1
|
Manjili DA, Babaei FN, Younesirad T, Ghadir S, Askari H, Daraei A. Dysregulated circular RNA and long non-coding RNA-Mediated regulatory competing endogenous RNA networks (ceRNETs) in ovarian and cervical cancers: A non-coding RNA-Mediated mechanism of chemotherapeutic resistance with new emerging clinical capacities. Arch Biochem Biophys 2025; 768:110389. [PMID: 40090441 DOI: 10.1016/j.abb.2025.110389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Cervical cancer (CC) and ovarian cancer (OC) are among the most common gynecological cancers with significant mortality in women, and their incidence is increasing. In addition to the prominent role of the malignant aspect of these cancers in cancer-related women deaths, chemotherapy drug resistance is a major factor that contributes to their mortality and presents a clinical obstacle. Although the exact mechanisms behind the chemoresistance in these cancers has not been revealed, accumulating evidence points to the dysregulation of non-coding RNAs (ncRNAs), particularly long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as key contributors. These ncRNAs perform the roles of regulators of signaling pathways linked to tumor formation and chemoresistance. Strong data from various recent studies have uncovered that the main mechanism of these ncRNAs in the induction of chemoresistance of CC and OC is done through a dysregulated miRNA sponge activity as competing endogenous RNA (ceRNA) in the competing endogenous RNA networks (ceRNETs), where a miRNA regulating a messenger RNA (mRNA) is trapped, thereby removing its inhibitory effect on the desired mRNA. Understanding these mechanisms is essential to enhancing treatment outcomes and managing the problem of drug resistance. This review provides a comprehensive overview of lncRNA- and circRNA-mediated ceRNETs as the core process of chemoresistance against the commonly used chemotherapeutics, including cisplatin, paclitaxel, oxaliplatin, carboplatin, and docetaxel in CC and OC. Furthermore, we highlight the clinical potential of these ncRNAs serving as diagnostic indicators of chemotherapy responses and therapeutic targets.
Collapse
Affiliation(s)
- Danial Amiri Manjili
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Naghdi Babaei
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tayebeh Younesirad
- Department of Medical Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sara Ghadir
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Askari
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
2
|
Huang CJ, Choo KB. Frequent dysregulation of multiple circular RNA isoforms with diverse regulatory mechanisms in cancer - Insights from circFNDC3B and beyond: Why unique circular RNA identifiers matter. Biochem Biophys Res Commun 2025; 758:151627. [PMID: 40112536 DOI: 10.1016/j.bbrc.2025.151627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Circular RNAs (circRNAs) are post-transcriptional regulators generated through backsplicing of pre-mRNAs, primarily comprising exons of host genes. A single host gene may produce multiple circRNA isoforms with distinct structures and sequences. Dysregulated circRNA expression has been implicated in tumorigenesis. This review aims to investigate the selection and regulatory roles of circRNA isoforms in cancer using the extensively studied hsa_circFNDC3B and thirteen other circRNAs as study models. Interrogation of literature and databases, particularly the circBase, confirms that host genes generate a plethora of circRNA isoforms; however, only a small subset of isoforms is validated as dysregulated in tumor tissues. Notably, two or more isoforms of the same circRNA are frequently dysregulated in cancer. Structurally, short isoforms retaining 5'-proximal exons are preferentially selected, but for long host genes, circRNAs may arise from mid- or 3'-regions. We identify dysregulation of seven circFNDC3B isoforms across twelve cancer types and multi-isoforms in nine of the other thirteen circRNAs also in multiple cancers. MicroRNA sponging appears to be the major regulatory mechanism, but possible biased study designs raise concerns. Using circFNDC3B and circZFR as examples, we show inconsistency and inadequacy in circRNA nomenclature in different databases and the literature, underscoring the urgent need for a universally accepted standardized central circRNA database. As an interim measure, we propose guidelines for circRNA nomenclature in journal publications. Our findings caution against indiscriminate clinical use of specific circRNA isoforms as biomarkers or therapeutic targets without further validation.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, College of Environmental Planning & Bioresources (former School of Agriculture), Chinese Culture University, Taipei, 111114, Taiwan.
| | - Kong Bung Choo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.
| |
Collapse
|
3
|
Yang L, Yi Y, Mei Z, Huang D, Tang S, Hu L, Liu L. Circular RNAs in cancer stem cells: Insights into their roles and mechanisms (Review). Int J Mol Med 2025; 55:50. [PMID: 39930823 PMCID: PMC11781527 DOI: 10.3892/ijmm.2025.5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025] Open
Abstract
Cancer stem cells (CSCs) represent a small, yet pivotal subpopulation of tumor cells that play significant roles in tumor initiation, progression and therapeutic resistance. Circular RNAs (circRNAs) are a distinct class of RNAs characterized by their closed‑loop structures, lacking 5' to 3'ends. There is growing evidence that circRNAs are integral to the development and regulation of CSCs. Aberrant expression of circRNAs in CSCs can contribute to oncogenic properties and drug resistance. Specifically, oncogenic circRNAs modulate CSC behavior via key signaling pathways, thereby promoting CSC self‑renewal and maintenance, as well as tumor progression. This review summarizes the latest research on the functional roles and regulatory mechanisms of circRNAs in CSC behavior and discusses potential applications and challenges of targeting circRNAs in CSCs. Understanding the intricate interactions between circRNAs and CSCs may lead to novel therapeutic strategies that effectively combat treatment resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Lunyu Yang
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Yuling Yi
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Zhu Mei
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Dongmei Huang
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Sitian Tang
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Liyi Hu
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Ling Liu
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| |
Collapse
|
4
|
Sharma S. Unraveling the role of long non-coding RNAs in therapeutic resistance in acute myeloid leukemia: New prospects & challenges. Noncoding RNA Res 2024; 9:1203-1221. [PMID: 39036603 PMCID: PMC11259994 DOI: 10.1016/j.ncrna.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/23/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is a fatal hematological disease characterized by the unchecked proliferation of immature myeloid blasts in different tissues developed by various mutations in hematopoiesis. Despite intense chemotherapeutic regimens, patients often experience poor outcomes, leading to substandard remission rates. In recent years, long non-coding RNAs (lncRNAs) have increasingly become important prognostic and therapeutic hotspots, due to their contributions to dysregulating many functional epigenetic, transcriptional, and post-translational mechanisms leading to alterations in cell expressions, resulting in increased chemoresistance and reduced apoptosis in leukemic cells. Through this review, I highlight and discuss the latest advances in understanding the major mechanisms through which lncRNAs confer therapy resistance in AML. In addition, I also provide perspective on the current strategies to target lncRNA expressions. A better knowledge of the critical role that lncRNAs play in controlling treatment outcomes in AML will help improve existing medications and devise new ones.
