1
|
Dai C, Li Q, Wang L, Zhang J, Yang S, Zhang X. FENDRR represses Bladder Cancer Cell Proliferation, Stemness, Migration, Invasion, and EMT Process by Targeting miR-18a-5p/AFF4 Axis. Biochem Genet 2024:10.1007/s10528-024-10944-w. [PMID: 39572480 DOI: 10.1007/s10528-024-10944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/14/2024] [Indexed: 02/28/2025]
Abstract
Bladder cancer (BC) is the most prevalent malignancy of the urinary tract and ranks among the most common tumors globally due to its high recurrence and fatality rates. Evidence suggests that long noncoding RNAs (lncRNAs) may serve as novel biomarkers for cancer therapy. The study aimed to investigate the functions of lncRNA fetal-lethal non-coding developmental regulatory RNA (FENDRR) in regulating malignant phenotypes of BC cell lines (T24 and RT-4) and the underlying mechanism. RT-qPCR was used to measure FENDRR, miR-18a-5p, and AF4/FMR2 family member 4 (AFF4) expression in BC tissue samples and cell lines. Subcellular fractionation assay and fluorescence in situ hybridization were conducted to determine the localization of FENDRR in T24 and RT-4 cell. EdU, sphere formation, Transwell invasion, and wound healing assays were carried out to detect the changes in BC cell proliferation, stemness, invasion, and migration in response to FENDRR or AFF4 dysregulation. Protein levels of epithelial-mesenchymal transition (EMT) markers were quantified by western blotting. The interaction between miR-18a-5p and FENDRR (or AFF4) was verified by luciferase reporter assays. Experimental results revealed that FENDRR expression was downregulated in BC tissue samples and cell lines, with primary localization in cytoplasm of T24 and RT-4 cells. FENDRR overexpression inhibited BC cell proliferation, migration, invasion, stemness, and EMT process. FENDRR was shown to bind with miR-18a-5p, and AFF4 is a direct target of miR-18a-5p. In addition, AFF4 knockdown partially counteracted the effect of FENDRR on malignant phenotypes of BC cells. In summary, FENDRR represses BC cell proliferation, migration, invasion, stemness, and EMT process by targeting the miR-18a-5p/AFF4 axis.
Collapse
Affiliation(s)
- Changyuan Dai
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Qingwen Li
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China.
| | - Lili Wang
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, No.287 Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Jiajun Zhang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Shuai Yang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Xiaole Zhang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| |
Collapse
|
2
|
Porter DF, Meyers RM, Miao W, Reynolds DL, Hong AW, Yang X, Mondal S, Siprashvili Z, Srinivasan S, Ducoli L, Meyers JM, Nguyen DT, Ko LA, Kellman L, Elfaki I, Guo M, Winge MC, Lopez-Pajares V, Porter IE, Tao S, Khavari PA. Disease-Linked Regulatory DNA Variants and Homeostatic Transcription Factors in Epidermis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622542. [PMID: 39605549 PMCID: PMC11601284 DOI: 10.1101/2024.11.07.622542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Identifying noncoding single nucleotide variants ( SNVs ) in regulatory DNA linked to polygenic disease risk, the transcription factors ( TFs ) they bind, and the target genes they dysregulate is a goal in polygenic disease research. Massively parallel reporter gene analysis ( MPRA ) of 3,451 SNVs linked to risk for polygenic skin diseases characterized by disrupted epidermal homeostasis identified 355 differentially active SNVs ( daSNVs ). daSNV target gene analysis, combined with daSNV editing, underscored dysregulated epidermal differentiation as a pathomechanism shared across common polygenic skin diseases. CRISPR knockout screens of 1772 human TFs revealed 108 TFs essential for epidermal progenitor differentiation, uncovering novel roles for ZNF217, CXXC1, FOXJ2, IRX2 and NRF1. Population sampling CUT&RUN of 27 homeostatic TFs identified allele-specific DNA binding ( ASB ) differences at daSNVs enriched near epidermal homeostasis and monogenic skin disease genes, with notable representation of SP/KLF and AP-1/2 TFs. This resource implicates dysregulated differentiation in risk for diverse polygenic skin diseases.
Collapse
|
3
|
Hong C, Li X, Zhang K, Huang Q, Li B, Xin H, Hu B, Meng F, Zhu X, Tang D, Hu C, Tao C, Li J, Cao Y, Wang H, Deng B, Wang S. Novel perspectives on autophagy-oxidative stress-inflammation axis in the orchestration of adipogenesis. Front Endocrinol (Lausanne) 2024; 15:1404697. [PMID: 38982993 PMCID: PMC11232368 DOI: 10.3389/fendo.2024.1404697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
Adipose tissue, an indispensable organ, fulfils the pivotal role of energy storage and metabolism and is instrumental in maintaining the dynamic equilibrium of energy and health of the organism. Adipocyte hypertrophy and adipocyte hyperplasia (adipogenesis) are the two primary mechanisms of fat deposition. Mature adipocytes are obtained by differentiating mesenchymal stem cells into preadipocytes and redifferentiation. However, the mechanisms orchestrating adipogenesis remain unclear. Autophagy, an alternative cell death pathway that sustains intracellular energy homeostasis through the degradation of cellular components, is implicated in regulating adipogenesis. Furthermore, adipose tissue functions as an endocrine organ, producing various cytokines, and certain inflammatory factors, in turn, modulate autophagy and adipogenesis. Additionally, autophagy influences intracellular redox homeostasis by regulating reactive oxygen species, which play pivotal roles in adipogenesis. There is a growing interest in exploring the involvement of autophagy, inflammation, and oxidative stress in adipogenesis. The present manuscript reviews the impact of autophagy, oxidative stress, and inflammation on the regulation of adipogenesis and, for the first time, discusses their interactions during adipogenesis. An integrated analysis of the role of autophagy, inflammation and oxidative stress will contribute to elucidating the mechanisms of adipogenesis and expediting the exploration of molecular targets for treating obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Chun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xinming Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Livestock Disease Prevention Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Baohong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haiyun Xin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bin Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fanming Meng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiangxing Zhu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Dongsheng Tang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, Nanning, China
| | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Jianhao Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yang Cao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Hai Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health- Hong Kong University (GIBH-HKU) Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bo Deng
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sutian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
4
|
Long Q, Xiang M, Xiao L, Wang J, Guan X, Liu J, Liao C. The Biological Significance of AFF4: Promoting Transcription Elongation, Osteogenic Differentiation and Tumor Progression. Comb Chem High Throughput Screen 2024; 27:1403-1412. [PMID: 37815186 DOI: 10.2174/0113862073241079230920082056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/23/2023] [Accepted: 07/27/2023] [Indexed: 10/11/2023]
Abstract
As a member of the AF4/FMR2 (AFF) family, AFF4 is a scaffold protein in the superelongation complex (SEC). In this mini-view, we discuss the role of AFF4 as a transcription elongation factor that mediates HIV activation and replication and stem cell osteogenic differentiation. AFF4 also promotes the progression of head and neck squamous cell carcinoma, leukemia, breast cancer, bladder cancer and other malignant tumors. The biological function of AFF4 is largely achieved through SEC assembly, regulates SRY-box transcription factor 2 (SOX2), MYC, estrogen receptor alpha (ESR1), inhibitor of differentiation 1 (ID1), c-Jun and noncanonical nuclear factor-κB (NF-κB) transcription and combines with fusion in sarcoma (FUS), unique regulatory cyclins (CycT1), or mixed lineage leukemia (MLL). We explore the prospects of using AFF4 as a therapeutic in Acquired immunodeficiency syndrome (AIDS) and malignant tumors and its potential as a stemness regulator.
