1
|
Bolandi S, Dodge S, Zahed Z, Soleimani A, Monirvaghefi K, Ghodsifar M, Ghasemi M, Aghajamal Avval N, Zadeh SSM, Fazayel SMA, Morovatshoar R, Barfi V, Behfar Q, Dehghani S. Epigenetic and post-translational modifications in ferroptosis regulation and hepatocellular carcinoma: New frontiers in therapeutic targeting. Pathol Res Pract 2025; 270:155991. [PMID: 40306004 DOI: 10.1016/j.prp.2025.155991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Hepatocellular carcinoma (HCC), the predominant kind of liver cancer, continues to be a significant contributor to cancer-related deaths globally, influenced by intricate molecular processes and strong resistance to existing chemotherapy. Iron-dependent lipid peroxidation induces ferroptosis, a controlled form of cell death that plays a crucial role in inhibiting tumor growth and treatment resistance in HCC. Recent research has shown that epigenetic modifications, such as DNA methylation, histone modifications, regulation by non-coding RNAs (ncRNAs), and post-translational modification (PTM) like ubiquitination, phosphorylation, acetylation, and methylation, play a crucial role in fine-tuning ferroptosis. These alterations alter the structure of chromatin, gene expression, and protein function, thereby affecting cancer cells' fate. This review emphasizes the complex functions of epigenetic and post-translational alterations in controlling ferroptosis, providing valuable insights into their potential as therapeutic targets in HCC. The unraveling of these pathways offers a significant opportunity for novel therapies targeted at surmounting drug resistance and enhancing patient outcomes in liver cancer.
Collapse
Affiliation(s)
- Soheil Bolandi
- Department of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Dodge
- School of Pharmacy, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Zahra Zahed
- Department of Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Anvar Soleimani
- Department of Medical Microbiology, College of Health Sciences, Cihan University Sulaimaniya, Sulaimaniya City, Kurdistan, Iraq
| | - Khaterehsadat Monirvaghefi
- Department of Adult Hematology & Oncology, School of Medicine, Ayatollah Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Mahshid Ghodsifar
- Department Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ghasemi
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | | | | | | | - Reza Morovatshoar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vahid Barfi
- PhD in Sports Physiology, Faculty of Sports and Health Sciences, University of Tehran, Tehran, Iran
| | - Qumars Behfar
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | | |
Collapse
|
2
|
Tong B, Zhang Z, Xu Z, Yang Y. Association of genetic variants in MIR17HG and in the promoter of MIR17HG with susceptibility to cancer in Chinese Han population: a systematic review and meta-analysis. BMC Cancer 2025; 25:631. [PMID: 40197290 PMCID: PMC11977879 DOI: 10.1186/s12885-025-14018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND The association between microRNA 17-92 cluster host gene (MIR17HG) polymorphisms and the risk of cancer has been evaluated in studies, here, we attempted to elucidate the relationship between 6 single nucleotide polymorphisms (SNPs) of MIR17HG (rs17735387 G > A, rs7336610 C > T, rs1428 C > A, rs7318578 A > C, rs72640334 C > A, and rs75267932 A > G), 3 SNPs in the promoter of MIR17HG (rs9588884 C > G, rs982873 T > C, and rs1813389 A > G) and susceptibility to cancer in Chinese Han population. METHODS Systematic literature research from databases were performed with strict eligibility criteria to include the relevant studies for this meta-analysis. Association between the SNPs of MIR17HG and cancer risk was estimated by pooling the odds ratios (ORs) with 95% confidence interval (95% CI) in five genetic models (allelic model, dominant model, recessive model, homozygous model, and heterozygous model). RESULTS The pooled meta-analysis showed that there was no significant association between rs17735387 G > A, rs7336610 C > T, rs1428 C > A, rs7318578 A > C, rs72640334 C > A, and rs75267932 A > G and cancer risk in Chinese Han population. However, for the SNPs in the promoter of MIR17HG, rs9588884 C > G and rs982873 T > C could decrease cancer risk in most genetic models, but not rs1813389 A > G. CONCLUSION This present meta-analysis identified 2 SNPs in the promoter of MIR17HG (rs9588884 C > G and rs982873 T > C) may be protective factors against cancer in Chinese Han population.
Collapse
Affiliation(s)
- Binghua Tong
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Zhaonan Zhang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 256603, China
| | - Zhaowei Xu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Yangyang Yang
- School of Basic Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
3
|
Di Fiore R, Drago-Ferrante R, Suleiman S, Calleja N, Calleja-Agius J. The role of microRNA-9 in ovarian and cervical cancers: An updated overview. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:108546. [PMID: 39030109 DOI: 10.1016/j.ejso.2024.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Ovarian and cervical cancers are the two most frequent kind of gynaecological cancers (GCs). In spite of advances in prevention, screening and treatment, cervical cancer still leads to an increased morbidity and mortality worldwide. Ovarian cancer is often detected at a late stage, which significantly reduces the effectiveness of available treatments. Therefore, novel methods are desperately needed to improve the clinical care of GC patients. MicroRNAs, also known as short noncoding RNAs (miRNAs/miRs), are a diverse group of RNAs with a length of 22 nucleotides. These typically cause translational repression and mRNA degradation by interacting with target mRNAs' 3' untranslated region (3'-UTR), together with other regions and gene promoters. Under certain conditions, they are also able to activate translation or regulate transcription. It has been demonstrated that miRNAs are crucial to several biological processes leading to tumorigenesis, including GCs. Recent research has shown that miR-9 affects carcinogenesis. In this review, we will provide an overview of current research on the potential utility of miR-9 in the diagnosis, prognosis, and therapy of ovarian and cervical malignancies.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA.
| | - Rosa Drago-Ferrante
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta; BioDNA Laboratories, Malta Life Sciences Park, SGN, 3000, San Gwann, Malta.
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta.
| | - Neville Calleja
- Department of Public Health, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta.
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta.
| |
Collapse
|
4
|
Feng H, Ju Y, Yin X, Qiu W, Zhang X. STLBRF: an improved random forest algorithm based on standardized-threshold for feature screening of gene expression data. Brief Funct Genomics 2025; 24:elae048. [PMID: 39736135 PMCID: PMC11735748 DOI: 10.1093/bfgp/elae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025] Open
Abstract
When the traditional random forest (RF) algorithm is used to select feature elements in biostatistical data, a large amount of noise data and parameters can affect the importance of the selected feature elements, making the control of feature selection difficult. Therefore, it is a challenge for the traditional RF algorithm to preserve the accuracy of algorithm results in the presence of noise data. Generally, directly removing noise data can result in significant bias in the results. In this study, we develop a new algorithm, standardized threshold, and loops based random forest (STLBRF), and apply it to the field of gene expression data for feature gene selection. This algorithm, based on the traditional RF algorithm, combines backward elimination and K-fold cross-validation to construct a cyclic system and set a standardized threshold: error increment. The algorithm overcomes the shortcomings of existing gene selection methods. We compare ridge regression, lasso regression, elastic net regression, the traditional RF algorithm, and our improved RF algorithm using three real gene expression datasets and conducting a quantitative analysis. To ensure the reliability of the results, we validate the effectiveness of the genes selected by these methods using the Random Forest classifier. The results indicate that, compared to other methods, the STLBRF algorithm achieves not only higher effectiveness in feature gene selection but also better control over the number of selected genes. Our method offers reliable technical support for feature expression analysis and research on biomarker selection.
Collapse
Affiliation(s)
- Huini Feng
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Xiaofeng Yin
- Future Technology Research Institute, Weichai Power Co., Ltd, Weifang, China
| | - Wenshi Qiu
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Xu Zhang
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Hasani F, Masrour M, Khamaki S, Jazi K, Hosseini S, Heidarpour H, Namazee M. Diagnostic and Prognostic Accuracy of MiRNAs in Pancreatic Cancer: A Systematic Review and Meta-Analysis. J Cell Mol Med 2025; 29:e70337. [PMID: 39855897 PMCID: PMC11761000 DOI: 10.1111/jcmm.70337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/30/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Pancreatic cancer (PC) remains a significant contributor to global cancer mortality, with limited effective diagnostic and prognostic tools. MicroRNAs (miRNAs) have emerged as promising biomarkers for PC diagnosis and prognosis. A comprehensive literature search was conducted in PubMed, Web of Science, and Scopus. Studies reporting sensitivity, specificity or area under the curve (AUC) for miRNAs in PC diagnosis, as well as hazard ratios (HRs) for survival evaluations, were included. Data extraction and quality assessment followed PRISMA guidelines. Meta-analyses were conducted using appropriate statistical methods. The protocol is registered in PROSPERO. Diagnostic analysis included 290 evaluations, revealing an overall AUC of 0.8226 for PC diagnosis. Subgroup analyses showed varying accuracies, with blood and tissue specimens yielding higher AUC values. Promising miRNAs with AUC values above 0.8 included miR-320, miR-1290, miR-93, miR-25, miR-451, miR-20, miR-21, miR-223 and miR-122. Prognostic analysis encompassed 46 studies, indicating significant associations between miRNA expression and overall survival (OS) and progression-free survival (PFS). The combined HR for studies reporting OS HRs higher than one was 1.7613 (95% CI: 1.5394-2.0152, p < 0.0001; I2 = 81.7%). Notable miRNAs with prognostic significance included miR-10, miR-21 and miR-221. Studies reporting OS HRs less than one had a pooled HR of 0.6805 (95% CI: 0.5862-0.7901, p < 0.0001; I2 = 65.4%). MiRNAs hold promise as diagnostic and prognostic biomarkers for PC. Blood and tissue specimens offer superior diagnostic accuracy, and several miRNAs show potential for predicting patient outcomes.
Collapse
Affiliation(s)
- Fatemeh Hasani
- Golestan Research Center of Gastroenterology and HepatologyGolestan University of Medical SciencesGorganIran
| | - Mahdi Masrour
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Sina Khamaki
- Golestan Research Center of Gastroenterology and HepatologyGolestan University of Medical SciencesGorganIran
| | - Kimia Jazi
- Student Research Committee, Faculty of MedicineQom University of Medical SciencesQomIran
| | - Saba Hosseini
- Golestan Research Center of Gastroenterology and HepatologyGolestan University of Medical SciencesGorganIran
| | - Hadiseh Heidarpour
- Golestan Research Center of Gastroenterology and HepatologyGolestan University of Medical SciencesGorganIran
| | - Mehrad Namazee
- School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
6
|
Song G, Yu X, Shi H, Sun B, Amateau S. miRNAs in HCC, pathogenesis, and targets. Hepatology 2024:01515467-990000000-01097. [PMID: 39626210 DOI: 10.1097/hep.0000000000001177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Liver cancer is the third leading cause of cancer-related mortality worldwide. HCC, the most common type of primary liver cancer, is driven by complex genetic, epigenetic, and environmental factors. MicroRNAs, a class of naturally occurring small noncoding RNAs, play crucial roles in HCC by simultaneously modulating the expression of multiple genes in a fine-tuning manner. Significant progress has been made in understanding how miRNAs influence key oncogenic pathways, including cell proliferation, apoptosis, angiogenesis, and epithelial-mesenchymal transition (EMT), as well as their role in modulating the immune microenvironment in HCC. Due to the unexpected stability of miRNAs in the blood and fixed HCC tumors, recent advancements also highlight their potential as noninvasive diagnostic tools. Restoring or inhibiting specific miRNAs has offered promising strategies for targeted HCC treatment by suppressing malignant hepatocyte growth and enhancing antitumor immunity. In this comprehensive review, we consolidate previous research and provide the latest insights into how miRNAs regulate HCC and their therapeutic and diagnostic potential. We delve into the dysregulation of miRNA biogenesis in HCC, the roles of miRNAs in the proliferation and apoptosis of malignant hepatocytes, angiogenesis and metastasis of HCC, the immune microenvironment in HCC, and drug resistance. We also discuss the therapeutic and diagnostic potential of miRNAs and delivery approaches of miRNA drugs to overcome the limitations of current HCC treatment options. By thoroughly summarizing the roles of miRNAs in HCC, our goal is to advance the development of effective therapeutic drugs with minimal adverse effects and to establish precise tools for early diagnosis of HCC.
