1
|
King SE, Schatz NA, Babenko O, Ilnytskyy Y, Kovalchuk I, Metz GAS. Prenatal maternal stress in rats alters the epigenetic and transcriptomic landscape of the maternal-fetal interface across four generations. Commun Biol 2025; 8:38. [PMID: 39794497 PMCID: PMC11723964 DOI: 10.1038/s42003-024-07444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Prenatal maternal stress (PNMS) determines lifetime mental and physical health. Here, we show in rats that PNMS has consequences for placental function and fetal brain development across four generations (F0-F3). Using a systems biology approach, comprehensive DNA methylation (DNAm), miRNA, and mRNA profiling revealed a moderate impact of PNMS in the F1 generation, but drastic changes in F2 and F3 generations, suggesting compounding effects of PNMS with each successive generation. Both maternal and placental miRNA gene targets included de novo DNA methyltransferases, indicating robust PNMS-induced disruption in the complex epigenetic regulatory network between miRNAs and DNAm. Transgenerational programming mainly involved genes and biological pathways associated with neurological and psychiatric diseases which were linked to maternal-fetal crosstalk facilitated by the placenta. The highly correlated placenta-brain profiles support the use of placenta as a noninvasive biomarker resource to predict pathological changes in the neonatal brain. The transgenerational persistence of critical DNAm, miRNA and mRNA signatures may explain familial non-genetic disease risks.
Collapse
Affiliation(s)
- Stephanie E King
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada
| | - Nicola A Schatz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada
| | - Olena Babenko
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada
| | - Igor Kovalchuk
- Southern Alberta Genome Sciences Centre, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada
- Department of Biological Sciences, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada
| | - Gerlinde A S Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada.
- Southern Alberta Genome Sciences Centre, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
2
|
Zou R, Lu J, Bai X, Yang Y, Zhang S, Wu S, Tang Z, Li K, Hua X. The epigenetic-modified downregulation of LOXL1 protein mediates EMT in bladder epithelial cells exposed to benzo[a]pyrene and its metabolite BPDE. Int Immunopharmacol 2024; 142:113232. [PMID: 39340995 DOI: 10.1016/j.intimp.2024.113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Benzo[a]pyrene (B[a]P) is a well-known polycyclic aromatic hydrocarbon (PAH) pollutant with high carcinogenicity, widespread environmental presence, and significant threat to public health. Epidemiological studies have linked exposure to B[a]P and its metabolite 7,8-dihydroxy-9,10-epoxybenzo[a]pyrene (BPDE) to the development and progression of various cancers, including bladder cancer. However, its underlying mechanism remains unclear. Our study revealed that B[a]P and BPDE induced epithelial-mesenchymal transition (EMT), a critical early event in cell malignant transformation, involving a decrease in E-Cadherin and upregulation of N-Cadherin protein levels, leading to increased cell motility and migration in bladder epithelial cells. Further studies have indicated that LOXL1 DNA undergoes methylation and modification influenced by methyltransferase 3a (DNMT3a) and DNMT3b, resulting in decreased LOXL1 protein levels. The decreased LOXL1 promotes the zinc finger transcription factor SLUG, which then inhibits E-Cadherin protein levels and initiates the EMT process. Moreover, DNMT3a/3b expression appears to be influenced by intracellular oxidative stress levels. These findings suggest that exposure to B[a]P/BPDE promotes the EMT process through the pivotal factor LOXL1, thereby contributing to bladder carcinogenesis. Our study provides a theoretical basis for considering LOXL1 as a potential biomarker for early diagnosis and a novel target for the precise diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Ronghao Zou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Juan Lu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyue Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuyao Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shouyue Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shuai Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhixin Tang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Kang Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
3
|