Collapse
Affiliation(s)
- Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Mingli Xiang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Jiajia Wang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Jianguo Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| |
Collapse
|
5
|
Sahin Y, Wang YL, Pei J, Mansoor N, Styler M, Testa JR, Nejati R. Multiple Genomic Alterations, Including a Novel AFF4::IRF1 Fusion Gene, in a Treatment-Refractory Blastic Plasmacytoid Dendritic-Cell Neoplasm: A Case Report and Literature Review. Int J Mol Sci 2023; 25:305. [PMID: 38203475 PMCID: PMC10778852 DOI: 10.3390/ijms25010305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy with an aggressive clinical course and poor prognosis. The genetic abnormalities in BPDCN are heterogeneous; therefore, its molecular pathogenesis and the prognostic importance of genomic alterations associated with the disease are not well defined. Here we report a case of BPDCN with a novel AFF4::IRF1 fusion predicted to lead to a loss-of-function of the IRF1 tumor suppressor, somatic mutations of ASXL1, TET2, and MYD88, as well as multiple intrachromosomal deletions. The patient showed resistance to Tagraxofusp and Venetoclax, and he died about 16 months after diagnosis. Considering the predicted effect of the AFF4::IRF1 fusion on IRF1's antitumor effects and immune regulation, and the possibility of its relevance to the aggressive course observed in this case, we propose further evaluation of the clinical significance of this fusion in BPDCN in future cooperative group studies and the consideration of therapeutic strategies aimed at restoring IRF1-dependent antineoplastic effects in such cases.
Collapse
Affiliation(s)
- Yavuz Sahin
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (Y.S.); (Y.L.W.); (J.P.); (N.M.)
| | - Y. Lynn Wang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (Y.S.); (Y.L.W.); (J.P.); (N.M.)
- Molecular Diagnostics Lab, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jianming Pei
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (Y.S.); (Y.L.W.); (J.P.); (N.M.)
- Molecular Diagnostics Lab, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Nashwa Mansoor
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (Y.S.); (Y.L.W.); (J.P.); (N.M.)
| | - Michael Styler
- Department of Bone Marrow Transplant and Cellular Therapies, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Joseph R. Testa
- Clinical Cytogenomics Lab, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (Y.S.); (Y.L.W.); (J.P.); (N.M.)
| |
Collapse
|
6
|
Gene signature of m6A-related targets to predict prognosis and immunotherapy response in ovarian cancer. J Cancer Res Clin Oncol 2023; 149:593-608. [PMID: 36048273 DOI: 10.1007/s00432-022-04162-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/17/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE The aim of the study was to construct a risk score model based on m6A-related targets to predict overall survival and immunotherapy response in ovarian cancer. METHODS The gene expression profiles of 24 m6A regulators were extracted. Survival analysis screened 9 prognostic m6A regulators. Next, consensus clustering analysis was applied to identify clusters of ovarian cancer patients. Furthermore, 47 phenotype-related differentially expressed genes, strongly correlated with 9 prognostic m6A regulators, were screened and subjected to univariate and the least absolute shrinkage and selection operator (LASSO) Cox regression. Ultimately, a nomogram was constructed which presented a strong ability to predict overall survival in ovarian cancer. RESULTS CBLL1, FTO, HNRNPC, METTL3, METTL14, WTAP, ZC3H13, RBM15B and YTHDC2 were associated with worse overall survival (OS) in ovarian cancer. Three m6A clusters were identified, which were highly consistent with the three immune phenotypes. What is more, a risk model based on seven m6A-related targets was constructed with distinct prognosis. In addition, the low-risk group is the best candidate population for immunotherapy. CONCLUSION We comprehensively analyzed the m6A modification landscape of ovarian cancer and detected seven m6A-related targets as an independent prognostic biomarker for predicting survival. Furthermore, we divided patients into high- and low-risk groups with distinct prognosis and select the optimum population which may benefit from immunotherapy and constructed a nomogram to precisely predict ovarian cancer patients' survival time and visualize the prediction results.
Collapse
|
7
|
Wu X, Xie Y, Zhao K, Lu J. Targeting the super elongation complex for oncogenic transcription driven tumor malignancies: Progress in structure, mechanisms and small molecular inhibitor discovery. Adv Cancer Res 2023; 158:387-421. [PMID: 36990537 DOI: 10.1016/bs.acr.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oncogenic transcription activation is associated with tumor development and resistance derived from chemotherapy or target therapy. The super elongation complex (SEC) is an important complex regulating gene transcription and expression in metazoans closely related to physiological activities. In normal transcriptional regulation, SEC can trigger promoter escape, limit proteolytic degradation of transcription elongation factors and increase the synthesis of RNA polymerase II (POL II), and regulate many normal human genes to stimulate RNA elongation. Dysregulation of SEC accompanied by multiple transcription factors in cancer promotes rapid transcription of oncogenes and induce cancer development. In this review, we summarized recent progress in understanding the mechanisms of SEC in regulating normal transcription, and importantly its roles in cancer development. We also highlighted the discovery of SEC complex target related inhibitors and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Xinyu Wu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yanqiu Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| |
Collapse
|
8
|
Ni C, Liu W, Zheng K, Guo S, Song B, Jing W, Li G, Li B, Ni C, Shi K, Jin G, Yu G. PI3K/ c-Myc/AFF4 axis promotes pancreatic tumorigenesis through fueling nucleotide metabolism. Int J Biol Sci 2023; 19:1968-1982. [PMID: 37063434 PMCID: PMC10092763 DOI: 10.7150/ijbs.77150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/01/2023] [Indexed: 04/18/2023] Open
Abstract
MLL-AFF4 fusion gene has been discovered in acute leukemia, whether AFF4 alone plays a role in tumor, especially pancreatic tumorigenesis, is still elusive. Increasing evidence suggests that cancer cells altered nucleotide metabolism during tumorigenesis. In present study, we observed AFF4 overexpression promoted cell proliferation, colony formation and cell cycle progression while loss of AFF4 impairs above phenotypes of pancreatic ductal carcinoma (PDAC) cells. Using RNA-profiling, we revealed that HPRT1 and IMPDH2, two enzymes in the nucleotide metabolism pathway, were upregulated following AFF4 overexpression. Simultaneous expression of HPRT1 and IMPDH2 would mainly rescue the phenotypes of cells lacking AFF4. Additionally, xenograft study proved HPRT1 and IMPDH2 genetically function in the downstream of AFF4, which was recruited by PAX2 when CDK9 mediated AFF4 phosphorylation at S388 and drove HPRT1 and IMPDH2 expression. We further discovered PI3K/c-Myc axis is required for AFF4 expression in PDAC cells. Finally, we obtained the positive correlation between c-Myc and AFF4 or AFF4 and HPRT1/IMPDH2 in clinical PDAC samples. Otherwise, we conducted data-mining and found that the expression levels of AFF4 and HPRT1/IMPDH2 are correlated with patients' prognosis, establishing AFF4 as a potential biomarker and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Chenming Ni
- Department of Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wenyu Liu
- Department of Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Kailian Zheng
- Department of Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Shiwei Guo
- Department of Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Bin Song
