1
|
Drake SS, Mohammadnia A, Zaman A, Gianfelice C, Heale K, Groh AMR, Hua EML, Hintermayer MA, Lu YR, Gosselin D, Zandee S, Prat A, Stratton JA, Sinclair DA, Fournier AE. Cellular rejuvenation protects neurons from inflammation-mediated cell death. Cell Rep 2025; 44:115298. [PMID: 39937646 DOI: 10.1016/j.celrep.2025.115298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 10/31/2024] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
In multiple sclerosis (MS), inflammation of the central nervous system results in demyelination, neuroaxonal injury, and cell death. However, the molecular signals responsible for injury and cell death in neurons are not fully characterized. Here, we profile the transcriptome of retinal ganglion cells (RGCs) in experimental autoimmune encephalomyelitis (EAE) mice. Pathway analysis identifies a transcriptional signature reminiscent of aged RGCs with some senescent features, with a comparable signature present in neurons from patients with MS. This is supported by immunostaining demonstrating alterations to the nuclear envelope, modifications in chromatin marks, and accumulation of DNA damage. Transduction of RGCs with an Oct4-Sox2-Klf4 adeno-associated virus (AAV) to rejuvenate the transcriptome enhances RGC survival in EAE and improves visual acuity. Collectively, these data reveal an aging-like phenotype in neurons under pathological neuroinflammation and support the possibility that rejuvenation therapies or senotherapeutic agents could offer a direct avenue for neuroprotection in neuroimmune disorders.
Collapse
Affiliation(s)
- Sienna S Drake
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Abdulshakour Mohammadnia
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Aliyah Zaman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Christine Gianfelice
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Kali Heale
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Elizabeth M-L Hua
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Matthew A Hintermayer
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Yuancheng Ryan Lu
- Department of Genetics, Bavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - David Gosselin
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V4G2, Canada
| | - Stephanie Zandee
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X0A9, Canada
| | - Alexandre Prat
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X0A9, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - David A Sinclair
- Department of Genetics, Bavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alyson E Fournier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada.
| |
Collapse
|
2
|
Tong B, Zhang X, Hu H, Yang H, Wang X, Zhong M, Yang F, Hua F. From diagnosis to treatment: exploring the mechanisms underlying optic neuritis in multiple sclerosis. J Transl Med 2025; 23:87. [PMID: 39838397 PMCID: PMC11748848 DOI: 10.1186/s12967-025-06105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease affecting the central nervous system, commonly causing sensory disturbances, motor weakness, impaired gait, incoordination and optic neuritis (ON). According to the statistics, up to 50% of MS patients experience vision problems during the disease course, suffering from blurred vision, pain, color vision deficits, and even blindness. Treatments have progressed from corticosteroids to therapies targeted against B/T cells. This review comprehensively and systematically reappraises the diagnostic methods for visual impairment in MS patients. It also summarizes the most recent treatment approaches and effective medications for ON in MS. Finally, we examine the immunoinflammatory mechanisms that underlie lesions in the central nervous system in multiple sclerosis, in order to direct future investigations to confirm these mechanisms in the visual pathway.
Collapse
Affiliation(s)
- Bin Tong
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No.128, Jinling Road, Zhanggong District, Ganzhou, 34100, Jiangxi, People's Republic of China
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xin Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No.128, Jinling Road, Zhanggong District, Ganzhou, 34100, Jiangxi, People's Republic of China
| | - Haijian Hu
- Department of Ophthalmology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Huayi Yang
- Nanchang Medical College, Nanchang, 330004, Jiangxi, People's Republic of China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Maolin Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No.128, Jinling Road, Zhanggong District, Ganzhou, 34100, Jiangxi, People's Republic of China
| | - Fan Yang
- Department of Cardiothoracic Surgery, People's Hospital of Ruijin City, Ruijin, 342500, Jiangxi, People's Republic of China.