Bergez-Hernández F, Irigoyen-Arredondo M, Martínez-Camberos A. A systematic review of mechanisms of PTEN gene down-regulation mediated by miRNA in prostate cancer. Heliyon 2024; 10:e34950. [PMID: 39144981 PMCID: PMC11320309 DOI: 10.1016/j.heliyon.2024.e34950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background The Phosphatase and Tensin Homolog gene (PTEN) is pivotal in regulating diverse cellular processes, including growth, differentiation, proliferation, and cell survival, mainly by modulating the PI3K/AKT/mTOR pathway. Alterations in the expression of the PTEN gene have been associated with epigenetic mechanisms, particularly the regulation by small non-coding RNAs, such as miRNAs. Modifications in the expression levels of miRNAs that control PTEN have been shown to lead to its underexpression. This underexpression, in turn, impacts the PI3K/AKT/mTOR pathway, thereby influencing crucial mechanisms like proliferation and apoptosis, playing an important role in the initiation and progression of prostate cancer (PCa). Thus, we aimed to systematically reviewed available information concerning the regulation of PTEN mediated by miRNA in PCa. Methods Electronic databases were searched to identify studies assessing PTEN regulation via PCa miRNAs, the search included combination of the words microRNAs, PTEN and prostatic neoplasms. The quality assessment of the articles included was carried out using an adapted version of SYRCLE and CASP tool. Results We included 39 articles that measured the relative gene expression of miRNAs in PCa and their relationship with PTEN regulation. A total of 42 miRNAs were reported involved in the development and progression of PCa via PTEN dysregulation (34 miRNAs up-regulated and eight miRNAs down-regulated). Sixteen miRNAs were shown as the principal regulators for genetic interactions leading to carcinogenesis, being the miR-21 the most reported in PCa associated with PTEN down-regulation. We showed the silencing of PTEN could be promoted by a loop between miR-200b and DNMT1 or by direct targeting of PTEN by microRNAs, leading to the constitutive activation of PI3K/AKT/mTOR and interactions with intermediary genes support apoptosis inhibition, proliferation, invasion, and metastasis in PCa. Conclusion According to our review, dysregulation of PTEN mediated mainly by miR-21, -20a, -20b, -93, -106a, and -106b up-regulation has a central role in PCa development and could be potential biomarkers for diagnosis, prognostic, and therapeutic targets.
Collapse
Affiliation(s)
| | | | - Alejandra Martínez-Camberos
- Laboratorio de Biomedicina y Biología Molecular. Lic. en Ciencias Biomédicas, Universidad Autónoma de Occidente. Av del Mar 1200, Tellerías, 82100, Mazatlán, Sinaloa, Mexico
| |
Collapse
|
4
|
Li W, Gao M, Xue W, Li X, Chang Y, Zhang K, Wen C, Zhang M. Palmitic acid reduces the methylation of the FOXO1 promoter to suppress the development of diffuse large B-cell lymphoma via modulating the miR-429/DNMT3A axis. Chin J Nat Med 2024; 22:554-567. [PMID: 38906602 DOI: 10.1016/s1875-5364(24)60655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 06/23/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is characterized by significant treatment resistance. Palmitic acid (PA) has shown promising antitumor properties. This study aims to elucidate the molecular mechanisms by which PA influences DLBCL progression. We quantified the expression levels of microRNAs (miRNAs), Forkhead box protein O1 (FOXO1), and DNA methyltransferase 3A (DNMT3A) in both untreated and PA-treated DLBCL tumors and cell lines. Assessments were made of cell viability, apoptosis, and autophagy-related protein expression following PA administration. Interaction analyses among miR-429, DNMT3A, and FOXO1 were conducted using luciferase reporter assays and methylation-specific (MSP) Polymerase chain reaction (PCR). After transfecting the miR-429 inhibitor, negative control (NC) inhibitor, shRNA against DNMT3A (sh-DNMT3A), shRNA negative control (sh-NC), overexpression vector for DNMT3A (oe-DNMT3A), or overexpression negative control (oe-NC), we evaluated the effects of miR-429 and DNMT3A on cell viability, mortality, and autophagy-related protein expression in PA-treated DLBCL cell lines. The efficacy of PA was also tested in vivo using DLBCL tumor-bearing mouse models. MiR-429 and FOXO1 expression levels were downregulated, whereas DNMT3A was upregulated in DLBCL compared to the control group. PA treatment was associated with enhanced autophagy, mediated by the upregulation of miR-429 and downregulation of DNMT3A. The luciferase reporter assay and MSP confirmed that miR-429 directly inhibits DNMT3A, thereby reducing FOXO1 methylation. Subsequent experiments demonstrated that PA promotes autophagy and inhibits DLBCL progression by upregulating miR-429 and modulating the DNMT3A/FOXO1 axis. In vivo PA significantly reduced the growth of xenografted tumors through its regulatory impact on the miR-429/DNMT3A/FOXO1 axis. Palmitic acid may modulate autophagy and inhibit DLBCL progression by targeting the miR-429/DNMT3A/FOXO1 signaling pathway, suggesting a novel therapeutic target for DLBCL management.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Humans
- Forkhead Box Protein O1/genetics
- Forkhead Box Protein O1/metabolism