Collapse
Affiliation(s)
- Guisheng Song
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaofan Yu
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Hongtao Shi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan City, China
| | - Bo Sun
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Stuart Amateau
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Liu B, Liu L, Liu Y. Targeting cell death mechanisms: the potential of autophagy and ferroptosis in hepatocellular carcinoma therapy. Front Immunol 2024; 15:1450487. [PMID: 39315094 PMCID: PMC11416969 DOI: 10.3389/fimmu.2024.1450487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a type of cell death that plays a remarkable role in the growth and advancement of malignancies including hepatocellular carcinoma (HCC). Non-coding RNAs (ncRNAs) have a considerable impact on HCC by functioning as either oncogenes or suppressors. Recent research has demonstrated that non-coding RNAs (ncRNAs) have the ability to control ferroptosis in HCC cells, hence impacting the advancement of tumors and the resistance of these cells to drugs. Autophagy is a mechanism that is conserved throughout evolution and plays a role in maintaining balance in the body under normal settings. Nevertheless, the occurrence of dysregulation of autophagy is evident in the progression of various human disorders, specifically cancer. Autophagy plays dual roles in cancer, potentially influencing both cell survival and cell death. HCC is a prevalent kind of liver cancer, and genetic mutations and changes in molecular pathways might worsen its advancement. The role of autophagy in HCC is a subject of debate, as it has the capacity to both repress and promote tumor growth. Autophagy activation can impact apoptosis, control proliferation and glucose metabolism, and facilitate tumor spread through EMT. Inhibiting autophagy can hinder the growth and spread of HCC and enhance the ability of tumor cells to respond to treatment. Autophagy in HCC is regulated by several signaling pathways, such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs. Utilizing anticancer drugs to target autophagy may have advantageous implications for the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Al-Hawary SIS, Abdalkareem Jasim S, Altalbawy FMA, Kumar A, Kaur H, Pramanik A, Jawad MA, Alsaad SB, Mohmmed KH, Zwamel AH. miRNAs in radiotherapy resistance of cancer; a comprehensive review. Cell Biochem Biophys 2024; 82:1665-1679. [PMID: 38805114 DOI: 10.1007/s12013-024-01329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
While intensity-modulated radiation therapy-based comprehensive therapy increases outcomes, cancer patients still have a low five-year survival rate and a high recurrence rate. The primary factor contributing to cancer patients' poor prognoses is radiation resistance. A class of endogenous non-coding RNAs, known as microRNAs (miRNAs), controls various biological processes in eukaryotes. These miRNAs influence tumor cell growth, death, migration, invasion, and metastasis, which controls how human carcinoma develops and spreads. The correlation between the unbalanced expression of miRNAs and the prognosis and sensitivity to radiation therapy is well-established. MiRNAs have a significant impact on the regulation of DNA repair, the epithelial-to-mesenchymal transition (EMT), and stemness in the tumor radiation response. But because radio resistance is a complicated phenomena, further research is required to fully comprehend these mechanisms. Radiation response rates vary depending on the modality used, which includes the method of delivery, radiation dosage, tumor stage and grade, confounding medical co-morbidities, and intrinsic tumor microenvironment. Here, we summarize the possible mechanisms through which miRNAs contribute to human tumors' resistance to radiation.
Collapse
Affiliation(s)
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Salim Basim Alsaad
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
9
|
Sun M, Shen W, Guo X, Liao Y, Huang Y, Hu M, Ye P, Liu R. A critical review of advances in tumor metabolism abnormalities induced by nitrosamine disinfection by-products in drinking water. Toxicol Sci 2024; 199:12-28. [PMID: 38291902 DOI: 10.1093/toxsci/kfae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Intensified sanitation practices amid the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak might result in the increased release of chloramine disinfectants into surface water, significantly promoting the formation of nitrosamine disinfection by-products (DBPs) in drinking water. Unfortunately, these nitrosamine DBPs exhibit significant genotoxic, carcinogenic, and mutagenic properties, whereas chlorinating disinfectants remain in global practice. The current review provides valuable insights into the occurrence, identification, contamination status, exposure limits, and toxicity of the new unregulated disinfection by-products (nitrosamine DBPs) in drinking water. As a result, concentrations of nitrosamine DBPs far exceed allowable limits in drinking water, and prolonged exposure has the potential to cause metabolic disorders, a critical step in tumor initiation and progression. Importantly, based on recent research, we have concluded the role of nitrosamines DBPs in different metabolic pathways. Remarkably, nitrosamine DBPs can induce chronic inflammation and initiate tumors by activating sphingolipid and polyunsaturated fatty acid metabolism. Regarding amino acid and nucleotide metabolism, nitrosamine DBPs can inhibit tryptophan metabolism and de novo nucleotide synthesis. Moreover, inhibition of de novo nucleotide synthesis fails to repair DNA damage induced by nitrosamines. Additionally, the accumulation of lactate induced by nitrosamine DBPs may act as a pivotal signaling molecule in communication within the tumor microenvironment. However, with the advancement of tumor metabolomics, understanding the role of nitrosamine DBPs in causing cancer by inducing metabolic abnormalities significantly lags behind, and specific mechanisms of toxic effects are not clearly defined. Urgently, further studies exploring this promising area are needed.
Collapse
Affiliation(s)
- Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Weitao Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Xinxin Guo
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yinghao Liao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yang Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Mohan Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Ping Ye
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| |
Collapse
|
10
|
Jouve M, Carpentier R, Kraiem S, Legrand N, Sobolewski C. MiRNAs in Alcohol-Related Liver Diseases and Hepatocellular Carcinoma: A Step toward New Therapeutic Approaches? Cancers (Basel) 2023; 15:5557. [PMID: 38067261 PMCID: PMC10705678 DOI: 10.3390/cancers15235557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 06/29/2024] Open
Abstract
Alcohol-related Liver Disease (ALD) is the primary cause of chronic liver disorders and hepatocellular carcinoma (HCC) development in developed countries and thus represents a major public health concern. Unfortunately, few therapeutic options are available for ALD and HCC, except liver transplantation or tumor resection for HCC. Deciphering the molecular mechanisms underlying the development of these diseases is therefore of major importance to identify early biomarkers and to design efficient therapeutic options. Increasing evidence indicate that epigenetic alterations play a central role in the development of ALD and HCC. Among them, microRNA importantly contribute to the development of this disease by controlling the expression of several genes involved in hepatic metabolism, inflammation, fibrosis, and carcinogenesis at the post-transcriptional level. In this review, we discuss the current knowledge about miRNAs' functions in the different stages of ALD and their role in the progression toward carcinogenesis. We highlight that each stage of ALD is associated with deregulated miRNAs involved in hepatic carcinogenesis, and thus represent HCC-priming miRNAs. By using in silico approaches, we have uncovered new miRNAs potentially involved in HCC. Finally, we discuss the therapeutic potential of targeting miRNAs for the treatment of these diseases.
Collapse
Affiliation(s)
- Mickaël Jouve
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Rodolphe Carpentier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Sarra Kraiem
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Noémie Legrand
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cyril Sobolewski
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| |
Collapse
|
11
|
Romualdo GR, Heidor R, Bacil GP, Moreno FS, Barbisan LF. Past, present, and future of chemically induced hepatocarcinogenesis rodent models: Perspectives concerning classic and new cancer hallmarks. Life Sci 2023; 330:121994. [PMID: 37543357 DOI: 10.1016/j.lfs.2023.121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Hepatocellular carcinoma (HCC), the main primary liver cancer, accounts for 5 % of all incident cases and 8.4 % of all cancer-related deaths worldwide. HCC displays a spectrum of environmental risk factors (viral chronic infections, aflatoxin exposure, alcoholic- and nonalcoholic fatty liver diseases) that result in molecular complexity and heterogeneity, contributing to a rising epidemiological burden, poor prognosis, and non-satisfactory treatment options. The emergence of HCC (i.e., hepatocarcinogenesis) is a multistep and complex process that addresses many (epi)genetic alterations and phenotypic traits, the so-called cancer hallmarks. "Polymorphic microbiomes", "epigenetic reprogramming", "senescent cells" and "unlocking phenotypic plasticity" are trending hallmarks/enabling features in cancer biology. As the main molecular drivers of HCC are still undruggable, chemically induced in vivo models of hepatocarcinogenesis are useful tools in preclinical research. Thus, this narrative review aimed at recapitulating the basic features of chemically induced rodent models of hepatocarcinogenesis, eliciting their permanent translational value regarding the "classic" and the "new" cancer hallmarks/enabling features. We gathered state-of-art preclinical evidence on non-cirrhotic, inflammation-, alcoholic liver disease- and nonalcoholic fatty liver-associated HCC models, demonstrating that these bioassays indeed express the recently added hallmarks, as well as reflect the interplay between classical and new cancer traits. Our review demonstrated that these protocols remain valuable for translational preclinical application, as they recapitulate trending features of cancer science. Further "omics-based" approaches are warranted while multimodel investigations are encouraged in order to avoid "model-biased" responses.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Renato Heidor
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Laboratory of Diet, Nutrition, and Cancer, São Paulo, SP, Brazil
| | - Gabriel Prata Bacil
- São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Fernando Salvador Moreno
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Laboratory of Diet, Nutrition, and Cancer, São Paulo, SP, Brazil
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil.