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No.128, Jinling Road, Zhanggong District, Ganzhou, 34100, Jiangxi, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Anesthesiology, 1# Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Henry-Ojo HO, Liu F, Narayanan SP. Targeting SMOX Preserves Optic Nerve Myelin, Axonal Integrity, and Visual Function in Multiple Sclerosis. Biomolecules 2025; 15:158. [PMID: 40001462 PMCID: PMC11853291 DOI: 10.3390/biom15020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Multiple sclerosis (MS) is a highly disabling chronic neurological condition affecting young adults. Inflammation, demyelination, and axonal damage are key pathological features of MS and its animal model, experimental autoimmune encephalomyelitis (EAE). Our previous work demonstrated that inhibiting spermine oxidase (SMOX) with MDL72527, a selective irreversible pharmacological inhibitor, significantly reduced clinical symptoms, retinal ganglion cell (RGC) loss, and optic nerve inflammation in EAE mice. The present study explored the broader therapeutic potential of SMOX inhibition, focusing on myelin preservation, axonal integrity, and visual function in the EAE model. Electron microscopy of optic nerve cross-sections showed significant preservation of myelin thickness and axonal integrity due to SMOX inhibition. The quantitative assessment showed that g-ratio and axon count metrics were significantly improved in MDL72527-treated EAE mice compared to their vehicle-treated counterparts. Immunofluorescence studies confirmed these findings, showing increased preservation of myelin and axonal proteins in MDL72527-treated EAE mice compared to the vehicle-treated group. Functional assessment studies (Electroretinography) demonstrated significant improvement in RGC function and axonal conduction in EAE mice treated with MDL72527. Furthermore, SMOX inhibition downregulated the expression of galectin3 (Gal3), a mediator of neuroinflammation, indicating Gal3's role in SMOX-mediated neuroprotection. This study provides compelling evidence for the potential of SMOX inhibition as a therapeutic strategy in multiple sclerosis and other demyelinating disorders.
Collapse
Affiliation(s)
- Harry O. Henry-Ojo
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (H.O.H.-O.); (F.L.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - Fang Liu
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (H.O.H.-O.); (F.L.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - S. Priya Narayanan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (H.O.H.-O.); (F.L.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| |
Collapse
|
4
|
Qiu X, Huang MN, Ping S. Genetic susceptibility and causal pathway analysis of eye disorders coexisting in multiple sclerosis. Front Immunol 2024; 15:1337528. [PMID: 38375484 PMCID: PMC10875133 DOI: 10.3389/fimmu.2024.1337528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction The comorbidity of optic neuritis with multiple sclerosis has been well recognized. However, the causal association between multiple sclerosis and optic neuritis, as well as other eye disorders, remains incompletely understood. To address these gaps, we investigated the genetically relationship between multiple sclerosis and eye disorders, and explored potential drugs. Methods In order to elucidate the genetic susceptibility and causal links between multiple sclerosis and eye disorders, we performed two-sample Mendelian randomization analyses to examine the causality between multiple sclerosis and eye disorders. Additionally, causal single-nucleotide polymorphisms were annotated and searched for expression quantitative trait loci data. Pathway enrichment analysis was performed to identify the possible mechanisms responsible for the eye disorders coexisting with multiple sclerosis. Potential therapeutic chemicals were also explored using the Cytoscape. Results Mendelian randomization analysis revealed that multiple sclerosis increased the incidence of optic neuritis while reducing the likelihood of concurrent of cataract and macular degeneration. Gene Ontology enrichment analysis implicated that lymphocyte proliferation, activation and antigen processing as potential contributors to the pathogenesis of eye disorders coexisting with multiple sclerosis. Furthermore, pharmaceutical agents traditionally employed for allograft rejection exhibited promising therapeutic potential for the eye disorders coexisting with multiple sclerosis. Discussion Multiple sclerosis genetically contributes to the development of optic neuritis while mitigating the concurrent occurrence of cataract and macular degeneration. Further research is needed to validate these findings and explore additional mechanisms underlying the comorbidity of multiple sclerosis and eye disorders.
