1
|
Ajongbolo AO, Langhans SA. YAP/TAZ-associated cell signaling - at the crossroads of cancer and neurodevelopmental disorders. Front Cell Dev Biol 2025; 13:1522705. [PMID: 39936032 PMCID: PMC11810912 DOI: 10.3389/fcell.2025.1522705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
YAP/TAZ (Yes-associated protein/paralog transcriptional co-activator with PDZ-binding domain) are transcriptional cofactors that are the key and major downstream effectors of the Hippo signaling pathway. Both are known to play a crucial role in defining cellular outcomes, including cell differentiation, cell proliferation, and apoptosis. Aside from the canonical Hippo signaling cascade with the key components MST1/2 (mammalian STE20-like kinase 1/2), SAV1 (Salvador homologue 1), MOB1A/B (Mps one binder kinase activator 1A/B) and LATS1/2 (large tumor suppressor kinase 1/2) upstream of YAP/TAZ, YAP/TAZ activation is also influenced by numerous other signaling pathways. Such non-canonical regulation of YAP/TAZ includes well-known growth factor signaling pathways such as the epidermal growth factor receptor (EGFR)/ErbB family, Notch, and Wnt signaling as well as cell-cell adhesion, cell-matrix interactions and mechanical cues from a cell's microenvironment. This puts YAP/TAZ at the center of a complex signaling network capable of regulating developmental processes and tissue regeneration. On the other hand, dysregulation of YAP/TAZ signaling has been implicated in numerous diseases including various cancers and neurodevelopmental disorders. Indeed, in recent years, parallels between cancer development and neurodevelopmental disorders have become apparent with YAP/TAZ signaling being one of these pathways. This review discusses the role of YAP/TAZ in brain development, cancer and neurodevelopmental disorders with a special focus on the interconnection in the role of YAP/TAZ in these different conditions.
Collapse
Affiliation(s)
- Aderonke O. Ajongbolo
- Division of Neurology and Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE, United States
- Biological Sciences Graduate Program, University of Delaware, Newark, DE, United States
| | - Sigrid A. Langhans
- Division of Neurology and Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE, United States
| |
Collapse
|
2
|
Abedimanesh S, Safaralizadeh R, Jahanafrooz Z, Najafi S, Amini M, Nazarloo SS, Bahojb Mahdavi SZ, Baradaran B, Jebelli A, Mokhtarzadeh AA. Interaction of noncoding RNAs with hippo signaling pathway in cancer cells and cancer stem cells. Noncoding RNA Res 2024; 9:1292-1307. [PMID: 39045083 PMCID: PMC11263728 DOI: 10.1016/j.ncrna.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/25/2024] Open
Abstract
The Hippo signaling pathway has a regulatory function in the organogenesis process and cellular homeostasis, switching the cascade reactions of crucial kinases acts to turn off/on the Hippo pathway, altering the downstream gene expression and thereby regulating proliferation, apoptosis, or stemness. Disruption of this pathway can lead to the occurrence of various disorders and different types of cancer. Recent findings highlight the importance of ncRNAs, such as microRNA, circular RNA, and lncRNAs, in modulating the Hippo pathway. Defects in ncRNAs can disrupt Hippo pathway balance, increasing tumor cells, tumorigenesis, and chemotherapeutic resistance. This review summarizes ncRNAs' inhibitory or stimulatory role in - Hippo pathway regulation in cancer and stem cells. Identifying the relation between ncRNAs and the components of this pathway could pave the way for developing new biomarkers in the treatment and diagnosis of cancers.
Collapse
Affiliation(s)
- Saba Abedimanesh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Soltani Nazarloo
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
3
|
Elsakka EGE, Midan HM, Abulsoud AI, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Zaki MB, Abd-Elmawla MA, Rizk NI, Elrebehy MA, Abdelghany TM, Elesawy AE, Shahin RK, El Tabaa MM, Mohammed OA, Abdel-Reheim MA, Elballal MS, Doghish AS. Emerging insights: miRNA modulation of ferroptosis pathways in lung cancer. Exp Cell Res 2024; 442:114272. [PMID: 39362302 DOI: 10.1016/j.yexcr.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
The newly discovered programmed iron-dependent necrosis, ferroptosis, is a novel pathway that is controlled by iron-dependent lipid peroxidation and cellular redox changes. It can be triggered intrinsically by low antioxidant enzyme activity or extrinsically by blocking amino acid transporters or activating iron transporters. The induction of ferroptosis involves the activation of specific proteins, suppression of transporters, and increased endoplasmic reticulum (ER) stress (a condition in which the ER, a crucial organelle involved in protein folding and processing, becomes overwhelmed by an accumulation of misfolded or unfolded proteins. This situation disrupts the normal functioning of the ER, leading to a cellular stress response known as the unfolded protein response), leading to lipid peroxidation byproduct accumulation and toxic reactive oxygen species (ROS), which are highly reactive molecules derived from diatomic oxygen and include various forms such as superoxide (O₂⁻), hydroxyl radicals (•OH), and hydrogen peroxide (H₂O₂). Ferroptosis is closely associated with signaling molecules in lung cancer, including epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), hypoxia-inducible factor 1-alpha (HIF-1α), and P53, and is regulated by epigenetic factors such as microRNAs (miRNAs). miRNAs are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNAs (mRNAs), leading to translational repression or degradation. Several miRNAs have been found to modulate ferroptosis by targeting key genes involved in iron metabolism, lipid peroxidation, and antioxidant defense pathways. The research on ferroptosis has expanded to target its role in lung cancer treatment and resistance prevention. This review encapsulates the significance of ferroptosis in lung cancer. Understanding the mechanisms and implications of ferroptosis in lung cancer cells may lead to targeted therapies exploiting cancer cell vulnerabilities to ferroptosis Also, improving treatment outcomes, and overcoming resistance.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
4
|
Tian Y, Zhou Y, Chen F, Qian S, Hu X, Zhang B, Liu Q. Research progress in MCM family: Focus on the tumor treatment resistance. Biomed Pharmacother 2024; 173:116408. [PMID: 38479176 DOI: 10.1016/j.biopha.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Malignant tumors constitute a significant category of diseases posing a severe threat to human survival and health, thereby representing one of the most challenging and pressing issues in the field of biomedical research. Due to their malignant nature, which is characterized by a high potential for metastasis, rapid dissemination, and frequent recurrence, the prevailing approach in clinical oncology involves a comprehensive treatment strategy that combines surgery with radiotherapy, chemotherapy, targeted drug therapies, and other interventions. Treatment resistance remains a major obstacle in the comprehensive management of tumors, serving as a primary cause for the failure of integrated tumor therapies and a critical factor contributing to patient relapse and mortality. The Minichromosome Maintenance (MCM) protein family comprises functional proteins closely associated with the development of resistance in tumor therapy.The influence of MCMs manifests through various pathways, encompassing modulation of DNA replication, cell cycle regulation, and DNA damage repair mechanisms. Consequently, this leads to an enhanced tolerance of tumor cells to chemotherapy, targeted drugs, and radiation. Consequently, this review explores the specific roles of the MCM family in various cancer treatment strategies. Its objective is to enhance our comprehension of resistance mechanisms in tumor therapy, thereby presenting novel targets for clinical research aimed at overcoming resistance in cancer treatment. This bears substantial clinical relevance.
Collapse
Affiliation(s)
- Yuxuan Tian
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410078, PR China
| | - Fuxin Chen
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Siyi Qian
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Xingming Hu
- The 1st Department of Thoracic Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Bin Zhang
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China.
| | - Qiang Liu
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| |
Collapse
|
5
|
Shi Q, Xu G, Jiang Y, Yang J, Han X, Wang Q, Li Y, Zhang Z, Wang K, Peng H, Chen F, Ma Y, Zhao L, Chen Y, Liu Z, Yang L, Jia X, Wen T, Tong Z, Cui X, Li F. Phospholipase PLCE1 Promotes Transcription and Phosphorylation of MCM7 to Drive Tumor Progression in Esophageal Cancer. Cancer Res 2024; 84:560-576. [PMID: 38117512 DOI: 10.1158/0008-5472.can-23-1633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Phospholipase C epsilon 1 (PLCE1) is a well-established susceptibility gene for esophageal squamous cell carcinoma (ESCC). Identification of the underlying mechanism(s) regulated by PLCE1 could lead to a better understanding of ESCC tumorigenesis. In this study, we found that PLCE1 enhances tumor progression by regulating the replicative helicase MCM7 via two pathways. PLCE1 activated PKCα-mediated phosphorylation of E2F1, which led to the transcriptional activation of MCM7 and miR-106b-5p. The increased expression of miR-106b-5p, located in intron 13 of MCM7, suppressed autophagy and apoptosis by targeting Beclin-1 and RBL2, respectively. Moreover, MCM7 cooperated with the miR-106b-25 cluster to promote PLCE1-dependent cell-cycle progression both in vivo and in vitro. In addition, PLCE1 potentiated the phosphorylation of MCM7 at six threonine residues by the atypical kinase RIOK2, which promoted MCM complex assembly, chromatin loading, and cell-cycle progression. Inhibition of PLCE1 or RIOK2 hampered MCM7-mediated DNA replication, resulting in G1-S arrest. Furthermore, MCM7 overexpression in ESCC correlated with poor patient survival. Overall, these findings provide insights into the role of PLCE1 as an oncogenic regulator, a promising prognostic biomarker, and a potential therapeutic target in ESCC. SIGNIFICANCE PLCE1 promotes tumor progression in ESCC by activating PKCα-mediated phosphorylation of E2F1 to upregulate MCM7 and miR-106b-5p expression and by potentiating MCM7 phosphorylation by RIOK2.
