1
|
Yokoi A, Ogomori R, Oguri Y, Hashimura M, Saegusa M. EBP50 regulates senescence and focal adhesion in endometrial carcinoma. Exp Cell Res 2025; 446:114465. [PMID: 39971177 DOI: 10.1016/j.yexcr.2025.114465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/29/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
Ezrin-radixin-moesin (ERM)-binding phosphoprotein 50 (EBP50) is a multifunctional scaffold protein that is highly expressed in polarized epithelial cells. Here, we focused on the functional roles of EBP50 in endometrial carcinoma (Em Ca). We analyzed immunohistochemical sections from 121 Em Ca and 30 normal samples. We also characterized EBP50 overexpression or knockout (KO) Em Ca cell lines. High levels of membranous (Me) EBP50 expression were observed in endometrial tissues from normal menstrual cycles, in contrast to the transient upregulation of cytoplasmic (Cyt) EBP50 in tissues in the proliferative phase; this was probably in response to estrogenic effects. There was a significant stepwise reduction of Me-EBP50 expression from grade (G) 1 to G3 Em Cas, which was consistent with the loss of glandular structures. Conversely, Cyt-EBP50 levels increased with in the higher tumor grades. Low Me-EBP50 expression was significantly associated with tumor lymphovascular invasion and short overall survival. Whereas EBP50 KO led to senescence and reduced proliferation and motility, overexpression elicited the opposite phenotypes. Moreover, the number of focal adhesions (FAs), which mediate cell migration, was significantly increased in EBP50 overexpressing cells but decreased in the KO cells. In conclusion, Me- and/or Cyt-EBP50 expression contributes to acceleration of cell motility through enhancement of FA formation, and inhibits senescence to promote cytokinesis. Together, these effects contribute to Em Ca aggressiveness.
Collapse
Affiliation(s)
- Ako Yokoi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Ryoya Ogomori
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yasuko Oguri
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
2
|
Itou T, Ishibashi Y, Oguri Y, Hashimura M, Yokoi A, Harada Y, Fukagawa N, Hayashi M, Ono M, Kusano C, Saegusa M. EBP50 Depletion and Nuclear β-Catenin Accumulation Engender Aggressive Behavior of Colorectal Carcinoma through Induction of Tumor Budding. Cancers (Basel) 2023; 16:183. [PMID: 38201610 PMCID: PMC10778391 DOI: 10.3390/cancers16010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Ezin-radixin-moesin-binding phosphoprotein 50 (EBP50) is a scaffold protein that interacts with several partner molecules including β-catenin. Here, we examined the crosstalk between EBP50 and nuclear catenin during colorectal carcinoma (CRC) progression. In clinical samples, there were no correlations between the subcellular location of EBP50 and any clinicopathological factors. However, EBP50 expression was significantly lower specifically in the outer areas of tumor lesions, in regions where tumor budding (BD) was observed. Low EBP50 expression was also significantly associated with several unfavorable prognostic factors, suggesting that EBP50 depletion rather than its overexpression or subcellular distribution plays an important role in CRC progression. In CRC cell lines, knockout of EBP50 induced epithelial-mesenchymal transition (EMT)-like features, decreased proliferation, accelerated migration capability, and stabilized nuclear β-catenin due to disruption of the interaction between EBP50 and β-catenin at the plasma membrane. In addition, Slug expression was significantly higher in outer lesions, particularly in BD areas, and was positively correlated with nuclear β-catenin status, consistent with β-catenin-driven transactivation of the Slug promoter. Together, our data suggest that EBP50 depletion releases β-catenin from the plasma membrane in outer tumor lesions, allowing β-catenin to accumulate and translocate to the nucleus, where it transactivates the Slug gene to promote EMT. This in turn triggers tumor budding and contributes to the progression of CRC to a more aggressive phase.
Collapse
Affiliation(s)
- Takashi Itou
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (T.I.); (Y.I.); (Y.O.); (M.H.); (A.Y.); (Y.H.); (N.F.); (M.H.); (M.O.)
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan;
| | - Yu Ishibashi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (T.I.); (Y.I.); (Y.O.); (M.H.); (A.Y.); (Y.H.); (N.F.); (M.H.); (M.O.)
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan;
| | - Yasuko Oguri
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (T.I.); (Y.I.); (Y.O.); (M.H.); (A.Y.); (Y.H.); (N.F.); (M.H.); (M.O.)