- Animals
- DNA Methyltransferase 3A
- Mice
- Palmitic Acid/pharmacology
- Cell Line, Tumor
- DNA Methylation/drug effects
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- Promoter Regions, Genetic/drug effects
- Mice, Nude
- Male
- Gene Expression Regulation, Neoplastic/drug effects
- Female
- Apoptosis/drug effects
- Autophagy/drug effects
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Weiming Li
- Department of Oncology, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Ming Gao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Weili Xue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xiaoli Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yu Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Kaixin Zhang
- Department of Oncology, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Chenyu Wen
- Department of Oncology, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
5
|
Huang C, Aghaei-Zarch SM. From molecular pathogenesis to therapy: Unraveling non-coding RNAs/DNMT3A axis in human cancers. Biochem Pharmacol 2024; 222:116107. [PMID: 38438051 DOI: 10.1016/j.bcp.2024.116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Cancer is a comprehensive classification encompassing more than 100 forms of malignancies that manifest in diverse tissues within the human body. Recent studies have provided evidence that aberrant epigenetic modifications are pivotal indicators of cancer. Epigenetics encapsulates DNA methyltransferases as a crucial class of modifiers. DNMTs, including DNMT3A, assume central roles in DNA methylation processes that orchestrate normal biological functions, such as gene transcription, predominantly in mammals. Typically, deviations in DNMT3A function engender distortions in factors that drive tumor growth and progression, thereby exacerbating the malignant phenotype of tumors. Consequently, such abnormalities pose significant challenges in cancer therapy because they impede treatment efficacy. Non-coding RNAs (ncRNAs) represent a group of RNA molecules that cannot encode functional proteins. Recent investigation attests to the crucial significance of regulatory ncRNAs in epigenetic regulation. Notably, recent reports have illuminated the complex interplay between ncRNA expression and epigenetic regulatory machinery, including DNMT3A, particularly in cancer. Recent findings have demonstrated that miRNAs, namely miR-770-5p, miR-101, and miR-145 exhibit the capability to target DNMT3A directly, and their aberration is implicated in diverse cellular abnormalities that predispose to cancer development. This review aims to articulate the interplay between DNMT3A and the ncRNAs, focusing on its impact on the development and progression of cancer, cancer therapy resistance, cancer stem cells, and prognosis. Importantly, the emergence of such reports that suggest a connection between DNMT3A and ncRNAs in several cancers indicates that this connecting axis offers a valuable target with significant therapeutic potential that might be exploited for cancer management.
Collapse
Affiliation(s)
- Chunjie Huang
- School of Medicine, Nantong University, Nantong 226001, China
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Xu W, Wu Y, Zhang G. NEAT1 promotes the progression of prostate cancer by targeting the miR-582-5p/EZH2 regulatory axis. Cytotechnology 2024; 76:231-246. [PMID: 38495291 PMCID: PMC10940559 DOI: 10.1007/s10616-023-00612-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/19/2023] [Indexed: 03/19/2024] Open
Abstract
In several forms of malignant tumors, nuclear enriched abundant transcript 1 (NEAT1), a lncRNA, has been identified to play an important role. NEAT1's regulation patterns in prostate cancer (PCa) are, however, mainly unknown. This study was aimed to evaluate and study the roles and regulatory mechanisms of NEAT1 in PCa. NEAT1, miR-582-5p, and enhancer of zeste homolog 2 (EZH2) expression were detected by qRT-PCR. The PCa cells' invasive, migrative, and proliferative activities in vitro were assessed using transwell migration and invasion, wound-healing, cloning creation, and CCK-8 assays. In the present study, impaired proliferative, migrative, and invasive capacities were observed in the NEAT1-deficient PCa (PC3 and LNCaP) cells. Further mechanistic studies found that NEAT1 performs its function through sponging miR-582-5p. Furthermore, EZH2 was confirmed to be the downstream target gene of miRNA-582-5p. The impaired progression caused by NEAT1 deficiency in PCa cells was significantly restored by the inhibition of miR-582-5p, while these effects were largely abolished by the deletion of EZH2. Finally, the xenograft nude mouse model showed that knocking down the expression of NEAT1 suppressed the growth of PCa. In conclusion, NEAT1 promotes the progression of PCa by controlling the miR-582-5p and miR-582-5p-mediated EZH2. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00612-z.