Collapse
Affiliation(s)
- Qi Shi
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Guixuan Xu
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Yuliang Jiang
- Department of Oncology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Ju Yang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, P.R. China
| | - Xueping Han
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Qian Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Ya Li
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Zhiyu Zhang
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Kaige Wang
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Fangfang Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Yandi Ma
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Linyue Zhao
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, P.R. China
| | - Yunzhao Chen
- Department of Pathology, The people's Hospital of Suzhou National Hi-Tech District, Suzhou, P.R. China
| | - Zheng Liu
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Xingyuan Jia
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Tao Wen
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Xiaobin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, P.R. China
| | - Feng Li
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| |
Collapse
|
6
|
Sun Q, Liu R, Zhang H, Zong L, Jing X, Ma L, Li J, Zhang L. Fascin actin-bundling protein 1 regulates non-small cell lung cancer progression by influencing the transcription and splicing of tumorigenesis-related genes. PeerJ 2023; 11:e16526. [PMID: 38077434 PMCID: PMC10704988 DOI: 10.7717/peerj.16526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023] Open
Abstract
Background High mortality rates are prevalent among patients with non-small-cell lung cancer (NSCLC), and effective therapeutic targets are key prognostic factors. Fascin actin-bundling protein 1 (FSCN1) promotes NSCLC; however, its role as an RNA-binding protein in NSCLC remains unexplored. Therefore, we aimed to explore FSCN1 expression and function in A549 cells. Method We screened for alternative-splicing events and differentially expressed genes (DEGs) after FSCN1 silence via RNA-sequencing (RNA-seq). FSCN1 immunoprecipitation followed by RNA-seq were used to identify target genes whose mRNA expression and pre-mRNA alternative-splicing levels might be influenced by FSCN1. Results Silencing FSCN1 in A549 cells affected malignant phenotypes; it inhibited proliferation, migration, and invasion, and promoted apoptosis. RNA-seq analysis revealed 2,851 DEGs and 3,057 alternatively spliced genes. Gene ontology-based functional enrichment analysis showed that downregulated DEGs and alternatively splicing genes were enriched for the cell-cycle. FSCN1 promoted the alternative splicing of cell-cycle-related mRNAs involved in tumorigenesis (i.e., BCCIP, DLGAP5, PRC1, RECQL5, WTAP, and SGO1). Combined analysis of FSCN1 RNA-binding targets and RNA-seq data suggested that FSCN1 might affect ACTG1, KRT7, and PDE3A expression by modulating the pre-mRNA alternative-splicing levels of NME4, NCOR2, and EEF1D, that were bound to long non-coding RNA transcripts (RNASNHG20, NEAT1, NSD2, and FTH1), which were highly abundant. Overall, extensive transcriptome analysis of gene alternative splicing and expression levels was performed in cells transfected with FSCN1 short-interfering RNA. Our data provide global insights into the regulatory mechanisms associated with the roles of FSCN1 and its target genes in lung cancer.
Collapse
Affiliation(s)
- Qingchao Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Ruixue Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Haiping Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Liang Zong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Xiaoliang Jing
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Long Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Jie Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Liwei Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| |
Collapse
|
7
|
Gholipour A, Zahedmehr A, Shakerian F, Irani S, Oveisee M, Mowla SJ, Malakootian M. Significance of microRNA-targeted ErbB signaling pathway genes in cardiomyocyte differentiation. Mol Cell Probes 2023; 69:101912. [PMID: 37019292 DOI: 10.1016/j.mcp.2023.101912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVE(S) Cardiomyocyte differentiation is a complex process that follows the progression of gene expression alterations. The ErbB signaling pathway is necessary for various stages of cardiac development. We aimed to identify potential microRNAs targeting the ErbB signaling pathway genes by in silico approaches. METHODS Small RNA-sequencing data were obtained from GSE108021 for cardiomyocyte differentiation. Differentially expressed miRNAs were acquired via the DESeq2 package. Signaling pathways and gene ontology processes for the identified miRNAs were determined and the targeted genes of those miRNAs affecting the ErbB signaling pathway were determined. RESULTS Results revealed highly differentially expressed miRNAs were common between the differentiation stages and they targeted the genes involved in the ErbB signaling pathway as follows: let-7g-5p targets both CDKN1A and NRAS, while let-7c-5p and let-7d-5p hit CDKN1A and NRAS exclusively. let-7 family members targeted MAPK8 and ABL2. GSK3B was targeted by miR-199a-5p and miR-214-3p, and ERBB4 was targeted by miR-199b-3p and miR-653-5p. miR-214-3p, miR-199b-3p, miR-1277-5p, miR-21-5p, and miR-21-3p targeted CBL, mTOR, Jun, JNKK, and GRB1, respectively. MAPK8 was targeted by miR-214-3p, and ABL2 was targeted by miR-125b-5p and miR-1277-5p, too. CONCLUSION We determined miRNAs and their target genes in the ErbB signaling pathway in cardiomyocyte development and consequently heart pathophysiology progression.
Collapse
Affiliation(s)
- Akram Gholipour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zahedmehr
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farshad Shakerian
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran; Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
miR-106b as an emerging therapeutic target in cancer. Genes Dis 2022; 9:889-899. [PMID: 35685464 PMCID: PMC9170583 DOI: 10.1016/j.gendis.2021.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) comprise short non-coding RNAs that function in regulating the expression of tumor suppressors or oncogenes and modulate oncogenic signaling pathways in cancer. miRNAs expression alters significantly in several tumor tissues and cancer cell lines. For example, miR-106b functions as an oncogene and increases in multiple cancers. The miR-106b directly targets genes involved in tumorigenesis, proliferation, invasion, migration, and metastases. This review has focused on the miR-106b function and its downstream target in different cancers and provide perspective into how miR-106 regulates cancer cell proliferation, migration, invasion, and metastases by regulating the tumor suppressor genes. Since miRNAs-based therapies are currently being developed to enhance cancer therapy outcomes, miR-106b could be an attractive and prospective candidate in different cancer types for detection, diagnosis, and prognosis assessment in the tumor.
Collapse
|
9
|
YAP and TAZ: Monocorial and bicorial transcriptional co-activators in human cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188756. [PMID: 35777600 DOI: 10.1016/j.bbcan.2022.188756] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
The transcriptional regulators YAP and TAZ are involved in numerous physiological processes including organ development, growth, immunity and tissue regeneration. YAP and TAZ dysregulation also contribute to tumorigenesis, thereby making them attractive cancer therapeutic targets. Arbitrarily, YAP and TAZ are often considered as a single protein, and are referred to as YAP/TAZ in most studies. However, increasing experimental evidences documented that YAP and TAZ perform both overlapping and distinct functions in several physiological and pathological processes. In addition to regulating distinct processes, YAP and TAZ are also regulated by distinct upstream cues. The aim of the review is to describe the distinct roles of YAP and TAZ focusing particularly on cancer. Therapeutic strategies targeting either YAP and TAZ proteins or only one of them should be carefully evaluated. Selective targeting of YAP or TAZ may in fact impair different pathways and determine diverse clinical outputs.
Collapse
|
10
|
Zhang Y, Wang Y, Ji H, Ding J, Wang K. The interplay between noncoding RNA and YAP/TAZ signaling in cancers: molecular functions and mechanisms. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:202. [PMID: 35701841 PMCID: PMC9199231 DOI: 10.1186/s13046-022-02403-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway was found coordinately modulates cell regeneration and organ size. Its dysregulation contributes to uncontrolled cell proliferation and malignant transformation. YAP/TAZ are two critical effectors of the Hippo pathway and have been demonstrated essential for the initiation or growth of most tumors. Noncoding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have been shown to play critical roles in the development of many cancers. In the past few decades, a growing number of studies have revealed that ncRNAs can directly or indirectly regulate YAP/TAZ signaling. YAP/TAZ also regulate ncRNAs expression in return. This review summarizes the interactions between YAP/TAZ signaling and noncoding RNAs together with their biological functions on cancer progression. We also try to describe the complex feedback loop existing between these components.
Collapse
Affiliation(s)
- Yirao Zhang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Yang Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Hao Ji
- Department of Liver Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jie Ding
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
11
|
Marcianò G, Palleria C, Casarella A, Rania V, Basile E, Catarisano L, Vocca C, Bianco L, Pelaia C, Cione E, D’Agostino B, Citraro R, De Sarro G, Gallelli L. Effect of Statins on Lung Cancer Molecular Pathways: A Possible Therapeutic Role. Pharmaceuticals (Basel) 2022; 15:589. [PMID: 35631415 PMCID: PMC9144184 DOI: 10.3390/ph15050589] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is a common neoplasm, usually treated through chemotherapy, radiotherapy and/or surgery. Both clinical and experimental studies on cancer cells suggest that some drugs (e.g., statins) have the potential to improve the prognosis of cancer. In fact, statins blocking the enzyme "hydroxy-3-methylglutaryl-coenzyme A reductase" exert pleiotropic effects on different genes involved in the pathogenesis of lung cancer. In this narrative review, we presented the experimental and clinical studies that evaluated the effects of statins on lung cancer and described data on the effectiveness and safety of these compounds. We also evaluated gender differences in the treatment of lung cancer to understand the possibility of personalized therapy based on the modulation of the mevalonate pathway. In conclusion, according to the literature data, statins exert multiple effects on lung cancer cells, even if the evidence for their use in clinical practice is lacking.
Collapse
Affiliation(s)
- Gianmarco Marcianò
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Caterina Palleria
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Alessandro Casarella
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Vincenzo Rania
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Emanuele Basile
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Luca Catarisano
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Cristina Vocca
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Luigi Bianco
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Corrado Pelaia
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, Italy;
| | - Bruno D’Agostino
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, 80100 Naples, Italy;
| | - Rita Citraro
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
12
|
Ionizing radiation-induced long noncoding RNA CRYBG3 regulates YAP/TAZ through mechanotransduction. Cell Death Dis 2022; 13:209. [PMID: 35246511 PMCID: PMC8897501 DOI: 10.1038/s41419-022-04650-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/09/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Mechanotransduction sensing of tissue architecture and cellular microenvironment is a fundamental regulator of cell fate, including cancer. Meanwhile, long noncoding RNAs (lncRNAs) play multifunctions during cancer development and treatment. However, the link between lncRNAs and cellular mechanotransduction in the context of cancer progression has not yet been elucidated. In this study, using atomic force microscopy (AFM), we find that ionizing radiation reduces tumor stiffness. Ionizing radiation-induced lncRNA CRYBG3 can blunt YAP/TAZ activity through interference with mechanotransduction, resulting in the inhibition of cell proliferation, invasion, and metastasis of lung cancer cells. In vivo, we found that loss of lncRNA CRYBG3 could power the tumor initiation and metastasis ability, but this was abolished by concomitant deplete TAZ. At the molecular level, lncRNA CRYBG3 that in turn dysregulates F-actin organization, activates the LATS1/2 kinase, all in all resulting in YAP/TAZ nuclear exclusion. Our research proposes that lncRNA CRYBG3 is a mediator of radiotherapy through its control of cancer-tissue mechanotransduction and wiring YAP/TAZ activity to control tumor growth and metastasis.
