1
|
Hall MA, Wallace J, Lucas AM, Bradford Y, Verma SS, Müller-Myhsok B, Passero K, Zhou J, McGuigan J, Jiang B, Pendergrass SA, Zhang Y, Peissig P, Brilliant M, Sleiman P, Hakonarson H, Harley JB, Kiryluk K, Van Steen K, Moore JH, Ritchie MD. Novel EDGE encoding method enhances ability to identify genetic interactions. PLoS Genet 2021; 17:e1009534. [PMID: 34086673 PMCID: PMC8208534 DOI: 10.1371/journal.pgen.1009534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/16/2021] [Accepted: 04/06/2021] [Indexed: 11/26/2022] Open
Abstract
Assumptions are made about the genetic model of single nucleotide polymorphisms (SNPs) when choosing a traditional genetic encoding: additive, dominant, and recessive. Furthermore, SNPs across the genome are unlikely to demonstrate identical genetic models. However, running SNP-SNP interaction analyses with every combination of encodings raises the multiple testing burden. Here, we present a novel and flexible encoding for genetic interactions, the elastic data-driven genetic encoding (EDGE), in which SNPs are assigned a heterozygous value based on the genetic model they demonstrate in a dataset prior to interaction testing. We assessed the power of EDGE to detect genetic interactions using 29 combinations of simulated genetic models and found it outperformed the traditional encoding methods across 10%, 30%, and 50% minor allele frequencies (MAFs). Further, EDGE maintained a low false-positive rate, while additive and dominant encodings demonstrated inflation. We evaluated EDGE and the traditional encodings with genetic data from the Electronic Medical Records and Genomics (eMERGE) Network for five phenotypes: age-related macular degeneration (AMD), age-related cataract, glaucoma, type 2 diabetes (T2D), and resistant hypertension. A multi-encoding genome-wide association study (GWAS) for each phenotype was performed using the traditional encodings, and the top results of the multi-encoding GWAS were considered for SNP-SNP interaction using the traditional encodings and EDGE. EDGE identified a novel SNP-SNP interaction for age-related cataract that no other method identified: rs7787286 (MAF: 0.041; intergenic region of chromosome 7)–rs4695885 (MAF: 0.34; intergenic region of chromosome 4) with a Bonferroni LRT p of 0.018. A SNP-SNP interaction was found in data from the UK Biobank within 25 kb of these SNPs using the recessive encoding: rs60374751 (MAF: 0.030) and rs6843594 (MAF: 0.34) (Bonferroni LRT p: 0.026). We recommend using EDGE to flexibly detect interactions between SNPs exhibiting diverse action. Although traditional genetic encodings are widely implemented in genetics research, including in genome-wide association studies (GWAS) and epistasis, each method makes assumptions that may not reflect the underlying etiology. Here, we introduce a novel encoding method that estimates and assigns an individualized data-driven encoding for each single nucleotide polymorphism (SNP): the elastic data-driven genetic encoding (EDGE). With simulations, we demonstrate that this novel method is more accurate and robust than traditional encoding methods in estimating heterozygous genotype values, reducing the type I error, and detecting SNP-SNP interactions. We further applied the traditional encodings and EDGE to biomedical data from the Electronic Medical Records and Genomics (eMERGE) Network for five phenotypes, and EDGE identified a novel interaction for age-related cataract not detected by traditional methods, which replicated in data from the UK Biobank. EDGE provides an alternative approach to understanding and modeling diverse SNP models and is recommended for studying complex genetics in common human phenotypes.