Collapse
Affiliation(s)
- Weiqiang Xu
- Suzhou Medical College, Soochow University, No.199 Ren’ai Road, Suzhou Industrial Park, 215000 Suzhou, Jiangsu Province China
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical University, No. 633 Longhua Road, Huaishang District, 233000 Bengbu, Anhui Province China
| | - Yu Wu
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical University, No. 633 Longhua Road, Huaishang District, 233000 Bengbu, Anhui Province China
| | - Guoxi Zhang
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, No. 23 Qingnian Road, Zhanggong District, 341000 Ganzhou, Jiangxi Province China
| |
Collapse
|
7
|
Li H, Gao P, Chen H, Zhao J, Zhang X, Li G, Wang L, Qin L. HOXC13 promotes cell proliferation, metastasis and glycolysis in breast cancer by regulating DNMT3A. Exp Ther Med 2023; 26:439. [PMID: 37614427 PMCID: PMC10443053 DOI: 10.3892/etm.2023.12138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/25/2023] [Indexed: 08/25/2023] Open
Abstract
Breast cancer (BC) is a life-threatening malignant tumor that affects females more commonly than males. The mechanisms underlying BC proliferation, metastasis and glycolysis require further investigation. Homeobox C13 (HOXC13) is highly expressed in BC; however, the specific mechanisms in BC are yet to be fully elucidated. Therefore, the aim of the present study was to investigate the role of HOXC13 in BC proliferation, migration, invasion and glycolysis. In the present study, the UALCAN database was used to predict the expression levels of HOXC13 in patients with BC. Western blot analysis and reverse transcription-quantitative PCR were used to determine the expression levels of HOXC13 in BC cell lines. Moreover, HOXC13 knockdown was induced using cell transfection, and the viability, proliferation and apoptosis of cells were detected using Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine staining and flow cytometry. Migration, invasion and epithelial-mesenchymal transition (EMT) were measured using wound healing assay, Transwell assay and western blotting. In addition, XF96 extracellular flux analyzer and corresponding kits were used to detect glycolysis. The JASPAR database was used to predict promoter binding sites for the transcription factors HOXC13 and DNA methyltransferase 3α (DNMT3A). HOXC13 expression was silenced and DNMT3A was simultaneously overexpressed using cell transfection. The results of the present study revealed that HOXC13 expression was significantly elevated in BC tissues and cells. Following HOXC13 knockdown in BC cells, the viability, proliferation, glycolysis, migration, invasion and EMT were significantly decreased, and apoptosis was significantly increased. In addition, HOXC13 positively regulated the transcription of DNMT3A in BC cells, thus playing a regulatory role in the malignant progression of cells. In conclusion, HOXC13 promoted cell viability, proliferation, migration, invasion, EMT and glycolysis in BC by regulating DNMT3A.