Collapse
|
13
|
Shepard A, Hoxha S, Troutman S, Harbaugh D, Kareta MS, Kissil JL. Transcriptional regulation of miR-30a by YAP impacts PTPN13 and KLF9 levels and Schwann cell proliferation. J Biol Chem 2021; 297:100962. [PMID: 34265306 PMCID: PMC8348554 DOI: 10.1016/j.jbc.2021.100962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022] Open
Abstract
The Hippo pathway is a key regulatory pathway that is tightly regulated by mechanical cues such as tension, pressure, and contact with the extracellular matrix and other cells. At the distal end of the pathway is the yes-associated protein (YAP), a well-characterized transcriptional regulator. Through binding to transcription factors such as the TEA Domain TFs (TEADs) YAP regulates expression of several genes involved in cell fate, proliferation and death decisions. While the function of YAP as direct transcriptional regulator has been extensively characterized, only a small number of studies examined YAP function as a regulator of gene expression via microRNAs. We utilized bioinformatic approaches, including chromatin immunoprecipitation sequencing and RNA-Seq, to identify potential new targets of YAP regulation and identified miR-30a as a YAP target gene in Schwann cells. We find that YAP binds to the promoter and regulates the expression of miR-30a. Moreover, we identify several YAP-regulated genes that are putative miR-30a targets and focus on two of these, protein tyrosine pohosphatase non-receptor type 13 (PTPN13) and Kruppel like factor 9. We find that YAP regulation of Schwann cell proliferation and death is mediated, to a significant extent, through miR-30a regulation of PTPN13 in Schwann cells. These findings identify a new regulatory function by YAP, mediated by miR-30a, to downregulate expression of PTPN13 and Kruppel like factor 9. These studies expand our understanding of YAP function as a regulator of miRNAs and illustrate the complexity of YAP transcriptional functions.
Collapse
Affiliation(s)
- Alyssa Shepard
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
| | - Sany Hoxha
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
| | - Scott Troutman
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA; Department of Molecular Oncology, The Moffitt Cancer Center, Tampa, Florida, USA
| | - David Harbaugh
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
| | - Michael S Kareta
- Genetics and Genomics Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Joseph L Kissil
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA; Department of Molecular Oncology, The Moffitt Cancer Center, Tampa, Florida, USA.
| |
Collapse
|
14
|
Liu L, Lu Z, Hu X, Su T, Su L, Pu H. Clinical significance of YAP1 and TAZ in esophageal squamous cell carcinoma. Medicine (Baltimore) 2021; 100:e26597. [PMID: 34260541 PMCID: PMC8284757 DOI: 10.1097/md.0000000000026597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/19/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Esophageal cancer is the eighth most frequent and sixth most fatal cancer worldwide. This study aimed to investigate the clinical characteristics and prognostic significance of yes related protein 1 (YAP1) and transcriptional co-activator with PDZ binding motif (TAZ) in patients with esophageal squamous cell carcinoma (ESCC). METHODS A total of 306 ESCC pathological specimens and adjacent tissues (as control; tissues from the esophageal mucosa >5 cm from the edge of the tumor) were collected between January, 2008 and December, 2018. Immunohistochemical staining was used to assess the expression of YAP1 and TAZ proteins in the ESCC and adjacent tissues, and their relationship with clinicopathological parameters was evaluated using SPSS 21.0 software. RESULTS YAP1 and TAZ proteins were highly expressed in ESCC, and their expression was closely related to TNM stage and lymph node metastasis. Expression of YAP1 was associated with tumor size (P = .029), differentiation (P = .000), depth of invasion (P = .001), and TNM stage (P = .000). Expression of TAZ was associated with tumor size (P = .034), differentiation (P = .000), depth of invasion (P = .029), lymph node metastasis (P = .006), and ethnicity (P < .001). The expression of YAP1 protein was positively correlated with the expression of TAZ protein (r = 0.257, P < .05). YAP1 and TAZ expression (P = .039 and .000, respectively), tumor size (P = .041), and lymph node metastasis (P = .001) significantly affected the overall survival of patients with ESCC, and represent independent factors for overall survival. CONCLUSION YAP1 and TAZ proteins are highly expressed in ESCC, and closely related to the clinical and pathological parameters such as the diameter of the tumor, degree of differentiation, and depth of invasion, indicating that YAP1 and TAZ may be involved in the development of ESCC. YAP1 and TAZ may be used as prognostic markers in ESCC.
Collapse
Affiliation(s)
- Li Liu
- School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Ziyang Lu
- School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Xiayun Hu
- Shanghai Changhai Hospital, PR China
| | - Tianyuan Su
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Liping Su
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, PR China
| | - Hongwei Pu
- Department of Discipline Construction, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| |
Collapse
|
15
|
Peng J, Qin C, Tian SY, Peng JQ. MiR-93 inhibits the vascular calcification of chronic renal failure by suppression of Wnt/β-catenin pathway. Int Urol Nephrol 2021; 54:225-235. [PMID: 34138419 DOI: 10.1007/s11255-021-02907-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/30/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To explore the effect of miR-93-mediated Wnt/β-catenin pathway on the vascular calcification (VC) of chronic renal failure (CRF). METHODS SD rats were utilized to construct CRF models and divided into Control, CRF, CRF + LV (lentiviral vector)-miR-93 and CRF + LV-Con groups. Renal tissues collected from rats were performed hematoxylin and eosin (HE) staining and Masson staining, while the abdominal aorta was dissected for alizarin red staining and Von Kossa staining. VC-related genes were determined by qRT-PCR while Wnt/β-catenin pathway-related proteins were examined by Western blotting. RESULTS As compared to Control group, the serum levels of blood urea nitrogen (BUN), serum creatinine (Scr), phosphorus (P), cystatin C (Cys-C) and 24-h urea protein (24 h Upro), and the scores of renal interstitial lesion and fibrotic area in rats from CRF group were elevated, with the increased calcified area of aorta as well as the enhanced calcium content and ALP. Meanwhile, rats in the CRF group had up-regulated expression of OPN, OCN, RUNX2 and BMP-2 and down-regulated expression of miR-93. As for the expression of Wnt/β-catenin pathway, rats in the CRF group had sharp increases in the protein expression of TCF4 and β-catenin, while α-SMA was down-regulated. However, changes of the above were reversed in rats from CRF + LV-miR-93 group, and TCF4 was confirmed to be a target gene of miR-93. CONCLUSION MiR-93, via inhibiting the activity of Wnt/β-catenin pathway by targeting TCF4, can improve the renal function of CRF rats, thereby mitigating the vascular calcification of CRF.
Collapse
Affiliation(s)
- Jun Peng
- Department of Nephrology, Jingzhou Central Hospital, Jingzhou, 434020, Hubei, China
| | - Chao Qin
- Department of Orthopaedics, Jingzhou Central Hospital, Jingzhou, Hubei, China
| | - Shu-Yan Tian
- Department of Nephrology, Jingzhou Central Hospital, Jingzhou, 434020, Hubei, China
| | - Jia-Qing Peng
- Department of Nephrology, Jingzhou Central Hospital, Jingzhou, 434020, Hubei, China.
| |
Collapse
|
16
|
Manno G, Filorizzo C, Fanale D, Brando C, Di Lisi D, Lunetta M, Bazan V, Russo A, Novo G. Role of the HIPPO pathway as potential key player in the cross talk between oncology and cardiology. Crit Rev Oncol Hematol 2021; 159:103246. [PMID: 33545354 DOI: 10.1016/j.critrevonc.2021.103246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
The HIPPO pathway (HP) is a highly conserved kinase cascade that affects organ size by regulating proliferation, cell survival and differentiation. Discovered in Drosophila melanogaster to early 2000, it immediately opened wide frontiers in the field of research. Over the last years the field of knowledge on HP is quickly expanding and it is thought will offer many answers on complex pathologies. Here, we summarized the results of several studies that have investigated HP signaling both in oncology than in cardiology field, with an overview on future perspectives in cardiology research.
Collapse
Affiliation(s)
- Girolamo Manno
- Cardiology Unit, University Hospital P. Giaccone, Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (ProMISE) "G. D'Alessandro", Palermo, Italy
| | - Clarissa Filorizzo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Italy
| | - Chiara Brando
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Italy
| | - Daniela Di Lisi
- Cardiology Unit, University Hospital P. Giaccone, Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (ProMISE) "G. D'Alessandro", Palermo, Italy
| | - Monica Lunetta
- Cardiology Unit, University Hospital P. Giaccone, Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (ProMISE) "G. D'Alessandro", Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Medical Oncology, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Italy.
