1
|
Zimmermann A, Priebe J, Rupprecht H, Lang S, Haberland F, Schuster K, Staffeld A, Berger C, Zhu H, Dück A, Kölch M, Frintrop L. Changes in Circadian Rhythm in Chronically-Starved Mice Are Associated With Glial Cell Density Reduction in the Suprachiasmatic Nucleus. Int J Eat Disord 2025; 58:756-769. [PMID: 39835540 PMCID: PMC11969035 DOI: 10.1002/eat.24379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/16/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE Anorexia nervosa (AN) is an eating disorder characterized by severe weight loss and associated with hyperactivity and circadian rhythm disruption. However, the cellular basis of circadian rhythm disruption is poorly understood. Glial cells in the suprachiasmatic nucleus (SCN), the principal circadian pacemaker, are involved in regulating circadian rhythms. We hypothesize that the circadian rhythm disruption in AN patients is associated with glial cell changes in the SCN. METHOD In the starvation-induced hyperactivity mouse model, mice had free access to a running wheel and received a restricted amount of food once a day, until a 25% body weight loss was reached and maintained their weight loss for two weeks. This was followed by a refeeding phase. Different daily periods of running wheel activity were defined, such as food anticipatory activity up to 4 h before feeding. Circadian rhythmicity was analyzed using the cosinor method. Gene expression was evaluated using real-time polymerase chain reaction. Immunohistochemistry was used to quantify astrocytes, microglia, and oligodendrocytes. RESULTS Starvation induced changes in circadian rhythm, as indicated by changes in cosinor-based characteristics. Refeeding reversed these effects. Additionally, there was an increase in cryptochrome circadian regulator 1 expression and a decrease in the density of astrocytes and oligodendrocytes in the SCN after chronic starvation. DISCUSSION Starvation-induced alterations in circadian rhythms are associated with molecular, and cellular changes in the hypothalamus. Reduced astrocytes and oligodendrocytes in the SCN in a mouse model of AN suggest that glial pathophysiology may play a role in circadian rhythm disruption.
Collapse
Affiliation(s)
| | - Julia Priebe
- Institute of AnatomyRostock University Medical CenterRostockGermany
| | - Hanna Rupprecht
- Institute of AnatomyRostock University Medical CenterRostockGermany
| | - Stephan Lang
- Institute of AnatomyRostock University Medical CenterRostockGermany
| | | | | | - Anna Staffeld
- Institute of AnatomyRostock University Medical CenterRostockGermany
| | - Christoph Berger
- Department of Psychiatry, Neurology, Psychosomatics, and Psychotherapy in Childhood and AdolescenceRostock University Medical CenterRostockGermany
- German Center for Child and Adolescent Health (DZKJ)partner site Greifswald/RostockRostockGermany
| | - Hang Zhu
- Department of Psychiatry, Neurology, Psychosomatics, and Psychotherapy in Childhood and AdolescenceRostock University Medical CenterRostockGermany
- German Center for Child and Adolescent Health (DZKJ)partner site Greifswald/RostockRostockGermany
| | - Alexander Dück
- Department of Psychiatry, Neurology, Psychosomatics, and Psychotherapy in Childhood and AdolescenceRostock University Medical CenterRostockGermany
- German Center for Child and Adolescent Health (DZKJ)partner site Greifswald/RostockRostockGermany
| | - Michael Kölch
- Department of Psychiatry, Neurology, Psychosomatics, and Psychotherapy in Childhood and AdolescenceRostock University Medical CenterRostockGermany
- German Center for Child and Adolescent Health (DZKJ)partner site Greifswald/RostockRostockGermany
| | - Linda Frintrop
- Institute of AnatomyRostock University Medical CenterRostockGermany
| |
Collapse
|
2
|
Goodwin-Groen S, Dong Y, Aoki C. Three daily intraperitoneal injections of sub-anesthetic ketamine ameliorate activity-based anorexia vulnerability of adult female mice. Int J Eat Disord 2024; 57:1447-1464. [PMID: 37530601 DOI: 10.1002/eat.24036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/26/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE To identify ketamine's dosing schedule that ameliorates voluntary food restriction, hyperactivity and body weight loss of adult mice undergoing activity-based anorexia (ABA), an animal model of anorexia nervosa. METHOD Female and male C57BL6 mice underwent three cycles of ABA, starting from mid-adolescence. ABA vulnerability was compared within and across two groups of animals: those injected intraperitoneally with 30 mg/kg ketamine for three consecutive days (30mgKetx3) during the second ABA in late adolescence (ABA2) or with vehicle only (Vx3). RESULTS Vx3 females and males exhibited individual differences in wheel running and weight retention during first ABA in mid-adolescence (ABA1), ABA2, and third ABA in adulthood (ABA3). Their wheel running correlated with anxiety-like behavior. During ABA1 and ABA3, weight gain of Vx3 females (but not males) after food consumption correlated negatively with food-anticipatory activity (FAA) preceding the feeding hours, indicating that females with higher levels of running restrict feeding more and persistently. This paradoxical relationship confirms earlier findings of ABA females without ketamine treatment, capturing the maladaptive behaviors exhibited by individuals diagnosed with anorexia nervosa. By contrast, 30mgKetx3 had an effect on both sexes of reducing hyperactivity during the feeding hours acutely and reducing anxiety-like behavior's contribution to running. For females, only, 30mgKetx3 acutely improved the extent of compensatory food consumption relative to FAA and improved weight retention during ABA3, 12 days post ketamine in adulthood. DISCUSSION Sub-anesthetic ketamine evokes behavior-specific ameliorative effects for adult mice re-experiencing ABA, supporting the notion that multiple doses of ketamine may be helpful in reducing relapse among adults with anorexia nervosa. PUBLIC SIGNIFICANCE STATEMENT This study examined whether ketamine reduces anorexia-like behaviors in adult mice. Three daily sub-anesthetic ketamine injections suppress wheel running during and leading up to the hours of food availability and enable animals to compensate better for weight loss associated with excessive exercise by eating more. These findings suggest that ketamine may help adult females diagnosed with anorexia nervosa but also point to sex- and age-related differences in the action of ketamine.