Collapse
Affiliation(s)
- Hongrui Li
- Department of Thyroid and Breast Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Department of Thyroid and Breast Diseases, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Pengcheng Gao
- Department of Thyroid and Breast Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Department of Thyroid and Breast Diseases, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Haifeng Chen
- Department of Thyroid and Breast Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Department of Thyroid and Breast Diseases, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Junjie Zhao
- Department of Thyroid and Breast Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Department of Thyroid and Breast Diseases, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Xiangzhong Zhang
- Department of Thyroid and Breast Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Department of Thyroid and Breast Diseases, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Ganggang Li
- Department of Thyroid and Breast Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Department of Thyroid and Breast Diseases, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Liting Wang
- Department of Thyroid and Breast Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Department of Thyroid and Breast Diseases, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Long Qin
- Department of Thyroid and Breast Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Department of Thyroid and Breast Diseases, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| |
Collapse
|
8
|
Araki Y, Asano N, Yamamoto N, Hayashi K, Takeuchi A, Miwa S, Igarashi K, Higuchi T, Abe K, Taniguchi Y, Yonezawa H, Morinaga S, Asano Y, Yoshida T, Hanayama R, Matsuzaki J, Ochiya T, Kawai A, Tsuchiya H. A validation study for the utility of serum microRNA as a diagnostic and prognostic marker in patients with osteosarcoma. Oncol Lett 2023; 25:222. [PMID: 37153065 PMCID: PMC10157352 DOI: 10.3892/ol.2023.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 03/03/2023] [Indexed: 05/09/2023] Open
Abstract
In our previous study, osteosarcoma advanced locally, and metastasis was promoted through the secretion of large number of small extracellular vesicles, followed by suppressing osteoclastogenesis via the upregulation of microRNA (miR)-146a-5p. An additional 12 miRNAs in small extracellular vesicles were also detected ≥6× as frequently in high-grade malignancy with the capacity to metastasize as in those with a low metastatic potential. However, the utility of these 13 miRNAs for determining the prognosis or diagnosis of osteosarcoma has not been validated in the clinical setting. In the present study, the utility of these miRNAs as prognostic and diagnostic markers was therefore assessed. In total, 30 patients with osteosarcoma were retrospectively reviewed, and the survival rate was compared according to the serum miRNA levels in 27 patients treated with chemotherapy and surgery. In addition, to confirm diagnostic competency for osteosarcoma, the serum miRNA levels were compared with those in patients with other bone tumors (n=112) and healthy controls (n=275). The patients with osteosarcoma with high serum levels of several miRNAs (miR-146a-5p, miR-1260a, miR-487b-3p, miR-1260b and miR-4758-3p) exhibited an improved survival rate compared with those with low levels. In particular, patients with high serum levels of miR-1260a exhibited a significantly improved overall survival rate, metastasis-free survival rate and disease-free survival rate compared with those with low levels. Thus, serum miR-1260a may potentially be a prognostic marker for patients with osteosarcoma. Moreover, patients with osteosarcoma had higher serum miR-1261 levels than those with benign or intermediate-grade bone tumors and thus may be a potential therapeutic target, in addition to being useful for differentiating whether or not a bone tumor is high-grade. A larger investigation is required to clarify the actual utility of these miRNAs in the clinical setting.
Collapse
Affiliation(s)
- Yoshihiro Araki
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Naofumi Asano
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
- Correspondence to: Professor Norio Yamamoto, Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan, E-mail:
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Akihiko Takeuchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Takashi Higuchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Kensaku Abe
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Yuta Taniguchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hirotaka Yonezawa
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Sei Morinaga
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Yohei Asano
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Takeshi Yoshida
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Rikinari Hanayama
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo 105-8512, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
9
|
Piscopo P, Grasso M, Manzini V, Zeni A, Castelluzzo M, Fontana F, Talarico G, Castellano AE, Rivabene R, Crestini A, Bruno G, Ricci L, Denti MA. Identification of miRNAs regulating MAPT expression and their analysis in plasma of patients with dementia. Front Mol Neurosci 2023; 16:1127163. [PMID: 37324585 PMCID: PMC10266489 DOI: 10.3389/fnmol.2023.1127163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
Background Dementia is one of the most common diseases in elderly people and hundreds of thousand new cases per year of Alzheimer's disease (AD) are estimated. While the recent decade has seen significant advances in the development of novel biomarkers to identify dementias at their early stage, a great effort has been recently made to identify biomarkers able to improve differential diagnosis. However, only few potential candidates, mainly detectable in cerebrospinal fluid (CSF), have been described so far. Methods We searched for miRNAs regulating MAPT translation. We employed a capture technology able to find the miRNAs directly bound to the MAPT transcript in cell lines. Afterwards, we evaluated the levels of these miRNAs in plasma samples from FTD (n = 42) and AD patients (n = 33) and relative healthy controls (HCs) (n = 42) by using qRT-PCR. Results Firstly, we found all miRNAs that interact with the MAPT transcript. Ten miRNAs have been selected to verify their effect on Tau levels increasing or reducing miRNA levels by using cell transfections with plasmids expressing the miRNAs genes or LNA antagomiRs. Following the results obtained, miR-92a-3p, miR-320a and miR-320b were selected to analyse their levels in plasma samples of patients with FTD and AD respect to HCs. The analysis showed that the miR-92a-1-3p was under-expressed in both AD and FTD compared to HCs. Moreover, miR-320a was upregulated in FTD vs. AD patients, particularly in men when we stratified by sex. Respect to HC, the only difference is showed in men with AD who have reduced levels of this miRNA. Instead, miR-320b is up-regulated in both dementias, but only patients with FTD maintain this trend in both genders. Conclusions Our results seem to identify miR-92a-3p and miR-320a as possible good biomarkers to discriminate AD from HC, while miR-320b to discriminate FTD from HC, particularly in males. Combining three miRNAs improves the accuracy only in females, particularly for differential diagnosis (FTD vs. AD) and to distinguish FTD from HC.