- Department of Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wei Jing
- Department of Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Gang Li
- Department of Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Bo Li
- Department of Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Canrong Ni
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Keqing Shi
- Precision Medical Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, 325000, China
| | - Gang Jin
- Department of Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- ✉ Corresponding authors: Guanzhen Yu, Precision Medical Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, 325000, China. (). Gang Jin, Department of Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China. ()
| | - Guanzhen Yu
- Precision Medical Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, 325000, China
- ✉ Corresponding authors: Guanzhen Yu, Precision Medical Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, 325000, China. (). Gang Jin, Department of Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China. ()
| |
Collapse
|
9
|
Chen Y, Li Q, Liu Y, Chen X, Jiang S, Lin W, Zhang Y, Liu R, Shao B, Chen C, Yuan Q, Zhou C. AFF4 regulates cellular adipogenic differentiation via targeting autophagy. PLoS Genet 2022; 18:e1010425. [PMID: 36149892 PMCID: PMC9534390 DOI: 10.1371/journal.pgen.1010425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/05/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Transcriptional elongation is a universal and critical step during gene expression. The super elongation complex (SEC) regulates the rapid transcriptional induction by mobilizing paused RNA polymerase II (Pol II). Dysregulation of SEC is closely associated with human diseases. However, the physiological role of SEC during development and homeostasis remains largely unexplored. Here we studied the function of SEC in adipogenesis by manipulating an essential scaffold protein AF4/FMR2 family member 4 (AFF4), which assembles and stabilizes SEC. Knockdown of AFF4 in human mesenchymal stem cells (hMSCs) and mouse 3T3-L1 preadipocytes inhibits cellular adipogenic differentiation. Overexpression of AFF4 enhances adipogenesis and ectopic adipose tissue formation. We further generate Fabp4-cre driven adipose-specific Aff4 knockout mice and find that AFF4 deficiency impedes adipocyte development and white fat depot formation. Mechanistically, we discover AFF4 regulates autophagy during adipogenesis. AFF4 directly binds to autophagy-related protein ATG5 and ATG16L1, and promotes their transcription. Depleting ATG5 or ATG16L1 abrogates adipogenesis in AFF4-overepressing cells, while overexpression of ATG5 and ATG16L1 rescues the impaired adipogenesis in Aff4-knockout cells. Collectively, our results unveil the functional importance of AFF4 in regulating autophagy and adipogenic differentiation, which broaden our understanding of the transcriptional regulation of adipogenesis. Obesity is a major health problem jeopardizing millions of individuals worldwide. From a pathological perspective, obesity occurs in the process of white adipose tissue expanding its mass through the enlargement of adipocyte size or advanced differentiation of adipocyte precursors to mature adipocytes. Studies have documented the dysregulated adipocyte metabolism of adipose tissue and associated disorders. However, our understanding of adipocyte development in which mesenchymal stem cells (MSCs) commit their fate and preadipocytes undergo differentiation and maturation is scarce. Here, we identify the super elongation complex (SEC) scaffold protein AFF4 as an essential regulator of adipogenesis. We reveal that AFF4 promotes adipocyte formation by regulating the cellular autophagic process. AFF4 directly regulates the transcription of the autophagy-related protein ATG5 and ATG16L1, which are essential for autophagosome formation. This finding further elucidates the physiological role of SEC during tissue development, besides its recognized role in cancer occurrence.
Collapse
Affiliation(s)
- Yaqian Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuelan Chen
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuning Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chong Chen
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: ;
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: ;
| |
Collapse
|
10
|
Gala HP, Saha D, Venugopal N, Aloysius A, Purohit G, Dhawan J. A transcriptionally repressed quiescence program is associated with paused RNAPII and is poised for cell cycle reentry. J Cell Sci 2022; 135:275901. [PMID: 35781573 DOI: 10.1242/jcs.259789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Adult stem cells persist in mammalian tissues by entering a state of reversible quiescence/ G0, associated with low transcription. Using cultured myoblasts and muscle stem cells, we report that in G0, global RNA content and synthesis are substantially repressed, correlating with decreased RNA Polymerase II (RNAPII) expression and activation. Integrating RNAPII occupancy and transcriptome profiling, we identify repressed networks and a role for promoter-proximal RNAPII pausing in G0. Strikingly, RNAPII shows enhanced pausing in G0 on repressed genes encoding regulators of RNA biogenesis (Nucleolin, Rps24, Ctdp1); release of pausing is associated with their increased expression in G1. Knockdown of these transcripts in proliferating cells leads to induction of G0 markers, confirming the importance of their repression in establishment of G0. A targeted screen of RNAPII regulators revealed that knockdown of Aff4 (positive regulator of elongation) unexpectedly enhances expression of G0-stalled genes and hastens S phase; NELF, a regulator of pausing appears to be dispensable. We propose that RNAPII pausing contributes to transcriptional control of a subset of G0-repressed genes to maintain quiescence and impacts the timing of the G0-G1 transition.
Collapse
Affiliation(s)
- Hardik P Gala
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Debarya Saha
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Nisha Venugopal
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Ajoy Aloysius
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India.,National Center for Biological Sciences, Bangalore, 560065, India
| | - Gunjan Purohit
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
11
|
Butylidenephthalide Abrogates the Snail-Induced Cancer Stemness in Oral Carcinomas. Int J Mol Sci 2022; 23:ijms23116157. [PMID: 35682836 PMCID: PMC9180956 DOI: 10.3390/ijms23116157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Oral cancer is one of the most common cancers worldwide, especially in South Central Asia. It has been suggested that cancer stem cells (CSC) play crucial roles in tumor relapse and metastasis, and approaches to target CSC may lead to promising results. Here, aldehyde dehydrogenase 1 (ALDH1) and CD44 were utilized to isolate CSCs of oral cancer. Butylidenephthalide, a bioactive phthalide compound from Angelica sinensis, was tested for its anti-CSC effects. MTT assay showed that a lower concentration of butylidenephthalide was sufficient to inhibit the proliferation of patient-derived ALDH1+/CD44+ cells without affecting normal cells. Administration of butylidenephthalide not only reduced ALDH1 activity and CD44 expression, it also suppressed the migration, invasion, and colony formation abilities of ALDH1+/CD44+ cells using a transwell system and clonogenic assay. A patient-derived xenograft mouse model supported our in vitro findings that butylidenephthalide possessed the capacity to retard tumor development. We found that butylidenephthalide dose-dependently downregulated the gene and protein expression of Sox2 and Snail. Our results demonstrated that overexpression of Snail in ALDH1-/CD44- (non-CSCs) cells induced the CSC phenotypes, whereas butylidenephthalide treatment successfully diminished the enhanced self-renewal and propagating properties. In summary, this study showed that butylidenephthalide may serve as an adjunctive for oral cancer therapy.