Collapse
Affiliation(s)
- Xuecheng Qiu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mi Ni Huang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Suning Ping
- Department of Histology and Embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, China
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
van Noort JM, Baker D, Kipp M, Amor S. The pathogenesis of multiple sclerosis: a series of unfortunate events. Clin Exp Immunol 2023; 214:1-17. [PMID: 37410892 PMCID: PMC10711360 DOI: 10.1093/cei/uxad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/10/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by the chronic inflammatory destruction of myelinated axons in the central nervous system. Several ideas have been put forward to clarify the roles of the peripheral immune system and neurodegenerative events in such destruction. Yet, none of the resulting models appears to be consistent with all the experimental evidence. They also do not answer the question of why MS is exclusively seen in humans, how Epstein-Barr virus contributes to its development but does not immediately trigger it, and why optic neuritis is such a frequent early manifestation in MS. Here we describe a scenario for the development of MS that unifies existing experimental evidence as well as answers the above questions. We propose that all manifestations of MS are caused by a series of unfortunate events that usually unfold over a longer period of time after a primary EBV infection and involve periodic weakening of the blood-brain barrier, antibody-mediated CNS disturbances, accumulation of the oligodendrocyte stress protein αB-crystallin and self-sustaining inflammatory damage.
Collapse
Affiliation(s)
- Johannes M van Noort
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - David Baker
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
6
|
Sun X, Qian M, Li H, Wang L, Zhao Y, Yin M, Dai L, Bao H. FKBP5 activates mitophagy by ablating PPAR-γ to shape a benign remyelination environment. Cell Death Dis 2023; 14:736. [PMID: 37952053 PMCID: PMC10640650 DOI: 10.1038/s41419-023-06260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease of the central nervous system (CNS) that is characterized by myelin damage, followed by axonal and ultimately neuronal loss, which has been found to be associated with mitophagy. The etiology and pathology of MS remain elusive. However, the role of FK506 binding protein 5 (FKBP5, also called FKBP51), a newly identified gene associated with MS, in the progression of the disease has not been well defined. Here, we observed that the progress of myelin loss and regeneration in Fkbp5ko mice treated with demyelination for the same amount of time was significantly slower than that in wild-type mice, and that mitophagy plays an important regulatory role in this process. To investigate the mechanism, we discovered that the levels of FKBP5 protein were greatly enhanced in the CNS of cuprizone (CPZ) mice and the myelin-denuded environment stimulates significant activation of the PINK1/Parkin-mediated mitophagy, in which the important regulator, PPAR-γ, is critically regulated by FKBP5. This study reveals the role of FKBP5 in regulating a dynamic pathway of natural restorative regulation of mitophagy through PPAR-γ in pathological demyelinating settings, which may provide potential targets for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Xingzong Sun
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Menghan Qian
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Hongliang Li
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Lei Wang
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Yunjie Zhao
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Min Yin
- School of Medicine, Yunnan University, Kunming, 650091, China.