| |
Collapse
|
12
|
Chakrabortty A, Patton DJ, Smith BF, Agarwal P. miRNAs: Potential as Biomarkers and Therapeutic Targets for Cancer. Genes (Basel) 2023; 14:1375. [PMID: 37510280 PMCID: PMC10378777 DOI: 10.3390/genes14071375] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, non-coding RNA molecules that regulate gene expression post-transcriptionally by binding to messenger RNAs. miRNAs are important regulators of gene expression, and their dysregulation is implicated in many human and canine diseases. Most cancers tested to date have been shown to express altered miRNA levels, which indicates their potential importance in the oncogenic process. Based on this evidence, numerous miRNAs have been suggested as potential cancer biomarkers for both diagnosis and prognosis. miRNA-based therapies have also been tested in different cancers and have provided measurable clinical benefits to patients. In addition, understanding miRNA biogenesis and regulatory mechanisms in cancer can provide important knowledge about resistance to chemotherapies, leading to more personalized cancer treatment. In this review, we comprehensively summarized the importance of miRNA in human and canine cancer research. We discussed the current state of development and potential for the miRNA as both a diagnostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Atonu Chakrabortty
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Daniel J Patton
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Bruce F Smith
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Payal Agarwal
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
13
|
Circulating miR-122-5p, miR-92a-3p, and miR-18a-5p as Potential Biomarkers in Human Liver Transplantation Follow-Up. Int J Mol Sci 2023; 24:ijms24043457. [PMID: 36834868 PMCID: PMC9962619 DOI: 10.3390/ijms24043457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The requirement of blood-circulating sensitive biomarkers for monitoring liver transplant (LT) is currently a necessary step aiming at the reduction of standard invasive protocols, such as liver biopsy. In this respect, the main objective of this study is to assess circulating microRNA (c-miR) changes in recipients' blood before and after LT and to correlate their blood levels with gold standard biomarkers and with outcomes such as rejection or complications after graft. An miR profile was initially performed; then, the most deregulated miRs were validated by RT-qPCR in 14 recipients pre- and post-LT and compared to a control group of 24 nontransplanted healthy subjects. MiR-122-5p, miR-92a-3p, miR-18a-5p, and miR-30c-5p, identified in the validation phase, were also analyzed considering an additional 19 serum samples collected from LT recipients and focusing on different follow-up (FU) times. The results showed significant, FU-related changes in c-miRs. In particular, miR-122-5p, miR-92a-3p, and miR-18a-5p revealed the same trend after transplantation and an increase in their level was found in patients with complications, independently from FU times. Conversely, the variations in the standard haemato-biochemical parameters for liver function assessment were not significant in the same FU period, confirming the importance of c-miRs as potential noninvasive biomarkers for monitoring patients' outcomes.
Collapse
|
14
|
Yang L, Guan Y, Liu Z. Role of ferroptosis and its non-coding RNA regulation in hepatocellular carcinoma. Front Pharmacol 2023; 14:1177405. [PMID: 37124203 PMCID: PMC10133567 DOI: 10.3389/fphar.2023.1177405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Ferroptosis is a newly discovered form of programmed cell death that involves the accumulation of iron-dependent lipid peroxides and plays a vital role in the tumorigenesis, development, and drug resistance of various tumors such as hepatocellular carcinoma (HCC). As a hotspot in molecular biology, non-coding RNAs (ncRNAs) participate in the initiation and progression of HCC, either act as oncogenes or tumor suppressors. Recent studies have shown that ncRNAs can regulate ferroptosis in HCC cells, which would affect the tumor progression and drug resistance. Therefore, clarifying the underlying role of ferroptosis and the regulatory role of ncRNA on ferroptosis in HCC could develop new treatment interventions for this disease. This review briefly summarizes the role of ferroptosis and ferroptosis-related ncRNAs in HCC tumorigenesis, progression, treatment, drug resistance and prognosis, for the development of potential therapeutic strategies and prognostic markers in HCC patients.
Collapse
Affiliation(s)
| | - Yu Guan
- *Correspondence: Yu Guan, ; Zhanbing Liu,
| | | |
Collapse
|
15
|
Genetic variant in miR-17-92 cluster binding sites is associated with esophageal squamous cell carcinoma risk in Chinese population. BMC Cancer 2022; 22:1253. [PMID: 36461008 PMCID: PMC9719157 DOI: 10.1186/s12885-022-10360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) located in microRNA (miRNA) binding sites can affect the interactions between miRNAs and target genes, which is related to cancer susceptibility and tumorigenesis. However, the association between SNPs located in miR-17-92 cluster binding sites and ESCC risk remains unclear. Therefore, we aimed to explore the relationship between polymorphisms in miR-17-92 cluster binding sites and ESCC susceptibility. METHODS Six SNPs in the binding sites of miR-17-92 cluster were selected using bioinformatics databases, and their association with ESCC risk was investigated in a case-control study (including 488 cases and 512 controls) based on the population from high incidence areas of ESCC in China. We evaluated the SNP-SNP and SNP-smoking interactions using generalized multifactor dimensionality reduction (GMDR). Moreover, the expression of the miR-17-92 cluster and its target genes was determined in ESCC and adjacent normal tissues by quantitative real-time polymerase chain reaction (qRT-PCR). The dual-luciferase reporter assay was conducted to verify the effect of SNPs on the binding affinity between miRNAs and target genes. RESULTS We found that the SNP rs1804506 C > T had a significant association with the decreased ESCC risk. The SNP rs1804506 T allele was associated with a significantly decreased risk of ESCC in the additive model (OR = 0.817, 95% CI = 0.681-0.981, P = 0.030). The rs1804506 T allele had more striking effects on reducing ESCC risk in older individuals, female or non-smoker subgroups. We also found a significant interaction effect between rs1366600 and smoking by GMDR methods (P = 0.011). Additionally, the expression levels of miR-19a-3p and TGFBR3 were significantly downregulated in ESCC tissues compared with normal tissues, and the carriers of rs1804506 TT genotype had lower expression level of TGFBR3 than those of rs1804506 CC/CT genotype. Following dual-luciferase reporter assay showed that the rs1804506 T allele reduced the binding of miR-19a-3p and TGFBR3 3'-UTR. CONCLUSIONS Our findings suggest that the rs1804506 polymorphism in miR-17-92 cluster binding sites contributes to the susceptibility of ESCC, which might provide new clues and scientific evidence for the etiology and biomarkers for the prevention and treatment of ESCC.
Collapse
|
16
|
Lu F, Zhao X, Zhang Z, Xiong M, Wang Y, Sun Y, He B, Zhu J. The diagnostic and prognostic value of the miR-17-92 cluster in hepatocellular carcinoma: A meta-analysis. Front Genet 2022; 13:927079. [PMID: 36118845 PMCID: PMC9480495 DOI: 10.3389/fgene.2022.927079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Previous studies demonstrated that microRNAs (miRNAs) could serve as biomarkers in various cancers. This meta-analysis aimed to determine the roles of a miR-17-92 cluster in hepatocellular carcinoma (HCC). Here, eligible included studies were searched through PubMed, Embase, and Wan Fang databases up to 1st February 2022. Relevant data were extracted from each eligible study to evaluate the relationship between miRNA-17-92 cluster miRNA expression and the diagnosis and prognosis of HCC. Finally, a total of 21 studies were pooled and included in the meta-analysis, of which four articles were used for diagnostic meta-analysis and eight articles were used for prognostic meta-analysis. The pooled sensitivity, specificity, and diagnostic odds ratios (DOR) of the miR17-92 cluster for diagnosis of HCC were 0.75 [95% confidence interval (CI): 0.64–0.83], 0.73 (95% CI: 0.65–0.79), and 7.87 (95% CI: 5.36–11.54), respectively. Also, the area under the curve (AUC) for the miR-17-92 cluster when diagnosing HCC was 0.79 (95% CI: 0.76–0.83). For prognostic analysis, hazard ratios (HRs) with 95% CIs were extracted from the included studies and pooled HRs were determined to assess the associations. Patients with increased expression of miR17-92 cluster miRNA were associated with poor overall survival (OS) and recurrence-free survival (RFS) (HR=1.86, 95% CI: 1.04–3.33; HR = 4.18, 95% CI: 3.02–5.77, respectively), but not progression-free survival (PFS) (HR = 0.43, 95% CI: 0.25–0.73), while no association of the miR-17-92 cluster high-expression was detected with disease-free survival (DFS) (HR: 0.95, 95% CI: 0.21–4.34). In short, current pieces of evidence suggested that the miR-17-92 cluster may serve as a novel diagnostic and prognostic biomarker for HCC. However, given the limited study number, larger-size, multi-center, and higher-quality studies are indispensable in the future.
Collapse
Affiliation(s)
- Fang Lu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Xianghong Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Zhongqiu Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Mengqiu Xiong
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ying Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Yalan Sun
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Bangshun He
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Bangshun He, ; Junrong Zhu,
| | - Junrong Zhu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- *Correspondence: Bangshun He, ; Junrong Zhu,
| |
Collapse
|
17
|
Gramantieri L, Fornari F, Giovannini C, Trerè D. MicroRNAs at the Crossroad between Immunoediting and Oncogenic Drivers in Hepatocellular Carcinoma. Biomolecules 2022; 12:biom12070930. [PMID: 35883486 PMCID: PMC9313100 DOI: 10.3390/biom12070930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In recent years, treatments enhancing the antitumor immune response have revealed a new promising approach for advanced hepatocellular carcinoma (HCC). Beside favorable results in about one third of patients, much still remains to be done to face primary nonresponse, early, and late disease reactivation. Understanding the mechanisms underneath immune system modulation by immune checkpoint inhibitors in HCC might give additional opportunities for patient selection and combined approaches. MicroRNAs have emerged as relevant modulators of cancer cell hallmarks, including aberrant proliferation, invasion and migration capabilities, epithelial-to-mesenchymal transition, and glycolytic metabolism. At the same time, they contribute to the immune system development, response, and programs activation, with particular regard towards regulatory functions. Thus, miRNAs are relevant not only in cancer cells’ biology, but also in the immune response and interplay between cancer, microenvironment, and immune system. Abstract Treatments aimed to reverse the tumor-induced immune tolerance represent a promising approach for advanced hepatocellular carcinoma (HCC). Notwithstanding, primary nonresponse, early, and late disease reactivation still represent major clinical challenges. Here, we focused on microRNAs (miRNAs) acting both as modulators of cancer cell hallmarks and immune system response. We outlined the bidirectional function that some oncogenic miRNAs play in the differentiation and program activation of the immune system development and, at the same time, in the progression of HCC. Indeed, the multifaceted spectrum of miRNA targets allows the modulation of both immune-associated factors and oncogenic or tumor suppressor drivers at the same time. Understanding the molecular changes contributing to disease onset, progression, and resistance to treatments might help to identify possible novel biomarkers for selecting patient subgroups, and to design combined tailored treatments to potentiate antitumor approaches. Preliminary findings seem to argue in favor of a bidirectional function of some miRNAs, which enact an effective modulation of molecular pathways driving oncogenic and immune-skipping phenotypes associated with cancer aggressiveness. The identification of these miRNAs and the characterization of their ‘dual’ role might help to unravel novel biomarkers identifying those patients more likely to respond to immune checkpoint inhibitors and to identify possible therapeutic targets with both antitumor and immunomodulatory functions. In the present review, we will focus on the restricted panel of miRNAs playing a bidirectional role in HCC, influencing oncogenic and immune-related pathways at once. Even though this field is still poorly investigated in HCC, it might represent a source of candidate molecules acting as both biomarkers and therapeutic targets in the setting of immune-based treatments.