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (T.I.); (Y.I.); (Y.O.); (M.H.); (A.Y.); (Y.H.); (N.F.); (M.H.); (M.O.)
| | - Ako Yokoi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (T.I.); (Y.I.); (Y.O.); (M.H.); (A.Y.); (Y.H.); (N.F.); (M.H.); (M.O.)
| | - Yohei Harada
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (T.I.); (Y.I.); (Y.O.); (M.H.); (A.Y.); (Y.H.); (N.F.); (M.H.); (M.O.)
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan;
| | - Naomi Fukagawa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (T.I.); (Y.I.); (Y.O.); (M.H.); (A.Y.); (Y.H.); (N.F.); (M.H.); (M.O.)
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan;
| | - Misato Hayashi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (T.I.); (Y.I.); (Y.O.); (M.H.); (A.Y.); (Y.H.); (N.F.); (M.H.); (M.O.)
| | - Mototsugu Ono
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (T.I.); (Y.I.); (Y.O.); (M.H.); (A.Y.); (Y.H.); (N.F.); (M.H.); (M.O.)
| | - Chika Kusano
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan;
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (T.I.); (Y.I.); (Y.O.); (M.H.); (A.Y.); (Y.H.); (N.F.); (M.H.); (M.O.)
| |
Collapse
|
3
|
Nakagawa M, Matsumoto T, Yokoi A, Hashimura M, Oguri Y, Konno R, Ishibashi Y, Ito T, Ohhigata K, Harada Y, Fukagawa N, Kodera Y, Saegusa M. Interaction between membranous EBP50 and myosin 9 as a favorable prognostic factor in ovarian clear cell carcinoma. Mol Oncol 2023; 17:2168-2182. [PMID: 37539980 PMCID: PMC10552901 DOI: 10.1002/1878-0261.13503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
Ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) is a scaffold protein that is required for epithelial polarity. Knockout (KO) of membranous EBP50 (Me-EBP50) in ovarian clear cell carcinoma (OCCC) cells induced an epithelial-mesenchymal transition (EMT)-like phenotype, along with decreased proliferation, accelerated migration capability, and induction of cancer stem cell (CSC)-like properties. Shotgun proteomics analysis of proteins that co-immunoprecipitated with EBP50 revealed that Me-EBP50 strongly interacts with myosin 9 (MYH9). Specific inhibition of MYH9 with blebbistatin phenocopied Me-EBP50 KO, and blebbistatin treatment potentiated the effects of Me-EBP50 KO. In OCCC cells from clinical samples, Me-EBP50 and MYH9 were co-localized at the apical plasma membrane. Patients with a combination of Me-EBP50-high and MYH9-high scores had the best prognosis for overall and progression-free survival. Our data suggest that Me-EBP50 has tumor-suppressive effects through the establishment and maintenance of epithelial polarization. By contrast, loss of Me-EBP50 expression induces EMT-like phenotypes, probably due to MYH9 dysfunction; this results in increased cell mobility and enhanced CSC-like properties, which in turn promote OCCC progression.
Collapse
Affiliation(s)
- Mayu Nakagawa
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Toshihide Matsumoto
- Department of PathologyKitasato University School of Allied Health ScienceSagamiharaJapan
| | - Ako Yokoi
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Miki Hashimura
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Yasuko Oguri
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Ryo Konno
- Center for Disease Proteomics, School of ScienceKitasato UniversitySagamiharaJapan
| | - Yu Ishibashi
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Takashi Ito
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Kensuke Ohhigata
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Yohei Harada
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Naomi Fukagawa
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Yoshio Kodera
- Center for Disease Proteomics, School of ScienceKitasato UniversitySagamiharaJapan
| | - Makoto Saegusa
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| |
Collapse
|
4
|
PTEN overexpression and nuclear β-catenin stabilization promote morular differentiation through induction of epithelial-mesenchymal transition and cancer stem cell-like properties in endometrial carcinoma. Cell Commun Signal 2022; 20:181. [PMID: 36411429 PMCID: PMC9677676 DOI: 10.1186/s12964-022-00999-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Although a lack of functional PTEN contributes to tumorigenesis in a wide spectrum of human malignancies, little is known about the functional role of its overexpression in the tumors. The current study focused on PTEN overexpression in endometrial carcinoma (Em Ca). METHODS The functional impact of PTEN overexpression was assessed by Em Ca cell lines. Immunohistochemical analyses were also conducted using 38 Em Ca with morular lesions. RESULTS Em Ca cell lines stably overexpressing PTEN (H6-PTEN) exhibited epithelial-mesenchymal transition (EMT)-like features, probably through β-catenin/Slug-meditated suppression of E-cadherin. PTEN overexpression also inhibited cell proliferation, accelerated cellular senescence, increased apoptotic features, and enhanced migration capability. Moreover, H6-PTEN cells exhibited cancer stem cell (CSC)-like properties, along with high expression of aldehyde dehydrogenase 1 and CD44s, a large ALDH 1high population, enriched spheroid formation, and β-catenin-mediated upregulation of cyclin D2, which is required for persistent CSC growth. In clinical samples, immunoreactivities for PTEN, as well as CSC-related molecules, were significantly higher in morular lesions as compared to the surrounding carcinomas. PTEN score was positively correlated with expression of nuclear β-catenin, cytoplasmic CD133, and CD44v6, and negatively with cell proliferation. Finally, estrogen receptor-α (ERα)-dependent expression of Ezrin-radixin-moesin-binding phophoprotein-50 (EBP50), a multifunctional scaffolding protein, acts as a negative regulator of morular formation by Em Ca cells through interacting with PTEN and β-catenin. CONCLUSION In the abscess of ERα/EBP50 expression, PTEN overexpression and nuclear β-catenin stabilization promote the establishment and maintenance of morular phenotype associated with EMT/CSC-like features in Em Ca cells. Video Abstract.