Collapse
Affiliation(s)
- Siddhant Sharma
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
5
|
Conn VM, Chinnaiyan AM, Conn SJ. Circular RNA in cancer. Nat Rev Cancer 2024; 24:597-613. [PMID: 39075222 DOI: 10.1038/s41568-024-00721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/31/2024]
Abstract
Over the past decade, circular RNA (circRNA) research has evolved into a bona fide research field shedding light on the functional consequence of this unique family of RNA molecules in cancer. Although the method of formation and the abundance of circRNAs can differ from their cognate linear mRNA, the spectrum of interacting partners and their resultant cellular functions in oncogenesis are analogous. However, with 10 times more diversity in circRNA variants compared with linear RNA variants, combined with their hyperstability in the cell, circRNAs are equipped to influence every stage of oncogenesis. This is an opportune time to address the breadth of circRNA in cancer focused on their spatiotemporal expression, mutations in biogenesis factors and contemporary functions through each stage of cancer. In this Review, we highlight examples of functional circRNAs in specific cancers, which satisfy critical criteria, including their physical co-association with the target and circRNA abundance at stoichiometrically valid quantities. These considerations are essential to develop strategies for the therapeutic exploitation of circRNAs as biomarkers and targeted anticancer agents.
Collapse
Affiliation(s)
- Vanessa M Conn
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Simon J Conn
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia.
| |
Collapse
|
6
|
Mao J, Lu Y. Roles of circRNAs in the progression of colorectal cancer: novel strategies for detection and therapy. Cancer Gene Ther 2024; 31:831-841. [PMID: 38337038 DOI: 10.1038/s41417-024-00739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Endogenous noncoding RNAs with a covalently closed loop are known as circular RNAs (circRNAs). Recently, published works have revealed that circRNAs, which act as microRNA sponges, are critical for the biological behavior of several kinds of malignancies, including tumor cell proliferation, apoptosis, invasion, and metastasis. Additionally, there is a significant correlation between circRNAs and tumor resistance, stage, prognosis, and size. At present, colorectal cancer (CRC) is one of the most serious malignant tumors for human health. CircRNAs could represent potential targets to use in the prevention, diagnosis, and therapy of CRC, according to many studies. To fully comprehend the role of circRNAs in the incidence and progression of CRC, this review outlines the regulatory role and mechanisms of circRNAs in CRC and assesses their potential relevance as diagnostic and treatment possibilities for CRC. Our goal is to offer meaningful biological information for clinical evaluation and decision-making process for CRC treatment.
Collapse
Affiliation(s)
- Jun Mao
- Department of Medical Morphology Laboratory, Dalian Medical University's College of Basic Medical Sciences is located in Dalian, 116044, Dalian, China
- Liaoning Key Laboratory of Cancer Stem Cells, Dalian Medical University's College of Basic Medical Sciences is located in Dalian, 116044, Dalian, China
| | - Ying Lu
- Department of Medical Morphology Laboratory, Dalian Medical University's College of Basic Medical Sciences is located in Dalian, 116044, Dalian, China.
- Liaoning Key Laboratory of Cancer Stem Cells, Dalian Medical University's College of Basic Medical Sciences is located in Dalian, 116044, Dalian, China.
| |
Collapse
|
7
|
Thamjamrassri P, Ariyachet C. Circular RNAs in Cell Cycle Regulation of Cancers. Int J Mol Sci 2024; 25:6094. [PMID: 38892280 PMCID: PMC11173060 DOI: 10.3390/ijms25116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer has been one of the most problematic health issues globally. Typically, all cancers share a common characteristic or cancer hallmark, such as sustaining cell proliferation, evading growth suppressors, and enabling replicative immortality. Indeed, cell cycle regulation in cancer is often found to be dysregulated, leading to an increase in aggressiveness. These dysregulations are partly due to the aberrant cellular signaling pathway. In recent years, circular RNAs (circRNAs) have been widely studied and classified as one of the regulators in various cancers. Numerous studies have reported that circRNAs antagonize or promote cancer progression through the modulation of cell cycle regulators or their associated signaling pathways, directly or indirectly. Mostly, circRNAs are known to act as microRNA (miRNA) sponges. However, they also hold additional mechanisms for regulating cellular activity, including protein binding, RNA-binding protein (RBP) recruitment, and protein translation. This review will discuss the current knowledge of how circRNAs regulate cell cycle-related proteins through the abovementioned mechanisms in different cancers.
Collapse
Affiliation(s)
- Pannathon Thamjamrassri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaiyaboot Ariyachet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Yang K, Yi T. Tumor cell stemness in gastrointestinal cancer: regulation and targeted therapy. Front Mol Biosci 2024; 10:1297611. [PMID: 38455361 PMCID: PMC10918437 DOI: 10.3389/fmolb.2023.1297611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 03/09/2024] Open
Abstract
The cancer stem cells are a rare group of self-renewable cancer cells capable of the initiation, progression, metastasis and recurrence of tumors, and also a key contributor to the therapeutic resistance. Thus, understanding the molecular mechanism of tumor stemness regulation, especially in the gastrointestinal (GI) cancers, is of great importance for targeting CSC and designing novel therapeutic strategies. This review aims to elucidate current advancements in the understanding of CSC regulation, including CSC biomarkers, signaling pathways, and non-coding RNAs. We will also provide a comprehensive view on how the tumor microenvironment (TME) display an overall tumor-promoting effect, including the recruitment and impact of cancer-associated fibroblasts (CAFs), the establishment of an immunosuppressive milieu, and the induction of angiogenesis and hypoxia. Lastly, this review consolidates mainstream novel therapeutic interventions targeting CSC stemness regulation.