Collapse
|
12
|
Fang Y, Cao H, Gong X, Chen Y, Zhuang Y, Zhou S, Chen Y, Jiang Y, Ji X, Peng H, Jing X. AFF4 Predicts the Prognosis of Colorectal Cancer Patients and Suppresses Colorectal Cancer Metastasis via Promoting CDH1 Expression. Front Oncol 2022; 12:797392. [PMID: 35223479 PMCID: PMC8865618 DOI: 10.3389/fonc.2022.797392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION AF4/FMR2 family member 4 (AFF4) is a core component of super elongation complex (SEC) and regulates the transcription elongation of many genes. AFF4 depletion or amplification is associated with multiple cancers, but its role in colorectal cancer (CRC) has not been investigated so far. METHODS qRT-PCR and Western blot analyzed AFF4 expression in the paired clinical CRC tissues. The patients' overall survival curve was determined using the Kaplan-Meier plotter. In vitro experiments, such as cell proliferation, migration, and invasion, were used to preliminarily ascertain the role of AFF4 in CRC. A CRC cell liver metastasis animal model was well established. Livers were harvested and examined histologically by a series of indicators, such as tumor nodules, liver weight, ALT/AST activity, and tumor cell identification by hematoxylin-eosin (HE) staining. RESULTS We firstly examined the expression of AFF4 in colorectal cancer and normal tissues by collecting paired CRC tissues and adjacent normal tissues, revealing that AFF4 was significantly downregulated in CRC patients and lower expression of AFF4 was correlated with poor prognosis. Next, we observed that presence or absence of AFF4 in CRC cells had no effect on cancer cell proliferation, while AFF4 depletion significantly promoted the migration or invasion of CRC cells in vitro. Furthermore, we confirmed that AFF4 deficiency enhanced the metastatic capacity of CRC cells in vivo. Mechanistically, we found that AFF4 upregulated the transcription of CDH1 gene, which encodes E-cadherin and suppresses the epithelial-mesenchymal transition (EMT). Knockdown of AFF4 interfered with CDH1 transcription, resulting in downregulation of E-cadherin expression and the progression of CRC. Moreover, restored CDH1 expression could rescue the phenotype of CRC cells without AFF4. CONCLUSIONS Collectively, our data demonstrated that AFF4 served as a significant novel regulator of CRC via CDH1 transcriptional regulation and a potential effective therapy target for patients with CRC.
Collapse
Affiliation(s)
- Yi Fang
- Emergency Department, Shanghai Tenth People's Hospital, Shanghai, China
| | - Hua Cao
- Emergency Department, Shanghai Tenth People's Hospital, Shanghai, China
| | - Xiaoyong Gong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqing Chen
- Emergency Department, Shanghai Tenth People's Hospital, Shanghai, China
| | - Yugang Zhuang
- Emergency Department, Shanghai Tenth People's Hospital, Shanghai, China
| | - Shuqin Zhou
- Emergency Department, Shanghai Tenth People's Hospital, Shanghai, China
| | - Yuanzhuo Chen
- Emergency Department, Shanghai Tenth People's Hospital, Shanghai, China
| | - Yimei Jiang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaopin Ji
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hu Peng
- Emergency Department, Shanghai Tenth People's Hospital, Shanghai, China
| | - Xiaoqian Jing
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Wu Z, Guo J, Zhang Y, Liu J, Ma H, Tang Y. MiR-425-5p accelerated the proliferation, migration, and invasion of ovarian cancer cells via targeting AFF4. J Ovarian Res 2021; 14:138. [PMID: 34686190 PMCID: PMC8539801 DOI: 10.1186/s13048-021-00894-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background Accumulating data have established that microRNAs (miRNAs) play significant regulatory roles in the carcinogenesis and progression of ovarian cancer (OC). MiR-425-5p was reported to function in various tumors. However, the roles and underlying mechanism of miR-425-5p involvement in OC development and progression are unclear. Methods A comprehensive strategy of data mining, computational biology, and real-time polymerase chain reaction was employed to identify the involvement of miR-425-5p in OC progression. The effect of miR-425-5p on the proliferation, migration, and invasion of OC cells was determined using Cell Counting Kit-8, wound-healing, and Matrigel invasion assays, respectively. Luciferase assay was performed to evaluate the interactions between miR-425-5p and MAGI2-AS3 or AFF4. Results miR-425-5p was significantly up-regulated in OC tissues and cells. The luciferase reporter assay revealed that miR-425-5p was negatively regulated by MAGI2-AS3. Silencing miR-425-5p inhibited the proliferation, migration, and invasion of OC cells in vitro. Bioinformatics analysis and luciferase reporter assay revealed that AFF4 was the target gene of miR-425-5p. Moreover, AFF4 expression was significantly decreased in OC and was closely related to the good prognosis of patients with OC. AFF4 overexpression inhibited the proliferation, migration, and invasion of OC cells in vitro. By contrast, silencing AFF4 promoted the proliferation, migration, and invasion of OC cells in vitro. Finally, AFF4 suppression rescued the inhibitory effect of silencing miR-425-5p on the proliferation, migration, and invasion of OC cells. Conclusion To the best our knowledge, this is the first study to demonstrate that miR-425-5p overexpression in OC is negatively regulated by MAGI2-AS3. Moreover, miR-425-5p promotes the proliferation, migration, and invasion of OC cells by targeting AFF4, suggesting that miR-425-5p/AFF4 signaling pathway represented a novel therapeutic target for patients with OC. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00894-x.
Collapse
Affiliation(s)
- Zhihui Wu
- Department of Clinical Laboratory, Fujian Provincial Maternity and Children Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jianlin Guo
- Department of Laboratory, Second People's Hospital, Kashgar Area, Xinjiang, 844000, China
| | - Ying Zhang
- Department of Clinical Laboratory, Tuoli County People's Hospital, Tacheng, Xinjiang, 834500, Uygur Autonomous Region, China
| | - Jianhua Liu
- Department of Clinical Laboratory, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China.
| | - Hongping Ma
- Department of Clinical Laboratory, Children's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830054, Uygur Autonomous Region, China.
| | - Yurong Tang
- Laboratory Department of Shengli Oilfield Central Hospital, Dongying, 257100, China.
| |
Collapse
|
14
|
Chen Y, Qiang R, Zhang Y, Cao W, Wu L, Jiang P, Ai J, Ma X, Dong Y, Gao X, Li H, Lu L, Zhang S, Chai R. The Expression and Roles of the Super Elongation Complex in Mouse Cochlear Lgr5+ Progenitor Cells. Front Cell Neurosci 2021; 15:735723. [PMID: 34658793 PMCID: PMC8519586 DOI: 10.3389/fncel.2021.735723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
The super elongation complex (SEC) has been reported to play a key role in the proliferation and differentiation of mouse embryonic stem cells. However, the expression pattern and function of the SEC in the inner ear has not been investigated. Here, we studied the inner ear expression pattern of three key SEC components, AFF1, AFF4, and ELL3, and found that these three proteins are all expressed in both cochlear hair cells (HCs)and supporting cells (SCs). We also cultured Lgr5+ inner ear progenitors in vitro for sphere-forming assays and differentiation assays in the presence of the SEC inhibitor flavopiridol. We found that flavopiridol treatment decreased the proliferation ability of Lgr5+ progenitors, while the differentiation ability of Lgr5+ progenitors was not affected. Our results suggest that the SEC might play important roles in regulating inner ear progenitors and thus regulating HC regeneration. Therefore, it will be very meaningful to further investigate the detailed roles of the SEC signaling pathway in the inner ear in vivo in order to develop effective treatments for sensorineural hearing loss.
Collapse
Affiliation(s)
- Yin Chen
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ruiying Qiang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yuan Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Wei Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Pei Jiang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Jingru Ai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Ying Dong
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - He Li
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ling Lu
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Gao B, Zhao Y, Gao Y, Li G, Wu L. Identification of Common Driver Gene Modules and Associations between Cancers through Integrated Network Analysis. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2100006. [PMID: 34504716 PMCID: PMC8414517 DOI: 10.1002/gch2.202100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/26/2021] [Indexed: 05/12/2023]
Abstract
High-throughput biological data has created an unprecedented opportunity for illuminating the mechanisms of tumor emergence and evolution. An important and challenging problem in deciphering cancers is to investigate the commonalities of driver genes and pathways and the associations between cancers. Aiming at this problem, a tool ComCovEx is developed to identify common cancer driver gene modules between two cancers by searching for the candidates in local signaling networks using an exclusivity-coverage iteration strategy and outputting those with significant coverage and exclusivity for both cancers. The associations of the cancer pairs are further evaluated by Fisher's exact test. Being applied to 11 TCGA cancer datasets, ComCovEx identifies 13 significantly associated cancer pairs with plenty of biologically significant common gene modules. The novel results of cancer relationship and common gene modules reveal the relevant pathological basis of different cancer types and provide new clues to diagnosis and drug treatment in associated cancers.
