+)-syn-DBPDE. This activity was about 7-fold higher than that observed with (-)-anti-DBPDE and more than 65-fold higher than previously observed with less complex fjord-region DEs. GSTA3-3 also demonstrated high k(cat)/K(m) with the DEs of DBP and a high preference for the (+)-syn-DBPDE enantiomer [190 vs 16.2 mM(-)(1) s(-)(1) for (-)-anti-DBPDE]. Lowest k(cat)/K(m) value of the active enzymes was observed with GSTA2-2. In this case, 30.4 mM(-)(1) s(-)(1) was estimated for (+)-syn-DBPDE and 3.4 mM(-)(1) s(-)(1) with (-)-anti-DBPDE. Comparing the activity of the alpha class GSTs with (-)-anti-DBPDE and (+)-anti-BPDE revealed that GSTA1-1 was considerable more active with the former substrate (about 25-fold). Molecular modeling studies showed that the H-site of GSTA1-1 is deeper and wider than that of GSTA4-4. This is mainly due to the changes of Ser212-->Tyr212 and Ala216-->Val216, which cause a shallower active site, which cannot accommodate large substrates such as DBPDE. The higher activity of GSTA1-1 with (+)-syn-DBPDE relative to (-)-anti-DBPDE is explained by the formation of more favorable interactions between the substrate and the enzyme-GSH complex. The presence of GSTA1-1 in significant amounts in human lung, a primary target tissue for PAH carcinogenesis, may be an important factor for the protection against the harmful action of this type of potent carcinogenic intermediates.
Collapse
Affiliation(s)
- Kristian Dreij
- The Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Box 210, SE-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chang HF, Huffer DM, Chiarelli MP, Cho BP. Characterization of DNA adducts and tetraols derived from anti-benzo[ghi]fluoranthane-3,4-dihydrodiol-5,5a-epoxide. Chem Res Toxicol 2002; 15:187-97. [PMID: 11849045 DOI: 10.1021/tx010133d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A total of seven DNA adducts and two racemic tetraols derived from anti-benzo[ghi]fluoranthene-3,4-dihydrodiol-5,5a-epoxide (anti-B[ghi]FDE, 2) were characterized by analyses of UV, (1)H NMR, CD, and MALDI mass spectra. The structure of 2 is the first example of a diolepoxide in which a fully fused cyclopentane ring is covalently linked to the saturated ring bearing the epoxide function. Compound 2 is also a conformationally rigid structure analogue of the extensively studied anti-benzo[c]phenanthrene-3,4-dihydrodiol-1,2-epoxide (anti-BcPDE), thus serving as a model for probing the diolepoxide-DNA interaction [Chang et al. (2002) Chem. Res. Toxicol. 15, 198-208 (following paper in this issue)]. The most abundant adducts are formed from trans- or cis-openings of the epoxide by the amino groups of either deoxyguanosine or deoxyadenosine. Adducts of minor abundance formed by the attachment of the diolepoxide to the amino group of deoxycytidine N(4) and guanine N(7) were also isolated. Post-source decay MALDI spectra of the (M + H)(+) molecule ions are consistent with the assigned adduct structures. The lack of a typical benzylic proton at the site of deoxynucleoside attachment necessitated a new NMR assignment strategy. Despite the steric constraint, the epoxide ring opening of 2 occurred exclusively at the dibenzylic C5a, not at C5. The assignments on the trans- and cis-epoxide opening were made based on the molecular modeling structures, i.e., the pseudoaxial H5 in cis-adducts is placed directly under the strong influence of a shielding cone of the aromatic ring system, while the same proton in trans-adducts adopts a pseudoequatorial conformation, thereby protruding away from the aromatic ring system. The absolute configuration at the site of deoxynucleoside attachment (C5a) was tentatively assigned on the basis of the empirical rules that have been established for deoxynucleoside-adducts derived from traditional alternant PAH diolepoxides.