Collapse
Affiliation(s)
- Kangqi Yang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tuo Yi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Mohammadpour S, Noukabadi FN, Esfahani AT, Kazemi F, Esmaeili S, Zafarjafarzadeh N, Sarpash S, Nazemalhosseini-Mojarad E. Non-coding RNAs in Precursor Lesions of Colorectal Cancer: Their Role in Cancer Initiation and Formation. Curr Mol Med 2024; 24:565-575. [PMID: 37226783 DOI: 10.2174/1566524023666230523155719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/26/2023]
Abstract
Colorectal cancer (CRC) is one of the world's most common types of malignancy. The proliferation of precancerous lesions causes this type of cancer. Two distinct pathways for CRC carcinogenesis have been identified: the conventional adenoma-carcinoma pathway and the serrated neoplasia pathway. Recently, evidence has demonstrated the regulatory roles of noncoding RNAs (ncRNAs) in the initiation and progression of precancerous lesions, especially in the adenoma-carcinoma pathway and serrated neoplasia pathway. By expanding the science of molecular genetics and bioinformatics, several studies have identified dysregulated ncRNAs that function as oncogenes or tumor suppressors in cancer initiation and formation by diverse mechanisms via intracellular signaling pathways known to act on tumor cells. However, many of their roles are still unclear. This review summarizes the functions and mechanisms of ncRNAs (such as long non-coding RNAs, microRNAs, long intergenic non-coding RNAs, small interfering RNAs, and circRNAs) in the initiation and formation of precancerous lesions.
Collapse
Affiliation(s)
- Somayeh Mohammadpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences. Tehran, Iran
| | - Fatemeh Naderi Noukabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences. Tehran, Iran
| | - Amir Torshizi Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences. Tehran, Iran
| | - Fatemeh Kazemi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Sahar Esmaeili
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Nikta Zafarjafarzadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - SeyedKasra Sarpash
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Yuan M, Zhang X, Yue F, Zhang F, Jiang S, Zhou X, Lv J, Zhang Z, Sun Y, Chen Z, Wu H, Liu X, Yu X, Wei B, Jiang K, Lin F, Zuo Y, Ren S. CircNOLC1 Promotes Colorectal Cancer Liver Metastasis by Interacting with AZGP1 and Sponging miR-212-5p to Regulate Reprogramming of the Oxidative Pentose Phosphate Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205229. [PMID: 37870214 PMCID: PMC10667818 DOI: 10.1002/advs.202205229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 08/27/2023] [Indexed: 10/24/2023]
Abstract
Liver metastasis is a common cause of death in progressive colorectal cancer patients, but the molecular mechanisms remain unclear. Here, it is reported that a conserved and oxidative pentose phosphate pathway-associated circular RNA, circNOLC1, plays a crucial role in colorectal cancer liver metastasis. It is found that circNOLC1 silencing reduces the oxidative pentose phosphate pathway-related intermediate metabolites and elevates NADP+ /NADPH ratio and intracellular ROS levels, thereby attenuating colorectal cancer cell proliferation, migration, and liver metastasis. circNOLC1 interacting with AZGP1 to activate mTOR/SREBP1 signaling, or sponging miR-212-5p to upregulate c-Met expression, both of which can further induce G6PD to activate oxidative pentose phosphate pathway in colorectal cancer liver metastasis. Moreover, circNOLC1 is regulated by the transcription factor YY1 and specifically stabilized HuR induces its parental gene mRNA expression. The associations between circNOLC1 and these signaling molecules are validated in primary CRC and corresponding liver metastasis tissues. These findings reveal that circNOLC1 interacting with AZGP1 and circNOLC1/miR-212-5p/c-Met axis plays a key role in oxidative pentose phosphate pathway-mediated colorectal cancer liver metastasis, which may provide a novel target for precision medicine of colorectal cancer.
Collapse
Affiliation(s)
- Menglang Yuan
- Department of General SurgeryThe Second Hospital of Dalian Medical University116023DalianChina
- Department of OncologySidney Kimmel Comprehensive Cancer CenterSchool of MedicineJohns Hopkins UniversityBaltimoreMD21287USA
| | - Xinsheng Zhang
- Department of General SurgeryThe Second Hospital of Dalian Medical University116023DalianChina
| | - Fangxia Yue
- Department of Clinical BiochemistryCollege of Laboratory Diagnostic MedicineDalian Medical University116044DalianChina
| | - Feifan Zhang
- Department of General SurgeryThe Second Hospital of Dalian Medical University116023DalianChina
| | - Sufen Jiang
- Department of Clinical BiochemistryCollege of Laboratory Diagnostic MedicineDalian Medical University116044DalianChina
| | - Xu Zhou
- Department of Clinical BiochemistryCollege of Laboratory Diagnostic MedicineDalian Medical University116044DalianChina
| | - Jinjuan Lv
- Department of Clinical BiochemistryCollege of Laboratory Diagnostic MedicineDalian Medical University116044DalianChina
| | - Zhenyu Zhang
- Department of Clinical BiochemistryCollege of Laboratory Diagnostic MedicineDalian Medical University116044DalianChina
| | - Yuzhu Sun
- Department of Clinical BiochemistryCollege of Laboratory Diagnostic MedicineDalian Medical University116044DalianChina
| | - Zihao Chen
- Department of General SurgeryThe Second Hospital of Dalian Medical University116023DalianChina
| | - Han Wu
- Department of Clinical BiochemistryCollege of Laboratory Diagnostic MedicineDalian Medical University116044DalianChina
| | - Xiaoqian Liu
- Department of Clinical BiochemistryCollege of Laboratory Diagnostic MedicineDalian Medical University116044DalianChina
| | - Xiaoqi Yu
- Department of Clinical BiochemistryCollege of Laboratory Diagnostic MedicineDalian Medical University116044DalianChina
| | - Bowen Wei
- Department of Clinical BiochemistryCollege of Laboratory Diagnostic MedicineDalian Medical University116044DalianChina
| | - Kexin Jiang
- Department of Clinical BiochemistryCollege of Laboratory Diagnostic MedicineDalian Medical University116044DalianChina
| | - Fang Lin
- Department of Clinical BiochemistryCollege of Laboratory Diagnostic MedicineDalian Medical University116044DalianChina
| | - Yunfei Zuo
- Department of Clinical BiochemistryCollege of Laboratory Diagnostic MedicineDalian Medical University116044DalianChina
| | - Shuangyi Ren
- Department of General SurgeryThe Second Hospital of Dalian Medical University116023DalianChina
| |
Collapse
|
11
|