Collapse
Affiliation(s)
- Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Francesca Fornari
- Department for Life Quality Studies (QuVi), University of Bologna, 47921 Rimini, Italy
- Centre for Applied Biomedical Research-CRBA, University of Bologna, IRCCS St. Orsola Hospital, 40138 Bologna, Italy
| | - Catia Giovannini
- Centre for Applied Biomedical Research-CRBA, University of Bologna, IRCCS St. Orsola Hospital, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
| | - Davide Trerè
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
- Departmental Program in Laboratory Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
18
|
Si L, Wang H, Jiang Y, Yi Y, Wang R, Long Q, Zhao Y. MIR17HG polymorphisms contribute to high-altitude pulmonary edema susceptibility in the Chinese population. Sci Rep 2022; 12:4346. [PMID: 35288592 PMCID: PMC8921515 DOI: 10.1038/s41598-022-06944-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/31/2022] [Indexed: 11/09/2022] Open
Abstract
High-altitude pulmonary edema (HAPE) is a common acute altitude sickness. This study was designed to investigate the effect of MIR17HG polymorphisms on HAPE risk in the Chinese population. The Agena MassARRAY platform was used to genotype six single-nucleotide polymorphisms (SNPs) in the MIR17HG gene in 244 HAPE patients and 243 non-HAPE controls. The odds ratio (OR) and 95% confidence interval were used to evaluate the association between each MIR17HG polymorphisms and the risk of HAPE under a polygenetic model. Statistical analysis was performed using the χ2 test. Multifactor dimensionality reduction (MDR) analysis was used to analyze the impacts of SNP–SNP interactions on the risk of HAPE. According to the allele model, the HAPE risk of people with the rs7318578 A allele of MIR17HG was lower than that of people with the C allele (OR 0.74, p = 0.036).Logistic regression analysis of four models for all selected MIR17HG SNPs showed significant differences in the frequencies of rs7318578 (OR 0.74, p = 0.037) and rs17735387 (OR 1.51, p = 0.036) between cases and controls. The results of the sex stratification analysis showed that among males, rs17735387 in the MIR17HG gene is associated with an increased risk of HAPE. MDR analysis showed that the best combination model was a three-locus model incorporating rs72640334, rs7318578, and rs7336610. This study revealed the correlations between rs7318578 and rs17735387 on the MIR17HG gene and the risk of HAPE in the Chinese population, providing a theoretical basis for the early screening, prevention, and diagnosis of HAPE in high-risk populations.
Collapse
Affiliation(s)
- Lining Si
- Department of Critical-Care Medicine, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Haiyang Wang
- Department of Diabetes of Traditional Chinese Medicine, Qinghai Red Cross Hospital, Xining, 810001, Qinghai, China
| | - Yahui Jiang
- Medical College, Qinghai University, No. 29 Tongren Road, Xining, 810001, Qinghai, China
| | - Yun Yi
- Medical College, Qinghai University, No. 29 Tongren Road, Xining, 810001, Qinghai, China
| | - Rong Wang
- Medical College, Qinghai University, No. 29 Tongren Road, Xining, 810001, Qinghai, China
| | - Qifu Long
- Medical College, Qinghai University, No. 29 Tongren Road, Xining, 810001, Qinghai, China
| | - Yanli Zhao
- Medical College, Qinghai University, No. 29 Tongren Road, Xining, 810001, Qinghai, China.
| |
Collapse
|
19
|
MicroRNA-17-92a-1 Host Gene (MIR17HG) Expression Signature and rs4284505 Variant Association with Alopecia Areata: A Case-Control Study. Genes (Basel) 2022; 13:genes13030505. [PMID: 35328059 PMCID: PMC8955921 DOI: 10.3390/genes13030505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Accumulating evidence indicates the implication of microRNAs (miRs) in cutaneous and hair follicle immunobiology. We evaluated, for the first time, the miR-17-92a-1 cluster host gene (MIR17HG) expression in peripheral blood of 248 unrelated alopecia areata (AA) patients compared to 244 matched controls using Real-Time qPCR. We also tested its association with different rs4284505A>G genotypes (based on TaqMan allelic discrimination PCR) and the available clinical data. The adjusted odds ratio (OR) and 95% confidence interval (CI) were calculated for each genetic association model. The upregulation of miR-17 was observed in the serum of patients with alopecia compared to controls (p-value = 0.004). The ROC curve showed high diagnostic performance of miR-17 in differentiating between patients and controls (AUC = 0.85, p-value < 0.001). rs4284505*A/G heterozygotes were more susceptible to the disease (OR = 1.57, 95% CI = 1.01−2.45) under the over-dominant model. Interestingly, patients with the rs4284505*G/G genotype had a higher level of miR-17 than those with the A/A and A/G genotypes. The G/G genotype was associated with the severe phenotype (p-value = 0.038). A/G carriers were the youngest (p-value < 0.001), had more frequent scalp infection (p-value = 0.006), exhibited the worst dermatology life quality index score (p-value = 0.037), and responded less to treatment (p-value = 0.033). In conclusion, MIR17HG expression and the rs4284505 variant were significantly associated with AA and could play a role in pathogenesis and phenotype in the Egyptian population. Further multi-center studies in other ethnicities are warranted to replicate the findings.
Collapse
|
20
|
Weidle UH, Nopora A. MicroRNAs and Corresponding Targets in Esophageal Cancer as Shown In Vitro and In Vivo in Preclinical Models. Cancer Genomics Proteomics 2022; 19:113-129. [PMID: 35181582 DOI: 10.21873/cgp.20308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/08/2023] Open
Abstract
Squamous cell carcinoma of the esophagus is associated with a dismal prognosis. Therefore, identification of new targets and implementation of new treatment modalities are issues of paramount importance. Based on a survey of the literature, we identified microRNAs conferring antitumoral activity in preclinical in vivo experiments. In the category of miRs targeting secreted factors and transmembrane receptors, four miRs were up-regulated and 10 were down-regulated compared with five out of nine in the category transcription factors, and six miRs were down-regulated in the category enzymes, including metabolic enzymes. The down-regulated miRs have targets which can be inhibited by small molecules or antibody-related entities, or re-expressed by reconstitution therapy. Up-regulated miRs have targets which can be reconstituted with small molecules or inhibited with antagomirs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
21
|
A Pyroptosis-Related Gene Signature to Predict Patients’ Prognosis and Immune Landscape in Liver Hepatocellular Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1258480. [PMID: 35242200 PMCID: PMC8886769 DOI: 10.1155/2022/1258480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
Background Liver hepatocellular carcinoma (LIHC) is a malignance with high incidence and recurrence. Pyroptosis is a programed cell death pattern which both activates the effective immune response and causes cell damage. However, their potential applications of pyroptosis-related genes (PRGs) in the prognostic evaluation and immunotherapy of LIHC are still rarely discussed. Methods Comprehensive bioinformatics analyses based on TCGA-LIHC dataset were performed in the current study. Results A total of 33 PRGs were selected to perform the current study. Of these 33 PRGs, 26 PRGs with upregulation or downregulation in LIHC tissues were identified. We also summarized the related genetic mutation variation landscape. GO and KEGG pathway analysis demonstrated that these 26 PRGs were primarily associated with pyroptosis, positive regulation of interleukin-1 beta production, and NOD-like receptor signaling pathway. An unfavorable OS appeared in LIHC patients with high CASP3, CASP4, CASP6, CASP8, GPX4, GSDMA, GSDME, NLRP3, NLRP7, NOD1, NOD2, PLCG1, and SCAF11 expression and low NLRP6 expression. A prognostic signature constructed by the above 14 prognostic PRGs had moderate to high accuracy to predict LIHC patients' prognosis. And risk score was correlated with the expression of CASP6, CASP8, GPX4, GSDMA, GSDME, NLRP6, and NOD2. Of these 7 genes, CASP8 was identified as the core gene in PPI network. Moreover, lncRNA MIR17HG/hsa-miRNA-130b-3p/CASP8 regulatory axis in LIHC was also detected. Conclusions The current study indicated the crucial role of PRGs in the prognostic evaluation of LIHC patients and their correlations with tumor microenvironment in LIHC.
Collapse
|
22
|
Wang YS, Guo R, Yang DC, Xu Y, Hui YX, Li DD, Tang SC, Tang YY. The Interaction of NTN4 and miR-17-92 Polymorphisms on Breast Cancer Susceptibility in a Chinese Population. Clin Breast Cancer 2021; 22:e544-e551. [DOI: 10.1016/j.clbc.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/31/2021] [Accepted: 12/05/2021] [Indexed: 11/03/2022]
|
23
|
Gong J, Jiang J, Qu J, Li J, Chen X, Ruan Z, Lu G, He Y, He X, Sun R. Association between the rs3733846 in the flanking region of miR-143/145 and risk of cervical squamous cell carcinoma. Biomark Med 2021; 15:891-897. [PMID: 34229450 DOI: 10.2217/bmm-2020-0865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the effect of rs3733846 in the flanking region of miR-143/145 on susceptibility to cervical squamous cell carcinoma (CSCC). Materials & methods: We collected venous blood samples from 242 CSCC patients and 250 healthy controls. The rs3733846 polymorphism was genotyped by SnaPshot and Sanger sequencing. The expression of miR-143/145 in CSCC tissues was detected by quantitative real-time PCR. Results: The rs3733846 AG genotype was associated with a decreased risk of CSCC in genetic model (AGvs.AA: adjusted odds ratio [OR]: 0.44; 95% CI: 0.30-0.66; p < 0.001). Patients with the rs3733846 AG/GG genotypes had a reduced risk of developing poorly differential status (OR: 0.57; 95% CI: 0.33-0.98; p < 0.04) and lymph node metastasis (OR: 0.49; 95% CI: 0.26-0.92; p < 0.03). Conclusion: The rs3733846 in the flanking region of miR-143/145 was related to the susceptibility of CSCC.
Collapse
Affiliation(s)
- Jianyu Gong
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Jike Jiang
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Jianwen Qu
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Ju Li
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Xin Chen
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Zhiguo Ruan
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Gangxu Lu
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Yuxiao He
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Xiaoshan He
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Ruifen Sun
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| |
Collapse
|
24
|
Feng Y, Hu X, Ma K, Zhang B, Sun C. Genome-Wide Screening Identifies Prognostic Long Noncoding RNAs in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6640652. [PMID: 34095306 PMCID: PMC8163536 DOI: 10.1155/2021/6640652] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis. Therefore, there is an urgent call for the investigation of novel biomarkers in HCC. In the present study, we identified 6 upregulated lncRNAs in HCC, including LINC01134, RHPN1-AS1, NRAV, CMB9-22P13.1, MKLN1-AS, and MAPKAPK5-AS1. Higher expression of these lncRNAs was correlated to a more advanced cancer stage and a poorer prognosis in HCC patients. Enrichment analysis revealed that these lncRNAs played a crucial role in HCC progression, possibly through a series of cancer-related biological processes, such as cell cycle, DNA replication, histone acetyltransferase complex, fatty acid oxidation, and lipid modification. Moreover, competing endogenous RNA (ceRNA) network analysis revealed that these lncRNAs could bind to certain miRNAs to promote HCC progression. Loss-of-function assays indicated that silencing of RHPN1-AS1 significantly suppressed HCC proliferation and migration. Though further validations are still needed, these identified lncRNAs could serve as valuable potential biomarkers for HCC prognosis.