| | - Giuseppina Novo
- Cardiology Unit, University Hospital P. Giaccone, Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (ProMISE) "G. D'Alessandro", Palermo, Italy
| |
Collapse
|
17
|
Zhu G, Yang S, Wang R, Lei J, Ji P, Wang J, Tao K, Yang C, Ge S, Wang L. P53/miR-154 Pathway Regulates the Epithelial-Mesenchymal Transition in Glioblastoma Multiforme Cells by Targeting TCF12. Neuropsychiatr Dis Treat 2021; 17:681-693. [PMID: 33664574 PMCID: PMC7924251 DOI: 10.2147/ndt.s273578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Glioblastoma multiforme (GBM) is an aggressive brain tumor with a rather short survival time. Mutation of p53 has been observed and reported to play critical roles in the progression of GBM. However, the pathological mechanisms are still unclear. This study was designed to identify the role of miR-154 in mediating the biological functions of p53 in glioblastoma multiforme. METHODS In the current study, the expression of miR-154 in GBM tissue samples and cell lines with wt-p53 or mutant p53 was evaluated. The functions of miR-154 in tumor migration, invasion and epithelial-mesenchymal transition were analyzed in vitro. A luciferase reporter assay was used to identify the target of miR-154. RESULTS We found that expression of miR-154 was much lower in patient tissues with mutant p53. Further study revealed that p53 was a transcription factor of miR-154 and that the R273H mutation led to its inactivation. In addition, overexpression of miR-154 remarkably suppressed cell migration, invasion and EMT in vitro and tumor growth in vivo. Moreover, TCF12 was proven to be a direct target of miR-154, and the tumor suppressive effect of miR-154 was reversed by TCF12. CONCLUSION Overall, miR-154, which was regulated by wt-p53, inhibited migration, invasion and EMT of GBM cells by targeting TCF12, indicating that miR-154 may act as a biomarker and that the p53/miR-154/TCF12 pathway could be a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Gang Zhu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Shirong Yang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jie Lei
- Department of Neurosurgery, Wuhan General Hospital of PLA, Wuhan, Hubei, People's Republic of China
| | - Peigang Ji
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jiancai Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Kai Tao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Chen Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
18
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. An overview of signaling pathways regulating YAP/TAZ activity. Cell Mol Life Sci 2021; 78:497-512. [PMID: 32748155 PMCID: PMC11071991 DOI: 10.1007/s00018-020-03579-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/07/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
YAP and TAZ are ubiquitously expressed homologous proteins originally identified as penultimate effectors of the Hippo signaling pathway, which plays a key role in maintaining mammalian tissue/organ size. Presently, it is known that YAP/TAZ also interact with various non-Hippo signaling pathways, and have diverse roles in multiple biological processes, including cell proliferation, tissue regeneration, cell lineage fate determination, tumorigenesis, and mechanosensing. In this review, we first examine the various microenvironmental cues and signaling pathways that regulate YAP/TAZ activation, through the Hippo and non-Hippo signaling pathways. This is followed by a brief summary of the interactions of YAP/TAZ with TEAD1-4 and a diverse array of other non-TEAD transcription factors. Finally, we offer a critical perspective on how increasing knowledge of the regulatory mechanisms of YAP/TAZ signaling might open the door to novel therapeutic applications in the interrelated fields of biomaterials, tissue engineering, regenerative medicine and synthetic biology.
Collapse
Affiliation(s)
- Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
- Faculty of Science and Technology, Sunway University, Selangor Darul Ehsan, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Dominique Aubel
- IUTA, Departement Genie Biologique, Universite, Claude Bernard Lyon 1, Villeurbanne Cedex, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zurich, Mattenstrasse 26, Basel, 4058, Switzerland.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
19
|
Li C, Sun L, Zhou H, Yang Y, Wang Y, She M, Chen J. Diagnostic value of microRNA-25 in patients with non-small cell lung cancer in Chinese population: A systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23425. [PMID: 33371070 PMCID: PMC7748336 DOI: 10.1097/md.0000000000023425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Previous studies have shown that microRNA-25 (miR-25) plays a key role in the occurrence and development of non-small cell lung cancer (NSCLC). Many studies have shown that there is a significant increment of miR-25 in circulating blood of patients with NSCLC. The meta-analysis aims to explore diagnostic value of miR-25 in NSCLC in Chinese population. METHODS PubMed, Web of science, Excerpta Medica Database, China national knowledge infrastructure and China Wanfang database were searched to collect studies upon correlation between miR-25 and diagnosis of the patients with NSCLC until April 2020. Combined sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio and area under receiver operating characteristic curve were calculated by Stata 15.0 software. Literature assessment was conducted according to quality assessment of diagnostic accuracy studies, and documents with scores above or equal to 11 were included in this meta-analysis. RESULTS Six studies were included, including 480 cases with NSCLC and 451 healthy controls. The combined sensitivity (0.75, 95% confidence interval [CI]: 0.69∼0.80), specificity (0.81, 95% CI: 0.76∼0.86), positive likelihood ratio (4.04, 95% CI: 3.14∼5.20), negative likelihood ratio (0.31, 95% CI: 0.25∼0.37), diagnostic odds ratio (13.09, 95% CI: 9.37∼18.29) and area under curve (0.85, 95% CI: 0.82∼0.88) indicated that miR-25 had desirable diagnostic accuracy for NSCLC. CONCLUSION MiR-25 can be applied in diagnosis of NSCLC and has potential of becoming a biomarker for detection of patients with early NSCLC in Chinese population.
Collapse
|
20
|
Lo Sardo F, Pulito C, Sacconi A, Korita E, Sudol M, Strano S, Blandino G. YAP/TAZ and EZH2 synergize to impair tumor suppressor activity of TGFBR2 in non-small cell lung cancer. Cancer Lett 2020; 500:51-63. [PMID: 33296708 DOI: 10.1016/j.canlet.2020.11.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths, worldwide. Non-small cell lung cancer (NSCLC) is the most prevalent lung cancer subtype. YAP and TAZ have been implicated in lung cancer by acting as transcriptional co-activators of oncogenes or as transcriptional co-repressors of tumor suppressor genes. Previously we reported that YAP and TAZ regulate microRNAs expression in NSCLC. Among the set of regulated miRNAs, the oncogenic miR-25, 93, and 106b, clustering within the MCM7 gene were selected for further studies. We firstly identified Transforming Growth Factor-β (TGF-β) Receptor 2 (TGFBR2), a member of the TGF-β signaling, as a target of the miRNA cluster, which exhibited prognostic value because of its tumor suppressor activity. We found that YAP/TAZ-mediated repression of TGFBR2 occurs both: post-transcriptionally through the miR-106b-25 cluster and transcriptionally by engaging the EZH2 epigenetic repressor that we reported here as a novel target gene of YAP/TAZ. Furthermore, we document that YAP/TAZ and EZH2 cooperate in lung tumorigenesis by transcriptionally repressing a specific subset of tumor suppressor genes, including TGFBR2. Our findings point to YAP/TAZ and EZH2 as potential therapeutic targets for NSCLC treatment.
Collapse
Affiliation(s)
- Federica Lo Sardo
- UOSD Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- UOSD Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Etleva Korita
- UOSD Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marius Sudol
- Department of Physiology, National University of Singapore, Laboratory of Cancer Signaling & Domainopathies, Yong Loo Li School of Medicine, Block MD9, 2 Medical Drive #04-01, 117597, Republic of Singapore; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sabrina Strano
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Giovanni Blandino
- UOSD Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
21
|
Du Y, Kong C. STAT3 regulates miR93-mediated apoptosis through inhibiting DAPK1 in renal cell carcinoma. Cancer Gene Ther 2020; 28:502-513. [PMID: 33230258 DOI: 10.1038/s41417-020-00235-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an essential member of the STAT family. STAT3 regulates diverse genes that mediate inflammatory reactions, cell survival, proliferation, and angiogenesis, and it is aberrantly upregulated and activated in various types of malignancies. Furthermore, STAT3 signalling is involved in multiple feedback loops and pathways. In this study, we demonstrate that miR-93-3p plays an oncogenic role in renal cell carcinoma (RCC) by enhancing RCC cell proliferation and suppressing apoptosis. In addition, STAT3 can regulate the transcription of miR-93 by directly binding its promoter region. miR-93 can inhibit death-associated protein kinase 1 (DAPK1) at the protein level. Moreover, STAT3 can block DAPK1 expression at the RNA level. Importantly, we verified that DAPK1 overexpression in turn suppresses the entry of activated STAT3 into the cell nucleus. Thus, this study reveals a potential continuously activated signalling transduction pathway, STAT3-miR93-DAPK1, and may provide a novel clinical therapeutic approach for RCC.
Collapse
Affiliation(s)
- Yang Du
- Department of Urology, First Hospital of China Medical University, 110001, Shenyang, China
| | - Chuize Kong
- Department of Urology, First Hospital of China Medical University, 110001, Shenyang, China.
| |
Collapse
|
22
|
The protective effect of 1,25(OH) 2D 3 against cardiac hypertrophy is mediated by the cyclin-dependent kinase inhibitor p21. Eur J Pharmacol 2020; 888:173510. [PMID: 32861664 DOI: 10.1016/j.ejphar.2020.173510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/29/2022]
Abstract
As a critical regulator of the cell cycle, cyclin-dependent kinase (CDK) inhibitor p21 or p21 is involved in the development of cardiac hypertrophy and heart failure. Calcitriol, or 1,25(OH)2D3, the bioactive form of vitamin D (VD), can activate p21 expression and attenuate cardiac hypertrophy. To simulate cardiac hypertrophy in vitro and ex vivo, respectively, mice and cardiomyocytes were treated with isoproterenol (ISO). Moreover, the p21 signaling pathway was examined in ISO + VD and ISO + VD p21 inhibitor-treated cardiomyocytes. We found that calcitriol treatment led to a significant decrease in cardiac size and the mRNA levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in ISO-treated mice. Furthermore, the surface area of cardiomyocytes and the expression of ANP and BNP were decreased, and the expression of p21 was increased in the ISO + VD group compared with those in the ISO group. Furthermore, the surface area of cardiomyocytes and the expression of ANP and BNP were markedly upregulated in the ISO + VD p21 inhibitor group relative to the ISO + VD group, whereas the difference was not statistically significant compared with those of the ISO p21 inhibitor group. Therefore, our findings indicate that 1,25(OH)2D3 protects against cardiac hypertrophy in mice through upregulating p21 expression.
Collapse
|
23
|
Espinosa-Sánchez A, Suárez-Martínez E, Sánchez-Díaz L, Carnero A. Therapeutic Targeting of Signaling Pathways Related to Cancer Stemness. Front Oncol 2020; 10:1533. [PMID: 32984007 PMCID: PMC7479251 DOI: 10.3389/fonc.2020.01533] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
The theory of cancer stem cells (CSCs) proposes that the different cells within a tumor, as well as metastasis deriving from it, are originated from a single subpopulation of cells with self-renewal and differentiation capacities. These cancer stem cells are supposed to be critical for tumor expansion and metastasis, tumor relapse and resistance to conventional therapies, such as chemo- and radiotherapy. The acquisition of these abilities has been attributed to the activation of alternative pathways, for instance, WNT, NOTCH, SHH, PI3K, Hippo, or NF-κB pathways, that regulate detoxification mechanisms; increase the metabolic rate; induce resistance to apoptotic, autophagic, and senescence pathways; promote the overexpression of drug transporter proteins; and activate specific stem cell transcription factors. The elimination of CSCs is an important goal in cancer therapeutic approaches because it could decrease relapses and metastatic dissemination, which are main causes of mortality in oncology patients. In this work, we discuss the role of these signaling pathways in CSCs along with their therapeutic potential.