Chen Z, Cheng H, Zhang J, Jiang D, Chen G, Yan S, Chen W, Zhan W. Hsa_circRNA_102051 regulates colorectal cancer proliferation and metastasis by mediating Notch pathway. Cancer Cell Int 2023; 23:230. [PMID: 37794386 PMCID: PMC10552285 DOI: 10.1186/s12935-023-03026-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/10/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The purpose of this study was to investigate the role of hsa_circRNA_102051 in colorectal cancer (CRC) and its effect on the stemness of tumor cells. METHODS CircRNA microarray was under analysis to screen differentially expressed novel circRNAs in the pathology of CRC. Quantitative real-time PCR was used to detect the relative RNA expression in CRC cells and samples. The effects of hsa_circRNA_102051 on biological functions in CRC cells were accessed both in vitro and in vivo. FISH, RIP and luciferase reporter assay were conducted to confirm the regulatory correlations between hsa_circRNA_102051 and miR-203a, as well as miR-203a and BPTF. Xenograft models were applied to further verify the impacts and fluctuations of hsa_circRNA_102051/miR-203a/BPTF. Moreover, the mechanism how hsa_circRNA_102051 affected the Notch signals was also elucidated. RESULTS Hsa_circRNA_102051 was up-regulated in CRC tissues and cell lines, capable to promote the growth and invasion of CRC. In addition, hsa_circRNA_102051 could enhance stemness of CRC cells. BPTF was identified as downstream factors of hsa_circRNA_102051, and miR-203a was determined directly targeting both hsa_circRNA_102051 and BPTF as an intermediate regulator. Hsa_circRNA_102051 in CRC could block miR-203a expression, and subsequently activated BPTF. Hsa_circRNA_102051/miR-203a/BPTF axis modulated stemness of CRC cells by affecting Notch pathway. CONCLUSIONS Our findings provided new clues that hsa_circRNA_102051 might be a potential predictive or prognostic factor in CRC, which induced the fluctuation of downstream miR-203a/BPTF, and subsequently influenced tumor growth, activities and stemness. Thereinto, the Notch signals were also involved. Hence, the hsa_circRNA_102051/miR-203a/BPTF axis could be further explored as a therapeutic target for anti-metastatic therapy in CRC patients.
Collapse
Affiliation(s)
| | | | | | | | - Gang Chen
- Guizhou Medical University, Guiyang, China
| | | | - Wen Chen
- Guizhou Medical University, Guiyang, China
| | - Wei Zhan
- Department of colorectal surgery, The Affiliated Hospital of Guizhou Medical University, No.28 Guiyi Street, Yunyan District, Guiyang City, 550004, Guizhou, China.
| |
Collapse
|
12
|
Knockdown of Circ_0000798 Impedes Cell Growth and Motility of Renal Cell Carcinoma Cells Through Functioning as miRNA Sponge for miR-589-5p. Biochem Genet 2023; 61:279-298. [PMID: 35857217 DOI: 10.1007/s10528-022-10248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/07/2022] [Indexed: 01/24/2023]
Abstract
GSE137836 and GSE100186 shows that upregulated hsa_circRNA_0000798 (circ_0000798) is associated with the development and progression of renal cell carcinoma (RCC). However, its biological functions in RCC cells remain unclarified. Here, we planned to explore its action and action of mechanism in RCC cells. Real-time quantitative PCR detected RNA expression and western blotting and immunohistochemistry measured protein expression. In vitro assays, including MTT, EdU, Transwell, and plate colony, scratch wound, apoptosis, and cell cycle assays, and in vivo xenograft tumor model were launched to measure cell dysfunctions. Dual-luciferase reporter assay and RNA pull-down were employed to identify target relationship. Circ_0000798 is upregulated in RCC patients' tumors and cells, and high circ_0000798 is associated with shorter overall survival. RNA interference of circ_0000798 impedes cell metabolic viability and abilities of DNA synthesis, colony formation, wound healing, migration, and invasion in RCC cells but also induces cell cycle arrest and apoptosis. Moreover, circ_0000798 interference could delay tumor growth in vivo. Proliferation markers Ki67 and Bcl-2 were depressed by inhibiting circ_0000798, accompanied with promoted levels of apoptosis proteins Bax and cleaved caspase-3. Of note, circ_0000798 functions as microRNA (miR) sponge for miR-589-5p and thus controls the expression of miR-589-5p-targeting Ras-GTPase-activating protein-binding protein 1 (G3BP1), a newly identified tumor-promoting gene in RCC. Their expressions are linearly correlated with each other in these tumor samples. Circ_0000798 might function oncogenic role in RCC and its downregulation could combat RCC cell growth and motility via targeting miR-589-5p/G3BP1 axis.
Collapse
|
13
|
Circular RNAs: Emerging regulators of glucose metabolism in cancer. Cancer Lett 2023; 552:215978. [PMID: 36283584 DOI: 10.1016/j.canlet.2022.215978] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022]
Abstract
Aberrant glucose metabolism is one of the most striking characteristics of metabolic reprogramming in cancer. Thus, clarifying the regulatory mechanism of glucose metabolism is crucial to understanding tumor progression and developing novel therapeutic strategies for cancer patients. Recent developments in circular RNAs have explained the regulatory mechanism of glucose metabolism from a new dimension. In this review, we briefly summarize the recent advances in circRNA research on cancer glucose metabolism and emphasize the different regulatory mechanisms, including acting as miRNA sponges, interacting with proteins and being translated into proteins. Additionally, we discuss the future research directions of circular RNAs in the field of glucose metabolism.
Collapse
|
14
|
Xiao J, Joseph S, Xia M, Teng F, Chen X, Huang R, Zhai L, Deng W. Circular RNAs Acting as miRNAs’ Sponges and Their Roles in Stem Cells. J Clin Med 2022; 11:jcm11102909. [PMID: 35629034 PMCID: PMC9145679 DOI: 10.3390/jcm11102909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNAs (circRNAs), a novel type of endogenous RNAs, have become a subject of intensive research. It has been found that circRNAs are important players in cell differentiation and tissue homeostasis, as well as disease development. Moreover, the expression of circRNAs is usually not correlated with their parental gene expression, indicating that they are not only a steady-state by-product of mRNA splicing but a product of variable splicing under novel regulation. Sequence conservation analysis has also demonstrated that circRNAs have important non-coding functions. CircRNAs exist as a covalently closed loop form in mammalian cells, where they regulate cellular transcription and translation processes. CircRNAs are built from pre-messenger RNAs, and their biogenesis involves back-splicing, which is catalyzed by spliceosomes. The splicing reaction gives rise to three different types of intronic, exotic and exon–intron circular RNAs. Due to higher nuclease stability and longer half lives in cells, circRNAs are more stable than linear RNAs and have enormous clinical advantage for use as diagnostic and therapeutic biomarkers for disease. In recent years, it has been reported that circRNAs in stem cells play a crucial role in stem cell function. In this article, we reviewed the general feature of circRNAs and the distinct roles of circRNAs in stem cell biology, including regulation of stem cell self-renewal and differentiation. CircRNAs have shown unique expression profiles during differentiation of stem cells and could serve as promising biomarkers of these cells. As circRNAs play pivotal roles in stem cell regulation as well as the development and progression of various diseases, we also discuss opportunities and challenges of circRNA-based treatment strategies in future effective therapies for promising clinical applications.
