1
|
Zhao J, Li G, Ren Y, Zhang Z, Chen H, Zhang H, Zhao X, Li W, Jia Y, Guan X, Liu M. Ellagic acid inhibits human colon cancer HCT-116 cells by regulating long noncoding RNAs. Anticancer Drugs 2023; 34:1112-1121. [PMID: 36847079 PMCID: PMC10569677 DOI: 10.1097/cad.0000000000001513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 03/01/2023]
Abstract
The natural phenolic compound ellagic acid exerts anti-cancer effects, including activity against colorectal cancer (CRC). Previously, we reported that ellagic acid can inhibit the proliferation of CRC, and can induce cell cycle arrest and apoptosis. This study investigated ellagic acid-mediated anticancer effects using the human colon cancer HCT-116 cell line. After 72 h of ellagic acid treatment, a total of 206 long noncoding RNAs (lncRNAs) with differential expression greater than 1.5-fold were identified (115 down-regulated and 91 up-regulated). Furthermore, the co-expression network analysis of differentially expressed lncRNA and mRNA showed that differential expressed lncRNA might be the target of ellagic acid activity in inhibiting CRC.
Collapse
Affiliation(s)
- Jinlu Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Guodong Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Yi Ren
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Zhicheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Hongsheng Chen
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Haopeng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xingyu Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Wang Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Yucheng Jia
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xue Guan
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Ming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| |
Collapse
|
2
|
Lee HS, Lee IH, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. A Study on the Mechanism of Herbal Drug FDY003 for Colorectal Cancer Treatment by Employing Network Pharmacology. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221126964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Colorectal cancer (CRC) originates from the uncontrolled growth of epithelial cells in the colon or rectum. Annually, 1.9 million new CRC cases are being reported, causing 0.9 million deaths worldwide. The suppressive effects of the herbal prescription FDY003, a mixture of Cordyceps militaris, Lonicera japonica Thunberg, and Artemisia capillaris Thunberg, against CRC have previously been reported. Nonetheless, the multiple compound-multiple target mechanisms of FDY003 in CRC cells have not been fully elucidated. In this study, we used network pharmacology (NP) to analyze the polypharmacological mechanisms of action of FDY003 in CRC treatment. FDY003 promoted the suppression of viability of CRC cells and strengthened their sensitivity to anticancer drugs. The NP study enabled the investigation of 17 pharmaceutical compounds and 90 CRC-related genes that were targets of the compounds. The gene ontology terms enriched with the CRC-related target genes of FDY003 were those involved in the control of a variety of phenotypes of CRC cells, for instance, the decision of apoptosis and survival, growth, stress response, and chemical response of cells. In addition, the targeted genes of FDY003 were further enriched in various Kyoto Encyclopedia of Genes and Genomes pathways that coordinate crucial pathological processes of CRC; these are ErbB, focal adhesion, HIF-1, IL-17, MAPK, PD-L1/PD-1, PI3K-Akt, Ras, TNF, and VEGF pathways. The overall analysis results obtained from the NP methodology support the multiple-compound-multiple-target-multiple-pathway pharmacological features of FDY003 as a potential agent for CRC treatment.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| | | | - Minho Jung
- Forest Hospital, Seoul, Republic of Korea
| | | | | | - Dae-Yeon Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| |
Collapse
|
3
|
Que W, Chen M, Yang L, Zhang B, Zhao Z, Liu M, Cheng Y, Qiu H. A network pharmacology-based investigation on the bioactive ingredients and molecular mechanisms of Gelsemium elegans Benth against colorectal cancer. BMC Complement Med Ther 2021; 21:99. [PMID: 33743701 PMCID: PMC7981997 DOI: 10.1186/s12906-021-03273-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide. Gelsemium elegans Benth (GEB) is a traditional Chinese medicine commonly used for treatment for gastrointestinal cancer, including CRC. However, the underlying active ingredients and mechanism remain unknown. This study aims to explore the active components and the functional mechanisms of GEB in treating CRC by network pharmacology-based approaches. METHODS Candidate compounds of GEB were collected from the Traditional Chinese Medicine@Taiwan, Traditional Chinese Medicines Integrated Database, Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine, and published literature. Potentially active targets of compounds in GEB were retrieved from SwissTargetPrediction databases. Keywords "colorectal cancer", "rectal cancer" and "colon cancer" were used as keywords to search for related targets of CRC from the GeneCards database, then the overlapped targets of compounds and CRC were further intersected with CRC related genes from the TCGA database. The Cytoscape was applied to construct a graph of visualized compound-target and pathway networks. Protein-protein interaction networks were constructed by using STRING database. The DAVID tool was applied to carry out Gene Ontology and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis of final targets. Molecular docking was employed to validate the interaction between compounds and targets. AutoDockTools was used to construct docking grid box for each target. Docking and molecular dynamics simulation were performed by Autodock Vina and Gromacs software, respectively. RESULTS Fifty-three bioactive compounds were successfully identified, corresponding to 136 targets that were screened out for the treatment of CRC. Functional enrichment analysis suggested that GEB exerted its pharmacological effects against CRC via modulating multiple pathways, such as pathways in cancer, cell cycle, and colorectal cancer. Molecular docking analysis showed that the representative compounds had good affinity with the key targets. Molecular dynamics simulation indicated that the best hit molecules formed a stable protein-ligand complex. CONCLUSION This network pharmacology study revealed the multiple ingredients, targets, and pathways synergistically involved in the anti-CRC effect of GEB, which will enhance our understanding of the potential molecular mechanism of GEB in treatment for CRC and lay a foundation for further experimental research.