Collapse
Affiliation(s)
- Molly A. Hall
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Penn State Cancer Institute, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| | - John Wallace
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Anastasia M. Lucas
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yuki Bradford
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shefali S. Verma
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Bertram Müller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Kristin Passero
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jiayan Zhou
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - John McGuigan
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Beibei Jiang
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger Health System, Danville, Pennsylvania, United States of America
| | - Peggy Peissig
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, United States of America
| | - Murray Brilliant
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, United States of America
| | - Patrick Sleiman
- Department of Pediatrics, Center for Applied Genomics, Children’s Hospital of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hakon Hakonarson
- Department of Pediatrics, Center for Applied Genomics, Children’s Hospital of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John B. Harley
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- United States Department of Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Kristel Van Steen
- WELBIO, GIGA-R Medical Genomics-BIO3, University of Liège, Liège, Belgium
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Jason H. Moore
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marylyn D. Ritchie
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Lakkireddy S, Aula S, Kapley A, Gundeti S, Kutala VK, Jamil K. Association of DNA repair gene XPC Ala499Val (rs2228000 C>T) and Lys939Gln (rs2228001 A>C) polymorphisms with the risk of chronic myeloid leukemia: A case-control study in a South Indian population. J Gene Med 2021; 23:e3339. [PMID: 33829606 DOI: 10.1002/jgm.3339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 02/27/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Xeroderma pigmentosum complementation group C (XPC), a DNA repair protein, plays an important role in the maintenance of genomic integrity and is essential for the nucleotide excision repair pathway. Polymorphisms in the XPC gene may alter DNA repair leading to genetic instability and oncogenesis. The present study aimed to assess the relationship between the XPC Ala499Val (rs2228000 C>T) and Lys939Gln (rs2228001 A>C) non-synonymous polymorphisms and susceptibility to chronic myeloid leukemia (CML) pathogenesis, disease progression and the response to targeted therapeutic regimen, imatinib mesylate. METHODS This case-control study included 212 cases and 212 controls, and the genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism assays. RESULTS Our results showed significant association of variant CT (odds ratio = 1.92, 95% confidence interval = 1.21-3.06, p = 0.003) and TT (odds ratio = 2.84, 95% confidence interval = 1.22-6.71, p = 0.007) genotypes in patients with the XPC Ala499Val polymorphism and CML risk. In addition, these genotypes were associated with CML progression to advanced phases (p = 0.006), splenomegaly (p = 0.017) and abnormal lactate dehydrogenase levels (p = 0.03). XPC Lys939Gln was found to correlate with a poor response to therapy, showing borderline significant association with minor cytogenetic response (p = 0.08) and a poor molecular response (p = 0.06). Significant association of the Ala499Val and Lys939Gln polymorphisms with prognosis was observed (Hasford high risk, p = 0.031 and p = 0.019, respectively). Haplotype analysis showed a strong correlation of variant TC haplotype with poor therapy responses (minor cytogenetic response, p = 0.019; poor molecular response, p < 0.0001). CONCLUSIONS In conclusion, our results suggest that XPC Ala499Val is a high-penetrance CML susceptibility polymorphism. Both polymorphisms studied are considered as genetic markers with respect to assessing disease progression, therapy response and prognosis in CML patients.
Collapse
Affiliation(s)
- Samyuktha Lakkireddy
- Centre for Biotechnology and Bioinformatics, School of Life Sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), Hyderabad, Telangana, India.,Department of Biotechnology, Jawaharlal Nehru Technological University Anantapur (JNTUA), Ananthapuramu, Andhra Pradesh, India
| | - Sangeetha Aula
- Centre for Biotechnology and Bioinformatics, School of Life Sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), Hyderabad, Telangana, India.,Department of Biotechnology, Jawaharlal Nehru Technological University Anantapur (JNTUA), Ananthapuramu, Andhra Pradesh, India
| | - Atya Kapley
- Centre for Biotechnology and Bioinformatics, School of Life Sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), Hyderabad, Telangana, India.,Environmental Genomics Division, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, Maharashtra, India
| | - Sadashivudu Gundeti
- Department of Medical Oncology, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, Telangana, India
| | - Vijay Kumar Kutala
- Department of Clinical Pharmacology & Therapeutics, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, Telangana, India
| | - Kaiser Jamil
- Centre for Biotechnology and Bioinformatics, School of Life Sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), Hyderabad, Telangana, India.,Department of Biotechnology, Jawaharlal Nehru Technological University Hyderabad (JNTUH), Hyderabad, Telangana, India
| |
Collapse
|
3
|
Comprehensive assessment of the association between XPC rs2228000 and cancer susceptibility based on 26835 cancer cases and 37069 controls. Biosci Rep 2020; 39:221067. [PMID: 31710080 PMCID: PMC6893172 DOI: 10.1042/bsr20192452] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/15/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Objectives In the present study, we examined available articles from online databases to comprehensively investigate the effect of the XPC (xeroderma pigmentosum complementation group C) rs2228000 polymorphism on the risk of different types of clinical cancer. Methods We conducted a group of overall and subgroup pooling analyses after retrieving the data from four databases (updated till September 2019). The P-value of association, OR (odds ratios), and 95% CI (confidence interval) were calculated. Results We selected a total of 71 eligible studies with 26835 cancer cases and 37069 controls from the 1186 retrieved articles. There is an enhanced susceptibility for bladder cancer cases under T vs. C [P=0.004; OR (95% CI) = 1.25 (1.07, 1.45)], TT vs. CC [P=0.001; 1.68 (1.25, 2.26)], CT+TT vs. CC [P=0.016; 1.26 (1.04, 1.53)], and TT vs. CC+ CT [P=0.001; 1.49 (1.18, 1.90)] compared with negative controls. Additionally, there is an increased risk of breast cancer under T vs. C, TT vs. CC and TT vs. CC+ CT (P<0.05, OR > 1). Nevertheless, there is a decreased risk of gastric cancer cases in China under T vs. C [P=0.020; 0.92 (0.85, 0.99)], CT vs. CC [P=0.001, 0.83 (0.73, 0.93)], and CT+TT vs. CC [P=0.003, 0.84 (0.76, 0.94)]. Conclusions The TT genotype of XPC rs2228000 may be linked to an increased risk of bladder and breast cancer, whereas the CT genotype is likely to be associated with reduced susceptibility to gastric cancer in the Chinese population.