Collapse
Affiliation(s)
- Juan Xiao
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Shija Joseph
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Mengwei Xia
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Feng Teng
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Xuejiao Chen
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Rufeng Huang
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Lihong Zhai
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
- Correspondence: (L.Z.); (W.D.)
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510060, China
- Jiangxi Deshang Pharmaceutical Co., Ltd., Zhangshu 336000, China
- Correspondence: (L.Z.); (W.D.)
| |
Collapse
|
15
|
Chao HM, Wang TW, Chern E, Hsu SH. Regulatory RNAs, microRNA, long-non coding RNA and circular RNA roles in colorectal cancer stem cells. World J Gastrointest Oncol 2022; 14:748-764. [PMID: 35582099 PMCID: PMC9048531 DOI: 10.4251/wjgo.v14.i4.748] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/18/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
The properties of cancer stem cells (CSCs), such as self-renewal, drug resistance, and metastasis, have been indicated to be responsible for the poor prognosis of patients with colon cancers. The epigenetic regulatory network plays a crucial role in CSC properties. Regulatory non-coding RNA (ncRNA), including microRNAs, long noncoding RNAs, and circular RNAs, have an important influence on cell physiopathology. They modulate cells by regulating gene expression in different ways. This review discusses the basic characteristics and the physiological functions of colorectal cancer (CRC) stem cells. Elucidation of these ncRNAs will help us understand the pathological mechanism of CRC progression, and they could become a new target for cancer treatment.
Collapse
Affiliation(s)
- Hsiao-Mei Chao
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Teh-Wei Wang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
16
|
Zhou P, Chen X, Shi K, Qu H, Xia J. The characteristics, tumorigenicities and therapeutics of cancer stem cells based on circRNAs. Pathol Res Pract 2022; 233:153822. [DOI: 10.1016/j.prp.2022.153822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022]
|
17
|
Lu HJ, Li J, Yang G, Yi CJ, Zhang D, Yu F, Ma Z. Circular RNAs in stem cells: from basic research to clinical implications. Biosci Rep 2022; 42:BSR20212510. [PMID: 34908111 PMCID: PMC8738868 DOI: 10.1042/bsr20212510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are a special class of endogenous RNAs with a wide variety of pathophysiological functions via diverse mechanisms, including transcription, microRNA (miRNA) sponge, protein sponge/decoy, and translation. Stem cells are pluripotent cells with unique properties of self-renewal and differentiation. Dysregulated circRNAs identified in various stem cell types can affect stem cell self-renewal and differentiation potential by manipulating stemness. However, the emerging roles of circRNAs in stem cells remain largely unknown. This review summarizes the major functions and mechanisms of action of circRNAs in stem cell biology and disease progression. We also highlight circRNA-mediated common pathways in diverse stem cell types and discuss their diagnostic significance with respect to stem cell-based therapy.
Collapse
Affiliation(s)
- Hui-Juan Lu
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, China
| | - Juan Li
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guodong Yang
- Department of Oncology, Huanggang Central Hospital of Yangtze University, Huanggang, Hubei 438000, China
| | - Cun-Jian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, China
| | - Daping Zhang
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Fenggang Yu
- Institute of Life Science, Yinfeng Biological Group, Jinan 250000, China
| | - Zhaowu Ma
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| |
Collapse
|
18
|
Rees WD, Telkar N, Lin DTS, Wong MQ, Poloni C, Fathi A, Kobor M, Zachos NC, Steiner TS. An in vitro chronic damage model impairs inflammatory and regenerative responses in human colonoid monolayers. Cell Rep 2022; 38:110283. [PMID: 35045294 DOI: 10.1016/j.celrep.2021.110283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/20/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Acute damage to the intestinal epithelium can be repaired via de-differentiation of mature intestinal epithelial cells (IECs) to a stem-like state, but there is a lack of knowledge on how intestinal stem cells function after chronic injury, such as in inflammatory bowel disease (IBD). We developed a chronic-injury model in human colonoid monolayers by repeated rounds of air-liquid interface and submerged culture. We use this model to understand how chronic intestinal damage affects the ability of IECs to (1) respond to microbial stimulation, using the Toll-like receptor 5 (TLR5) agonist FliC and (2) regenerate and protect the epithelium from further damage. Repeated rounds of damage impair the ability of IECs to regrow and respond to TLR stimulation. We also identify mRNA expression and DNA methylation changes in genes associated with IBD and colon cancer. This methodology results in a human model of recurrent IEC injury like that which occurs in IBD.
Collapse
Affiliation(s)
- William D Rees
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada; Division of Hematology, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Nikita Telkar
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada; BC Cancer Agency, University of British Columbia, Vancouver, BC, Canada
| | - David T S Lin
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - May Q Wong
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - Chad Poloni
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - Ayda Fathi
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - Michael Kobor
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Theodore S Steiner
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada.
| |
Collapse
|
19
|
Li H, Zhou Y, Wang M, Wang H, Zhang Y, Peng R, Zhang R, Zhang M, Zhang M, Qiu P, Liu L, Zhao Q, Liu J. DOC-2/DAB2 interactive protein destabilizes c-Myc to impair the growth and self-renewal of colon tumor-repopulating cells. Cancer Sci 2021; 112:4593-4603. [PMID: 34449943 PMCID: PMC8586666 DOI: 10.1111/cas.15120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal carcinoma (CRC) remains a huge challenge in clinical treatment due to tumor metastasis and recurrence. Stem cell-like colon tumor-repopulating cells (TRCs) are a subpopulation of cancer cells with highly tumorigenic and chemotherapy resistant properties. The core transcription factor c-Myc is essential for maintaining cancer stem-like cell phenotypes, yet its roles and regulatory mechanisms remain unclear in colon TRCs. We report that elevated c-Myc protein supported formation and growth of TRC spheroids. The tumor suppressor DOC-2/DAB2 interactive protein (DAB2IP) suppressed c-Myc expression to inhibit TRC expansion and self-renewal. Particularly, DAB2IP disrupted c-Myc stability through glycogen synthase kinase 3β/protein phosphatase 2A-B56α-mediated phosphorylation and dephosphorylation cascade on c-Myc protein, leading to its eventual degradation through the ubiquitin-proteasome pathway. The expression of DAB2IP was negatively correlated with c-Myc in CRC specimens. Overall, our results improved mechanistic insight into how DAB2IP suppressed TRC growth and self-renewal.