Collapse
Affiliation(s)
- Yujie Feng
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Xiao Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Kai Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Bingyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Chuandong Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| |
Collapse
|
25
|
Rahnama S, Bakhshinejad B, Farzam F, Bitaraf A, Ghazimoradi MH, Babashah S. Identification of dysregulated competing endogenous RNA networks in glioblastoma: A way toward improved therapeutic opportunities. Life Sci 2021; 277:119488. [PMID: 33862117 DOI: 10.1016/j.lfs.2021.119488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022]
Abstract
Glioblastoma is recognized as one of the leading causes of death worldwide. Although there have been considerable advancements in understanding the causative molecular mechanisms of this malignancy, effective therapeutic strategies are still in limited use. It has been revealed that non-coding RNAs (ncRNAs) play critical roles in glioblastoma development, while interactions between the regulatory molecules such as long ncRNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs) remain to be fully deciphered. Over the recent years, researchers have discovered a new category of RNA molecules called competing endogenous RNA (ceRNA). This kind of RNA can contribute to molecular interactions in the form of ceRNA networks (ceRNETs). Multiple lines of evidence have demonstrated that dysregulation of various ceRNA networks is involved in glioblastoma development. Therefore, gaining insights into these dysregulations might offer potential for the early diagnosis of glioblastoma patients and identification of efficient therapeutic targets. In this review, we provide an overview of recent discoveries on ceRNA networks and the involvement of dysregulated networks in posing limitations to temozolomide therapy. We also describe signaling pathways relevant to the progression of glioblastoma.
Collapse
Affiliation(s)
- Saghar Rahnama
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
26
|
MIR17HG polymorphism (rs7318578) is associated with liver cancer risk in the Chinese Han population. Biosci Rep 2021; 40:225971. [PMID: 32748943 PMCID: PMC7457078 DOI: 10.1042/bsr20193312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Numerous evidence has revealed that single-nucleotide polymorphisms (SNPs) are associated with liver cancer risk. To assess whether the MIR17HG polymorphisms are associated with the liver cancer risk in the Chinese Han population, we performed a case–control (432 liver cancer patients and 430 healthy controls) study. Genotyping of four variants of MIR17HG was performed with the Agena MassARRAY platform. We used χ2 test to compare the distribution of SNPs allele and genotypes frequencies of cases and controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression analysis to evaluate the association under genetic models. The results indicated that the rs7318578 was significantly associated with increased the risk of liver cancer in the allele (OR = 1.45, 95% CI: 1.18–1.77, P=3.04E-04), recessive (OR = 3.69, 95% CI: 2.45–5.56, P=4.52E-10) and additive model (OR = 1.35, 95% CI: 1.13–1.62, P=0.001). Moreover, we found that individuals with the genotype CC of rs7318578 presented with an increased risk of liver cancer (OR = 3.03, 95% CI: 1.98–4.65, P=3.83E-07); however, the CA genotype of rs7318578 significantly decreased the risk of liver cancer (OR = 0.61, 95% CI: 0.45–0.83, P=0.001, compared with those with the AA genotype. Our findings indicated that MIR17HG polymorphism (rs7318578) contributes to liver cancer susceptibility to the Chinese Han population. Further studies with larger samples are required to confirm the results, as well as functional studies to determine the role of this SNP in miRNA expression or molecular pathways.
Collapse
|
27
|
Ning J, Ye Y, Bu D, Zhao G, Song T, Liu P, Yu W, Wang H, Li H, Ren X, Ying G, Zhao Y, Yu J. Imbalance of TGF-β1/BMP-7 pathways induced by M2-polarized macrophages promotes hepatocellular carcinoma aggressiveness. Mol Ther 2021; 29:2067-2087. [PMID: 33601054 DOI: 10.1016/j.ymthe.2021.02.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022] Open
Abstract
The transforming growth factor-beta (TGF-β) signaling pathway is the predominant cytokine signaling pathway in the development and progression of hepatocellular carcinoma (HCC). Bone morphogenetic protein (BMP), another member of the TGF-β superfamily, has been frequently found to participate in crosstalk with the TGF-β pathway. However, the complex interaction between the TGF-β and BMP pathways has not been fully elucidated in HCC. We found that the imbalance of TGF-β1/BMP-7 pathways was associated with aggressive pathological features and poor clinical outcomes in HCC. The induction of the imbalance of TGF-β1/BMP-7 pathways in HCC cells could significantly promote HCC cell invasion and stemness by increasing inhibitor of differentiation 1 (ID1) expression. We also found that the microRNA (miR)-17-92 cluster, originating from the extracellular vesicles (EVs) of M2-polarized tumor-associated macrophages (M2-TAMs), stimulated the imbalance of TGF-β1/BMP-7 pathways in HCC cells by inducing TGF-β type II receptor (TGFBR2) post-transcriptional silencing and inhibiting activin A receptor type 1 (ACVR1) post-translational ubiquitylation by targeting Smad ubiquitylation regulatory factor 1 (Smurf1). In vivo, short hairpin (sh)-MIR17HG and ACVR1 inhibitors profoundly attenuated HCC cell growth and metastasis by rectifying the imbalance of TGF-β1/BMP-7 pathways. Therefore, we proposed that the imbalance of TGF-β1/BMP-7 pathways is a feasible prognostic biomarker and recovering the imbalance of TGF-β1/BMP-7 pathways might be a potential therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Junya Ning
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Dechao Bu
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Gang Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Tianqiang Song
- Department of Liver Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hailong Wang
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Guoguang Ying
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; Ningbo Institute of Life and Health Industry, University of China Academy of Sciences, Zhejiang 315000, China.
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
28
|
Raafat N, Zaher TI, Etewa RL, El-gerby KM, Rezk NA. Heat shock protein-27 and MiR-17-5p are novel diagnostic and prognostic biomarkers for hepatocellular carcinoma in Egyptian patients. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
The Relevance of MicroRNAs in the Pathogenesis and Prognosis of HCV-Disease: The Emergent Role of miR-17-92 in Cryoglobulinemic Vasculitis. Viruses 2020; 12:v12121364. [PMID: 33260407 PMCID: PMC7761224 DOI: 10.3390/v12121364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022] Open
Abstract
Hepatitis C virus (HCV) is a major public health problem. HCV is a hepatotropic and lymphotropic virus that leads to hepatocellular carcinoma (HCC) and lymphoproliferative disorders such as cryoglobulinemic vasculitis (CV) and non-Hodgkin's lymphoma (NHL). The molecular mechanisms by which HCV induces these diseases are not fully understood. MicroRNAs (miRNAs) are small non-coding molecules that negatively regulate post-transcriptional gene expression by decreasing their target gene expression. We will attempt to summarize the current knowledge on the role of miRNAs in the HCV life cycle, HCV-related HCC, and lymphoproliferative disorders, focusing on both the functional effects of their deregulation as well as on their putative role as biomarkers, based on association analyses. We will also provide original new data regarding the miR 17-92 cluster in chronically infected HCV patients with and without lymphoproliferative disorders who underwent antiviral therapy. All of the cluster members were significantly upregulated in CV patients compared to patients without CV and significantly decreased in those who achieved vasculitis clinical remission after viral eradication. To conclude, miRNAs play an important role in HCV infection and related oncogenic processes, but their molecular pathways are not completely clear. In some cases, they may be potential therapeutic targets or non-invasive biomarkers of tumor progression.
Collapse
|
30
|
Waidmann O, Pleli T, Weigert A, Imelmann E, Kakoschky B, Schmithals C, Döring C, Frank M, Longerich T, Köberle V, Hansmann ML, Brüne B, Zeuzem S, Piiper A, Dikic I. Tax1BP1 limits hepatic inflammation and reduces experimental hepatocarcinogenesis. Sci Rep 2020; 10:16264. [PMID: 33004985 PMCID: PMC7530720 DOI: 10.1038/s41598-020-73387-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
The nuclear factor kappa beta (NFκB) signaling pathway plays an important role in liver homeostasis and cancer development. Tax1-binding protein 1 (Tax1BP1) is a regulator of the NFκB signaling pathway, but its role in the liver and hepatocellular carcinoma (HCC) is presently unknown. Here we investigated the role of Tax1BP1 in liver cells and murine models of HCC and liver fibrosis. We applied the diethylnitrosamine (DEN) model of experimental hepatocarcinogenesis in Tax1BP1+/+ and Tax1BP1-/- mice. The amount and subsets of non-parenchymal liver cells in in Tax1BP1+/+ and Tax1BP1-/- mice were determined and activation of NFκB and stress induced signaling pathways were assessed. Differential expression of mRNA and miRNA was determined. Tax1BP1-/- mice showed increased numbers of inflammatory cells in the liver. Furthermore, a sustained activation of the NFκB signaling pathway was found in hepatocytes as well as increased transcription of proinflammatory cytokines in isolated Kupffer cells from Tax1BP1-/- mice. Several differentially expressed mRNAs and miRNAs in livers of Tax1BP1-/- mice were found, which are regulators of inflammation or are involved in cancer development or progression. Furthermore, Tax1BP1-/- mice developed more HCCs than their Tax1BP1+/+ littermates. We conclude that Tax1BP1 protects from liver cancer development by limiting proinflammatory signaling.
Collapse
Affiliation(s)
- Oliver Waidmann
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,Institut für Biochemie 2, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Thomas Pleli
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas Weigert
- Institut für Biochemie 1, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Esther Imelmann
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Bianca Kakoschky
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christian Schmithals
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Claudia Döring
- Senckenbergsches Institut für Pathologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Matthias Frank
- Senckenbergsches Institut für Pathologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas Longerich
- Sektion Translationale Gastrointestinale Pathologie, Institut für Pathologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Verena Köberle
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Martin-Leo Hansmann
- Senckenbergsches Institut für Pathologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Bernhard Brüne
- Institut für Biochemie 1, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Stefan Zeuzem
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Albrecht Piiper
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ivan Dikic
- Institut für Biochemie 2, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| |
Collapse
|
31
|
Liu J, Liu F. The Yin and Yang function of microRNAs in insulin signalling and cancer. RNA Biol 2020; 18:24-32. [PMID: 32746694 DOI: 10.1080/15476286.2020.1804236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Data accumulated over the past several decades uncover a vital role of microRNAs (miRNAs) in various biological processes. It is well established that, by binding to target mRNAs, miRNAs act as post-transcription suppressors to inhibit mRNA translation and/or to promote mRNA degradation. Very recently, miRNAs have been found to act as positive regulators to promote gene transcription. In this review, we briefly summarize the regulation and functional roles of miRNAs in metabolic diseases and cancer development. We also review recent advances on the mechanisms by which miRNAs regulate gene expression, focusing on their unconventional roles as enhancers to promote gene expression. Given the high potential of miRNAs as biomarkers for risk assessment and as high-value targets for therapy, a better understanding of the Yin-Yang functional feature of miRNAs and their mechanisms of action could have significant clinical implications for the treatment of various diseases such as obesity, type 2 diabetes, and cancer.