Collapse
Affiliation(s)
- Bo Gao
- IAMMADISNCMISAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing100190China
- School of MathematicsShandong UniversityJinan250100China
- School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- School of Public HealthCapital Medical UniversityBeijing100069China
- Beijing Municipal Key Laboratory of Clinical EpidemiologyBeijing100069China
| | - Yue Zhao
- IAMMADISNCMISAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing100190China
- School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yonghang Gao
- IAMMADISNCMISAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing100190China
- School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Guojun Li
- School of MathematicsShandong UniversityJinan250100China
- Research Center for Mathematics and Interdisciplinary SciencesShandong UniversityQingdao266237China
| | - Ling‐Yun Wu
- IAMMADISNCMISAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing100190China
- School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
16
|
Blocking the GITR-GITRL pathway to overcome resistance to therapy in sarcomatoid malignant pleural mesothelioma. Commun Biol 2021; 4:914. [PMID: 34312483 PMCID: PMC8313521 DOI: 10.1038/s42003-021-02430-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/07/2021] [Indexed: 01/06/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive neoplasm originating from the pleura. Non-epithelioid (biphasic and sarcomatoid) MPM are particularly resistant to therapy. We investigated the role of the GITR-GITRL pathway in mediating the resistance to therapy. We found that GITR and GITRL expressions were higher in the sarcomatoid cell line (CRL5946) than in non-sarcomatoid cell lines (CRL5915 and CRL5820), and that cisplatin and Cs-137 irradiation increased GITR and GITRL expressions on tumor cells. Transcriptome analysis demonstrated that the GITR-GITRL pathway was promoting tumor growth and inhibiting cell apoptosis. Furthermore, GITR+ and GITRL+ cells demonstrated increased spheroid formation in vitro and in vivo. Using patient derived xenografts (PDXs), we demonstrated that anti-GITR neutralizing antibodies attenuated tumor growth in sarcomatoid PDX mice. Tumor immunostaining demonstrated higher levels of GITR and GITRL expressions in non-epithelioid compared to epithelioid tumors. Among 73 patients uniformly treated with accelerated radiation therapy followed by surgery, the intensity of GITR expression after radiation negatively correlated with survival in non-epithelioid MPM patients. In conclusion, the GITR-GITRL pathway is an important mechanism of autocrine proliferation in sarcomatoid mesothelioma, associated with tumor stemness and resistance to therapy. Blocking the GITR-GITRL pathway could be a new therapeutic target for non-epithelioid mesothelioma. Chan et al find that the GITR-GITRL pathway is an important mechanism of autocrine proliferation in sarcomatoid mesothelioma that could explain their resistance to therapy. Blocking the GITR-GITRL pathway could therefore be a new therapeutic target for non-epithelioid mesothelioma.
Collapse
|
17
|
Katagi H, Takata N, Aoi Y, Zhang Y, Rendleman EJ, Blyth GT, Eckerdt FD, Tomita Y, Sasaki T, Saratsis AM, Kondo A, Goldman S, Becher OJ, Smith E, Zou L, Shilatifard A, Hashizume R. Therapeutic targeting of transcriptional elongation in diffuse intrinsic pontine glioma. Neuro Oncol 2021; 23:1348-1359. [PMID: 33471107 PMCID: PMC8328031 DOI: 10.1093/neuonc/noab009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Diffuse intrinsic pontine glioma (DIPG) is associated with transcriptional dysregulation driven by H3K27 mutation. The super elongation complex (SEC) is required for transcriptional elongation through release of RNA polymerase II (Pol II). Inhibition of transcription elongation by SEC disruption can be an effective therapeutic strategy of H3K27M-mutant DIPG. Here, we tested the effect of pharmacological disruption of the SEC in H3K27M-mutant DIPG to advance understanding of the molecular mechanism and as a new therapeutic strategy for DIPG. METHODS Short hairpin RNAs (shRNAs) were used to suppress the expression of AF4/FMR2 4 (AFF4), a central SEC component, in H3K27M-mutant DIPG cells. A peptidomimetic lead compound KL-1 was used to disrupt a functional component of SEC. Cell viability assay, colony formation assay, and apoptosis assay were utilized to analyze the effects of KL-1 treatment. RNA- and ChIP-sequencing were used to determine the effects of KL-1 on gene expression and chromatin occupancy. We treated mice bearing H3K27M-mutant DIPG patient-derived xenografts (PDXs) with KL-1. Intracranial tumor growth was monitored by bioluminescence image and therapeutic response was evaluated by animal survival. RESULTS Depletion of AFF4 significantly reduced the cell growth of H3K27M-mutant DIPG. KL-1 increased genome-wide Pol II occupancy and suppressed transcription involving multiple cellular processes that promote cell proliferation and differentiation of DIPG. KL-1 treatment suppressed DIPG cell growth, increased apoptosis, and prolonged animal survival with H3K27M-mutant DIPG PDXs. CONCLUSIONS SEC disruption by KL-1 increased therapeutic benefit in vitro and in vivo, supporting a potential therapeutic activity of KL-1 in H3K27M-mutant DIPG.
Collapse
Affiliation(s)
- Hiroaki Katagi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Department of Neurological Surgery, Juntendo University, Tokyo, Japan
| | - Nozomu Takata
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute (FCVRRI), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yuki Aoi
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yongzhan Zhang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Emily J Rendleman
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Gavin T Blyth
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Frank D Eckerdt
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Yusuke Tomita
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Takahiro Sasaki
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amanda M Saratsis
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois,Department of Surgery, Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Akihide Kondo
- Department of Neurological Surgery, Juntendo University, Tokyo, Japan
| | - Stewart Goldman
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Oren J Becher
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Edwin Smith
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Lihua Zou
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Rintaro Hashizume
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois,Corresponding Author: Rintaro Hashizume, MD, PhD, Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Simpson Querrey 4-514, Chicago, IL 60611, USA (, )
| |
Collapse
|
18
|
Hu H, Zhang Y, Zhao L, Zhao W, Wang X, Ye E, Dong Y, Zhang L, Ran F, Zhou Y, Huang Y. AFF4 facilitates melanoma cell progression by regulating c-Jun activity. Exp Cell Res 2021; 399:112445. [PMID: 33417923 DOI: 10.1016/j.yexcr.2020.112445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 01/15/2023]
Abstract
Melanoma is characterized by high mortality and poor prognosis due to metastasis. AFF4 (AF4/FMR2 family member 4), as a scaffold protein, is a component of the super elongation complex (SEC), and is involved in the progression of tumors, e.g., leukemia, head and neck squamous cell carcinoma (HNSCC). However, few studies on AFF4 have focused on melanoma. Here, AFF4 expression levels and clinicopathological features were evaluated in melanoma tissue samples. Then, we performed cell proliferation, migration and invasion assays in A375 and A2058 cells lines in vitro to evaluate the role of AFF4 in melanoma. The effects of AFF4 knockdown in vivo were characterized via a xenograft mouse model. Finally, the correlation between c-Jun and AFF4 protein levels in melanoma was analyzed by rescue assay and immunohistochemistry (IHC). We found that AFF4 expression was upregulated in melanoma tumor tissues and that AFF4 protein expression was also closely related to the prognosis of patients with cutaneous melanoma. Moreover, AFF4 could promote the invasion and migration of melanoma cells by mediating epithelial to mesenchymal transition (EMT). AFF4 might regulate c-Jun activity to promote the invasion and migration of melanoma cells. Importantly, c-Jun was regulated by the AFF4 promoted melanoma tumorigenesis in vivo. Taken together, AFF4 may be a novel oncogene that promotes melanoma progression through regulation of c-Jun activity.