Collapse
Affiliation(s)
- Haiou Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yunjiao Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meng Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yangyang Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ruyi Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ruike Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Mengna Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
20
|
Lu T, Lu H, Duan Z, Wang J, Han J, Xiao S, Chen H, Jiang H, Chen Y, Yang F, Li Q, Chen D, Lin J, Li B, Jiang H, Chen K, Lu W, Lin H, Luo C. Discovery of High-Affinity Inhibitors of the BPTF Bromodomain. J Med Chem 2021; 64:12075-12088. [PMID: 34375106 DOI: 10.1021/acs.jmedchem.1c00721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The dysfunctional bromodomain PHD finger transcription factor (BPTF) exerts a pivotal influence in the occurrence and development of many human diseases, particularly cancers. Herein, through the structural decomposition of the reported BPTF inhibitor TP-238, the effective structural fragments were synthetically modified to obtain our lead compound DC-BPi-03. DC-BPi-03 was identified as a novel BPTF-BRD inhibitor with a moderate potency (IC50 = 698.3 ± 21.0 nM). A structure-guided structure-activity relationship exploration gave rise to two BPTF inhibitors with much higher affinities, DC-BPi-07 and DC-BPi-11. Notably, DC-BPi-07 and DC-BPi-11 show selectivities 100-fold higher than those of other BRD targets. The cocrystal structures of BPTF in complex with DC-BPi-07 and DC-BPi-11 demonstrate the rationale of chemical efforts from the atomic level. Further study showed that DC-BPi-11 significantly inhibited leukemia cell proliferation.
Collapse
Affiliation(s)
- Tian Lu
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Haibo Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhe Duan
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Jun Wang
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jie Han
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Senhao Xiao
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - HuanHuan Chen
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Hao Jiang
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yu Chen
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Feng Yang
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Qi Li
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Dongying Chen
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Jin Lin
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Bo Li
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hualiang Jiang
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kaixian Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Wenchao Lu
- Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Hua Lin
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Cheng Luo
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
21
|
Zhang M, Wang S. Roles of circular RNAs in colorectal cancer. Oncol Lett 2021; 22:602. [PMID: 34188704 PMCID: PMC8227629 DOI: 10.3892/ol.2021.12863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of malignant cancer worldwide and poses a significant burden on both the individual and healthcare systems. Despite advances in treatment options, advanced-stage CRC has a high mortality rate due to its heterogeneity, metastatic potential and/or delay in diagnosis. In recent years, an increasing number of studies have indicated that circular RNAs (circRNAs) serve important roles in several types of cancer, including CRC. Recent studies have revealed that circRNAs are aberrantly expressed in CRC tissues and function as oncogenic or tumor suppressive regulators of CRC carcinogenesis and development. Numerous circRNAs have been associated with the clinicopathological features of patients with CRC and have been considered as potential biomarkers for the diagnosis and prognosis of CRC, as well as targets for treatment. However, a deeper understanding of their potential function is required. In the present review, the current body of knowledge on the biogenesis and functions of CRC-associated circRNAs, and their potential value in clinical applications, such as in CRC diagnosis, prognosis and treatment, is discussed and summarized.
Collapse
Affiliation(s)
- Mingying Zhang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
- Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Shubin Wang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
- Correspondence to: Professor Shubin Wang, Department of Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| |
Collapse
|
22
|
The Role of Non-Coding RNAs in the Regulation of the Proto-Oncogene MYC in Different Types of Cancer. Biomedicines 2021; 9:biomedicines9080921. [PMID: 34440124 PMCID: PMC8389562 DOI: 10.3390/biomedicines9080921] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023] Open
Abstract
Alterations in the expression level of the MYC gene are often found in the cells of various malignant tumors. Overexpressed MYC has been shown to stimulate the main processes of oncogenesis: uncontrolled growth, unlimited cell divisions, avoidance of apoptosis and immune response, changes in cellular metabolism, genomic instability, metastasis, and angiogenesis. Thus, controlling the expression of MYC is considered as an approach for targeted cancer treatment. Since c-Myc is also a crucial regulator of many cellular processes in healthy cells, it is necessary to find ways for selective regulation of MYC expression in tumor cells. Many recent studies have demonstrated that non-coding RNAs play an important role in the regulation of the transcription and translation of this gene and some RNAs directly interact with the c-Myc protein, affecting its stability. In this review, we summarize current data on the regulation of MYC by various non-coding RNAs that can potentially be targeted in specific tumor types.
Collapse
|
23
|
Cao J, Huang Z, Ou S, Wen F, Yang G, Miao Q, Zhang H, Wang Y, He X, Shan Y, Liu S, Jiang L. circ0093740 Promotes Tumor Growth and Metastasis by Sponging miR-136/145 and Upregulating DNMT3A in Wilms Tumor. Front Oncol 2021; 11:647352. [PMID: 34168984 PMCID: PMC8217636 DOI: 10.3389/fonc.2021.647352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
As a research hotspot, circular RNAs (circRNAs) is one type of non-coding RNAs which have many different functions in biological processes. However, there is lack of study investigating the underlying molecular mechanism and the potential roles of circRNAs in Wilms tumor. We conducted a high-throughput microarray sequencing to screen differentially expressed circRNAs in Wilms tumor. A novel circRNA (circ0093740) was identified as a frequently upregulated circRNA in Wilms tumor cells and tissues. Suppression of circ0093740 remarkably inhibited the proliferation and migration ability in Wilms tumor, validated by several experiments. The molecular mechanism of circ0093740 was investigated by luciferase assays and RNA immunoprecipitation assays. The results revealed that circ0093740 promotes the growth and migration ability by sponging miR-136/145 and upregulating DNMT3A. In conclusion, our study discovered the biological role of the circ0093740-miR-136/145-DNMT3A axis in Wilms tumor growth and metastasis which is important for developing new treatment strategy.