| | - Lili Dai
- School of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
| | - Hongkun Bao
- School of Medicine, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
7
|
Liang X, Wang L, Zhu Y, Wang Y, He T, Wu L, Huang M, Zhou F. Altered neural intrinsic oscillations in patients with multiple sclerosis: effects of cortical thickness. Front Neurol 2023; 14:1143646. [PMID: 37818221 PMCID: PMC10560735 DOI: 10.3389/fneur.2023.1143646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Objective To investigate the effects of cortical thickness on the identification accuracy of fractional amplitude of low-frequency fluctuation (fALFF) in patients with multiple sclerosis (MS). Methods Resting-state functional magnetic resonance imaging data were collected from 31 remitting MS, 20 acute MS, and 42 healthy controls (HCs). After preprocessing, we first calculated two-dimensional fALFF (2d-fALFF) maps using the DPABISurf toolkit, and 2d-fALFF per unit thickness was obtained by dividing 2d-fALFF by cortical thickness. Then, between-group comparison, clinical correlation, and classification analyses were performed in 2d-fALFF and 2d-fALFF per unit thickness maps. Finally, we also examined whether the effect of cortical thickness on 2d-fALFF maps was affected by the subfrequency band. Results In contrast with 2d-fALFF, more changed regions in 2d-fALFF per unit thickness maps were detected in MS patients, such as increased region of the right inferior frontal cortex and faded regions of the right paracentral lobule, middle cingulate cortex, and right medial temporal cortex. There was a significant positive correlation between the disease duration and the 2d-fALFF values in the left early visual cortex in remitting MS patients (r = 0.517, Bonferroni-corrected, p = 0.008 × 4 < 0.05). In contrast with 2d-fALFF, we detected a positive correlation between the 2d-fALFF per unit thickness of the right ventral stream visual cortex and the modified Fatigue Impact Scale (MFIS) scores (r = 0.555, Bonferroni-corrected, p = 0.017 × 4 > 0.05). For detecting MS patients, 2d-fALFF and 2d- fALFF per unit thickness both performed remarkably well in support vector machine (SVM) analysis, especially in the remitting phase (AUC = 86, 83%). Compared with 2d-fALFF, the SVM model of 2d-fALFF per unit thickness had significantly higher classification performance in distinguishing between remitting and acute MS. More changed regions and more clinically relevant 2d-fALFF per unit thickness maps in the subfrequency band were also detected in MS patients. Conclusion By dividing the functional value by the cortical thickness, the identification accuracy of fALFF in MS patients was detected to be potentially influenced by cortical thickness. Additionally, 2d-fALFF per unit thickness is a potential diagnostic marker that can be utilized to distinguish between acute and remitting MS patients. Notably, we observed similar variations in the subfrequency band.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lei Wang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yao Wang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ting He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lin Wu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Medical Imaging, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Pyka-Fościak G, Fościak M, Pabijan J, Lis GJ, Litwin JA, Lekka M. Changes in stiffness of the optic nerve and involvement of neurofilament light chains in the course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Biochim Biophys Acta Mol Basis Dis 2023:166796. [PMID: 37400000 DOI: 10.1016/j.bbadis.2023.166796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023]
Abstract
Multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), are often accompanied by optic neuritis associated with neurofilament disruption. In this study, the stiffness of the optic nerve was investigated by atomic force microscopy (AFM) in mice with induced EAE in the successive phases of the disease: onset, peak, and chronic. AFM results were compared with the intensity of the main pathological processes in the optic nerve: inflammation, demyelination, and axonal loss, as well as with the density of astrocytes, assessed by quantitative histology and immunohistochemistry. Optic nerve tissue and serum levels of neurofilament light chain protein (NEFL) were also examined by immunostaining and ELISA, respectively. The stiffness of the optic nerve in EAE mice was lower than that in control and naïve animals. It increased in the onset and peak phases and sharply decreased in the chronic phase. Serum NEFL level showed similar dynamics, while tissue NEFL level decreased in the onset and peak phases, indicating a leak of NEFL from the optic nerve to body fluids. Inflammation and demyelination gradually increased to reach the maximum in the peak phase of EAE, and inflammation slightly declined in the chronic phase, while demyelination did not. The axonal loss also gradually increased and had the highest level in the chronic phase. Among these processes, demyelination and especially axonal loss most effectively decrease the stiffness of the optic nerve. NEFL level in serum can be regarded as an early indicator of EAE, as it rapidly grows in the onset phase of the disease.
Collapse
Affiliation(s)
- G Pyka-Fościak
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland.
| | - M Fościak
- Medical Department, Novartis Poland Sp. z o.o., Marynarska 15, 02-674 Warszawa, Poland
| | - J Pabijan
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - G J Lis
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland
| | - J A Litwin
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland
| | - M Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
9
|
Plafker SM, Titcomb T, Zyla-Jackson K, Kolakowska A, Wahls T. Overview of diet and autoimmune demyelinating optic neuritis: a narrative review. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00022. [PMID: 37128292 PMCID: PMC10144304 DOI: 10.1097/in9.0000000000000022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
This review summarizes the cellular and molecular underpinnings of autoimmune demyelinating optic neuritis (ADON), a common sequela of multiple sclerosis and other demyelinating diseases. We further present nutritional interventions tested for people with multiple sclerosis focusing on strategies that have shown efficacy or associations with disease course and clinical outcomes. We then close by discuss the potential dietary guidance for preventing and/or ameliorating ADON.