Collapse
Affiliation(s)
- Juanhong Liu
- National Clinical Research Center for Metabolic Diseases, and Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University , Changsha, China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, and Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University , Changsha, China.,Departments of Pharmacology, University of Texas Health at San Antonio , San Antonio, TX, USA
| |
Collapse
|
32
|
Sheng N, Cui H, Zhang T, Xuan P. Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA-disease association prediction. Brief Bioinform 2020; 22:5841901. [PMID: 32444875 DOI: 10.1093/bib/bbaa067] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
As the abnormalities of long non-coding RNAs (lncRNAs) are closely related to various human diseases, identifying disease-related lncRNAs is important for understanding the pathogenesis of complex diseases. Most of current data-driven methods for disease-related lncRNA candidate prediction are based on diseases and lncRNAs. Those methods, however, fail to consider the deeply embedded node attributes of lncRNA-disease pairs, which contain multiple relations and representations across lncRNAs, diseases and miRNAs. Moreover, the low-dimensional feature distribution at the pairwise level has not been taken into account. We propose a prediction model, VADLP, to extract, encode and adaptively integrate multi-level representations. Firstly, a triple-layer heterogeneous graph is constructed with weighted inter-layer and intra-layer edges to integrate the similarities and correlations among lncRNAs, diseases and miRNAs. We then define three representations including node attributes, pairwise topology and feature distribution. Node attributes are derived from the graph by an embedding strategy to represent the lncRNA-disease associations, which are inferred via their common lncRNAs, diseases and miRNAs. Pairwise topology is formulated by random walk algorithm and encoded by a convolutional autoencoder to represent the hidden topological structural relations between a pair of lncRNA and disease. The new feature distribution is modeled by a variance autoencoder to reveal the underlying lncRNA-disease relationship. Finally, an attentional representation-level integration module is constructed to adaptively fuse the three representations for lncRNA-disease association prediction. The proposed model is tested over a public dataset with a comprehensive list of evaluations. Our model outperforms six state-of-the-art lncRNA-disease prediction models with statistical significance. The ablation study showed the important contributions of three representations. In particular, the improved recall rates under different top $k$ values demonstrate that our model is powerful in discovering true disease-related lncRNAs in the top-ranked candidates. Case studies of three cancers further proved the capacity of our model to discover potential disease-related lncRNAs.
Collapse
|
33
|
Chiabotto G, Camussi G, Bruno S. Role of ncRNAs in modulation of liver fibrosis by extracellular vesicles. ACTA ACUST UNITED AC 2020. [DOI: 10.1186/s41544-020-00050-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractExtracellular vesicles (EVs) are small membrane vesicles carrying bioactive lipids, proteins and nucleic acids of the cell of origin. In particular, EVs carry non-coding RNAs (ncRNAs) and the vesicle membrane may protect them from degradation. Once released within the extracellular space, EVs can transfer their cargo, including ncRNAs, to neighboring or distant cells, thus inducing phenotypical and functional changes that may be relevant in several physio-pathological conditions. This review provides an overview of the role of EV-carried ncRNAs in the modulation of liver fibrosis. In particular, we focused on EV-associated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) involved into the development of liver fibrosis and on the potential use of EV-associated ncRNAs as diagnostic and prognostic biomarkers of liver fibrosis.
Collapse
|
34
|
MicroRNA Expression Profiling of Normal and Malignant Human Colonic Stem Cells Identifies miRNA92a as a Regulator of the LRIG1 Stem Cell Gene. Int J Mol Sci 2020; 21:ijms21082804. [PMID: 32316543 PMCID: PMC7216254 DOI: 10.3390/ijms21082804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have a critical role in regulating stem cells (SCs) during development, and because aberrant expression of miRNAs occurs in various cancers, our goal was to determine if dysregulation of miRNAs is involved in the SC origin of colorectal cancer (CRC). We previously reported that aldehyde dehydrogenase (ALDH) is a marker for normal and malignant human colonic SCs and tracks SC overpopulation during colon tumorigenesis. MicroRNA expression was studied in ALDH-positive SCs from normal and malignant human colon tissues by Nanostring miRNA profiling. Our findings show that: (1) A unique miRNA signature distinguishes ALDH-positive CRC cells from ALDH-positive normal colonic epithelial cells, (2) Expression of four miRNAs (miRNA200c, miRNA92a, miRNA20a, miRNA93) are significantly altered in CRC SCs compared to normal colonic SCs, (3) miRNA92a expression is also upregulated in ALDH-positive HT29 CRC SCs as compared to ALDH-negative SCs, (4) miRNA92a targets the 3′UTR of LRIG1 SC gene, and (5) miRNA92a modulates proliferation of HT29 CRC cells. Thus, our findings indicate that overexpression of miRNA92a contributes to the SC origin of CRC. Strategies designed to modulate miRNA expression, such as miRNA92a, may provide ways to target malignant SCs and to develop more effective therapies against CRC.
Collapse
|
35
|
Tipanee J, Di Matteo M, Tulalamba W, Samara-Kuko E, Keirsse J, Van Ginderachter JA, Chuah MK, VandenDriessche T. Validation of miR-20a as a Tumor Suppressor Gene in Liver Carcinoma Using Hepatocyte-Specific Hyperactive piggyBac Transposons. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1309-1329. [PMID: 32160703 PMCID: PMC7036702 DOI: 10.1016/j.omtn.2020.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
We established a semi-high-throughput in vivo screening platform using hyperactive piggyBac (hyPB) transposons (designated as PB-miR) to identify microRNAs (miRs) that inhibit hepatocellular carcinoma (HCC) development in vivo, following miR overexpression in hepatocytes. PB-miRs encoding six different miRs from the miR-17-92 cluster and nine miRs from outside this cluster were transfected into mouse livers that were chemically induced to develop HCC. In this slow-onset HCC model, miR-20a significantly inhibited HCC. Next, we developed a more aggressive HCC model by overexpression of oncogenic Harvey rat sarcoma viral oncogene homolog (HRASG12V) and c-MYC oncogenes that accelerated HCC development after only 6 weeks. The tumor suppressor effect of miR-20a could be demonstrated even in this rapid-onset HRASG12V/c-MYC HCC model, consistent with significantly prolonged survival and decreased HCC tumor burden. Comprehensive RNA expression profiling of 95 selected genes typically associated with HCC development revealed differentially expressed genes and functional pathways that were associated with miR-20a-mediated HCC suppression. To our knowledge, this is the first study establishing a direct causal relationship between miR-20a overexpression and liver cancer inhibition in vivo. Moreover, these results demonstrate that hepatocyte-specific hyPB transposons are an efficient platform to screen and identify miRs that affect overall survival and HCC tumor regression.
Collapse
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mario Di Matteo
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jiri Keirsse
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee Khim Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
36
|
Kabekkodu SP, Shukla V, Varghese VK, Adiga D, Vethil Jishnu P, Chakrabarty S, Satyamoorthy K. Cluster miRNAs and cancer: Diagnostic, prognostic and therapeutic opportunities. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1563. [PMID: 31436881 DOI: 10.1002/wrna.1563] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/05/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
MiRNAs are class of noncoding RNA important for gene expression regulation in many plants, animals and viruses. MiRNA clusters contain a set of two or more miRNA encoding genes, transcribed together as polycistronic miRNAs. Currently, there are approximately 159 miRNA clusters reported in the human genome consisting of miRNAs ranging from two or more miRNA genes. A large proportion of clustered miRNAs resides in and around the fragile sites or cancer associated genomic hotspots and plays an important role in carcinogenesis. Altered expression of miRNA cluster can be pro-tumorigenic or anti-tumorigenic and can be targeted for clinical management of cancer. Over the past few years, manipulation of miRNA clusters expression is attempted for experimental purpose as well as for diagnostic, prognostic and therapeutic applications in cancer. Re-expression of miRNAs by epigenetic therapy, genome editing such as clustered regulatory interspaced short palindromic repeats (CRISPR) and miRNA mowers showed promising results in cancer therapy. In this review, we focused on the potential of miRNA clusters as a biomarker for diagnosis, prognosis, targeted therapy as well as strategies for modulating their expression in a therapeutic context. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Processing > Processing of Small RNAs RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
37
|
Tai L, Huang CJ, Choo KB, Cheong SK, Kamarul T. Oxidative Stress Down-Regulates MiR-20b-5p, MiR-106a-5p and E2F1 Expression to Suppress the G1/S Transition of the Cell Cycle in Multipotent Stromal Cells. Int J Med Sci 2020; 17:457-470. [PMID: 32174776 PMCID: PMC7053300 DOI: 10.7150/ijms.38832] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/30/2019] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress has been linked to senescence and tumorigenesis via modulation of the cell cycle. Using a hydrogen peroxide (H2O2)-induced oxidative stress-induced premature senescence (OSIPS) model previously reported by our group, this study aimed to investigate the effects of oxidative stress on microRNA (miRNA) expression in relation to the G1-to-S-phase (G1/S) transition of the cell cycle and cell proliferation. On global miRNA analysis of the OSIPS cells, twelve significantly up- or down-regulated miRNAs were identified, the target genes of which are frequently associated with cancers. Four down-regulated miR-17 family miRNAs are predicted to target key pro- and anti-proliferative proteins of the p21/cyclin D-dependent kinase (CDK)/E2F1 pathway to modulate G1/S transition. Two miR-17 miRNAs, miR-20-5p and miR-106-5p, were confirmed to be rapidly and stably down-regulated under oxidative stress. While H2O2 treatment hampered G1/S transition and suppressed DNA synthesis, miR-20b-5p/miR-106a-5p over-expression rescued cells from growth arrest in promoting G1/S transition and DNA synthesis. Direct miR-20b-5p/miR-106a-5p regulation of p21, CCND1 and E2F1 was demonstrated by an inverse expression relationship in miRNA mimic-transfected cells. However, under oxidative stress, E2F1 expression was down-regulated, consistent with hampered G1/S transition and suppressed DNA synthesis and cell proliferation. To explain the observed E2F1 down-regulation under oxidative stress, a scheme is proposed which includes miR-20b-5p/miR-106a-5p-dependent regulation, miRNA-E2F1 autoregulatory feedback and E2F1 response to repair oxidative stress-induced DNA damages. The oxidative stress-modulated expression of miR-17 miRNAs and E2F1 may be used to develop strategies to retard or reverse MSC senescence in culture, or senescence in general.
Collapse
Affiliation(s)
- Lihui Tai
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.,Postgraduate Program, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Kong Bung Choo
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.,Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Soon Keng Cheong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.,Dean's Office, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group, National Orthopedic Centre of Excellence for Research and Learning & Department of Orthopedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
MicroRNAs in Animal Models of HCC. Cancers (Basel) 2019; 11:cancers11121906. [PMID: 31805631 PMCID: PMC6966618 DOI: 10.3390/cancers11121906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality. Molecular heterogeneity and absence of biomarkers for patient allocation to the best therapeutic option contribute to poor prognosis of advanced stages. Aberrant microRNA (miRNA) expression is associated with HCC development and progression and influences drug resistance. Therefore, miRNAs have been assayed as putative biomarkers and therapeutic targets. miRNA-based therapeutic approaches demonstrated safety profiles and antitumor efficacy in HCC animal models; nevertheless, caution should be used when transferring preclinical findings to the clinics, due to possible molecular inconsistency between animal models and the heterogeneous pattern of the human disease. In this context, models with defined genetic and molecular backgrounds might help to identify novel therapeutic options for specific HCC subgroups. In this review, we describe rodent models of HCC, emphasizing their representativeness with the human pathology and their usefulness as preclinical tools for assessing miRNA-based therapeutic strategies.