Collapse
Affiliation(s)
- Hongyan Hu
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Center), Kunming, China
| | - Yi Zhang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Center), Kunming, China
| | - Liufang Zhao
- Department of Head and Neck Cancer, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Center), Kunming, China
| | - Wentao Zhao
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Center), Kunming, China
| | - Xiaoxiong Wang
- International Joint Laboratory on High Altitude Regional Cancer, Kunming, China; Yunnan Key Laboratory of Lung Cancer Research, Kunming, China
| | - En Ye
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Center), Kunming, China
| | - Yan Dong
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Center), Kunming, China
| | - Lijuan Zhang
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Center), Kunming, China
| | - Fengming Ran
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Center), Kunming, China
| | - Yongchun Zhou
- International Joint Laboratory on High Altitude Regional Cancer, Kunming, China; Yunnan Key Laboratory of Lung Cancer Research, Kunming, China
| | - Yunchao Huang
- Yunnan Key Laboratory of Lung Cancer Research, Kunming, China.
| |
Collapse
|
19
|
Gupta S, Kumar P, Das BC. HPV +ve/-ve oral-tongue cancer stem cells: A potential target for relapse-free therapy. Transl Oncol 2021; 14:100919. [PMID: 33129107 PMCID: PMC7590584 DOI: 10.1016/j.tranon.2020.100919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/27/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
The tongue squamous cell carcinoma (TSCC) is a highly prevalent head and neck cancer often associated with tobacco and/or alcohol abuse or high-risk human papillomavirus (HR-HPV) infection. HPV positive TSCCs present a unique mechanism of tumorigenesis as compared to tobacco and alcohol-induced TSCCs and show a better prognosis when treated. The poor prognosis and/or recurrence of TSCC is due to presence of a small subpopulation of tumor-initiating tongue cancer stem cells (TCSCs) that are intrinsically resistant to conventional chemoradio-therapies enabling cancer to relapse. Therefore, targeting TCSCs may provide efficient therapeutic strategy for relapse-free survival of TSCC patients. Indeed, the development of new TCSC targeting therapeutic approaches for the successful elimination of HPV+ve/-ve TCSCs could be achieved either by targeting the self-renewal pathways, epithelial mesenchymal transition, vascular niche, nanoparticles-based therapy, induction of differentiation, chemoradio-sensitization of TCSCs or TCSC-derived exosome-based drug delivery and inhibition of HPV oncogenes or by regulating epigenetic pathways. In this review, we have discussed all these potential approaches and highlighted several important signaling pathways/networks involved in the formation and maintenance of TCSCs, which are targetable as novel therapeutic targets to sensitize/eliminate TCSCs and to improve survival of TSCC patients.
Collapse
Affiliation(s)
- Shilpi Gupta
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India; National Institute of Cancer Prevention and Research (NICPR), I-7, Sector-39, Noida 201301, India
| | - Prabhat Kumar
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Bhudev C Das
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
| |
Collapse
|
20
|
The m 6A Methylation-Regulated AFF4 Promotes Self-Renewal of Bladder Cancer Stem Cells. Stem Cells Int 2020; 2020:8849218. [PMID: 32676121 PMCID: PMC7352121 DOI: 10.1155/2020/8849218] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
The dynamic N6-methyladenosine (m6A) modification of mRNA plays a role in regulating gene expression and determining cell fate. However, the functions of m6A mRNA modification in bladder cancer stem cells (BCSCs) have not been described. Here, we show that global RNA m6A abundance and the expression of m6A-forming enzyme METTL3 are higher in BCSCs than those in non-CSCs of bladder cancer (BCa) cells. The depletion of the METTL3 inhibited the self-renewal of BCSCs, as evidenced by decreased ALDH activity and sphere-forming ability. Mechanistically, METTL3 regulates the m6A modification and thereby the expression of AF4/FMR2 family member 4 (AFF4), knockdown of which phenocopies the METTL3 ablation and diminishes the tumor-initiating capability of BCSCs in vivo. AFF4 binds to the promoter regions and sustains the transcription of SOX2 and MYC which have critical biological functions in BCSCs. Collectively, our results demonstrate the critical roles of m6A modification in self-renewal and tumorigenicity of BCSCs through a novel signaling axis of METTL3-AFF4-SOX2/MYC.
Collapse
|
21
|
AFF4 regulates osteogenic differentiation of human dental follicle cells. Int J Oral Sci 2020; 12:20. [PMID: 32606293 PMCID: PMC7327054 DOI: 10.1038/s41368-020-0083-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 02/05/2023] Open
Abstract
As a member of the AFF (AF4/FMR2) family, AFF4 is a transcription elongation factor that is a component of the super elongation complex. AFF4 serves as a scaffolding protein that connects transcription factors and promotes gene transcription through elongation and chromatin remodelling. Here, we investigated the effect of AFF4 on human dental follicle cells (DFCs) in osteogenic differentiation. In this study, we found that small interfering RNA-mediated depletion of AFF4 resulted in decreased alkaline phosphatase (ALP) activity and impaired mineralization. In addition, the expression of osteogenic-related genes (DLX5, SP7, RUNX2 and BGLAP) was significantly downregulated. In contrast, lentivirus-mediated overexpression of AFF4 significantly enhanced the osteogenic potential of human DFCs. Mechanistically, we found that both the mRNA and protein levels of ALKBH1, a critical regulator of epigenetics, changed in accordance with AFF4 expression levels. Overexpression of ALKBH1 in AFF4-depleted DFCs partially rescued the impairment of osteogenic differentiation. Our data indicated that AFF4 promoted the osteogenic differentiation of DFCs by upregulating the transcription of ALKBH1.