Collapse
Affiliation(s)
- Scott M. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tyler Titcomb
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Katarzyna Zyla-Jackson
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Aneta Kolakowska
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Terry Wahls
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
10
|
3-Dimensional Immunostaining and Automated Deep-Learning Based Analysis of Nerve Degeneration. Int J Mol Sci 2022; 23:ijms232314811. [PMID: 36499143 PMCID: PMC9739543 DOI: 10.3390/ijms232314811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease driven by inflammation and demyelination in the brain, spinal cord, and optic nerve. Optic neuritis, characterized by inflammation and demyelination of the optic nerve, is a symptom in many patients with MS. The optic nerve is the highway for visual information transmitted from the retina to the brain. It contains axons from the retinal ganglion cells (RGCs) that reside in the retina, myelin forming oligodendrocytes and resident microglia and astrocytes. Inflammation, demyelination, and axonal degeneration are also present in the optic nerve of mice subjected to experimental autoimmune encephalomyelitis (EAE), a preclinical mouse model of MS. Monitoring the optic nerve in EAE is a useful strategy to study the presentation and progression of pathology in the visual system; however, current approaches have relied on sectioning, staining and manual quantification. Further, information regarding the spatial load of lesions and inflammation is dependent on the area of sectioning. To better characterize cellular pathology in the EAE model, we employed a tissue clearing and 3D immunolabelling and imaging protocol to observe patterns of immune cell infiltration and activation throughout the optic nerve. Increased density of TOPRO staining for nuclei captured immune cell infiltration and Iba1 immunostaining was employed to monitor microglia and macrophages. Axonal degeneration was monitored by neurofilament immunolabelling to reveal axonal swellings throughout the optic nerve. In parallel, we developed a convolutional neural network with a UNet architecture (CNN-UNet) called BlebNet for automated identification and quantification of axonal swellings in whole mount optic nerves. Together this constitutes a toolkit for 3-dimensional immunostaining to monitor general optic nerve pathology and fast automated quantification of axonal defects that could also be adapted to monitor axonal degeneration and inflammation in other neurodegenerative disease models.
Collapse
|
11
|
KILIÇPARLAR CENGİZ E, AKÇALI A, EKMEKYAPAR FIRAT Y, ÖZTÜRKMEN C, ÇOMRUK G. Is there a relationship between the ganglion cell complex thickness and macular thickness in patients with multiple sclerosis? MUSTAFA KEMAL ÜNIVERSITESI TIP DERGISI 2022. [DOI: 10.17944/mkutfd.1024136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Introduction: Optic neuritis (ON) is the most common ocular finding of multiple sclerosis (MS). ON can cause axonal loss and abnormalities in both optical coherence tomography (OCT) parameters and visual evoked potentials (VEPs). In this study, the retinal fiber layer (RNFL), ganglion cell complex (GCC) and macular thicknesses were measured with OCT and compared between MS cases with and without a clinical history of ON and healthy individuals. In addition, it was examined whether these values were correlated with VEP and clinical findings and whether they could be used as a marker of axonal loss.
Method: The study included 49 patients with MS (98 eyes) and 30 healthy controls (60 eyes) aged 18-55 years. Visual acuity and color vision, VEP measurement, and OCT measurement were evaluated.
Results and Conclusion: The RNFL, foveal and macular thickness were found to be smaller among the patients with a history of ON than those without this history and the control group. The RNFL, GCC, foveal and macular thicknesses can be interchangeably used to show the relationship between axonal degeneration and optic nerve involvement in the course of MS.
Collapse
|