Collapse
Affiliation(s)
- Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Margherita Grasso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Valeria Manzini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
- Department of Biology and Biotechnology Charles Darwin, University of Rome “Sapienza”, Rome, Italy
| | - Andrea Zeni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | - Francesca Fontana
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Giuseppina Talarico
- Department of Human Neuroscience, University of Rome “Sapienza”, Rome, Italy
| | | | - Roberto Rivabene
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neuroscience, University of Rome “Sapienza”, Rome, Italy
| | - Leonardo Ricci
- Department of Physics, University of Trento, Trento, Italy
| | - Michela A. Denti
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
10
|
Francés R, Mata-Garrido J, de la Fuente R, Carcelén M, Lafarga M, Berciano MT, García R, Hurlé MA, Tramullas M. Identification of Epigenetic Interactions between MicroRNA-30c-5p and DNA Methyltransferases in Neuropathic Pain. Int J Mol Sci 2022; 23:13994. [PMID: 36430472 PMCID: PMC9694031 DOI: 10.3390/ijms232213994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain is a prevalent and severe chronic syndrome, often refractory to treatment, whose development and maintenance may involve epigenetic mechanisms. We previously demonstrated a causal relationship between miR-30c-5p upregulation in nociception-related neural structures and neuropathic pain in rats subjected to sciatic nerve injury. Furthermore, a short course of an miR-30c-5p inhibitor administered into the cisterna magna exerts long-lasting antiallodynic effects via a TGF-β1-mediated mechanism. Herein, we show that miR-30c-5p inhibition leads to global DNA hyper-methylation of neurons in the lumbar dorsal root ganglia and spinal dorsal horn in rats subjected to sciatic nerve injury. Specifically, the inhibition of miR-30-5p significantly increased the expression of the novo DNA methyltransferases DNMT3a and DNMT3b in those structures. Furthermore, we identified the mechanism and found that miR-30c-5p targets the mRNAs of DNMT3a and DNMT3b. Quantitative methylation analysis revealed that the promoter region of the antiallodynic cytokine TGF-β1 was hypomethylated in the spinal dorsal horn of nerve-injured rats treated with the miR-30c-5p inhibitor, while the promoter of Nfyc, the host gene of miR-30c-5p, was hypermethylated. These results are consistent with long-term protection against neuropathic pain development after nerve injury. Altogether, our results highlight the key role of miR-30c-5p in the epigenetic mechanisms' underlying neuropathic pain and provide the basis for miR-30c-5p as a therapeutic target.