Collapse
|
4
|
Kaur K, Kaur R. Polymorphisms in XPC and XPD genes modulate DNA damage in pesticide-exposed agricultural workers of Punjab, North-West India. Mol Biol Rep 2020; 47:5253-5262. [PMID: 32562175 DOI: 10.1007/s11033-020-05600-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/17/2020] [Indexed: 11/24/2022]
Abstract
The genetic susceptibility of individuals to the genotoxic effect of pesticides may be modulated by variations in genes involved in nucleotide excision repair (NER) pathway and therefore plays an important role in the evaluation of occupational risk. We aimed to evaluate the role of xeroderma pigmentosum complementation group C (XPC) Lys939Gln (A2920C, rs2228001), XPC Ala499Val (C2151T, rs2228000), xeroderma pigmentosum complementation group D (XPD) Asp312Asn (G23591A, rs1799793) and XPD Lys751Gln (A35931C, rs13181) in the modulation of DNA damage. A total of 450 subjects (225 pesticide-exposed agricultural workers and 225 age- and sex-matched controls) from Punjab, North-West India were recruited to study DNA damage by alkaline comet assay. Genotyping was carried out by PCR-RFLP using site-specific restriction enzymes. We found significant elevation in DNA damage parameters in pesticide-exposed agricultural workers as compared to the controls (p < 0.01). Association of comet tail length with XPC 939Gln/Gln (CC), XPD 312Asp/Asn (GA) and XPD 312Asn/Asn (AA) genotypes was observed. Frequency of cells showing DNA migration was significantly higher in exposed workers with variant XPC 939Gln/Gln (CC), XPD 312Asp/Asn (GA) and XPD 312Asn/Asn (AA) genotypes. Mean tail length was significantly increased in agricultural workers carrying XPD 312Asn/Asn (AA) genotype. Elevation in total comet DNA migration was also observed in exposed workers carrying variant XPC 939Lys/Gln (AC), XPC 939Gln/Gln (CC), XPC 499Val/Val (TT) and XPD 312Asn/Asn (AA) genotypes. Our results strongly indicate significant positive association of variant XPC and XPD genotypes with higher pesticide-induced DNA damage in North-West Indian agricultural workers.
Collapse
Affiliation(s)
- Karashdeep Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India.,Department of Medical Lab Sciences, Gulzar Group of Institutes, Khanna, Punjab, 141401, India
| | - Rupinder Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India.
| |
Collapse
|
5
|
Mehrotra R, Tulsyan S, Hussain S, Mittal B, Singh Saluja S, Singh S, Tanwar P, Khan A, Javle M, Hassan MM, Pant S, De Aretxabala X, Sirohi B, Rajaraman P, Kaur T, Rath GK. Genetic landscape of gallbladder cancer: Global overview. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2018; 778:61-71. [PMID: 30454684 DOI: 10.1016/j.mrrev.2018.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022]
Abstract
Gallbladder cancer (GBC) is a rare malignancy of biliary tract cancer (BTC), characterized by late presentation and poor prognosis. It exhibits wide geographical as well as ethnical variations. So, diverse epidemiology along with etiological factors have been discussed in the current article. Present review unravels the germ line polymorphisms contributing to GBC susceptibility through candidate gene approach and GWAS. GBC is enriched with multiple mutations consisting of both passenger and driver mutations. The identification of the hotspot driver mutations which are involved in the etiopathogenesis of this cancer is necessary, before targeted therapies could be implemented clinically. Thus, this review sheds lights on both traditional low throughput methods along with high throughput NGS used to determine somatic mutations in cancer. With the advent of GWAS and high throughput sequencing methods, it is possible to comprehend the mutational landscape of this enigmatic disease. This article is the first one to provide insights into the genetic heterogeneity of GBC along with somatic mutational data from Catalogue of Somatic Mutations in Cancer (COSMIC) database. In addition, management of tumor heterogeneity as a therapeutic challenge has been discussed. Future goals involve liquid biopsy based research for better clinical management of the disease. Therefore, research efforts involving discovery of non- invasive markers for early stage cancer detection along with novel therapies should be directed.