Collapse
Affiliation(s)
- Wancai Que
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou, 350001, Fujian, People's Republic of China
| | - Maohua Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou, 350001, Fujian, People's Republic of China
| | - Ling Yang
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Bingqing Zhang
- College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People's Republic of China
| | - Zhichang Zhao
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou, 350001, Fujian, People's Republic of China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou, 350001, Fujian, People's Republic of China
| | - Yu Cheng
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou, 350001, Fujian, People's Republic of China.
| | - Hongqiang Qiu
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou, 350001, Fujian, People's Republic of China. .,College of Pharmacy, Fujian Medical University, Fuzhou, 350004, People's Republic of China.
| |
Collapse
|
4
|
Yu X, Yuan Z, Yang Z, Chen D, Kim T, Cui Y, Luo Q, Liu Z, Yang Z, Fan X, Chen D, Wang L. The novel long noncoding RNA u50535 promotes colorectal cancer growth and metastasis by regulating CCL20. Cell Death Dis 2018; 9:751. [PMID: 29970882 PMCID: PMC6030363 DOI: 10.1038/s41419-018-0771-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 01/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been emerging as master regulators of tumor growth and metastasis, but the functions and underlying mechanisms of lncRNAs in colorectal cancer (CRC) still need to be clarified. Here, we found a novel lncRNA u50535, which was greatly overexpressed in CRC tissues and was associated with poor prognosis in CRC patients. Function studies showed that u50535 was an oncogene in CRC both in vitro and in vivo. In mechanism, through RNA sequencing and rescue assay, we found that u50535 activates CCL20 signaling to promote cell proliferation and migration in CRC. Taken together, these findings suggest that u50535 can promote CRC growth and metastasis and may serve as a potential biomarker in CRC.
Collapse
Affiliation(s)
- Xihu Yu
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zixu Yuan
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zuli Yang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Daici Chen
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Taewan Kim
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Yanmei Cui
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianxin Luo
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihang Liu
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zihuan Yang
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinjuan Fan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - DianKe Chen
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Lei Wang
- Guangdong Institute of Gastroenterology, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Guan X, Yi Y, Huang Y, Hu Y, Li X, Wang X, Fan H, Wang G, Wang D. Revealing potential molecular targets bridging colitis and colorectal cancer based on multidimensional integration strategy. Oncotarget 2015; 6:37600-12. [PMID: 26461477 PMCID: PMC4741951 DOI: 10.18632/oncotarget.6067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 09/24/2015] [Indexed: 02/05/2023] Open
Abstract
Chronic inflammation may play a vital role in the pathogenesis of inflammation-associated tumors. However, the underlying mechanisms bridging ulcerative colitis (UC) and colorectal cancer (CRC) remain unclear. Here, we integrated multidimensional interaction resources, including gene expression profiling, protein-protein interactions (PPIs), transcriptional and post-transcriptional regulation data, and virus-host interactions, to tentatively explore potential molecular targets that functionally link UC and CRC at a systematic level. In this work, by deciphering the overlapping genes, crosstalking genes and pivotal regulators of both UC- and CRC-associated functional module pairs, we revealed a variety of genes (including FOS and DUSP1, etc.), transcription factors (including SMAD3 and ETS1, etc.) and miRNAs (including miR-155 and miR-196b, etc.) that may have the potential to complete the connections between UC and CRC. Interestingly, further analyses of the virus-host interaction network demonstrated that several virus proteins (including EBNA-LP of EBV and protein E7 of HPV) frequently inter-connected to UC- and CRC-associated module pairs with their validated targets significantly enriched in both modules of the host. Together, our results suggested that multidimensional integration strategy provides a novel approach to discover potential molecular targets that bridge the connections between UC and CRC, which could also be extensively applied to studies on other inflammation-related cancers.