Collapse
Affiliation(s)
- Asunción Espinosa-Sánchez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Elisa Suárez-Martínez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Laura Sánchez-Díaz
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| |
Collapse
|
24
|
MCM family in gastrointestinal cancer and other malignancies: From functional characterization to clinical implication. Biochim Biophys Acta Rev Cancer 2020; 1874:188415. [PMID: 32822825 DOI: 10.1016/j.bbcan.2020.188415] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
Abstract
Despite the recent advances in cancer research and treatment, gastrointestinal (GI) cancers remain the most common deadly disease worldwide. The aberrant DNA replication serves as a major source of genomic instability and enhances cell proliferation that contributes to tumor initiation and progression. Minichromosome maintenance family (MCMs) is a well-recognized group of proteins responsible for DNA synthesis. Recent studies suggested that dysregulated MCMs lead to tumor initiation, progression, and chemoresistance via modulating cell cycle and DNA replication stress. Their underlying mechanisms in various cancer types have been gradually identified. Furthermore, multiple studies have investigated the association between MCMs expression and clinicopathological features of cancer patients, implying that MCMs might serve as prominent prognostic biomarkers for GI cancers. This review summarizes the current knowledge on the oncogenic role of MCM proteins and highlights their clinical implications in various malignancies, especially in GI cancers. Targeting MCMs might shed light on the potential for identifying novel therapeutic strategies.
Collapse
|
25
|
Liu C, Wu Y, Ma J. Interaction of non-coding RNAs and Hippo signaling: Implications for tumorigenesis. Cancer Lett 2020; 493:207-216. [PMID: 32822816 DOI: 10.1016/j.canlet.2020.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Hippo signaling is an evolutionarily conserved pathway that controls organ size by regulating cell proliferation, apoptosis, and stem cell self-renewal by "turning off" or "turning on" the kinase cascade chain reaction to manipulate the expression of downstream genes. Dysregulation of the Hippo pathway contributes to cancer development and metastasis. Emerging evidence has revealed new insights into tumorigenesis through the interplay between the Hippo pathway and non-coding RNAs (ncRNAs), especially microRNA, long non-coding RNA and circular RNA. Here, we reviewed the interactions between the Hippo pathway and ncRNAs and their implication for a variety of tumor-promoting or tumor-repressing effects. These interactions have the potential to serve as cancer biomarkers and therapeutic targets in clinical applications.
Collapse
Affiliation(s)
- Can Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute, School of Basic Medical Science, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yangge Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute, School of Basic Medical Science, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute, School of Basic Medical Science, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
26
|
Nguyen PA, Chang CC, Galvin CJ, Wang YC, An SY, Huang CW, Wang YH, Hsu MH, Li YCJ, Yang HC. Statins use and its impact in EGFR-TKIs resistance to prolong the survival of lung cancer patients: A Cancer registry cohort study in Taiwan. Cancer Sci 2020; 111:2965-2973. [PMID: 32441434 PMCID: PMC7419042 DOI: 10.1111/cas.14493] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 12/12/2022] Open
Abstract
Statins have been shown to be a beneficial treatment as chemotherapy and target therapy for lung cancer. This study aimed to investigate the effectiveness of statins in combination with epidermal growth factor receptor-tyrosine kinase inhibitor therapy for the resistance and mortality of lung cancer patients. A population-based cohort study was conducted using the Taiwan Cancer Registry database. From January 1, 2007, to December 31, 2012, in total 792 non-statins and 41 statins users who had undergone EGFR-TKIs treatment were included in this study. All patients were monitored until the event of death or when changed to another therapy. Kaplan-Meier estimators and Cox proportional hazards regression models were used to calculate overall survival. We found that the mortality was significantly lower in patients in the statins group compared with patients in the non-statins group (4-y cumulative mortality, 77.3%; 95% confidence interval (CI), 36.6%-81.4% vs. 85.5%; 95% CI, 78.5%-98%; P = .004). Statin use was associated with a reduced risk of death in patients the group who had tumor sizes <3 cm (hazard ratio [HR], 0.51, 95% CI, 0.29-0.89) and for patients in the group who had CCI scores <3 (HR, 0.6; 95% CI, 0.41-0.88; P = .009). In our study, statins were found to be associated with prolonged survival time in patients with lung cancer who were treated with EGFR-TKIs and played a synergistic anticancer role.
Collapse
Affiliation(s)
- Phung-Anh Nguyen
- International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan
| | - Chih-Cheng Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary, Department of Internal Medicine, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cooper J Galvin
- Biophysics Program, Stanford Medical School, Stanford, CA, USA
| | - Yao-Chin Wang
- Department of Emergency, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Soo Yeon An
- Department of Cardiology, Chungnam National University Hospital, Daejeon, South Korea
| | - Chih-Wei Huang
- International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsiang Wang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Min-Huei Hsu
- Graduate Institute of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chuan Jack Li
- International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan.,Department of Dermatology, Wan-Fang Hospital, Taipei, Taiwan
| | - Hsuan-Chia Yang
- International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
27
|
Hurtado A, Palomino R, Georg I, Lao M, Real FM, Carmona FD, Burgos M, Jiménez R, Barrionuevo FJ. Deficiency of the onco-miRNA cluster, miR-106b∼25, causes oligozoospermia and the cooperative action of miR-106b∼25 and miR-17∼92 is required to maintain male fertility. Mol Hum Reprod 2020; 26:389-401. [PMID: 32330263 DOI: 10.1093/molehr/gaaa027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
The identification of new genes involved in sexual development and gonadal function as potential candidates causing male infertility is important for both diagnostic and therapeutic purposes. Deficiency of the onco-miRNA cluster miR-17∼92 has been shown to disrupt spermatogenesis, whereas mutations in its paralog cluster, miR-106b∼25, that is expressed in the same cells, were reported to have no effect on testis development and function. The aim of this work is to determine the role of these two miRNA clusters in spermatogenesis and male fertility. For this, we analyzed miR-106b∼25 and miR-17∼92 single and double mouse mutants and compared them to control mice. We found that miR-106b∼25 knock out testes show reduced size, oligozoospermia and altered spermatogenesis. Transcriptomic analysis showed that multiple molecular pathways are deregulated in these mutant testes. Nevertheless, mutant males conserved normal fertility even when early spermatogenesis and other functions were disrupted. In contrast, miR-17∼92+/-; miR-106b∼25-/- double mutants showed severely disrupted testicular histology and significantly reduced fertility. Our results indicate that miR-106b∼25 and miR-17∼92 ensure accurate gene expression levels in the adult testis, keeping them within the required thresholds. They play a crucial role in testis homeostasis and are required to maintain male fertility. Hence, we have identified new candidate genetic factors to be screened in the molecular diagnosis of human males with reproductive disorders. Finally, considering the well-known oncogenic nature of these two clusters and the fact that patients with reduced fertility are more prone to testicular cancer, our results might also help to elucidate the molecular mechanisms linking both pathologies.
Collapse
Affiliation(s)
- Alicia Hurtado
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Labs 127 and 105a, Centro de Investigación Biomédica, Avenida del Conocimiento, 18016 Armilla, Granada, Spain
| | - Rogelio Palomino
- Departamento de Bioquímica y Biología Molecular I e Instituto de Investigación Biosanitaria de Granada, Universidad de Granada, Laboratorio 127 Centro de Investigación Biomédica, Avenida del Conocimiento, 18016 Armilla, Granada, Spain
| | - Ina Georg
- Genetics of Complex Diseases Unit, Pfizer-University of Granada-Junta de Andalucía "Centre for Genomics and Oncological Research" (GENYO), Avenida de la Ilustración 114, 18016 Granada, Spain
| | - Miguel Lao
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Labs 127 and 105a, Centro de Investigación Biomédica, Avenida del Conocimiento, 18016 Armilla, Granada, Spain
| | | | - F David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Labs 127 and 105a, Centro de Investigación Biomédica, Avenida del Conocimiento, 18016 Armilla, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Labs 127 and 105a, Centro de Investigación Biomédica, Avenida del Conocimiento, 18016 Armilla, Granada, Spain
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Labs 127 and 105a, Centro de Investigación Biomédica, Avenida del Conocimiento, 18016 Armilla, Granada, Spain
| | - Francisco J Barrionuevo
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Labs 127 and 105a, Centro de Investigación Biomédica, Avenida del Conocimiento, 18016 Armilla, Granada, Spain
| |
Collapse
|
28
|
Non-Coding RNAs in Lung Tumor Initiation and Progression. Int J Mol Sci 2020; 21:ijms21082774. [PMID: 32316322 PMCID: PMC7215285 DOI: 10.3390/ijms21082774] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is one of the deadliest forms of cancer affecting society today. Non-coding RNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), through the transcriptional, post-transcriptional, and epigenetic changes they impose, have been found to be dysregulated to affect lung cancer tumorigenesis and metastasis. This review will briefly summarize hallmarks involved in lung cancer initiation and progression. For initiation, these hallmarks include tumor initiating cells, immortalization, activation of oncogenes and inactivation of tumor suppressors. Hallmarks involved in lung cancer progression include metastasis and drug tolerance and resistance. The targeting of these hallmarks with non-coding RNAs can affect vital metabolic and cell signaling pathways, which as a result can potentially have a role in cancerous and pathological processes. By further understanding non-coding RNAs, researchers can work towards diagnoses and treatments to improve early detection and clinical response.