Collapse
|
5
|
Nakagawa M, Higuchi S, Hashimura M, Oguri Y, Matsumoto T, Yokoi A, Ishibashi Y, Ito T, Saegusa M. Functional interaction between S100A1 and MDM2 may modulate p53 signaling in normal and malignant endometrial cells. BMC Cancer 2022; 22:184. [PMID: 35177036 PMCID: PMC8855586 DOI: 10.1186/s12885-022-09249-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/13/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND S100A1 expression is deregulated in a variety of human malignancies, but its role in normal and malignant endometrial cells is unclear. METHODS We used endometrial carcinoma (Em Ca) cell lines to evaluate the physical and functional interaction of S100A1 with p53 and its negative regulator, mouse double minute 2 (MDM2). We also evaluated the expression of S100A1, p53, and MDM2 in clinical samples consisting of 89 normal endometrial and 189 Em Ca tissues. RESULTS S100A1 interacted with MDM2 but not p53 in Em Ca cell lines. Treatment of cells stably overexpressing S100A1 with Nutlin-3A, an inhibitor of the p53/MDM2 interaction, increased expression of p53-target genes including p21waf1 and BAX. S100A1 overexpression enhanced cellular migration, but also sensitized cells to the antiproliferative and proapoptotic effects of Adriamycin, a genotoxic agent; these phenotypes were abrogated when S100A1 was knocked down using shRNA. In clinical samples from normal endometrium, S100A1 expression was significantly higher in endometrial glandular cells of the middle/late secretory and menstrual stages when compared to cells in the proliferative phases; high S100A1 was also positively correlated with expression of MDM2 and p21waf1 and apoptotic status, and inversely correlated with Ki-67 scores. However, such correlations were absent in Em Ca tissues. CONCLUSION The interaction between S100A1 and MDM2 may modulate proliferation, susceptibility to apoptosis, and migration through alterations in p53 signaling in normal- but not malignant-endometrial cells.
Collapse
Affiliation(s)
- Mayu Nakagawa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Shyoma Higuchi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yasuko Oguri
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Ako Yokoi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yu Ishibashi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Takashi Ito
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
6
|
Sonnessa M, Sergio S, Saponaro C, Maffia M, Vergara D, Zito FA, Tinelli A. The Biological Relevance of NHERF1 Protein in Gynecological Tumors. Front Oncol 2022; 12:836630. [PMID: 35223518 PMCID: PMC8878902 DOI: 10.3389/fonc.2022.836630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Gynecological cancer management remains challenging and a better understanding of molecular mechanisms that lead to carcinogenesis and development of these diseases is needed to improve the therapeutic approaches. The Na+/H+ exchanger regulatory factor 1 (NHERF1) is a scaffold protein that contains modular protein-interaction domains able to interact with molecules with an impact on carcinogenesis and cancer progression. During recent years, its involvement in gynecological cancers has been explored, suggesting that NHERF1 could be a potential biomarker for the development of new targeted therapies suitable to the management of these tumors. This comprehensive review provides an update on the recent study on NHERF1 activity and its pathological role in cervical and ovarian cancer, as well as on its probable involvement in the therapeutic landscape of these cancer types.
Collapse
Affiliation(s)
- Margherita Sonnessa
- Functional Biomorphology Laboratory, Pathology Department, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Sara Sergio
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Concetta Saponaro
- Functional Biomorphology Laboratory, Pathology Department, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
- *Correspondence: Concetta Saponaro,
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Francesco Alfredo Zito
- Functional Biomorphology Laboratory, Pathology Department, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology, “Veris delli Ponti” Hospital, Lecce, Italy
| |
Collapse
|