Collapse
|
39
|
Fang S, Guo J, Zhang J, Liu J, Hong S, Yu B, Gao Y, Hu S, Liu H, Sun L, Zhao Y. A P53‐related microRNA model for predicting the prognosis of hepatocellular carcinoma patients. J Cell Physiol 2019; 235:3569-3578. [PMID: 31556110 DOI: 10.1002/jcp.29245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Shuang‐Sang Fang
- Hwa Mei Hospital University of Chinese Academy of Sciences Ningbo China
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
- Key Laboratory of Intelligent Information Processing, State Key Laboratory of Computer Architecture, Institute of Computing Technology Chinese Academy of Sciences Beijing China
| | - Jin‐Cheng Guo
- Hwa Mei Hospital University of Chinese Academy of Sciences Ningbo China
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
- Key Laboratory of Intelligent Information Processing, State Key Laboratory of Computer Architecture, Institute of Computing Technology Chinese Academy of Sciences Beijing China
| | - Jian‐Hua Zhang
- Department of Blood Transfusion Peking University People's Hospital Beijing China
| | - Jin‐Na Liu
- Key Laboratory of Intelligent Information Processing, State Key Laboratory of Computer Architecture, Institute of Computing Technology Chinese Academy of Sciences Beijing China
| | - Shuai Hong
- Key Laboratory of Intelligent Information Processing, State Key Laboratory of Computer Architecture, Institute of Computing Technology Chinese Academy of Sciences Beijing China
| | - Bo Yu
- Key Laboratory of Intelligent Information Processing, State Key Laboratory of Computer Architecture, Institute of Computing Technology Chinese Academy of Sciences Beijing China
| | - Yuhan Gao
- Department of Blood Transfusion Peking University People's Hospital Beijing China
| | - Su‐Pei Hu
- Hwa Mei Hospital University of Chinese Academy of Sciences Ningbo China
| | - Hai‐Zhong Liu
- Hwa Mei Hospital University of Chinese Academy of Sciences Ningbo China
| | - Liang Sun
- Hwa Mei Hospital University of Chinese Academy of Sciences Ningbo China
- Key Laboratory of Intelligent Information Processing, State Key Laboratory of Computer Architecture, Institute of Computing Technology Chinese Academy of Sciences Beijing China
| | - Yi Zhao
- Hwa Mei Hospital University of Chinese Academy of Sciences Ningbo China
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
- Key Laboratory of Intelligent Information Processing, State Key Laboratory of Computer Architecture, Institute of Computing Technology Chinese Academy of Sciences Beijing China
| |
Collapse
|
40
|
Xie L, Huang R, Liu S, Wu W, Su A, Li R, Liu X, Lei Y, Sun H, Liu X, Xu S. A positive feedback loop of SIRT1 and miR17HG promotes the repair of DNA double-stranded breaks. Cell Cycle 2019; 18:2110-2123. [PMID: 31290724 DOI: 10.1080/15384101.2019.1641388] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical regulators for gene expression in multiple levels and thus are involved in various physiological and pathological processes. Sirtuin 1 (SIRT1) has been established to exert key roles in the diverse biological process through deacetylation of substrates, including DNA damage repair. Nevertheless, the regulatory relationship between SIRT1 and lncRNAs, and the effect of lncRNA on SIRT1-mediated functions were still far to be elucidated. We herein uncovered that lncRNA miR17HG was notably down-regulated in SIRT1-deficient cells, and significantly up-regulated after ectopic expression of SIRT1. Subsequently, the results of dual luciferase reporter (DLR) showed that SIRT1 dramatically enhanced the promoter activity of the miR-17-92 cluster. Furthermore, we specifically knocked down the previous demonstrated transcription factor for the miR-17-92 cluster, C-Myc, which was the validated substrate of SIRT1. As expected, miR17HG and miR-17-92 miRNAs were evidently down-regulated after silencing of C-Myc; and silencing of C-Myc significantly reversed the effect of SIRT1 on miR17HG expression, suggesting that SIRT1 endowed cells with elevated miR17HG expression through stabilization of C-Myc. What is more, silencing of miR17HG significantly inhibited the repair of DNA DSBs, while enforced expression of miR17HG promoted DSBs repair. Fascinatingly, overexpression of miR17HG evidently enhanced the deacetylation activity of SIRT1, while silencing of miR17HG conferred diminished deacetylation activity. In addition, the results of RIP unraveled the physical interaction between miR17HG and SIRT1. Taken together, we presented evidences that miR17HG and SIRT1 probably formed a positive feedback loop, which exerted a crucial effect on DSBs repair.
Collapse
Affiliation(s)
- Luoyijun Xie
- a Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, the Scientific Research Center of Dongguan, Guangdong Medical University , Dongguan , P.R.China
| | - Ruxiao Huang
- a Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, the Scientific Research Center of Dongguan, Guangdong Medical University , Dongguan , P.R.China
| | - Shuang Liu
- a Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, the Scientific Research Center of Dongguan, Guangdong Medical University , Dongguan , P.R.China
| | - Weijia Wu
- a Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, the Scientific Research Center of Dongguan, Guangdong Medical University , Dongguan , P.R.China
| | - Ailing Su
- a Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, the Scientific Research Center of Dongguan, Guangdong Medical University , Dongguan , P.R.China
| | - Runkai Li
- a Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, the Scientific Research Center of Dongguan, Guangdong Medical University , Dongguan , P.R.China
| | - Xu Liu
- a Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, the Scientific Research Center of Dongguan, Guangdong Medical University , Dongguan , P.R.China
| | - Yiting Lei
- a Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, the Scientific Research Center of Dongguan, Guangdong Medical University , Dongguan , P.R.China
| | - Huidi Sun
- a Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, the Scientific Research Center of Dongguan, Guangdong Medical University , Dongguan , P.R.China
| | - Xinguang Liu
- a Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, the Scientific Research Center of Dongguan, Guangdong Medical University , Dongguan , P.R.China
| | - Shun Xu
- a Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, the Scientific Research Center of Dongguan, Guangdong Medical University , Dongguan , P.R.China
| |
Collapse
|
41
|
El-Gohary AM, Zeid AE, Ibrahim ME, Dewedar FI, Elzoheiry EA. Serum microRNA 143 as a potential biomarker for the diagnosis of hepatitis C virus-related hepatocellular carcinoma. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2019. [DOI: 10.4103/ejim.ejim_82_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
42
|
Zhang Y, Zhang Y, Yin Y, Li S. Detection of circulating exosomal miR-17-5p serves as a novel non-invasive diagnostic marker for non-small cell lung cancer patients. Pathol Res Pract 2019; 215:152466. [PMID: 31146974 DOI: 10.1016/j.prp.2019.152466] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/12/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Exosome-shuttled bioactive miRNAs act as novel non-invasive biomarkers for cancer diagnosis have received increasing attention. In this study, we aimed to investigate the expression signatures of exosomal miRNAs and develop a serum exosome-derived miRNA panel for diagnosis of non-small cell lung cancer (NSCLC). The miR-17-92 cluster including 6 miRNAs (miR-17-5p, miR-18a-5p, miR-19a-3p, miR-19b-1-5p, miR-20a-5p and miR-92a-1-5p) was selected as potential diagnostic candidate molecule. Then, expression profiles of the candidate miRNAs were firstly analyzed in 43 pairs of serum samples from the training set by quantitative real-time PCR, and the dysregulated miRNA along with three tumor markers (carcinoembryonic antigen, CEA; cytokeratin 19 fragment, CYFRA21-1; squamous cell carcinoma antigen, SCCA) were further validated in two independent cohorts, which consisted of training set (including 100 NSCLC patients and 90 healthy controls) and validation set (including 72 NSCLC patients and 47 healthy controls). The expression of miR-17-5p was significantly up-regulated in NSCLC patients compared with the healthy controls (P < 0.001), suggesting that miR-17-5p might have considerable clinical value in the diagnosis of NSCLC. Based on the data from the training set, we next used a logistic regression model to construct a 4-molecule panel consisting of miR-17-5p and three tumor markers for NSCLC diagnosis. The performance of such 4-molecule panel was verified with an area under the ROC curve of 0.860 (95% CI = 0.802 to 0.906, sensitivity = 63.0% and specificity = 93.3%) and 0.844 (95% CI = 0.766 to 0.904, sensitivity = 76.4% and specificity = 76.6%) in the training set and validation set, respectively. In conclusion, the newly developed diagnostic panel consisting of exosomal miR-17-5p, CEA, CYFRA21-1 and SCCA may have considerable clinical value in the diagnosis of NSCLC.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, wen hua xi lu 107#, Jinan, 250012, Shandong Province, China
| | - Yingmei Zhang
- Department of Respiratory Medicine, Linyi People's Hospital, jie fang lu dong duan 27#, Linyi, 276000, Shandong Province, China
| | - Yunhong Yin
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, wen hua xi lu 107#, Jinan, 250012, Shandong Province, China
| | - Shuhai Li
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, wen hua xi lu 107(#), Jinan, 250012, Shandong Province, China.
| |
Collapse
|
43
|
Jian X, Qu L, Wang Y, Zou Q, Zhao Q, Chen S, Gao X, Chen H, He C. Trichostatin A‑induced miR‑30a‑5p regulates apoptosis and proliferation of keloid fibroblasts via targeting BCL2. Mol Med Rep 2019; 19:5251-5262. [PMID: 31059100 PMCID: PMC6522919 DOI: 10.3892/mmr.2019.10185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/06/2019] [Indexed: 12/28/2022] Open
Abstract
Keloids are benign fibrous overgrowths that occur as a result of abnormal wound healing following cutaneous injury. MicroRNAs (miRNAs/miRs) are short non-coding RNAs that serve critical roles in numerous important biological processes, such as cell proliferation, differentiation and apoptosis. However, their role in keloid development remains largely unknown. In the present study, the role of miR-30a-5p, a miRNA regulated by Trichostatin A (TSA), in apoptosis within cultured keloid fibroblasts was investigated. An MTT assay was used to detect the proliferation of cultured keloid fibroblasts treated with TSA. Cell apoptosis and cell cycle phases were analyzed using flow cytometry. In addition, an miRNA microarray was performed to compare expression profiles between cultured keloid fibroblasts treated with or without 1,000 nM TSA. Reverse transcription-quantitative polymerase chain reaction analysis was conducted to estimate miRNA expression levels. The direct target of miR-30a-5p was identified using a dual-luciferase reporter assay. Western blotting was employed to assess protein expression levels in keloid fibroblasts. The results demonstrated that TSA inhibited the proliferation of keloid fibroblasts in a time- and dose-dependent manner. The miRNA microarray revealed alterations in the expression of numerous miRNA sequences in response to TSA when compared with controls. Notably, the expression of miR-30a-5p was downregulated in keloid tissues. In addition, overexpression of miR-30a-5p induced apoptosis by targeting B-cell lymphoma 2, which was similar to that observed in response to TSA. These results provide important information regarding a novel miR-30a-5p-mediated signaling pathway induced by TSA treatment, and suggest a potential use for TSA and miR-30a-5p as effective therapeutic strategies for keloids.