Collapse
Affiliation(s)
- Ravi Mehrotra
- Division of Preventive Oncology, National Institute of Cancer Prevention and Research, Noida, India.
| | - Sonam Tulsyan
- Division of Preventive Oncology, National Institute of Cancer Prevention and Research, Noida, India
| | - Showket Hussain
- Division of Molecular Oncology, National Institute of Cancer Prevention and Research, Noida, India
| | - Balraj Mittal
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sundeep Singh Saluja
- Department of Surgical Gastroenterology & Hepatology, GB Pant Hospital, New Delhi, India
| | - Sandeep Singh
- Clinical Epidemiology, Biostatics and Bioinformatics Academic Medical Center, Amsterdam, Netherlands
| | - Pranay Tanwar
- Laboratory Oncology Unit, Rotary Cancer Center, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Asiya Khan
- Laboratory Oncology Unit, Rotary Cancer Center, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Centre, USA
| | - Manal M Hassan
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Centre, USA
| | - Shubham Pant
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, MD Anderson Cancer Centre, USA
| | | | - Bhawna Sirohi
- New India Cancer Charity Initiative, Research and Education in Cancer and Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Preetha Rajaraman
- U.S. Health Attache, India & Regional Representative, South Asia, Office of Global Affairs, DHHS, New Delhi, Delhi, India
| | | | - G K Rath
- Laboratory Oncology Unit, Rotary Cancer Center, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
6
|
Sharma A, Sharma KL, Gupta A, Yadav A, Kumar A. Gallbladder cancer epidemiology, pathogenesis and molecular genetics: Recent update. World J Gastroenterol 2017; 23:3978-3998. [PMID: 28652652 PMCID: PMC5473118 DOI: 10.3748/wjg.v23.i22.3978] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/01/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
Gallbladder cancer is a malignancy of biliary tract which is infrequent in developed countries but common in some specific geographical regions of developing countries. Late diagnosis and deprived prognosis are major problems for treatment of gallbladder carcinoma. The dramatic associations of this orphan cancer with various genetic and environmental factors are responsible for its poorly defined pathogenesis. An understanding to the relationship between epidemiology, molecular genetics and pathogenesis of gallbladder cancer can add new insights to its undetermined pathophysiology. Present review article provides a recent update regarding epidemiology, pathogenesis, and molecular genetics of gallbladder cancer. We systematically reviewed published literature on gallbladder cancer from online search engine PubMed (http://www.ncbi.nlm.nih.gov/pubmed). Various keywords used for retrieval of articles were Gallbladder, cancer Epidemiology, molecular genetics and bullion operators like AND, OR, NOT. Cross references were manually searched from various online search engines (http://www.ncbi.nlm.nih.gov/pubmed,https://scholar.google.co.in/, http://www.medline.com/home.jsp). Most of the articles published from 1982 to 2015 in peer reviewed journals have been included in this review.
Collapse
|
7
|
Single nucleotide polymorphisms in DNA repair genes and putative cancer risk. Arch Toxicol 2016; 90:2369-88. [PMID: 27334373 DOI: 10.1007/s00204-016-1771-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023]
Abstract
Single nucleotide polymorphisms (SNPs) are the most frequent type of genetic alterations between individuals. An SNP located within the coding sequence of a gene may lead to an amino acid substitution and in turn might alter protein function. Such a change in protein sequence could be functionally relevant and therefore might be associated with susceptibility to human diseases, such as cancer. DNA repair mechanisms are known to play an important role in cancer development, as shown in various human cancer syndromes, which arise due to mutations in DNA repair genes. This leads to the question whether subtle genetic changes such as SNPs in DNA repair genes may contribute to cancer susceptibility. In numerous epidemiological studies, efforts have been made to associate specific SNPs in DNA repair genes with altered DNA repair and cancer. The present review describes some of the common and most extensively studied SNPs in DNA repair genes and discusses whether they are functionally relevant and subsequently increase the likelihood that cancer will develop.