Collapse
Affiliation(s)
- Hui-Fang Chang
- Department of Biomedical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | |
Collapse
|
41
|
Chang HF, Huffer DM, Chiarelli MP, Blankenship LR, Culp SJ, Cho BP. Characterization of DNA adducts derived from syn-benzo[ghi]fluoranthene-3,4-dihydrodiol-5,5a-epoxide and comparative DNA binding studies with structurally-related anti-diolepoxides of benzo[ghi]fluoranthene and benzo[c]phenanthrene. Chem Res Toxicol 2002; 15:198-208. [PMID: 11849046 DOI: 10.1021/tx0101346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This paper reports structural characterization of the adducts and tetraols formed from syn-benzo[ghi]fluoranthene-3,4-dihydrodiol-5,5a-epoxide (syn-B[ghi]FDE, 3) and comparative DNA-binding and mutagenicity studies involving 3, anti-B[ghi]FDE (2), and anti-benzo[c]phenanthrene-11,12-dihydrodiol-13,14-epoxide (anti-BcPDE, 5). The structures of nine DNA adducts and two racemic tetraols derived from 3 have been determined spectroscopically. Similar characterization of adducts obtained from the anti-isomer 2 was described in the preceding paper in this issue [Chang et al. (2002) Chem. Res. Toxicol. 15, 187-197]. The majority of DNA adducts with 3 are those from the trans- or cis-opening of the epoxide at C5a by the exocyclic amino groups of dG, dA, and dC. The diolepoxides 2 and 3 are rigid structure analogues of anti- and syn-BcPDE (5 and 6), respectively, thus serving as models for probing molecular deformity and diol conformation in diolepoxide-DNA interaction. Comparative DNA binding experiments indicate that 57% of 2 and 33% of 3 were converted into DNA adducts, whereas a 71% conversion was observed for 5. In general, lower percentages were observed with denatured calf-thymus DNA. As for base selectivity, 2 showed a greater affinity for dA relative to dG (dA/dG ratio, 0.79) than 3 (0.56) when reacted with native calf-thymus DNA. A much higher dA/dG ratio (1.41) was obtained for 5. The overall dA/dG ratios were lower with denatured DNA, indicating the importance of the secondary structure of DNA for both adduct formation and chemical selectivity. The T-shape pseudo-diaxial diols of 3 appears to have favorable electrostatic interactions with the nearby phosphate backbone in the minor groove of DNA, thereby yielding greater amounts of dG adducts than the pseudo-diequatorial 2. The anti-isomer 2 was found to be seven times more mutagenic than 3, but they are significantly less mutagenic than the nonplanar analogue 5 when tested in Salmonella typhimurium TA 100.
Collapse
Affiliation(s)
- Hui-Fang Chang
- Department of Biomedical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | | | | | |
Collapse
|
42
|
Ruan Q, Kolbanovskiy A, Zhuang P, Chen J, Krzeminski J, Amin S, Geacintov NE. Synthesis and characterization of site-specific and stereoisomeric fjord dibenzo[a,l]pyrene diol epoxide-N(6)-adenine adducts: unusual thermal stabilization of modified DNA duplexes. Chem Res Toxicol 2002; 15:249-61. [PMID: 11849052 DOI: 10.1021/tx010157k] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The fjord polycyclic aromatic hydrocarbon compound dibenzo[a,l]pyrene (DB[a,l]P) is significantly more tumorigenic than the bay region benzo[a]pyrene in animal model systems. The molecular origins of the unusually strong genotoxic properties of DB[a,l]P and its fjord region diol epoxide metabolites are of great interest and are believed to be related to the structural characteristics of the DNA adducts formed. Site-specifically modified oligonucleotides were prepared by reacting the single adenine residue in 5'-d(CTCTCACTTCC) (I) with the racemic fjord diol epoxide r11,t12-dihydrodiol-t13,14-epoxide-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (anti-DB[a,l]PDE) in aqueous solutions. Four different oligonucleotides I with the single adenosine residues involving a covalent bond between the C14 position of DB[a,l]PDE and N(6)-dA are identified and purified. The CD spectra of the mononucleotide adducts are similar to those of Li et al. [Li et al. (1999) Chem. Res. Toxicol. 