Collapse
Affiliation(s)
- Juan Cao
- Shenzhen Children's Hospital, Shenzhen, China
| | - Zhongying Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Shunling Ou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Feiqiu Wen
- Shenzhen Children's Hospital, Shenzhen, China
| | | | | | - Huang Zhang
- Shenzhen Children's Hospital, Shenzhen, China
| | - Yue Wang
- Shenzhen Children's Hospital, Shenzhen, China
| | - Xiaoxiao He
- Shenzhen Children's Hospital, Shenzhen, China
| | | | - Sixi Liu
- Shenzhen Children's Hospital, Shenzhen, China
| | - Lijuan Jiang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| |
Collapse
|
24
|
Long F, Lin Z, Li L, Ma M, Lu Z, Jing L, Li X, Lin C. Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer. Mol Cancer 2021; 20:26. [PMID: 33536039 PMCID: PMC7856739 DOI: 10.1186/s12943-021-01318-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is a common hereditary tumor that is often fatal. Its pathogenesis involves multiple genes, including circular RNAs (circRNAs). Notably, circRNAs constitute a new class of noncoding RNAs (ncRNAs) with a covalently closed loop structure and have been characterized as stable, conserved molecules that are abundantly expressed in tissue/development-specific patterns in eukaryotes. Based on accumulating evidence, circRNAs are aberrantly expressed in CRC tissues, cells, exosomes, and blood from patients with CRC. Moreover, numerous circRNAs have been identified as either oncogenes or tumor suppressors that mediate tumorigenesis, metastasis and chemoradiation resistance in CRC. Although the regulatory mechanisms of circRNA biogenesis and functions remain fairly elusive, interesting results have been obtained in studies investigating CRC. In particular, the expression of circRNAs in CRC is comprehensively modulated by multiple factors, such as splicing factors, transcription factors, specific enzymes and cis-acting elements. More importantly, circRNAs exert pivotal effects on CRC through various mechanisms, including acting as miRNA sponges or decoys, interacting with RNA binding proteins, and even translating functional peptides. Finally, circRNAs may serve as promising diagnostic and prognostic biomarkers and potential therapeutic targets in the clinical practice of CRC. In this review, we discuss the dysregulation, functions and clinical significance of circRNAs in CRC and further discuss the molecular mechanisms by which circRNAs exert their functions and how their expression is regulated. Based on this review, we hope to reveal the functions of circRNAs in the initiation and progression of cancer and highlight the future perspectives on strategies targeting circRNAs in cancer research.
Collapse
Affiliation(s)
- Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Zhi Lin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Liang Li
- Class 25 Grade 2016, The Five-Year Program in Clinical Medicine, School of Medicine, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Min Ma
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
| | - Zhixing Lu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
| | - Liang Jing
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China.
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China.
- School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
25
|
Zhang C, Chen L, Liu Y, Huang J, Liu A, Xu Y, Shen Y, He H, Xu D. Downregulated METTL14 accumulates BPTF that reinforces super-enhancers and distal lung metastasis via glycolytic reprogramming in renal cell carcinoma. Am J Cancer Res 2021; 11:3676-3693. [PMID: 33664855 PMCID: PMC7914369 DOI: 10.7150/thno.55424] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Methyltransferase-like 14 (METTL14) participates in tumorigenesis in several malignancies, but how METTL14 mediates the metastasis of renal cell carcinoma (RCC) has never been reported. Methods: Western blotting, quantitative real-time PCR, and immunohistochemistry were used to determine the mRNA and protein levels of relevant genes. Methylated RNA immunoprecipitation sequencing and RNA sequencing were utilized to screen potential targets of METTL14. Chromatin immunoprecipitation sequencing and assay for transposase-accessible chromatin sequencing were performed to investigate epigenetic alterations. The biological roles and mechanisms of METTL14/BPTF in promoting lung metastasis were confirmed in vitro and in vivo using cell lines, patient samples, xenograft models, and organoids. Results: Utilizing the TCGA-KIRC and Ruijin-RCC datasets, we found low expression of METTL14 in mRCC samples, which predicted poor prognosis. METTL14 deficiency promoted RCC metastasis in vitro and in vivo. Mechanistically, METTL14-mediated m6A modification negatively regulated the mRNA stability of bromodomain PHD finger transcription factor (BPTF) and depended on BPTF to drive lung metastasis. Accumulated BPTF in METTL14-deficient cells remodeled the enhancer landscape to reinforce several oncogenic crosstalk. Particularly, BPTF constituted super-enhancers that activate downstream targets like enolase 2 and SRC proto-oncogene nonreceptor tyrosine kinase, leading to glycolytic reprogramming of METTL14-/- cells. Finally, we determined the efficacy of the BPTF inhibitor AU1 in suppressing mRCC of patient-derived cells, mRCC-derived organoids (MDOs), and orthotopic xenograft models. Conclusions: Our study is the first to investigate the essential role of m6A modification and the METTL14/BPTF axis in the epigenetic and metabolic remodeling of mRCC, highlighting AU1 as a vital therapeutic candidate.
Collapse
|
26
|
Wang X, Li H, Lu Y, Cheng L. Circular RNAs in Human Cancer. Front Oncol 2021; 10:577118. [PMID: 33537235 PMCID: PMC7848167 DOI: 10.3389/fonc.2020.577118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/02/2020] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous single-stranded covalently closed RNAs, primarily produced from pre-mRNAs via non-canonical back-splicing. circRNAs are highly conserved, stable, and expressed in tissue- and development-specific pattern. circRNAs play essential roles in physiological process as well as cancer biology. By the advances of deep sequencing and bioinformatics, the number of circRNAs have increased explosively. circRNAs function as miRNA/protein sponge, protein scaffold, protein recruitment, enhancer of protein function, as well as templates for translation involved in the regulation of transcription/splicing, translation, protein degradation, and pri-miRNA processing in human cancers and contributed to the pathogenesis of cancer. Numerous circRNAs may function in diverse manners. In this review, we survey the current understanding of circRNA functions in human cancer including miRNA sponge, circRNA-protein interaction, and circRNA-encoded protein, and summarize available databases for circRNA annotation and functional prediction.