Collapse
Affiliation(s)
- Xu Guan
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Yi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yan Huang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongfei Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xishan Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huihui Fan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Guiyu Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| |
Collapse
|
6
|
Huang Q, Chen D, Song S, Fu X, Wei Y, Lu J, Wang L, Wang J. A genetic variation of the p38β promoter region is correlated with an increased risk of sporadic colorectal cancer. Oncol Lett 2013; 6:3-8. [PMID: 23946768 PMCID: PMC3742754 DOI: 10.3892/ol.2013.1334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 04/17/2013] [Indexed: 12/19/2022] Open
Abstract
p38 plays a critical role in the proliferation, survival, migration and metastasis of colorectal cancer (CRC) cells. The present study assessed the correlation between a single nucleotide polymorphism (SNP) in the p38β promoter region (rs2235356, -1628A>G) and the predisposition of individuals to sporadic CRC in a case-control study. A genotyping method was developed to detect this SNP, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. A logistic regression analysis was used to determine the odds ratio (OR) and 95% confidence interval (CI). It was revealed that the -1628G variant allele was correlated with an increased risk of CRC (OR, 1.99; 95% CI, 1.60-2.47; P<0.0001). An in silico analysis revealed several transcription factors that either acquired or lost the ability to bind to -1628AA in the p38β promoter region due to the SNP. Therefore, this allelic variant may be a genetic modifier for CRC susceptibility.
Collapse
Affiliation(s)
- Qinghua Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ogino S, Fuchs CS, Giovannucci E. How many molecular subtypes? Implications of the unique tumor principle in personalized medicine. Expert Rev Mol Diagn 2012; 12:621-8. [PMID: 22845482 DOI: 10.1586/erm.12.46] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancers are complex multifactorial diseases. For centuries, conventional organ-based classification system (i.e., breast cancer, lung cancer, colon cancer, colorectal cancer, prostate cancer, lymphoma, leukemia, and so on) has been utilized. Recently, molecular diagnostics has become an essential component in clinical decision-making. However, tumor evolution and behavior cannot accurately be predicted, despite numerous research studies reporting promising tumor biomarkers. To advance molecular diagnostics, a better understanding of intratumor and intertumor heterogeneity is essential. Tumor cells interact with the extracellular matrix and host non-neoplastic cells in the tumor microenvironment, which is influenced by genomic variation, hormones, and dietary, lifestyle and environmental exposures, implicated by molecular pathological epidemiology. Essentially, each tumor possesses its own unique characteristics in terms of molecular make-up, tumor microenvironment and interactomes within and between neoplastic and host cells. Starting from the unique tumor concept and paradigm, we can better classify tumors by molecular methods, and move closer toward personalized cancer medicine and prevention.
Collapse
Affiliation(s)
- Shuji Ogino
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|
8
|
Ogino S, King EE, Beck AH, Sherman ME, Milner DA, Giovannucci E. Interdisciplinary education to integrate pathology and epidemiology: towards molecular and population-level health science. Am J Epidemiol 2012; 176:659-67. [PMID: 22935517 DOI: 10.1093/aje/kws226] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent decades, epidemiology, public health, and medical sciences have been increasingly compartmentalized into narrower disciplines. The authors recognize the value of integration of divergent scientific fields in order to create new methods, concepts, paradigms, and knowledge. Herein they describe the recent emergence of molecular pathological epidemiology (MPE), which represents an integration of population and molecular biologic science to gain insights into the etiologies, pathogenesis, evolution, and outcomes of complex multifactorial diseases. Most human diseases, including common cancers (such as breast, lung, prostate, and colorectal cancers, leukemia, and lymphoma) and other chronic diseases (such as diabetes mellitus, cardiovascular diseases, hypertension, autoimmune diseases, psychiatric diseases, and some infectious diseases), are caused by alterations in the genome, epigenome, transcriptome, proteome, metabolome, microbiome, and interactome of all of the above components. In this era of personalized medicine and personalized prevention, we need integrated science (such as MPE) which can decipher diseases at the molecular, genetic, cellular, and population levels simultaneously. The authors believe that convergence and integration of multiple disciplines should be commonplace in research and education. We need to be open-minded and flexible in designing integrated education curricula and training programs for future students, clinicians, practitioners, and investigators.