12, 758] who characterized DB[a,l]PDE-N(6)-dA adducts by a combination of CD and NMR methods. The stereochemical properties of each of the four DB[a,l]PDE-modified oligonucleotides were assigned on the basis of a combination of empirical CD rules and other approaches and differ from those of Li et al. The thermal melting points, T(m), of the unmodified duplex of I with its complementary strand (IC), T(m) = 43.8 +/- 0.5 degrees C, were compared with the same duplexes containing stereoisomeric anti-DB[a,l]PDE-N(6)-dA lesions. The T(m) of duplexes I.IC containing lesions with R absolute configurations at C14 of the DB[a,l]PDE residues are greater by 6-8 degrees C, while those with S configuration are lower by 6-10 degrees C. Similar effects are observed with adducts in the same sequence context derived from the fjord PAH anti-diol epoxides of benzo[g]chrysene, while duplexes containing lesions derived from benzo[c]phenanthrene diol epoxides with 1R and 1S configurations exhibit unchanged T(m) values. In contrast, the T(m) values of duplexes with lesions derived from the bay region benzo[a]pyrene diol epoxides (B[a]PDE) in the same sequence are lower by 12 degrees (10R adducts) and by 19 degrees (10S adducts). The greater thermal stabilities of duplexes with fjord PAH-N(6)-dA lesions relative to those with bay region B[a]PDE-N(6)-dA adducts, are correlated with lower susceptibilities of excision by human nucleotide excision repair enzymes [Buterin et al. (2000) Cancer Res. 60, 1849]. The implications of these relationships are discussed in terms of present knowledge of the conformations of fjord and bay region PAH diol epoxide-N(6)-dA lesions in double stranded DNA.
Collapse
Affiliation(s)
- Qian Ruan
- Chemistry Department, New York University, New York, New York 10003-5180, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Wu M, Yan S, Patel DJ, Geacintov NE, Broyde S. Cyclohexene ring and Fjord region twist inversion in stereoisomeric DNA adducts of enantiomeric benzo[c]phenanthrene diol epoxides. Chem Res Toxicol 2001; 14:1629-42. [PMID: 11743746 DOI: 10.1021/tx010152n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The sterically hindered, nonplanar fjord region polycyclic aromatic hydrocarbons (PAHs) have been of great interest because of the exceptionally high mutagenic and tumorigenic activity of certain of their metabolically activated diol epoxides. Benzo[c]phenanthrene (B[c]Ph), a representative fjord region PAH, is metabolically activated to a pair of enantiomers, 1S,2R,3R,4S-3,4-dihydroxy-1,2-epoxy-1,2,3,4-tetrahydrobenzo[c]phenanthrene, (+)-anti-B[c]PhDE, and the corresponding 1R,2S,3S,4R enantiomer, (-)-anti-B[c]PhDE. Both of these can bind covalently to the amino group of purines in DNA via trans addition. In the present work we carry out an extensive computational investigation of the 1R(+) and 1S(-)-trans-anti-B[c]Ph adducts to the base guanine, with the goal of delineating the conformational possibilities for the fjord region and the adjacent cyclohexene-type benzylic ring and their relevance to DNA duplexes. We created 10 369 starting structures for each adduct and minimized the energy using AMBER 5.0. A limited set of conformational families is computed, in which the R isomer structures are near mirror images of the S isomer. The benzylic rings are essentially all half-chair-type. Cyclohexene-type ring inversion as well as fjord region twist inversion are possible for each isomer and are correlated. DNA duplexes modified by fjord region adducts select conformers from the allowed families that optimize stacking interactions, which contributes to the stability of the carcinogen-intercalated DNA duplex structures [Cosman et al. (1993) Biochemistry 32, 12488-12497; Cosman et al. (1995) Biochemistry 34, 1295-1307; Suri et al. (1999) J. Mol. Biol. 292, 289-307; Lin et al. (2001) J. Mol. Biol. 306, 1059-1080]. In turn, this stability could contribute to the resistance to repair by the human nucleotide excision system observed in fjord region adducts [Buterin et al. (2000) Cancer Res. 60, 1849-1856].