Collapse
|
8
|
Yoshino Y, Takeuchi S, Katoh T, Kuroda Y. XPC intron11 C/A polymorphism as a risk factor for prostate cancer. Environ Health Prev Med 2016; 21:100-4. [PMID: 26745975 DOI: 10.1007/s12199-015-0505-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES DNA repair genes play an important role in protection against environmental and endogenous DNA damage, and constitute the first line of defense against cancer. Xeroderma pigmentosum complementation group C (XPC) is involved in the damage recognition step during nucleotide excision repair. The relationship between XPC intron11 C/A polymorphism and cancer risk has not been widely studied. Hence, this study evaluated the relationship between the XPC intron11 C/A polymorphism and prostate cancer risk. MATERIALS AND METHODS This hospital-based cohort consisted of 152 patients with prostate cancer and 142 male controls. The XPC intron11 C/A genotype was determined using the PCR-RFLP method. Medical, occupational, and cigarette-smoking history was obtained from each participant using questionnaires. RESULTS Logistic regression analysis revealed that compared to controls, the frequencies of the A/A and C/A genotypes were significantly higher than those of the C/C genotype in cancer patients (OR = 2.03, 95% confidence interval (CI) 1.03-3.98 and OR = 1.91, 95% CI 1.13-3.24, respectively). We also found that the frequency of the A/A genotype was significantly higher in cancer cases than in controls among non-smokers (OR = 7.7, 95% CI 1.38-42.88, compared to the C/C genotype). CONCLUSION We found that the XPC intron11 C/A polymorphism was associated with an increased risk of prostate cancer. Among non-smokers, the A/A genotype was significantly more prevalent in prostate cancer patients than in controls.
Collapse
Affiliation(s)
- Yoshihiro Yoshino
- Department of Public Health, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Shouhei Takeuchi
- Department of Public Health, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Takahiko Katoh
- Department of Public Health, Faculty of Life Science, University of Kumamoto, 1-1-1 Honjyoh, Chuou-ku, Kumamoto, 860-8556, Japan
| | - Yoshiki Kuroda
- Department of Public Health, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| |
Collapse
|
9
|
Jiao X, Wu Y, Zhou L, He J, Yang C, Zhang P, Hu R, Luo C, Du J, Fu J, Shi J, He R, Li D, Jun W. Variants and haplotypes in Flap endonuclease 1 and risk of gallbladder cancer and gallstones: a population-based study in China. Sci Rep 2015; 5:18160. [PMID: 26668074 PMCID: PMC4678911 DOI: 10.1038/srep18160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/13/2015] [Indexed: 12/16/2022] Open
Abstract
The role of FEN1 genetic variants on gallstone and gallbladder cancer susceptibility is unknown. FEN1 SNPs were genotyped using the polymerase chain reaction-restriction fragment length polymorphism method in blood samples from 341 gallbladder cancer patients and 339 healthy controls. The distribution of FEN1-69G > A genotypes among controls (AA, 20.6%; GA, 47.2% and GG 32.2%) was significantly different from that among gallbladder cancer cases (AA, 11.1%; GA, 48.1% and GG, 40.8%), significantly increased association with gallbladder cancer was observed for subjects with both the FEN1-69G > A GA (OR = 1.73, 95% CI = 1.01-2.63) and the FEN1-69G > A GG (OR = 2.29, 95% CI = 1.31-3.9). The distribution of FEN1 -4150T genotypes among controls (TT, 21.8%;GT, 49.3% and GG 28.9%) was significantly different from that among gallbladder cancer cases (TT, 12.9%; GT, 48.4% and GG 38.7%), significantly increased association with gallbladder cancer was observed for subjects with both the FEN1-4150T GT(OR = 1.93, 95% CI = 1.04-2.91) and the FEN1-4150T GG(OR = 2.56, 95% CI = 1.37-5.39). A significant trend towards increased association with gallbladder cancer was observed with potentially higher-risk FEN1-69G > A genotypes (P < 0.001, χ2 trend test) and FEN14150G > T (P < 0.001, χ2 trend test) in gallstone presence but not in gallstone absence (P = 0.81, P = 0.89, respectively). In conclusion, this study revealed firstly that FEN1 polymorphisms and haplotypes are associated with gallbladder cancer risk.