Collapse
|
29
|
|
30
|
Szelachowska J, Donizy P, Ratajczak-Wielgomas K, Halon A, Zielecka-Debska D, Lichon K, Maciejczyk A, Lata-Wozniak E, Piotrowska A, Matkowski R. The effect of YAP expression in tumor cells and tumor stroma on the prognosis of patients with squamous cell carcinoma of the oral cavity floor and oral surface of the tongue. Oncol Lett 2019; 18:3561-3570. [PMID: 31579068 PMCID: PMC6757271 DOI: 10.3892/ol.2019.10695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/04/2019] [Indexed: 12/26/2022] Open
Abstract
Classic prognostic factors, such as clinical advancement of the disease and histological grade of the tumor, continue to have a decisive role in the selection of therapeutic strategy in patients with carcinoma of the oral cavity floor and oral surface of the tongue (OCC). YAP1/Yes-associated protein 1 (YAP) and transcriptional co-activator with PDZ-binding motif, WWTR1 (TAZ) proteins, appear to be promising markers that may be used to develop personalized therapies. The aim of the present study was to analyze the associations between the levels of YAP, TAZ and tyrosine-protein phosphatase non-receptor type 14 (PTPN14) and to determine whether the increased expression of YAP and TAZ had an effect on tumor cell proliferation, as determined by minichromosome maintenance 7, DNA replication licensing factor 7 expression. Their prognostic value was also assessed. In total, 127 patients who underwent radical surgery and were subjected to adjuvant radiation therapy due to squamous cell OCC were enrolled in the present study. The results demonstrated an evident effect as YAP expression increased in cancer-associated fibroblasts, which induced unfavorable prognosis in patients. In addition, a positive association between proliferation in cancer cells and YAP expression in stromal cells was observed. A lack of YAP expression in the cytoplasm of tumor cells was a factor for poor prognosis with regard to disease-free survival and disease specific survival. No statistically significant correlations between YAP and TAZ expression and PTPN14 expression were identified, nor was a correlation between cell proliferation and the presence of YAP and TAZ in tumor cells observed. The results indicated that YAP expression levels may support the development of personalized therapies for patients.
Collapse
Affiliation(s)
- Jolanta Szelachowska
- Department of Oncology, Gynaecological Oncology Clinic, Wroclaw Medical University, 53-413 Wroclaw, Poland
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
| | - Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | | - Agnieszka Halon
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Dominika Zielecka-Debska
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
- Department of Oncology, Clinic of Surgical Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| | - Krystian Lichon
- Department of Oncology, Gynaecological Oncology Clinic, Wroclaw Medical University, 53-413 Wroclaw, Poland
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
| | - Adam Maciejczyk
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
- Department of Oncology, Clinic of Radiation Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| | - Ewelina Lata-Wozniak
- Department of Oncology, Gynaecological Oncology Clinic, Wroclaw Medical University, 53-413 Wroclaw, Poland
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Histology and Embryology Division, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Rafal Matkowski
- Department of Radiotherapy, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
- Department of Oncology, Clinic of Surgical Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| |
Collapse
|
31
|
Zeng SG, Xie JH, Zeng QY, Dai SH, Wang Y, Wan XM, Zhou XL. MicroRNA-497-5p negatively regulates the proliferation and cisplatin resistance of non-small cell lung cancer cells by targeting YAP1 and TEAD1. Transl Cancer Res 2019; 8:2470-2480. [PMID: 35116999 PMCID: PMC8798955 DOI: 10.21037/tcr.2019.10.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/27/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are crucial regulators in the pathological processes and drug resistance of lung cancer. In this study, we investigated the role of miR-497-5p in modulating the function of non-small cell lung cancer (NSCLC). METHODS MiR-497-5p expression in lung cancer tissues and cells was evaluated by qRT-PCR. Cell proliferation was evaluated by CCK-8 assay and colony-formation assay. Cell cycle and cell apoptosis were detected by flow cytometry. The effect of miR-497-5p on the expression of Yes-associated protein 1 (YAP1) and TEA domain family member 1 (TEAD1) was analyzed by qRT-PCR, Western blot and luciferase activity assay. RESULTS The expression of miR-497-5p was significantly downregulated in lung cancer tissues and cells compared with paired normal tissues and cells. Overexpression of miR-497-5p induced growth retardation and apoptosis of A549 lung cancer cells. Mechanistically, YAP1 and TEAD1 were targeted and downregulated by miR-497-5p. Finally, we found that miR-497-5p increased cisplatin chemosensitivity in A549 cells. CONCLUSIONS MiR-497-5p suppresses cell proliferation and resistance to cisplatin in NSCLC by downregulating the expression of YAP1 and TEAD1.
Collapse
Affiliation(s)
- Shang-Gan Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jian-Hong Xie
- Department of Surgery, Suichuan People’s Hospital, Ji’an 343900, China
| | - Qun-Ying Zeng
- Department of Surgery, Suichuan People’s Hospital, Ji’an 343900, China
| | - Shao-Hua Dai
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xue-Mei Wan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xue-Liang Zhou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
32
|
Li S, Jiang Z, Li Y, Xu Y. Prognostic significance of minichromosome maintenance mRNA expression in human lung adenocarcinoma. Oncol Rep 2019; 42:2279-2292. [PMID: 31545501 PMCID: PMC6826304 DOI: 10.3892/or.2019.7330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
The minichromosome maintenance (MCM) gene family plays an essential role in DNA replication and cell cycle progression. However, MCM gene expression has not been well-studied in lung adenocarcinoma (LUAD). In the present study, the expression, prognostic value and functions of MCMs in LUAD were investigated using several databases and bioinformatic tools, including Oncomine, GEPIA, cBioPortal, CancerSEA and Kaplan-Meier plotter. It was demonstrated that the mRNA expression of MCM2, MCM4 and MCM10 were significantly increased in patients with LUAD. High mRNA expression of MCM2-5, MCM8 and MCM10 were associated with poor overall survival and progression-free survival. High MCM4 expression was associated with adverse post-progression survival. In addition, the Human Protein Atlas database showed that MCM protein expression was consistent with the mRNA expression. These results demonstrate that MCM2, MCM4 and MCM10 are potential prognostic markers and therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Shu Li
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhou Jiang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
33
|
Dropwort-induced metabolic reprogramming restrains YAP/TAZ/TEAD oncogenic axis in mesothelioma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:349. [PMID: 31399037 PMCID: PMC6689183 DOI: 10.1186/s13046-019-1352-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Background Over the past decade, newly designed cancer therapies have not significantly improved the survival of patients diagnosed with Malignant Pleural Mesothelioma (MPM). Among a limited number of genes that are frequently mutated in MPM several of them encode proteins that belong to the HIPPO tumor suppressor pathway. Methods The anticancer effects of the top flower standardized extract of Filipendula vulgaris (Dropwort) were characterized in “in vitro” and “in vivo” models of MPM. At the molecular level, two “omic” approaches were used to investigate Dropwort anticancer mechanism of action: a metabolomic profiling and a phosphoarray analysis. Results We found that Dropwort significantly reduced cell proliferation, viability, migration and in vivo tumor growth of MPM cell lines. Notably, Dropwort affected viability of tumor-initiating MPM cells and synergized with Cisplatin and Pemetrexed in vitro. Metabolomic profiling revealed that Dropwort treatment affected both glycolysis/tricarboxylic acid cycle as for the decreased consumption of glucose, pyruvate, succinate and acetate, and the lipid metabolism. We also document that Dropwort exerted its anticancer effects, at least partially, promoting YAP and TAZ protein ubiquitination. Conclusions Our findings reveal that Dropwort is a promising source of natural compound(s) for targeting the HIPPO pathway with chemo-preventive and anticancer implications for MPM management. Electronic supplementary material The online version of this article (10.1186/s13046-019-1352-3) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Yan F, Qian M, He Q, Zhu H, Yang B. The posttranslational modifications of Hippo-YAP pathway in cancer. Biochim Biophys Acta Gen Subj 2019; 1864:129397. [PMID: 31306710 DOI: 10.1016/j.bbagen.2019.07.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Yes-associated protein (YAP) is a key effector of the Hippo pathway and is frequently dysregulated in aggressive human cancers. Aberrant YAP activation has emerged as an important driver of tumorigenesis, chemoresistance and metastasis. Since posttranslational modifications (PTMs) are pivotal modifiers that determine protein activation or subcellular localization, the malfunction of YAP due to dysregulated PTMs has been linked to various cancers. Collectively, although YAP has long been considered an "undruggable" transcription cofactor, its PTMs may be its "Achilles' heel". To provide theoretical support for developing small molecule inhibitors based on PTMs, in this review article, we summarize the current understanding of the impact of PTMs in regulating the Hippo-YAP pathway and further discuss potential therapeutic intervention. SCOPE OF REVIEW In our review, we summarize the known posttranslational modifications (PTMs) of YAP that dictate its protein stability, transcriptional activity and subcellular localization at different stages. Here, we clearly summarize the specific enzymes and sites involved in YAP PTMs and place additional focus on the consequences of PTM-modulated YAP activity and translocation. MAIN CONCLUSION PTMs of YAP play fundamental roles in controlling the protein abundance and function. Therefore, interfering with PTMs of YAP may contribute to solving the "undruggable" problem in YAP inhibition, thus providing new approaches for YAP-based cancer therapy. GENERAL SIGNIFICANCE Future studies that target corresponding PTM-related kinases/enzymes will provide new strategies for cancer therapy, particularly in tumors with YAP dysregulation.