Collapse
Affiliation(s)
- M Wu
- Chemistry Department, New York University, New York, New York 10003, USA
| | | | | | | | | |
Collapse
|
44
|
Lin CH, Huang X, Kolbanovskii A, Hingerty BE, Amin S, Broyde S, Geacintov NE, Patel DJ. Molecular topology of polycyclic aromatic carcinogens determines DNA adduct conformation: a link to tumorigenic activity. J Mol Biol 2001; 306:1059-80. [PMID: 11237618 DOI: 10.1006/jmbi.2001.4425] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report below on the solution structures of stereoisomeric "fjord" region trans-anti-benzo[c]phenanthrene-N2-guanine (designated (BPh)G) adducts positioned opposite cytosine within the (C-(BPh)G-C).(G-C-G) sequence context. We observe intercalation of the phenanthrenyl ring with stereoisomer-dependent directionality, without disruption of the modified (BPh)G.C base-pair. Intercalation occurs to the 5' side of the modified strand for the 1S stereoisomeric adduct and to the 3' side for the 1R stereoisomeric adduct, with the S and R-trans-isomers related to one another by inversion in a mirror plane at all four chiral carbon atoms on the benzylic ring. Intercalation of the fjord region BPh ring into the helix without disruption of the modified base-pair is achieved through buckling of the (BPh)G.C base-pair, displacement of the linkage bond from the plane of the (BPh)G base, adaptation of a chair pucker by the BPh benzylic ring and the propeller-like deviation from planarity of the BPh phenanthrenyl ring. It is noteworthy that intercalation without base-pair disruption occurs from the minor groove side for S and R-trans-anti BPh-N2-guanine adducts opposite C, in contrast to our previous demonstration of intercalation without modified base-pair disruption from the major groove side for S and R-trans-anti BPh-N6-adenine adducts opposite T. Further, these results on fjord region 1S and 1R-trans-anti (BPh)G adducts positioned opposite C are in striking contrast to earlier research with "bay" region benzo[a]pyrene-N2-guanine (designated (BP)G) adducts positioned opposite cytosine, where 10S and 10R-trans-anti stereoisomers were positioned with opposite directionality in the minor groove without modified base-pair disruption. They also are in contrast to the 10S and 10R-cis-anti stereoisomers of (BP)G adducts opposite C, where the pyrenyl ring is intercalated into the helix with directionality, but the modified base and its partner on the opposite strand are displaced out of the helix. These results are especially significant given the known greater tumorigenic potential of fjord region compared to bay region polycyclic aromatic hydrocarbons. The tumorigenic potential has been linked to repair efficiency such that bay region adducts can be readily repaired while their fjord region counterparts are refractory to repair. Our structural results propose a link between DNA adduct conformation and repair-dependent mutagenic activity, which could ultimately translate into structure-dependent differences in tumorigenic activities. We propose that the fjord region minor groove-linked BPh-N2-guanine and major groove-linked BPh-N6-adenine adducts are refractory to repair based on our observations that the phenanthrenyl ring intercalates into the helix without modified base-pair disruption. The helix is therefore minimally perturbed and the phenanthrenyl ring is not available for recognition by the repair machinery. By contrast, the bay region BP-N2-G adducts are susceptible to repair, since the repair machinery can recognize either the pyrenyl ring positioned in the minor groove for the trans-anti groove-aligned stereoisomers, or the disrupted modified base-pair for the cis-anti base-displaced intercalated stereoisomers.