Collapse
Affiliation(s)
| | | | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Chen S, Shen X. Long noncoding RNAs: functions and mechanisms in colon cancer. Mol Cancer 2020; 19:167. [PMID: 33246471 PMCID: PMC7697375 DOI: 10.1186/s12943-020-01287-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022] Open
Abstract
Evidence indicates that long non-coding RNAs (lncRNAs) play a crucial role in the carcinogenesis and progression of a wide variety of human malignancies including colon cancer. In this review, we describe the functions and mechanisms of lncRNAs involved in colon oncogenesis, such as HOTAIR, PVT1, H19, MALAT1, SNHG1, SNHG7, SNHG15, TUG1, XIST, ROR and ZEB1-AS1. We summarize the roles of lncRNAs in regulating cell proliferation, cell apoptotic death, the cell cycle, cell migrative and invasive ability, epithelial-mesenchymal transition (EMT), cancer stem cells and drug resistance in colon cancer. In addition, we briefly highlight the functions of circRNAs in colon tumorigenesis and progression, including circPPP1R12A, circPIP5K1A, circCTIC1, circ_0001313, circRNA_104916 and circRNA-ACAP2. This review provides the rationale for anticancer therapy via modulation of lncRNAs and circular RNAs (circRNAs) in colon carcinoma.
Collapse
Affiliation(s)
- Sian Chen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, No 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, No 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
28
|
Tu R, Chen Z, Bao Q, Liu H, Qing G. Crosstalk between oncogenic MYC and noncoding RNAs in cancer. Semin Cancer Biol 2020; 75:62-71. [PMID: 33160022 DOI: 10.1016/j.semcancer.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/09/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
|
29
|
Circular RNAs and their participation in stemness of cancer. Med Oncol 2020; 37:42. [PMID: 32266486 DOI: 10.1007/s12032-020-01373-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 01/17/2023]
Abstract
Circular RNAs (circRNA) are covalently closed single-stranded RNA molecules that act as important regulators of gene expression through different mechanisms. Meanwhile, cancer stem cells (CSCs) are a small subpopulation of cells, with properties similar to normal stem cells that arise during the development of cancer and support tumor growth, induce resistance to therapy, and are responsible for metastatic spread. Since the elimination of CSCs is an important goal of cancer treatment, the circRNAs that participate in regulating gene expression and signaling pathways linked to CSCs have aroused attention in recent years, especially because it has been suggested that these molecules may function as therapeutic targets and/or clinical biomarkers. Thus, the proposal of this work is to enumerate a series of circRNAs that have been shown to play a relevant role in CSCs and explain in detail the molecular regulatory mechanisms that they establish to perform that function.
Collapse
|
30
|
Zou Y, Zheng S, Xiao W, Xie X, Yang A, Gao G, Xiong Z, Xue Z, Tang H, Xie X. circRAD18 sponges miR-208a/3164 to promote triple-negative breast cancer progression through regulating IGF1 and FGF2 expression. Carcinogenesis 2019; 40:1469-1479. [PMID: 31001629 DOI: 10.1093/carcin/bgz071] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/13/2019] [Accepted: 04/15/2019] [Indexed: 01/16/2023] Open
Abstract
As a new rising star of non-coding RNA, circular RNAs (circRNAs) emerged as vital regulators with biological functions in diverse of cancers. However, the function and precise mechanism of the vast majority of circRNAs in triple-negative breast cancer (TNBC) occurrence and progression have not been clearly elucidated. In the current study, we identified and further investigated hsa_circ_0002453 (circRAD18) by analyzing our previous microarray profiling. Expression of circRAD18 was found significantly upregulated in TNBC compared with normal mammary tissues and cell lines. circRAD18 was positively correlated with T stage, clinical stage and pathological grade and was an independent risk factor for TNBC patients. We performed proliferation, colony formation, cell migration, apoptosis and mouse xenograft assays to verify the functions of circRAD18. Knockdown of circRAD18 significantly suppressed cell proliferation and migration, promoted cell apoptosis and inhibited tumor growth in functional and xenograft experiments. Through luciferase reporter assays, we confirmed that circRAD18 acts as a sponge of miR-208a and miR-3164 and promotes TNBC progression through upregulating IGF1 and FGF2 expression. Altogether, our research revealed the pivotal role of circRAD18-miR-208a/3164-IGF1/FGF2 axis in TNBC tumorigenesis and metastasis though the mechanism of competing endogenous RNAs. Thus, circRAD18 may serve as a novel prognostic biomarker and potential target for TNBC treatment in the future.
Collapse
Affiliation(s)
- Yutian Zou
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Shaoquan Zheng
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Weikai Xiao
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Xinhua Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Anli Yang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Guanfeng Gao
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Zhenchong Xiong
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Zhicheng Xue
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
31
|
The Role of Circular RNA CDR1as/ciRS-7 in Regulating Tumor Microenvironment: A Pan-Cancer Analysis. Biomolecules 2019; 9:biom9090429. [PMID: 31480381 PMCID: PMC6770779 DOI: 10.3390/biom9090429] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
Circular RNA CDR1as/ciRS-7 functions as an oncogenic regulator in various cancers. However, there has been a lack of systematic and comprehensive analysis to further elucidate its underlying role in cancer. In the current study, we firstly performed a bioinformatics analysis of CDR1as among 868 cancer samples by using RNA-seq datasets of the MiOncoCirc database. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), CIBERSORT, Estimating the Proportion of Immune and Cancer cells (EPIC), and the MAlignant Tumors using Expression data (ESTIMATE) algorithm were applied to investigate the underlying functions and pathways. Functional enrichment analysis suggested that CDR1as has roles associated with angiogenesis, extracellular matrix (ECM) organization, integrin binding, and collagen binding. Moreover, pathway analysis indicated that it may regulate the TGF-β signaling pathway and ECM-receptor interaction. Therefore, we used CIBERSORT, EPIC, and the ESTIMATE algorithm to investigate the association between CDR1as expression and the tumor microenvironment. Our data strongly suggest that CDR1as may play a specific role in immune and stromal cell infiltration in tumor tissue, especially those of CD8+ T cells, activated NK cells, M2 macrophages, cancer-associated fibroblasts (CAFs) and endothelial cells. Generally, systematic and comprehensive analyses of CDR1as were conducted to shed light on its underlying pro-cancerous mechanism. CDR1as regulates the TGF-β signaling pathway and ECM-receptor interaction to serve as a mediator in alteration of the tumor microenvironment.
Collapse
|