Collapse
Affiliation(s)
- Fangjie Yan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meijia Qian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
35
|
miR-25 Promotes Cell Proliferation, Migration, and Invasion of Non-Small-Cell Lung Cancer by Targeting the LATS2/YAP Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9719723. [PMID: 31316723 PMCID: PMC6604298 DOI: 10.1155/2019/9719723] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022]
Abstract
Metastasis is the leading cause of high mortality in lung cancer patients, and metastatic lung cancer is difficult to treat. miRNAs are involved in various biological processes of cancer, including metastasis. Our previous studies revealed that miR-25 promoted non-small-cell lung cancer (NSCLC) cell proliferation and suppressed cell apoptosis by directly targeting TP53 and MOAP1. In this work, we further explored the miR-25 expression in NSCLC patients in the Cancer Genome Atlas (TCGA) database and measured the miR-25 expression levels in the tissues of NSCLC patients and cell lines. miR-25 was overexpressed in both NSCLC tissues and cell lines. NSCLC patients who expressed a higher level of miR-25 exhibited worse overall survival than those with a lower level of miR-25. Overexpression of miR-25 enhanced NSCLC cell migration and invasion, while the inhibition of miR-25 exhibited the opposite effects. We identified the large tumor suppressor homology 2 (LATS2) as a new target gene of miR-25 in lung cancer. The effects of miR-25 on promoting NSCLC cell migration and invasion were at least partially due to activation of the Hippo signaling pathway. Additionally, miR-25 antagomir inhibited xenograft tumor growth and metastasis by the upregulation of LATS2. Taken together, our findings demonstrate that miR-25 contribute to lung cancer cell proliferation and metastasis by targeting the LATS2/YAP signaling pathway, which implicate miR-25 as a promising therapeutic target for lung cancer metastasis. Given that oxidative stress induces the overexpression of miR-25 and plays a critical role in cancer progression, this study establishes miR-25 as an intermediate between oxidative stress and lung cancer metastasis.
Collapse
|
36
|
Xie H, Wu L, Deng Z, Huo Y, Cheng Y. Emerging roles of YAP/TAZ in lung physiology and diseases. Life Sci 2018; 214:176-183. [PMID: 30385178 DOI: 10.1016/j.lfs.2018.10.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022]
Abstract
The YAP and TAZ, as the downstream effectors of Hippo pathway, have emerged as important translational co-activators of a wide variety of biological processes. YAP/TAZ plays a crucial role in the lung development and physiology. Dysregulation of YAP/TAZ signaling pathway contributes to the development and progression of chronic lung diseases, including lung cancer, pulmonary fibrosis, pulmonary hypertension, COPD, asthma, and lung infection. Therefore, owing to its critical functions, delineation of the signaling mechanisms of YAP/TAZ in pathological conditions will shed light on developing strategies for its therapeutic targeting. Currently, the complex regulation of this pathway is under extensive investigation. In this review, we summarize and present recent findings of molecular mechanisms of YAP/TAZ in the lung physiological and pathological conditions, as well as the implications of YAP/TAZ for lung diseases treatment and regeneration.
Collapse
Affiliation(s)
- Haojun Xie
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Liquan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenan Deng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yating Huo
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
37
|
Mehlich D, Garbicz F, Włodarski PK. The emerging roles of the polycistronic miR-106b∼25 cluster in cancer - A comprehensive review. Biomed Pharmacother 2018; 107:1183-1195. [PMID: 30257332 DOI: 10.1016/j.biopha.2018.08.097] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression at the post-transcriptional level by inhibiting translation and decreasing the stability of the targeted transcripts. Over the last two decades, miRNAs have been recognized as important regulators of cancer cell biology, acting either as oncogenes or tumor suppressors. The polycistronic miR-106b∼25 cluster, located within an intron of MCM7 gene, consists of three highly conserved miRNAs: miR-25, miR-93 and miR-106b. A constantly growing body of evidence indicates that these miRNAs are overexpressed in numerous human malignancies and regulate multiple cellular processes associated with cancer development and progression, including: cell proliferation and survival, invasion, metastasis, angiogenesis and immune evasion. Furthermore, recent studies revealed that miR-106b∼25 cluster miRNAs modulate cancer stem cells characteristics and might promote resistance to anticancer therapies. In light of these novel discoveries, miRNAs belonging to the miR-106b∼25 cluster have emerged as key oncogenic drivers as well as potential biomarkers and plausible therapeutic targets in different tumor types. Herein, we comprehensively review novel findings on the roles of miR-106b∼25 cluster in human cancer, and provide a broad insight into the molecular mechanisms underlying its oncogenic properties.
Collapse
Affiliation(s)
- Dawid Mehlich
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-091 Warsaw, Poland; Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, 2C Banacha Str., 02-097, Warsaw, Poland
| | - Filip Garbicz
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-091 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 61 Żwirki i Wigury Str., 02-091 Warsaw, Poland; Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 14 Indiry Gandhi Str., 02-776 Warsaw, Poland
| | - Paweł K Włodarski
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-091 Warsaw, Poland.
| |
Collapse
|
38
|
Iqbal MA, Arora S, Prakasam G, Calin GA, Syed MA. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med 2018; 70:3-20. [PMID: 30102929 DOI: 10.1016/j.mam.2018.07.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 12/29/2022]
Abstract
Lung cancer is the cardinal cause of cancer-related deaths with restricted recourse of therapy throughout the world. Clinical success of therapies is not very promising due to - late diagnosis, limited therapeutic tools, relapse and the development of drug resistance. Recently, small ∼20-24 nucleotides molecules called microRNAs (miRNAs) have come into the limelight as they play outstanding role in the process of tumorigenesis by regulating cell cycle, metastasis, angiogenesis, metabolism and apoptosis. miRNAs essentially regulate gene expression via post-transcriptional regulation of mRNA. Nevertheless, few studies have conceded the role of miRNAs in activation of gene expression. A large body of data generated by numerous studies is suggestive of their tumor-suppressing, oncogenic, diagnostic and prognostic biomarker roles in lung cancer. They have also been implicated in regulating cancer cell metabolism and resistance or sensitivity towards chemotherapy and radiotherapy. Further, miRNAs have also been convoluted in regulation of immune checkpoints - Programmed death 1 (PD-1) and its ligand (PD-L1). These molecules play a significant role in tumor immune escape leading to the generation of a microenvironment favouring tumor growth and progression. Therefore, it is imperative to explore the expression of miRNA and understand its relevance in lung cancer and development of anti-cancer strategies (anti - miRs, miR mimics and micro RNA sponges). In view of the above, the role of miRNA in lung cancer has been dissected and the associated mechanisms and pathways are discussed in this review.
Collapse
Affiliation(s)
- Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India.
| | - Shweta Arora
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India.
| | - Gopinath Prakasam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - George A Calin
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX-77030, USA.
| | - Mansoor Ali Syed
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India.
| |
Collapse
|
39
|
Liu H, Du S, Lei T, Wang H, He X, Tong R, Wang Y. Multifaceted regulation and functions of YAP/TAZ in tumors (Review). Oncol Rep 2018; 40:16-28. [PMID: 29749524 PMCID: PMC6059739 DOI: 10.3892/or.2018.6423] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
The Hippo pathway, initially identified through screenings for mutant tumor suppressors in Drosophila, is an evolutionarily conserved signaling pathway that controls organ size by regulating cell proliferation and apoptosis. Abnormal regulation of the Hippo pathway may lead to cancer in mammals. As the major downstream effectors of the Hippo pathway, unphosphorylated Yes-associated protein (YAP) and its homolog transcriptional co-activator TAZ (also called WWTR1) (hereafter called YAP/TAZ) are translocated into the nucleus. In the nucleus, in order to induce target gene expression, YAP/TAZ bind to the TEA domain (TEAD) proteins, and this binding subsequently promotes cell proliferation and inhibits apoptosis. In contrast, as key regulators of tumorigenesis and development, YAP/TAZ are phosphorylated and regulated by multiple molecules and pathways including Lats1/2 of Hippo, Wnt and G-protein-coupled receptor (GPCR) signaling, with a regulatory role in cell physiology, tumor cell development and pathological abnormalities simultaneously. In particular, the crucial role of YAP/TAZ in tumors ensures their potential as targets in designing anticancer drugs. To date, mounting research has elucidated the suppression of YAP/TAZ via effective inhibitors, which significantly highlights their application in cancer treatment. In the present review, we focus on the functions of YAP/TAZ in cancer, discuss their potential as new therapeutic target for tumor treatment, and provide valuable suggestions for further study in this field.
Collapse
Affiliation(s)
- Huirong Liu
- Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Suya Du
- School of Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan 610054, P.R. China
| | - Tiantian Lei
- School of Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan 610054, P.R. China
| | - Hailian Wang
- Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Xia He
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Yi Wang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
40
|
Guarnieri AL, Towers CG, Drasin DJ, Oliphant MUJ, Andrysik Z, Hotz TJ, Vartuli RL, Linklater ES, Pandey A, Khanal S, Espinosa JM, Ford HL. The miR-106b-25 cluster mediates breast tumor initiation through activation of NOTCH1 via direct repression of NEDD4L. Oncogene 2018; 37:3879-3893. [PMID: 29662198 PMCID: PMC6043359 DOI: 10.1038/s41388-018-0239-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/01/2018] [Accepted: 03/03/2018] [Indexed: 01/07/2023]
Abstract
Tumor-initiating cells (TIC) represent a subset of tumor cells with increased self-renewal capability. TICs display resistance to frontline cancer treatment and retain the ability to repopulate a tumor after therapy, leading to cancer relapse. NOTCH signaling has been identified as an important driver of the TIC population, yet mechanisms governing regulation of this pathway in cancer remain to be fully elucidated. Here we identify a novel mechanism of NOTCH regulation and TIC induction in breast cancer via the miR-106b-25 miRNA cluster. We show that the miR-106b-25 cluster upregulates NOTCH1 in multiple breast cancer cell lines, representing both estrogen receptor (ER+) and triple negative breast cancer (TNBC) through direct repression of the E3 ubiquitin ligase, NEDD4L. We further show that upregulation of NOTCH1 is necessary for TIC induction downstream of miR-106b-25 in both ER + and TNBC breast cancer cells, and that re-expression of NEDD4L is sufficient to reverse miR106b-25-mediated NOTCH1 upregulation and TIC induction. Importantly, we demonstrate a significant positive correlation between miR-106b-25 and NOTCH1 protein, yet a significant inverse correlation between miR-106b-25 and NEDD4L mRNA in human breast cancer, suggesting a critical role for the miR106b-25/NEDD4L/NOTCH1 axis in the disease. Further, we show for the first time that NEDD4L expression alone is significantly associated with a better relapse-free prognosis for breast cancer patients. These data expand our knowledge of the mechanisms underlying NOTCH activation and TIC induction in breast cancer, and may provide new avenues for the development of therapies targeting this resistant subset of tumor cells.