Collapse
Affiliation(s)
- C H Lin
- Cellular Biochemistry & Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chapter 4 Polycyclic aromatic hydrocarbon (PAH) metabolites. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1567-7192(01)80007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
46
|
Spitsbergen JM, Tsai HW, Reddy A, Miller T, Arbogast D, Hendricks JD, Bailey GS. Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenz[a]anthracene by two exposure routes at different developmental stages. Toxicol Pathol 2000; 28:705-15. [PMID: 11026607 DOI: 10.1177/019262330002800511] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using zebrafish, Danio rerio, initial pioneering work in the 1960s revealed carcinogen responsiveness of fish, yet very few subsequent tumorigenesis investigations have utilized this species. We exposed embryos (60 hours postfertilization) and fry (3 week posthatch) to 7,12-dimethylbenz[a]anthracene (DMBA) by immersion in aqueous solutions for 24 hours, at concentrations of 0-1 or 0-5 ppm (mg/L), respectively. Juvenile zebrafish 2 months posthatch were fed a diet containing 0-1,000 ppm DMBA for 4 months. Fish were sampled for histologic evaluation at 7-12 months after the onset of carcinogen treatment. Fry were most responsive to DMBA and showed the widest diversity of target tissues and histologic types of neoplasia, having several types of epithelial, mesenchymal, and neural neoplasia. The principal target tissues for carcinogenic response were liver following embryo or fry exposure, with gill and blood vessel the second and third most responsive tissues in fry. Intestine was the primary target and gill a secondary target in fish that received dietary DMBA as juveniles. These studies indicate that young zebrafish are most responsive to DMBA, showing a greater diversity of neoplasm types than rainbow trout. Thus, zebrafish are a valuable model system in which to study mechanistic aspects of the carcinogenesis process.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/administration & dosage
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Animals
- Body Weight
- Carcinogens/administration & dosage
- Carcinogens/toxicity
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/pathology
- Gills/drug effects
- Gills/pathology
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/pathology
- Mesoderm/drug effects
- Mesoderm/pathology
- Neoplasms, Connective and Soft Tissue/chemically induced
- Neoplasms, Connective and Soft Tissue/pathology
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/epidemiology
- Neoplasms, Experimental/pathology
- Neoplasms, Glandular and Epithelial/chemically induced
- Neoplasms, Glandular and Epithelial/pathology
- Neoplasms, Vascular Tissue/chemically induced
- Neoplasms, Vascular Tissue/pathology
- Neural Crest/drug effects
- Neural Crest/pathology
- Sex Ratio
- Zebrafish/embryology
Collapse
Affiliation(s)
- J M Spitsbergen
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis 97331, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Jacob J, Raab G, Soballa VJ, Luch A, Grimmer G, Greim H, Doehmer J, Morrison HG, Stegeman JJ, Seidel A. Species-dependent Metabolism of Benzo[c]phenanthrene and Dibenzo[a, l]pyrene by Various CYP450 Isoforms. Polycycl Aromat Compd 2000. [DOI: 10.1080/10406639908020586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Smith LE, Denissenko MF, Bennett WP, Li H, Amin S, Tang M, Pfeifer GP. Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons. J Natl Cancer Inst 2000; 92:803-11. [PMID: 10814675 DOI: 10.1093/jnci/92.10.803] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in combustion products of organic matter, including cigarette smoke. Metabolically activated diol epoxides of these compounds, including benzo[a]pyrene diol epoxide (B[a]PDE), have been suggested as causative agents in the development of lung cancer. We previously mapped the distribution of B[a]PDE adducts within the p53 tumor suppressor gene (also known as TP53), which is mutated in 60% of human lung cancers, and found that B[a]PDE adducts preferentially form at lung cancer mutational hotspots (codons 154, 157, 158, 245, 248, and 273). Other PAHs may be important in lung cancer as well. METHODS Here we have mapped the distribution of adducts induced by diol epoxides of additional PAHs: chrysene (CDE), 5-methylchrysene (5-MCDE), 6-methylchrysene (6-MCDE), benzo[c]phenanthrene (B[c]PDE), and benzo[g]chrysene (B[g]CDE) within exons 5, 7, and 8 of the p53 gene in human bronchial epithelial cells. RESULTS CDE exposure produced only low levels of adducts. Exposure of cells to the other activated PAHs resulted in DNA damage patterns similar to those previously observed with B[a]PDE but with some distinct differences. 5-MCDE, 6-MCDE, B[g]CDE, and B[c]PDE efficiently induced adducts at guanines within codons 154, 156, 157, 158, and 159 of exon 5, codons 237, 245 and 248 of exon 7, and codon 273 of exon 8, but the relative levels of adducts at each site varied for each compound. B[g]CDE, B[c]PDE, and 5-MCDE induced damage at codon 158 more selectively than 6-MCDE or B[a]PDE. The sites most strongly involved in PAH adduct formation were also the sites of highest mutation frequency (codons 157, 158, 245, 248, and 273). CONCLUSION The data suggest that PAHs contribute to the mutational spectrum in human lung cancer.