Collapse
Affiliation(s)
- Xingyuan Jiao
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
- Department of General Surgery and Transplantation Surgery, University Hospital Duisburg-Essen, D-45122, Germany
| | - Ying Wu
- Department of Biostatistics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Liansuo Zhou
- Department of General Surgery, The First Affiliated Hospital, Xian Medical College, Xian 710061, China
| | - Jinyun He
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Chonghua Yang
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Peng Zhang
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ronglin Hu
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Canqiao Luo
- Deparment of Pathology, Sun Yat-Sen University School of Medicine, Guangzhou 510080, China
| | - Jun Du
- Department of Molecular Biology, Sun Yat-Sen University School of Pharmacy, Guangzhou 510080, China
| | - Jian Fu
- Department of General Surgery and Transplantation Surgery, University Hospital Duisburg-Essen, D-45122, Germany
| | - Jinsen Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xian Jiaotong University, Xian 710061, China
| | - Rui He
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dongming Li
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wang Jun
- Department of Anatomy, Shenzhen University School of Medicine, Shenzhen 518060, China
| |
Collapse
|
10
|
Exploring the diagnosis markers for gallbladder cancer based on clinical data. Front Med 2015; 9:350-5. [PMID: 26177708 DOI: 10.1007/s11684-015-0402-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023]
Abstract
Presently, no effective markers are available to facilitate gallbladder cancer (GBC) diagnosis. This study aims to explore available markers for GBC diagnosis. Clinical data of 144 GBC and 116 cholelithiasis patients were retrospectively reviewed. Logistic regression analysis was performed to evaluate GBC risk factors. A receiver operating characteristic (ROC) curve was used to assess the diagnosis value of the risk factors. By comparing the characteristic of GBC and cholelithiasis patients, the following factors exhibited statistical difference: age, gender, gallstones, total bilirubin (TB), alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), platelet count (PLT), CA125 (carcinoembryonic antigen 125), and CA199 (carbohydrate antigen 199). Logistic regression analysis indicated that age [odds ratio (OR), 1.032; 95%confidence interval (95% CI), 1.004 to 1.061; P = 0.024], gender (OR, 0.346; 95% CI, 0.167 to 0.716; P = 0.004), gallstones (OR, 0.027; 95% CI, 0.007 to 0.095; P < 0.001), ALP (OR, 1.003; 95% CI, 1.000 to 1.006; P = 0.032), TB (OR, 1.004; 95% CI, 1.000 to 1.009; P = 0.042), and CA125 (OR, 1.007; 95% CI, 1.002 to 1.013; P = 0.011) were independent risk factors for GBC. According to the ROC curve, CA125 [area under curve (AUC), 0.720], ALP (AUC, 0.713), TB (AUC, 0.636), and age (AUC, 0.573) were valuable diagnosis markers. Additionally, based on the independent risk factors, the GBC diagnosis model was established. Age, TB, ALP, and CA125 can be used as auxiliary diagnosis factors of GBC. The diagnosis model provides a quantitative tool for GBC diagnosis when comprehensively considering various risk factors.
Collapse
|
11
|
Jiao X, Mo Y, Wu Y, He J, Zhang P, Hu R, Luo C, Du J, Fu J, Shi J, Zhou L, Li D. Upregulated plasma and urinary levels of nucleosides as biological markers in the diagnosis of primary gallbladder cancer. J Sep Sci 2014; 37:3033-44. [PMID: 25137411 DOI: 10.1002/jssc.201400638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 12/28/2022]
Abstract
We first detected aberrant nucleoside levels in the plasma, urine, bile, and tissues from cases and controls to explore them as biomarkers in the diagnosis of gallbladder cancer. Reversed-phase high-performance liquid chromatography was used to assess the levels of ten nucleosides in these samples from gallbladder cancer patients, gallstone patients, and healthy controls. Plasma and urine samples were collected from patients with gallbladder cancer (n = 202), patients with gallstones (n = 203), and healthy controls (n = 205); bile and tissue samples were collected from 91 gallbladder cancer patients, 93 gallstone patients; and 90 were donated after cardiac death. Of the ten nucleosides analyzed, eight urinary nucleosides, five plasma nucleosides, three bile nucleosides, and one tissue nucleoside were significantly upregulated in the gallbladder cancer patients compared to control groups (p < 0.05). Among these upregulated nucleosides, the sensitivity, specificity, and accuracy of urinary nucleosides in the diagnosis of gallbladder cancer patients were 89.4, 97.1, and 95.7%, respectively, those of plasma nucleosides were 91.2, 95.6, and 94.2%, respectively, those of bile nucleosides were 95.3, 96.4, and 95.1%, respectively, and those of tissue nucleosides were 86.2, 93.8, and 92.6%, respectively. These results suggest that nucleosides may be as useful as biological markers for gallbladder cancer.