Collapse
|
22
|
Zhao X, Xie L, Wang Z, Wang J, Xu H, Han X, Bai D, Deng P. ZBP1 (DAI/DLM-1) promotes osteogenic differentiation while inhibiting adipogenic differentiation in mesenchymal stem cells through a positive feedback loop of Wnt/β-catenin signaling. Bone Res 2020; 8:12. [PMID: 32195010 PMCID: PMC7058036 DOI: 10.1038/s41413-020-0085-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 02/05/2023] Open
Abstract
The lineage specification of mesenchymal stem/stromal cells (MSCs) is tightly regulated by a wide range of factors. Recently, the versatile functions of ZBP1 (also known as DAI or DLM-1) have been reported in the blood circulation and immune systems. However, the biological function of ZBP1 during the lineage specification of MSCs is still unknown. In the present study, we found that ZBP1 was upregulated during osteogenesis but downregulated during adipogenesis in mouse bone marrow-derived MSCs (mBMSCs). ZBP1 was highly expressed in osteoblasts but expressed at a relatively low level in marrow adipocytes. Knockdown of ZBP1 inhibited alkaline phosphataseactivity, extracellular matrix mineralization, and osteogenesis-related gene expression in vitro and reduced ectopic bone formation in vivo. Knockdown of ZBP1 also promoted adipogenesis in MSCs in vitro. Conversely, the overexpression of ZBP1 increased the osteogenesis but suppressed the adipogenesis of MSCs. When the expression of ZBP1 was rescued, the osteogenic capacity of ZBP1-depleted mBMSCs was restored at both the molecular and phenotypic levels. Furthermore, we demonstrated that ZBP1, a newly identified target of Wnt/β-catenin signaling, was required for β-catenin translocation into nuclei. Collectively, our results indicate that ZBP1 is a novel regulator of bone and fat transdifferentiation via Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xuefeng Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
| | - Zhiyong Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
| | - Peng Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 PR China
| |
Collapse
|
23
|
Zhang Y, Xiao Q, Wu Z, Xu R, Zou S, Zhou C. AFF4 enhances odontogenic differentiation of human dental pulp cells. Biochem Biophys Res Commun 2020; 525:687-692. [PMID: 32139123 DOI: 10.1016/j.bbrc.2020.02.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
AFF4 is a component of super elongation complex (SECs) and functions as a scaffold protein to bridge the transcription elongation factors. It is associated with leukemia, HIV transcription, and head neck cancer. However, its role in odontogenic differentiation of dental pulp cells (DPCs) is unclear. Here, we show the expression of AFF4 is increased during odontogenesis. Depletion of AFF4 in human DPCs leads to a decrease of alkaline phosphatase (ALP) activity, calcium mineralization and odontogenic-related genes expression. On the contrary, Lentivirus-mediated overexpression of AFF4 induces the odontogenic potential of DPCs. Mechanistically, we found AFF4 regulates the transcription of NFIC, a key factor for tooth root formation. Overexpression of NFIC successfully rescues the restricted differentiation of AFF4-depleted cells. Our data demonstrate that AFF4 serves as a previously unknown regulator of odontogenesis.
Collapse
Affiliation(s)
- Yuning Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qingyue Xiao
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zuping Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
24
|
Li J, Ge J, Yang Y, Liu B, Zheng M, Shi R. Long noncoding RNA ZFPM2-AS1 is involved in lung adenocarcinoma via miR-511-3p/AFF4 pathway. J Cell Biochem 2019; 121:2534-2542. [PMID: 31692047 DOI: 10.1002/jcb.29476] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/10/2019] [Indexed: 02/05/2023]
Abstract
Lung cancer is the dominating cause of cancer-induced death and can be classified into small cell lung cancer and non-small cell lung cancer (NSCLC). Lung adenocarcinoma (LUAD) is the most common histological subtype of NSCLC and its pathology remains unclear. Mounting reports have revealed that lncRNAs could regulate cellular activities in cancers. Yet the role of ZFPM2 antisense RNA 1 (ZFPM2-AS1) in LUAD has not been elucidated. Using GEPIA online dataset, we identified the amplification of ZFPM2-AS1 in LUAD tissues. Through quantitative real-time reverse transcription-polymerase chain reaction analysis, we observed an upregulation of ZFPM2-AS1 in LUAD cell lines. Conducting loss-of-function assays, we found that ZFPM2-AS1 depletion impaired cell viability, suppressed cell migration, and reversed epithelial-mesenchymal transition progress in LUAD cells. Mechanism investigation manifested that ZFPM2-AS1 was distributed in the cytoplasm of LUAD cells. Moreover, ZFPM2-AS1 functioned as a molecular sponge of miR-511-3p, which was a suppressor in LUAD. Moreover, ZFPM2-AS1 sponged miR-511-3p and thereby deregulated AF4/FMR2 family member 4 (AFF4), a target of miR-511-3p. At length, rescue assays indicated that AFF4 overexpression revived the inhibiting effects of ZFPM2-AS1 knockdown on the biological processes in LUAD. All in all, this study uncovered the function and the mechanism of ZFPM2-AS1 in LUAD.
Collapse
Affiliation(s)
- Juan Li
- Standard Treatment Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Medicine School of University of Electronic Science and Technology, Chengdu, China
| | - Jun Ge
- Standard Treatment Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Medicine School of University of Electronic Science and Technology, Chengdu, China
| | - Ye Yang
- Standard Treatment Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Medicine School of University of Electronic Science and Technology, Chengdu, China
| | - Bin Liu
- Standard Treatment Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Medicine School of University of Electronic Science and Technology, Chengdu, China
| | - Min Zheng
- Standard Treatment Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Medicine School of University of Electronic Science and Technology, Chengdu, China
| | - Rui Shi
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Chen D, Wang CY. Targeting cancer stem cells in squamous cell carcinoma. PRECISION CLINICAL MEDICINE 2019; 2:152-165. [PMID: 31598386 PMCID: PMC6770277 DOI: 10.1093/pcmedi/pbz016] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive tumor and the sixth
most common cancer worldwide. Current treatment strategies for HNSCC are surgery,
radiotherapy, chemotherapy, immunotherapy or combinatorial therapies. However, the overall
5-year survival rate of HNSCC patients remains at about 50%. Cancer stem cells (CSCs), a
small population among tumor cells, are able to self-renew and differentiate into
different tumor cell types in a hierarchical manner, similar to normal tissue. In HNSCC,
CSCs are proposed to be responsible for tumor initiation, progression, metastasis, drug
resistance, and recurrence. In this review, we discuss the molecular and cellular
characteristics of CSCs in HNSCC. We summarize current approaches used in the literature
for identification of HNSCC CSCs, and mechanisms required for CSC regulation. We also
highlight the role of CSCs in treatment failure and therapeutic targeting options for
eliminating CSCs in HNSCC.
Collapse
Affiliation(s)
- Demeng Chen
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, UCLA, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Li J, Li Z, Wu Y, Wang Y, Wang D, Zhang W, Yuan H, Ye J, Song X, Yang J, Jiang H, Cheng J. The Hippo effector TAZ promotes cancer stemness by transcriptional activation of SOX2 in head neck squamous cell carcinoma. Cell Death Dis 2019; 10:603. [PMID: 31399556 PMCID: PMC6689034 DOI: 10.1038/s41419-019-1838-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 01/06/2023]
Abstract
The Hippo-TAZ signaling has emerged as a fundamental regulator underlying cancer stem cells (CSCs) stemness which intricately associates with local recurrence and metastatic spreading in head neck squamous cell carcinoma (HNSCC). However, the precise downstream targets of TAZ responsible for HNSCC CSCs maintenance remain largely underexplored. Here, we identified Sex determining region Y box 2 (SOX2) as a putative downstream target of TAZ to promote CSCs maintenance and tumorigenicity in HNSCC. Both TAZ and SOX2 were significantly enriched in CSCs subpopulation (CD44+CD133+) isolated from Cal27 and Fadu cells via fluorescence-activated cell sorting. TAZ knockdown significantly reduced expression of SOX2 at both mRNA and protein levels, whereas its ectopic overexpression markedly increased its abundance in HNSCC cells. Moreover, reintroduction of ectopic SOX2 abolished, at least in part, the reduced tumorsphere formation and tumorigenicity in vivo induced by TAZ knockdown. Mechanistically, transcriptional complex formed by TAZ and TEAD4 was recruited to two binding sites in SOX2 promoter, which in turn facilitated transcription of SOX2 in HNSCC cells. In addition, the abundance of TAZ and SOX2 was positively correlated in HNSCC clinical samples, and both upregulations of TAZ and SOX2 associated with the worst survival. Taken together, our data reveal a previously unknown mechanistic linkage between TAZ and SOX2 and identify SOX2 as a direct downstream target of TAZ in modulating CSCs self-renewal and maintenance in HNSCC. These findings suggest that targeting TAZ-SOX2 axis might be a promising therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Jin Li
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, PR China
| | - Zhongwu Li
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, PR China
| | - Yaping Wu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, PR China
| | - Yanling Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, PR China
| | - Dongmiao Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Wei Zhang
- Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Jinhai Ye
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Xiaomeng Song
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Jianrong Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, PR China.