Collapse
Affiliation(s)
- Xiaoqing Jian
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| | - Le Qu
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| | - Yunlin Wang
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| | - Qianlei Zou
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| | - Qing Zhao
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| | - Shuang Chen
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| | - Xinghua Gao
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| | - Hongduo Chen
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| | - Chundi He
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
44
|
Freire PP, Fernandez GJ, Cury SS, de Moraes D, Oliveira JS, de Oliveira G, Dal-Pai-Silva M, Dos Reis PP, Carvalho RF. The Pathway to Cancer Cachexia: MicroRNA-Regulated Networks in Muscle Wasting Based on Integrative Meta-Analysis. Int J Mol Sci 2019; 20:E1962. [PMID: 31013615 PMCID: PMC6515458 DOI: 10.3390/ijms20081962] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer cachexia is a multifactorial syndrome that leads to significant weight loss. Cachexia affects 50%-80% of cancer patients, depending on the tumor type, and is associated with 20%-40% of cancer patient deaths. Besides the efforts to identify molecular mechanisms of skeletal muscle atrophy-a key feature in cancer cachexia-no effective therapy for the syndrome is currently available. MicroRNAs are regulators of gene expression, with therapeutic potential in several muscle wasting disorders. We performed a meta-analysis of previously published gene expression data to reveal new potential microRNA-mRNA networks associated with muscle atrophy in cancer cachexia. We retrieved 52 differentially expressed genes in nine studies of muscle tissue from patients and rodent models of cancer cachexia. Next, we predicted microRNAs targeting these differentially expressed genes. We also include global microRNA expression data surveyed in atrophying skeletal muscles from previous studies as background information. We identified deregulated genes involved in the regulation of apoptosis, muscle hypertrophy, catabolism, and acute phase response. We further predicted new microRNA-mRNA interactions, such as miR-27a/Foxo1, miR-27a/Mef2c, miR-27b/Cxcl12, miR-27b/Mef2c, miR-140/Cxcl12, miR-199a/Cav1, and miR-199a/Junb, which may contribute to muscle wasting in cancer cachexia. Finally, we found drugs targeting MSTN, CXCL12, and CAMK2B, which may be considered for the development of novel therapeutic strategies for cancer cachexia. Our study has broadened the knowledge of microRNA-regulated networks that are likely associated with muscle atrophy in cancer cachexia, pointing to their involvement as potential targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Paula Paccielli Freire
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Geysson Javier Fernandez
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Sarah Santiloni Cury
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Diogo de Moraes
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Jakeline Santos Oliveira
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Grasieli de Oliveira
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Patrícia Pintor Dos Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-687, Brazil.
- Experimental Research Unity, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-687, Brazil.
| | - Robson Francisco Carvalho
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| |
Collapse
|
45
|
Cao S, Zheng J, Liu X, Liu Y, Ruan X, Ma J, Liu L, Wang D, Yang C, Cai H, Li Z, Feng Z, Xue Y. FXR1 promotes the malignant biological behavior of glioma cells via stabilizing MIR17HG. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:37. [PMID: 30691465 PMCID: PMC6348679 DOI: 10.1186/s13046-018-0991-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/04/2018] [Indexed: 02/04/2023]
Abstract
Background Accumulating evidence has highlighted the potential role of RNA binding proteins (RBPs) in the biological behaviors of glioblastoma cells. Herein, the expression and function of RNA binding proteins FXR1 were investigated in human glioma cells. Methods Quantitative real-time PCR were conducted to evaluate the expression of MIR17HG and miR-346, miRNA-425-5p in glioma tissues and cells. Western blot were used to explore the expression of FXR1, TAL1 and DEC1 in glioma tissues and cells. Stable knockdown of FXR1 and MIR17HG in glioma cells were established to explore the function of FXR1, MIR17HG in glioma cells. Further, RIP and RNA pull-down assays were used to investigate the correlation between FXR1 and MIR17HG. Cell Counting Kit-8, transwell assays, and flow cytometry were used to investigate the function of FXR1 and MIR17HG in malignant biological behaviors of glioma cells. ChIP assays were employed to ascertain the correlations between TAL1 and MIR17HG. Results FXR1and MIR17HG were upregulated in glioma tissues and cell lines. Downregulation of FXR1 or MIR17HG resulted in inhibition of glioma cells progression. We also found that FXR1 regulates the biological behavior of glioma cells via stabilizing MIR17HG. In addition, downregulated MIR17HG increased miR-346/miR-425-5p expression and MIR17HG acted as ceRNA to sponge miR-346/miR-425-5p. TAL1 was a direct target of miR-346/miR-425-5p, and played oncogenic role in glioma cells. More importantly, TAL1 activated MIR17HG promoter and upregulated its expression, forming a feedback loop. Remarkably, FXR1 knockdown combined with inhibition of MIR17HG resulted in the smallest tumor volumes and the longest survivals of nude mice in vivo. Conclusions FXR1/MIR17HG/miR-346(miR-425-5p)/TAL1/DEC1 axis plays a novel role in regulating the malignant behavior of glioma cells, which may be a new potential therapeutic strategy for glioma therapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0991-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuo Cao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Ziyi Feng
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,The 102th Class, experimental class of clinical medicine discipline, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China. .,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China. .,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
46
|
Yin Z, Ren W. MicroRNA-217 acts as a tumor suppressor and correlates with the chemoresistance of cervical carcinoma to cisplatin. Onco Targets Ther 2019; 12:759-771. [PMID: 30774364 PMCID: PMC6352857 DOI: 10.2147/ott.s176618] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background MicroRNA-217 (miR-217) has been demonstrated to participate in the tumorigenesis and progression of various types of cancers. Nevertheless, the role of miR-217 in cervical carcinoma still remains not fully elucidated. This current work sought to investigate the role of miR-217 in the growth, migration, and invasion of cervical carcinoma and detect the role of miR-217 in the chemosensitivity of cervical carcinoma cell to cisplatin. Materials and methods The levels of miR-217 in 65 pairs of cervical carcinoma tissues and matched normal tissues were detected using quantitative real-time-PCR assay. The roles of miR-217 on the growth, apoptosis, migration, and invasion of cervical cancer SiHa and Ca-Ski cells were analyzed using Cell Counting Kit-8, flow cytometry, wound healing, and Transwell invasion assays, respectively. The target of miR-217 was identified using the online analysis tool TargetScan (http://www.targetscan.org/vert_72/) and was verified by luciferase reporter and immunoblotting assays. The xenograft tumor model was constructed to explore the impact of miR-217 on the growth of cervical carcinoma cell in vivo. Results The level of miR-217 was remarkably lower in cervical carcinoma tissues than that in noncancerous tissues. Overregulation of miR-217 markedly suppressed the aggressiveness of cervical cancer cell and induced cell apoptosis through regulating V-Ki-Ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS). Finally, upregulation of miR-217 enhanced the chemosensitivity of both SiHa and Ca-Ski cervical cancer cells toward cisplatin. Conclusion Altogether, upregulation of miR-217 inhibits the aggressiveness phenotypes of cervical carcinoma cell via regulating KRAS gene and increases the sensitivity of cervical cancer cell to cisplatin.
Collapse
Affiliation(s)
- Zhaojun Yin
- Gynaecology Ward of Maternal and Child Health Hospital, Shizhong District, Zaozhuang 277100, Shandong, People's Republic of China,
| | - Weiru Ren
- Gynaecology Ward of Maternal and Child Health Hospital, Shizhong District, Zaozhuang 277100, Shandong, People's Republic of China,
| |
Collapse
|
47
|
Dhanasekaran R, Nault JC, Roberts LR, Zucman-Rossi J. Genomic Medicine and Implications for Hepatocellular Carcinoma Prevention and Therapy. Gastroenterology 2019; 156:492-509. [PMID: 30404026 PMCID: PMC6340723 DOI: 10.1053/j.gastro.2018.11.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is poorly understood, but recent advances in genomics have increased our understanding of the mechanisms by which hepatitis B virus, hepatitis C virus, alcohol, fatty liver disease, and other environmental factors, such as aflatoxin, cause liver cancer. Genetic analyses of liver tissues from patients have provided important information about tumor initiation and progression. Findings from these studies can potentially be used to individualize the management of HCC. In addition to sorafenib, other multi-kinase inhibitors have been approved recently for treatment of HCC, and the preliminary success of immunotherapy has raised hopes. Continued progress in genomic medicine could improve classification of HCCs based on their molecular features and lead to new treatments for patients with liver cancer.
Collapse
Affiliation(s)
| | - Jean-Charles Nault
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte De Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France; Liver Unit, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bondy, France; Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Jessica Zucman-Rossi
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte De Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France; Hôpital Europeen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
48
|
Sanchez-Mejias A, Kwon J, Chew XH, Siemens A, Sohn HS, Jing G, Zhang B, Yang H, Tay Y. A novel SOCS5/miR-18/miR-25 axis promotes tumorigenesis in liver cancer. Int J Cancer 2018; 144:311-321. [DOI: 10.1002/ijc.31857] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/14/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Avencia Sanchez-Mejias
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Junsu Kwon
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Xiao Hong Chew
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Angela Siemens
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Hye Seon Sohn
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Guo Jing
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Bin Zhang
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
- Department of Biochemistry; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117597 Singapore
| |
Collapse
|
49
|
Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 2018; 93:1955-1986. [PMID: 29797774 DOI: 10.1111/brv.12428] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs known to regulate expression of protein-coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein-coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self-renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.
Collapse
Affiliation(s)
- Shama P Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vinay K Varghese
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jeevitha D' Souza
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
50
|
Malhotra A, Sharma U, Puhan S, Chandra Bandari N, Kharb A, Arifa PP, Thakur L, Prakash H, Vasquez KM, Jain A. Stabilization of miRNAs in esophageal cancer contributes to radioresistance and limits efficacy of therapy. Biochimie 2018; 156:148-157. [PMID: 30326253 DOI: 10.1016/j.biochi.2018.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022]
Abstract
The five-year survival rate of esophageal cancer patients is less than 20%. This may be due to increased resistance (acquired or intrinsic) of tumor cells to chemo/radiotherapies, often caused by aberrant cell cycle, deregulated apoptosis, increases in growth factor signaling pathways, and/or changes in the proteome network. In addition, deregulation in non-coding RNA-mediated signaling pathways may contribute to resistance to therapies. At the molecular level, these resistance factors have now been linked to various microRNA (miRNAs), which have recently been shown to control cell development, differentiation and neoplasia. The increased stability and dysregulated expression of miRNAs have been associated with increased resistance to various therapies in several cancers, including esophageal cancer. Therefore, miRNAs represent the next generation of molecules with tremendous potential as biomarkers and therapeutic targets. However, detailed studies on miRNA-based therapeutic interventions are still in their infancy. Hence, in this review, we have summarized the current status of microRNAs in dictating the resistance/sensitivity of tumor cells to chemotherapy and radiotherapy. In addition, we have discussed various strategies to increase radiosensitivity, including targeted therapy, and the use of miRNAs as radiosensitive/radioresistance biomarkers for esophageal cancer in the clinical setting.
Collapse
Affiliation(s)
- Akshay Malhotra
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Uttam Sharma
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Shyamly Puhan
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Naga Chandra Bandari
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anjali Kharb
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - P P Arifa
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Lovlesh Thakur
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Hridayesh Prakash
- Laboratory Oncology Unit, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India; Institute of Virology and Immunology, Amity University, NOIDA, India.
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Aklank Jain
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|