Collapse
Affiliation(s)
- Xingyuan Jiao
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
He J, Shi TY, Zhu ML, Wang MY, Li QX, Wei QY. Associations of Lys939Gln and Ala499Val polymorphisms of the XPC gene with cancer susceptibility: a meta-analysis. Int J Cancer 2013; 133:1765-1775. [PMID: 23400628 DOI: 10.1002/ijc.28089] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/28/2013] [Indexed: 02/05/2023]
Abstract
XPC polymorphisms may alter DNA repair capacity, thus leading to genetic instability and carcinogenesis. Numerous studies have investigated the associations of XPC Lys939Gln (rs2228001) and Ala499Val (rs2228000) polymorphisms with cancer susceptibility; however, the findings are inconclusive. We searched literature from MEDLINE and EMBASE for eligible publications that assessed the associations between these two polymorphisms and cancer risk. We also assessed genotype-mRNA expression correlation data from HapMap for rs2228001 and rs2228000 in normal cell lines derived from 270 subjects with different ethnicities. The final analysis included 62 published studies of 25,708 cases and 30,432 controls for the Lys939Gln and 34 studies with 14,877 cases and 17,888 controls for the Ala499Val. Overall, Lys939Gln was significantly associated with an increased overall cancer risk (Gln/Gln vs. Lys/Lys: OR = 1.16, 95% CI = 1.07 - 1.25, p < 0.001; recessive model: OR = 1.14, 95% CI = 1.06 - 1.22, p < 0.001; dominant model: OR = 1.06, 95% CI = 1.01 - 1.11, p = 0.015 and Gln vs. Lys: OR = 1.07, 95% CI = 1.03 - 1.10, p < 0.001) and further stratifications showed an increased risk for bladder, lung and colorectal cancer, Asian populations and population-based studies. Likewise, Ala499Val was also significantly associated with an increased overall cancer risk (Val/Val vs. Ala/Ala: OR = 1.21, 95% CI = 1.07 - 1.36, p = 0.003 and recessive model: OR = 1.20, 95% CI = 1.08 - 1.34, p = 0.001) and further stratification showed an increased risk for breast and bladder cancer, particularly in Asian populations. Interestingly, significantly correlation between XPC genotypes and mRNA expression was found only for Asian populations as well. Despite some limitations, this meta-analysis established some solid statistical evidence for an association between XPC polymorphisms and cancer risk, which warrants further validation in single large studies.
Collapse
Affiliation(s)
- Jing He
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | | | | | | | | | | |
Collapse
|
13
|
Zhang P, Jiang G, Gao J, Li L, Du J, Jiao X. SAHA down-regulates the expression of indoleamine 2,3-dioxygenase via inhibition of the JAK/STAT1 signaling pathway in gallbladder carcinoma cells. Oncol Rep 2012; 29:269-75. [PMID: 23042548 DOI: 10.3892/or.2012.2073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/04/2012] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the role of the JAK/STAT1 signaling pathway in suberoylanilide hydroxamic acid (SAHA)-mediated down-regulation of indoleamine 2,3-dioxygenase (IDO) in gallbladder carcinoma cells. We treated SGC-996 gallbladder carcinoma cells with IFN-γ and SAHA. Western blotting was used to detect the expression of IDO, signal transducer and activator of transcription 1 (STAT1) phosphorylation and interferon regulatory factor genes-1 (IRF-1). Confocal microscopy analysis was used to detect STAT1 translocation. Transient transfection and reporter gene assay was used for detecting the activation of γ-activated sites (GAS) and interferon-stimulated response elements (ISRE). The results revealed that IDO was expressed in SGC-996 cells in a dose- and time-dependent manner when stimulated with IFN-γ and SAHA down-regulated the expression of IDO induced by IFN-γ in a dose-dependent manner. SAHA blocked the expression of IRF-1 induced by IFN-γ and SAHA inhibited IFN-γ-induced STAT1 phosphorylation and nuclear translocation. In addition, SAHA down-regulated IFN-γ-induced activation of GAS and ISRE. In conclusion, SAHA down-regulated IDO expression via inhibition of the activation of members of the JAK/STAT1 signaling pathway. Therefore, regulation of the JAK/STAT1 signaling pathway may provide a new gallbladder carcinoma immunotherapeutic strategy to break tumor immune tolerance.
Collapse
Affiliation(s)
- Peng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | | | | | | | | | | |
Collapse
|
14
|
Andrén-Sandberg Å. Molecular biology of gallbladder cancer: potential clinical implications. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2012; 4:435-41. [PMID: 23112962 PMCID: PMC3482772 DOI: 10.4103/1947-2714.101979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gallbladder cancer (GBC) is a common malignancy of the biliary tract and involves the changes in multiple oncogenes and multiple genetic genes. Since over the past decade there has been an advance in the knowledge of the genetic basis of cancer, mainly as a result of the rapid progression of molecular technology; however, conventional therapeutic approaches have not had much impact on the course of this aggressive neoplasm. Knowledge of the molecular biology of GBC is rapidly growing. Genetic alterations in GBC include adenosine triphosphate-binding cassette transporter ABCG8, membrane-bound enzyme ADAM-17 of multi-functional gene family, and other genes including p53, COX2, XPC, and RASSF1A. The advances in molecular biology have potential implications for the detection of this disease, using Synuclein-gamma, Syndecan-1, glycoprotein 72 (TAG-72), tumor endothelial marker 8 protein (TEM8) and TNF-alpha. The use of these molecular diagnostic methods is of clinical importance for the gene replacement therapy, genetic prodrug activation therapy, and antisense immunology technology for the treatment of malignancy. The author reviewed recent publications on PubMed, and summarized molecular biology of GBC, with an emphasis on features of potential clinical implications for diagnosis and management.