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China.
| |
Collapse
|
27
|
The m 6A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-κB/MYC signaling network. Oncogene 2019; 38:3667-3680. [PMID: 30659266 DOI: 10.1038/s41388-019-0683-z] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/30/2018] [Accepted: 12/24/2018] [Indexed: 02/05/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant modification in eukaryotic messenger RNAs (mRNAs), and plays important roles in many bioprocesses. However, its functions in bladder cancer (BCa) remain elusive. Here, we discovered that methyltransferase-like 3 (METTL3), a major RNA N6-adenosine methyltransferase, was significantly up-regulated in human BCa. Knockdown of METTL3 drastically reduced BCa cell proliferation, invasion, and survival in vitro and tumorigenicity in vivo. On the other hand, overexpression of METTL3 significantly promoted BCa cell growth and invasion. Through transcriptome sequencing, m6A sequencing and m6A methylated RNA immuno-precipitation quantitative reverse-transcription polymerase chain reaction, we revealed the profile of METTL3-mediated m6A modification in BCa cells for the first time. AF4/FMR2 family member 4 (AFF4), two key regulators of NF-κB pathway (IKBKB and RELA) and MYC were further identified as direct targets of METTL3-mediated m6A modification. In addition, we showed that besides NF-κB, AFF4 binds to the promoter of MYC and promotes its expression, implying a novel multilevel regulatory network downstream of METTL3. Our results uncovered an AFF4/NF-κB/MYC signaling network operated by METTL3-mediated m6A modification and provided insight into the mechanisms of BCa progression.
Collapse
|
28
|
Guanylate-Binding Protein 1 Promotes Migration and Invasion of Human Periodontal Ligament Stem Cells. Stem Cells Int 2019; 2018:6082956. [PMID: 30622567 PMCID: PMC6304207 DOI: 10.1155/2018/6082956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/18/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are capable of migrating to sites of injury and inflammation in response to various cytokines to improve tissue repair. Previous studies have shown interferon-gamma (IFN-γ) promoted migration of the V54/2 cell line and dental pulp stem cells (DPSCs), but the underlying mechanisms remain largely unknown. In this study, we found IFN-γ induced migration and invasion of periodontal ligament stem cells (PDLSCs) in a dose-dependent manner in vitro. While knockdown of guanylate-binding protein 1 (GBP1) suppressed IFN-γ-induced migration and invasion, ectopic expression of GBP1 potentiated IFN-γ-induced migration and invasion of PDLSCs. Furthermore, we demonstrated GBP1 was required for IFN-γ-induced processing of matrix metallopeptidase 2 (MMP2) in PDLSCs. Our findings indicate that GBP1 promotes IFN-γ-induced migration and invasion of PDLSCs by MMP2, and GBP1 may serve as a new target to facilitate MSC homing and migration.
Collapse
|
29
|
Rezaei-Tavirani M, Rezaei Tavirani M, Zamanian Azodi M. The bioinformatics aspects of gene screening of HT-29, human colon cell line treated with caffeic acid. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:246-253. [PMID: 31528309 PMCID: PMC6668765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIM To better understand the anticancer properties of coffee, bioinformatics analysis of gene expression profile of HT-29, human colon cell line in the exposure of caffeic acid (CA) is proposed in this study. BACKGROUND Coffee as a popular beverage has been shown to be a potential health promoter as well as being effective on different kinds of diseases including cancer. METHODS The differentially expressed genes (DEGs) across the comparison of groups of samples including none-treated HT-29 and HT-29 tread with CA were applied for the protein-protein interaction mapping. Cytoscape v.3.7.1 constructed a network and analyzed the topological features of the most noteworthy DEGs. RESULTS The genes of CTSZ, AFF4, DHRS2, and HMGCS1 known as active agents in cancer progression, were identified as the central DEGs in the constructed PPI network in this study. Especially, HMGCS1 is the most central gene is also linked to one of the important colon cancer altered processes, cholesterol metabolism. CONCLUSION Lowering the risk of colon cancer could be perhaps through nominated DEGs and therefore, regulation of serum cholesterol as well as protection against cancer development.
Collapse
Affiliation(s)
- Majid Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mona Zamanian Azodi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Li SC, Ge NN. Cancer Subclones Derived from the Patient's Head and Neck Squamous Cell Carcinoma Tumor Stem Cells for the Screening of Personalized Antitumor Immunotherapy and Chemotherapy. STEM CELL RESEARCH & THERAPEUTICS 2018; 3:116-121. [PMID: 30972376 PMCID: PMC6453126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Studying on subclonal evolution of cancer stem cells can help illustrate how the immune system recognizes tumor cells, leading to subclonal treatment by immune-based therapies. Here, we discuss that cancer subclones derived from the patient's head and neck squamous cell carcinoma tumor stem cells can be used for the screening of personalized antitumor immunotherapy and chemotherapy, to maximize benefits and to minimize the adversary effects, toward personalized or precision medicine. We propose a "wait-and-watch" scheme for monitoring a lifetime cancer stem cell subclonal development evolved with local environments to cancer.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Neuro-oncology and Stem Cell Research Laboratory, CHOC Children’s Research Institute, Children’s Hospital of Orange County (CHOC), USA
- Department of Neurology, University of California-Irvine School of Medicine, Orange, CA, USA
| | - Norman N Ge
- VA Long Beach Healthcare System, Long Beach, CA, USA
- Department of Otolaryngology, Head and Neck Surgery, University of California-Irvine School of Medicine, Orange, CA, USA
| |
Collapse
|
31
|
Wollenzien H, Voigt E, Kareta MS. Somatic Pluripotent Genes in Tissue Repair, Developmental Disease, and Cancer. SPG BIOMED 2018; 1. [PMID: 31172135 DOI: 10.32392/biomed.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Embryonic stem cells possess the ability to differentiate into all cell types of the body. This pliable developmental state is achieved by the function of a series of pluripotency factors, classically identified as OCT4, SOX2, and NANOG. These pluripotency factors are responsible for activating the larger pluripotency networks and the self-renewal programs which give ES cells their unique characteristics. However, during differentiation pluripotency networks become downregulated as cells achieve greater lineage specification and exit the cell cycle. Typically the repression of pluripotency is viewed as a positive factor to ensure the fidelity of cellular identity by restricting cellular pliancy. Consistent with this view, the expression of pluripotency factors is greatly restricted in somatic cells. However, there are examples whereby cells either maintain or reactivate pluripotency factors to preserve the increased potential for the healing of wounds or tissue homeostasis. Additionally there are many examples where these pluripotency factors become reactivated in a variety of human pathologies, particularly cancer. In this review, we will summarize the somatic repression of pluripotency factors, their role in tissue homeostasis and wound repair, and the human diseases that are associated with pluripotency factor misregulation with an emphasis on their role in the etiology of multiple cancers.
Collapse
Affiliation(s)
- Hannah Wollenzien
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.,Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | - Ellen Voigt
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA
| | - Michael S Kareta
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.,Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA.,Department of Pediatrics, Sanford School of Medicine, 1400 W. 22nd St., Sioux Falls, SD 57105, USA.,Department of Chemistry and Biochemistry, South Dakota State University, 1175 Medary Ave, Brookings, SD 57006, USA
| |
Collapse
|