Collapse
Affiliation(s)
- L E Smith
- Department of Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Hecht SS. Metabolically activated carcinogens and mutations in the p53 tumor suppressor gene in lung cancer. J Natl Cancer Inst 2000; 92:782-3. [PMID: 10814664 DOI: 10.1093/jnci/92.10.782] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Pal A, Seidel A, Xia H, Hu X, Srivastava SK, Oesch F, Singh SV. Specificity of murine glutathione S-transferase isozymes in the glutathione conjugation of (-)-anti- and (+)-syn-stereoisomers of benzo[g]chrysene 11,12-diol 13,14-epoxide. Carcinogenesis 1999; 20:1997-2001. [PMID: 10506116 DOI: 10.1093/carcin/20.10.1997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Specificities of murine glutathione (GSH) S-transferase (GST) isozymes mGSTA1-1, mGSTA2-2, mGSTA3-3 and mGSTA4-4 (alpha class), mGSTP1-1 (pi class) and mGSTM1-1 (mu class) for GSH conjugation of (-)-anti- and (+)-syn-stereoisomers of benzo[g]chrysene 11, 12-diol 13,14-epoxide (B[g]CDE), the activated metabolites of the environmental pollutant benzo[g]chrysene (B[g]C), have been determined. When GST activity was determined as a function of varying (-)-anti- or (+)-syn-B[g]CDE concentration (10-320 microM) at a fixed saturating concentration of GSH (2 mM), each isozyme obeyed Michaelis-Menten kinetics. mGSTA1-1 was significantly more efficient than other murine GSTs in the GSH conjugation of not only (-)-anti-stereoisomer but also (+)-syn-B[g]CDE. For example, the catalytic efficiency (k(cat)/K(m)) of mGSTA1-1 towards (-)-anti-B[g]CDE was approximately 2.3- to 16.6-fold higher compared with other murine GSTs. Likewise, mGSTA1-1 was approximately 2.7-, 6.7-, 4.4- and 12.4-fold more efficient than mGSTA2-2, mGSTA3-3, mGSTP1-1 and mGSTM1-1, respectively, in catalyzing the GSH conjugation of (+)-syn-B[g]CDE. Interestingly, mGSTA4-4, which also belongs to class alpha, was virtually inactive towards both stereoisomers of B[g]CDE. The results of the present study indicate that murine GSTs, especially alpha class isozymes, significantly differ in their ability to detoxify B[g]CDE stereoisomers and that mGSTA1-1 plays a major role in the detoxification of both (-)-anti- and (+)-syn-B[g]CDE, which among four B[g]CDE stereoisomers are formed from the carcinogen B[g]C as major DNA binding metabolites.
Collapse
Affiliation(s)
- A Pal
- Cancer Research Laboratory, Mercy Cancer Institute, Mercy Hospital of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | |
Collapse
|