Collapse
Affiliation(s)
- Shuji Ogino
- Cancer Epidemiology Program, Dana-Farber/Harvard Cancer Center, 450 Brookline Ave., Room JF-215C, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Ogino S, Beck AH, King EE, Sherman ME, Milner DA, Giovannucci E. Ogino et Al. Respond to "the 21st century epidemiologist". Am J Epidemiol 2012; 176:672-4. [PMID: 22935516 DOI: 10.1093/aje/kws229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shuji Ogino
- Cancer Epidemiology Program, Dana-Farber/Harvard Cancer Center, 450 Brookline Ave., Room JF-215C, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Ogino S, King EE, Beck AH, Sherman ME, Milner DA, Giovannucci E. Interdisciplinary education to integrate pathology and epidemiology: towards molecular and population-level health science. Am J Epidemiol 2012. [PMID: 22935517 DOI: 10.1093/aje/kws226.3571252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent decades, epidemiology, public health, and medical sciences have been increasingly compartmentalized into narrower disciplines. The authors recognize the value of integration of divergent scientific fields in order to create new methods, concepts, paradigms, and knowledge. Herein they describe the recent emergence of molecular pathological epidemiology (MPE), which represents an integration of population and molecular biologic science to gain insights into the etiologies, pathogenesis, evolution, and outcomes of complex multifactorial diseases. Most human diseases, including common cancers (such as breast, lung, prostate, and colorectal cancers, leukemia, and lymphoma) and other chronic diseases (such as diabetes mellitus, cardiovascular diseases, hypertension, autoimmune diseases, psychiatric diseases, and some infectious diseases), are caused by alterations in the genome, epigenome, transcriptome, proteome, metabolome, microbiome, and interactome of all of the above components. In this era of personalized medicine and personalized prevention, we need integrated science (such as MPE) which can decipher diseases at the molecular, genetic, cellular, and population levels simultaneously. The authors believe that convergence and integration of multiple disciplines should be commonplace in research and education. We need to be open-minded and flexible in designing integrated education curricula and training programs for future students, clinicians, practitioners, and investigators.
Collapse
Affiliation(s)
- Shuji Ogino
- Cancer Epidemiology Program, Dana-Farber/Harvard Cancer Center, 450 Brookline Ave., Room JF-215C, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Ma Y, Tian J, Cen H, Li J, Xu WD, Wang DG, Pan HF, Ye DQ. Association of c-Jun gene polymorphism with susceptibility to systemic lupus erythematosus in a Chinese population. DNA Cell Biol 2012; 31:1274-8. [PMID: 22489574 DOI: 10.1089/dna.2011.1536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
C-Jun has been proved as playing an important role in the pathogenesis of tumors, as a main component of Activator protein 1 and c-Jun gene polymorphisms are associated with colorectal cancer. However, the relationship between the c-Jun gene polymorphism and the susceptibility to systemic lupus erythematosus (SLE) has not been known. Our purpose is to evaluate whether the c-Jun gene polymorphism (SNP rs3748814) is associated with susceptibility to SLE in a Chinese population. In this study, we enrolled 502 SLE patients and 652 healthy controls. The c-Jun polymorphism (rs3748814) was specified from genomic DNA using the TaqMan genotyping assay on a 7300 real-time reverse transcription polymerase chain reaction system. We found that the frequency of the A/G genotype in SLE patients was lower than in healthy controls, whereas the frequency of the G/G genotype was significantly higher in SLE patients than in healthy controls (A/G vs. G/G p = 8.670e-08, odds ratio [OR] = 0.290, 95% confidence interval [CI] = 0.184-0.456). In addition, the frequency of allele A in the patients group was significantly lower than in the control group (A vs. G p=5.221e-09, OR = 0.308, 95% CI = 0.212-0.466). The distribution of genotype and allele frequency in SLE patients with lupus nephritis (LN) compared with SLE patients without LN was not statistically significant (A/G vs. G/G p = 0.744, OR = 1.157, 95% CI=0.481-2.785; A vs. G p = 0.748, OR = 1.152, 95% CI = 0.486-2.734; A/A+A/G vs. G/G p = 0.744, OR = 1.157, 95% CI = 0.481-2.785). Furthermore, we did not find any significant association between other clinical features and genotypes. Our findings suggest that the c-Jun polymorphism (rs3748814) may be significantly associated with the susceptibility to SLE in a Chinese population.
Collapse
Affiliation(s)
- Yan Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, PR China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Huang B, Liu B, Yang L, Li Y, Cheng M, Huang D, Wang H, Zhang X, Zheng J, Li Q, Ji W, Zhou Y, Lu J. Functional genetic variants of c-Jun and their interaction with smoking and drinking increase the susceptibility to lung cancer in southern and eastern Chinese. Int J Cancer 2012; 131:E744-58. [DOI: 10.1002/ijc.27407] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/24/2011] [Indexed: 01/30/2023]
|