Collapse
Affiliation(s)
- Raquel Francés
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Jorge Mata-Garrido
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - Roberto de la Fuente
- Servicio de Anestesiología, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - María Carcelén
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Miguel Lafarga
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - María Teresa Berciano
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain
| | - Raquel García
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - María A. Hurlé
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mónica Tramullas
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
11
|
Quan Y, Zhang X, Wang M, Ping H. Histone lysine methylation patterns in prostate cancer microenvironment infiltration: Integrated bioinformatic analysis and histological validation. Front Oncol 2022; 12:981226. [PMID: 36237332 PMCID: PMC9552767 DOI: 10.3389/fonc.2022.981226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Background Epigenetic reprogramming through dysregulated histone lysine methylation (HLM) plays a crucial role in prostate cancer (PCa) progression. This study aimed to comprehensively evaluate HLM modification patterns in PCa microenvironment infiltration. Materials and methods Ninety-one HLM regulators in The Cancer Genome Atlas (TCGA) dataset were analyzed using bioinformatics. Differentially expressed genes (DEGs) and survival analyses were performed using TCGA-PRAD clinicopathologic and follow-up information. Consensus clustering analysis divided patients into subgroups. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the DEGs. Tumor mutation burden (TMB) and tumor microenvironment (TME) cell infiltration were evaluated in different HLM clusters. Quantitative real-time PCR (qPCR) analysis assessed HLM regulators in clinical PCa tissues. Results The tumor vs. normal (TN), Gleason score (GS) > 7 vs. GS < 7, pathological T stage (pT) = 2 vs. pT = 3, and TP53 mutation vs. wild-type comparisons using TCGA-PRAD dataset revealed 3 intersecting HLM regulators (EZH2, NSD2, and KMT5C) that were consistently upregulated in advanced PCa (GS > 7, pT3, HR > 1, and TP53 mutation) (P < 0.05) and verified in clinical PCa tissues. Consensus clustering analysis revealed three distinct HLM modification patterns (HLMclusters). However, no significant differences in recurrence-free survival (RFS) rates were found among the groups (P > 0.05). We screened 189 HLM phenotype-related genes that overlapped in the pairwise comparisons of HLMclusters and P < 0.01 in the Cox regression analysis. Three distinct subgroups (geneClusters) were revealed based on the 189 genes, in which cluster A involved the most advanced PCa (PSA > 10, T3-4, GS8-10, and biochemical recurrence) and the poorest RFS. The HLM score (HLMscore) was calculated by principal component analysis (PCA) of HLM phenotype-related genes that have positive predictive value for RFS (P < 0.001) and immune therapy responses (in the CTLA4-positive and -negative responses accompanied by a PD1-negative response). Conclusion We comprehensively evaluated HLM regulators in the PCa microenvironment using TCGA-PRAD, revealing a nonnegligible role of HLM patterns in PCa complexity and heterogeneity. Elucidating the effects of HLM regulators in PCa may enhance prognostics, aggressiveness assessments, and immunotherapy strategies.
Collapse
Affiliation(s)
- Yongjun Quan
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Mingdong Wang
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, China
- *Correspondence: Hao Ping,
| |
Collapse
|
12
|
ZEB1: Catalyst of immune escape during tumor metastasis. Biomed Pharmacother 2022; 153:113490. [DOI: 10.1016/j.biopha.2022.113490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
|
13
|
López J, Añazco-Guenkova AM, Monteagudo-García Ó, Blanco S. Epigenetic and Epitranscriptomic Control in Prostate Cancer. Genes (Basel) 2022; 13:genes13020378. [PMID: 35205419 PMCID: PMC8872343 DOI: 10.3390/genes13020378] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
The initiation of prostate cancer has been long associated with DNA copy-number alterations, the loss of specific chromosomal regions and gene fusions, and driver mutations, especially those of the Androgen Receptor. Non-mutational events, particularly DNA and RNA epigenetic dysregulation, are emerging as key players in tumorigenesis. In this review we summarize the molecular changes linked to epigenetic and epitranscriptomic dysregulation in prostate cancer and the role that alterations to DNA and RNA modifications play in the initiation and progression of prostate cancer.
Collapse
Affiliation(s)
- Judith López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—University of Salamanca, 37007 Salamanca, Spain; (J.L.); (A.M.A.-G.); (Ó.M.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Ana M. Añazco-Guenkova
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—University of Salamanca, 37007 Salamanca, Spain; (J.L.); (A.M.A.-G.); (Ó.M.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Óscar Monteagudo-García
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—University of Salamanca, 37007 Salamanca, Spain; (J.L.); (A.M.A.-G.); (Ó.M.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Sandra Blanco
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—University of Salamanca, 37007 Salamanca, Spain; (J.L.); (A.M.A.-G.); (Ó.M.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Correspondence:
| |
Collapse
|