Collapse
Affiliation(s)
- Åke Andrén-Sandberg
- Department of Surgery, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| |
Collapse
|
15
|
Srivastava K, Srivastava A, Sharma KL, Mittal B. Candidate gene studies in gallbladder cancer: a systematic review and meta-analysis. Mutat Res 2011; 728:67-79. [PMID: 21708280 PMCID: PMC3162044 DOI: 10.1016/j.mrrev.2011.06.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/11/2011] [Accepted: 06/13/2011] [Indexed: 12/16/2022]
Abstract
Gallbladder cancer (GBC) is the most frequent biliary tract malignancy. Wide variations in GBC incidence and familial and epidemiological data suggest involvement of a genetic component in its etiopathogenesis. A systematic review of genetic association studies in GBC was performed by applying a meta-analysis approach and systematically reviewing PubMed database using appropriate terms. Odds ratios (ORs) and 95% confidence intervals (CIs) were appropriately derived for each gene-disease association using fixed and random effect models. Meta-regression with population size and genotyping method was also performed. Study quality was assessed using a 10-point scoring system designed from published guidelines. Following a review of 44 published manuscripts and one unpublished report, 80 candidate gene variants and 173 polymorphisms were analyzed among 1046 cases and 2310 controls. Majority of studies were of intermediate quality. Four polymorphisms with >3 separate studies were included in the meta-analysis [OGG1 (rs1052133), TP53 (rs1042522), CYP1A1 (rs1048943) and GSTM1 null polymorphism]. The meta-analysis demonstrated no significant associations of any of the above polymorphisms with GBC susceptibility except TP53 (rs1042522) polymorphism. To conclude, existing candidate gene studies in GBC susceptibility have so far been insufficient to confirm any association. Future research should focus on a more comprehensive approach utilizing potential gene-gene, gene-environment interactions and high-risk haplotypes.
Collapse
Affiliation(s)
- Kshitij Srivastava
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anvesha Srivastava
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, UP, India
| | - Kiran Lata Sharma
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, UP, India
| | - Balraj Mittal
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, UP, India.
| |
Collapse
|
16
|
Ren S, Zhou S, Wu F, Zhang L, Li X, Zhang J, Xu J, Lv M, Zhang J, Zhou C. Association between polymorphisms of DNA repair genes and survival of advanced NSCLC patients treated with platinum-based chemotherapy. Lung Cancer 2011; 75:102-9. [PMID: 21676483 DOI: 10.1016/j.lungcan.2011.05.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/16/2011] [Accepted: 05/23/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Single nucleotide polymorphism (SNP) in DNA repair genes can be used to explain the differences in survival of platinum-treated non-small cell lung cancer (NSCLC) patients regardless of their performance status. To define the role of DNA repair gene SNPs in NSCLC patients, we investigated the association between survival and 12 different SNPs of 9 DNA repair genes. METHODS 340 patients were treated with platinum-based chemotherapy. Polymorphisms were detected by real time PCR with TaqMan probe, using genomic DNA extracted from peripheral blood samples. Multivariate logistic or Cox regression analyses were used to adjust for possible confounding variables. RESULTS The median overall survival time was 15 months and it was significantly longer in patients harboring ERCC1 118 C/T or T/T allele: 18 months as compared to 13.8 months for the C/C allele (P=0.014). Subgroup analysis revealed that ERCC1 118 C/T or T/T was associated with increased survival in elderly patients (P=0.018), male (P=0.022), squamous carcinoma (P=0.003), smoker (P=0.076) and those treated with non-gemcitabine/cisplatin or carboplatin (non-GP/GC) regimen (P=0.023). XRCC3C/C was associated with better survival in non-gemcitabine/cisplatin treated patients (P=0.014). Both of CCNH-V270A C/C or C/T and XPD 751 A/A showed a significant longer survival in the squamous cell carcinoma subgroup (P=0.047 and P=0.034 respectively). CONCLUSION Present data indicates that ERCC1 118 C/T or T/T might provide a better prognostic predictive marker of NSCLC patients treated with platinum-based chemotherapy, mainly in elderly subgroup, male, squamous carcinoma, smoker and those treated with non-GP/GC regimen.
Collapse
Affiliation(s)
- Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University, No 507 Zhengmin Road, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|