Collapse
Affiliation(s)
- A L Guarnieri
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - C G Towers
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - D J Drasin
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - M U J Oliphant
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Integrated Physiology Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Z Andrysik
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - T J Hotz
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - R L Vartuli
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - E S Linklater
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - A Pandey
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - S Khanal
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - J M Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - H L Ford
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Integrated Physiology Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
41
|
Heller G, Altenberger C, Steiner I, Topakian T, Ziegler B, Tomasich E, Lang G, End-Pfützenreuter A, Zehetmayer S, Döme B, Arns BM, Klepetko W, Zielinski CC, Zöchbauer-Müller S. DNA methylation of microRNA-coding genes in non-small-cell lung cancer patients. J Pathol 2018; 245:387-398. [PMID: 29570800 PMCID: PMC6055722 DOI: 10.1002/path.5079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 12/20/2022]
Abstract
Deregulated DNA methylation leading to transcriptional inactivation of certain genes occurs frequently in non‐small‐cell lung cancers (NSCLCs). As well as protein‐coding genes, microRNA (miRNA)‐coding genes may be targets for methylation in NSCLCs; however, the number of known methylated miRNA genes is still small. Thus, we investigated methylation of miRNA genes in primary tumour (TU) samples and corresponding non‐malignant lung tissue (NL) samples of 50 NSCLC patients by using methylated DNA immunoprecipitation followed by custom‐designed tiling microarray analyses (MeDIP‐chip), and 252 differentially methylated probes between TU samples and NL samples were identified. These probes were annotated, which resulted in the identification of 34 miRNA genes with increased methylation in TU samples. Some of these miRNA genes were already known to be methylated in NSCLCs (e.g. those encoding miR‐9‐3 and miR‐124), but methylation of the vast majority of them was previously unknown. We selected six miRNA genes (those encoding miR‐10b, miR‐1179, miR‐137, miR‐572, miR‐3150b, and miR‐129‐2) for gene‐specific methylation analyses in TU samples and corresponding NL samples of 104 NSCLC patients, and observed a statistically significant increase in methylation of these genes in TU samples (p < 0.0001). In silico target prediction of the six miRNAs identified several oncogenic/cell proliferation‐promoting factors (e.g. CCNE1 as an miR‐1179 target). To investigate whether miR‐1179 indeed targets CCNE1, we transfected miR‐1179 gene mimics into CCNE1‐expressing NSCLC cells, and observed downregulated CCNE1 mRNA expression in these cells as compared with control cells. Similar effects on cyclin E1 expression were seen in western blot analyses. In addition, we found a statistically significant reduction in the growth of NSCLC cells transfected with miR‐1179 mimics as compared with control cells. In conclusion, we identified many methylated miRNA genes in NSCLC patients, and found that the miR‐1179 gene is a potential tumour cell growth suppressor in NSCLCs. Overall, our findings emphasize the impact of miRNA gene methylation on the pathogenesis of NSCLCs. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Gerwin Heller
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Corinna Altenberger
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Irene Steiner
- Centre for Medical Statistics, Informatics and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Thais Topakian
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Barbara Ziegler
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Erwin Tomasich
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - György Lang
- Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| | - Adelheid End-Pfützenreuter
- Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Sonja Zehetmayer
- Centre for Medical Statistics, Informatics and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Balazs Döme
- Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary.,Department of Tumour Biology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | | | - Walter Klepetko
- Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph C Zielinski
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Sabine Zöchbauer-Müller
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
|
43
|
YAP and TAZ in Lung Cancer: Oncogenic Role and Clinical Targeting. Cancers (Basel) 2018; 10:cancers10050137. [PMID: 29734788 PMCID: PMC5977110 DOI: 10.3390/cancers10050137] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer death in the world and there is no current treatment able to efficiently treat the disease as the tumor is often diagnosed at an advanced stage. Moreover, cancer cells are often resistant or acquire resistance to the treatment. Further knowledge of the mechanisms driving lung tumorigenesis, aggressiveness, metastasization, and resistance to treatments could provide new tools for detecting the disease at an earlier stage and for a better response to therapy. In this scenario, Yes Associated Protein (YAP) and Trascriptional Coactivator with PDZ-binding motif (TAZ), the final effectors of the Hippo signaling transduction pathway, are emerging as promising therapeutic targets. Here, we will discuss the most recent advances made in YAP and TAZ biology in lung cancer and, more importantly, on the newly discovered mechanisms of YAP and TAZ inhibition in lung cancer as well as their clinical implications.
Collapse
|
44
|
Warren JSA, Xiao Y, Lamar JM. YAP/TAZ Activation as a Target for Treating Metastatic Cancer. Cancers (Basel) 2018; 10:cancers10040115. [PMID: 29642615 PMCID: PMC5923370 DOI: 10.3390/cancers10040115] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ) have both emerged as important drivers of cancer progression and metastasis. YAP and TAZ are often upregulated or nuclear localized in aggressive human cancers. There is abundant experimental evidence demonstrating that YAP or TAZ activation promotes cancer formation, tumor progression, and metastasis. In this review we summarize the evidence linking YAP/TAZ activation to metastasis, and discuss the roles of YAP and TAZ during each step of the metastatic cascade. Collectively, this evidence strongly suggests that inappropriate YAP or TAZ activity plays a causal role in cancer, and that targeting aberrant YAP/TAZ activation is a promising strategy for the treatment of metastatic disease. To this end, we also discuss several potential strategies for inhibiting YAP/TAZ activation in cancer and the challenges each strategy poses.
Collapse
Affiliation(s)
- Janine S A Warren
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
45
|
Liu Y, Xing Y, Cai L. [Role of Hippo Signaling Pathway in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 20:629-634. [PMID: 28935017 PMCID: PMC5973372 DOI: 10.3779/j.issn.1009-3419.2017.09.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
肺癌是全世界范围内肿瘤相关性死亡的首要原因,每年死亡人数超过100万人,占全球癌症死亡人数的五分之一。虽然目前在手术、放化疗、靶向治疗、免疫治疗肺癌方面取得了一定进展,但患者的预后仍不理想。因此,亟待寻找评价预后的分子标志物和肺癌的治疗新靶点,为肺癌患者提供生存获益的有效方法。近年来,Hippo信号通路逐渐成为国内外肿瘤研究领域中新兴且热门的研究方向。Hippo信号通路激活时,其核心组件MST/MOB、LATS1/2等能抑制转录的共激活剂YAP/TAZ的转录,二者被磷酸化并滞留在细胞浆中,从而抑制肺癌的发生发展。因此Hippo信号通路在临床应用中的潜在价值也越来越受关注。本篇文章总结了Hippo信号通路核心组成元件及上下游调控因子在肺癌形成进展过程中的重要作用和分子机制,并对Hippo信号通路的研究前景进行展望。
Collapse
Affiliation(s)
- Yuechao Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| |
Collapse
|
46
|
Neves H, Kwok HF. In sickness and in health: The many roles of the minichromosome maintenance proteins. Biochim Biophys Acta Rev Cancer 2017; 1868:295-308. [DOI: 10.1016/j.bbcan.2017.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
|
47
|
de Conti A, Ortega JF, Tryndyak V, Dreval K, Moreno FS, Rusyn I, Beland FA, Pogribny IP. MicroRNA deregulation in nonalcoholic steatohepatitis-associated liver carcinogenesis. Oncotarget 2017; 8:88517-88528. [PMID: 29179453 PMCID: PMC5687623 DOI: 10.18632/oncotarget.19774] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fastest-rising cause of cancer-related death in the United States. Recent epidemiological studies have identified nonalcoholic steatohepatitis (NASH), a progressive form of nonalcoholic fatty liver disease (NAFLD), as a major risk factor for HCC. Elucidating the underlying mechanisms associated with the development of NASH-derived HCC is critical for identifying early biomarkers for the progression of the disease and for treatment and prevention. In the present study, using liver samples from C57BL/6J mice submitted to the Stelic Animal Model (STAM) of NASH-associated liver carcinogenesis, we investigated the role of microRNA (miRNA) alterations in the pathogenesis of NASH-derived HCC. We found substantial alterations in the expression of miRNAs, with the greatest number occurring in full-fledged HCC. Mechanistically, altered miRNA expression was associated with activation of major hepatocarcinogenesis-related pathways, including the TGF-β, Wnt/β-catenin, ERK1/2, mTOR, and EGF signaling. In addition, the over-expression of the miR-221-3p and miR-222-3p and oncogenic miR-106b∼25 cluster was accompanied by the reduced protein levels of their targets, including E2F transcription factor 1 (E2F1), phosphatase and tensin homolog (PTEN), and cyclin-dependent kinase inhibitor 1 (CDKN1A). Importantly, miR-93-5p, miR-221-3p, and miR-222-3p were also significantly over-expressed in human HCC. These findings suggest that aberrant expression of miRNAs may have mechanistic significance in NASH-associated liver carcinogenesis and may serve as an indicator for the development of NASH-derived HCC.
Collapse
Affiliation(s)
- Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Juliana Festa Ortega
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA.,Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Kostiantyn Dreval
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Fernando Salvador Moreno
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
48
|
Mutant p53 Protein and the Hippo Transducers YAP and TAZ: A Critical Oncogenic Node in Human Cancers. Int J Mol Sci 2017; 18:ijms18050961. [PMID: 28467351 PMCID: PMC5454874 DOI: 10.3390/ijms18050961] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
p53 protein is a well-known tumor suppressor factor that regulates cellular homeostasis. As it has several and key functions exerted, p53 is known as “the guardian of the genome” and either loss of function or gain of function mutations in the TP53 coding protein sequence are involved in cancer onset and progression. The Hippo pathway is a key regulator of developmental and regenerative physiological processes but if deregulated can induce cell transformation and cancer progression. The p53 and Hippo pathways exert a plethora of fine-tuned functions that can apparently be in contrast with each other. In this review, we propose that the p53 status can affect the Hippo pathway function by switching its outputs from tumor suppressor to oncogenic activities. In detail, we discuss: (a) the oncogenic role of the protein complex mutant p53/YAP; (b) TAZ oncogenic activation mediated by mutant p53; (c) the therapeutic potential of targeting mutant p53 to impair YAP and TAZ oncogenic functions in human cancers.
Collapse
|