Collapse
Affiliation(s)
| | - Yiru Dong
- Center for Neural Science, New York University, New York, New York, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, New York, USA
- Neuroscience Institute, NYU Langone Medical Center, New York University, New York, New York, USA
| |
Collapse
|
3
|
Li J, Temizer R, Chen YW, Aoki C. Ketamine ameliorates activity-based anorexia of adolescent female mice through changes in GluN2B-containing NMDA receptors at postsynaptic cytoplasmic locations of pyramidal neurons and interneurons of medial prefrontal cortex. Brain Struct Funct 2024; 229:323-348. [PMID: 38170266 DOI: 10.1007/s00429-023-02740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Anorexia nervosa (AN) is a mental illness with high rates of mortality and relapse, and no approved pharmacotherapy. Using the activity-based anorexia (ABA) model of AN, we previously showed that a single sub-anesthetic intraperitoneal injection of ketamine (30 mg/kg-KET, but not 3 mg/kg-KET), has an immediate and long-lasting effect of reducing anorexia-like behavior among adolescent female mice. We also showed previously that excitatory outflow from medial prefrontal cortex (mPFC) engages hunger-evoked hyperactivity, leading to the ABA condition of severe weight loss. Ketamine is known to target GluN2B-containing NMDARs (NR2B). Might synaptic plasticity involving NR2B in mPFC contribute to ketamine's ameliorative effects? We addressed this question through electron microscopic immunocytochemical quantification of GluN2B at excitatory synapses of pyramidal neurons (PN) and GABAergic interneurons (IN) in mPFC layer 1 of animals that underwent recovery from a second ABA induction (ABA2), 22 days after ketamine injection during the first ABA induction. The 30 mg/kg-KET evoked synaptic plasticity that differed for PN and IN, with changes revolving the cytoplasmic reserve pool of NR2B more than the postsynaptic membrane pool. Those individuals that suppressed hunger-evoked wheel running the most and increased food consumption during recovery from ABA2 the most showed the greatest increase of NR2B at PN and IN excitatory synapses. We hypothesize that 30 mg/kg-KET promotes long-lasting changes in the reserve cytoplasmic pool of NR2B that enables activity-dependent rapid strengthening of mPFC circuits underlying the more adaptive behavior of suppressed running and enhanced food consumption, in turn supporting better weight restoration.
Collapse
Affiliation(s)
- Jennifer Li
- Center for Neural Science, New York University, New York, NY, USA
| | - Rose Temizer
- Center for Neural Science, New York University, New York, NY, USA
| | - Yi-Wen Chen
- Center for Neural Science, New York University, New York, NY, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
4
|
Li J, Chen YW, Aoki C. Ketamine ameliorates activity-based anorexia of adolescent female mice through changes in the prevalence of NR2B-containing NMDA receptors at excitatory synapses that are in opposite directions for of pyramidal neurons versus GABA interneurons In medial prefrontal cortex. RESEARCH SQUARE 2023:rs.3.rs-2514157. [PMID: 36778429 PMCID: PMC9915778 DOI: 10.21203/rs.3.rs-2514157/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A previous study showed that a single sub-anesthetic dose of ketamine (30 mg/kg-KET, IP) has an immediate and long-lasting (>20 days) effect of reducing maladaptive behaviors associated with activity-based anorexia (ABA) among adolescent female mice. This study sought to determine whether synaptic plasticity involving NR2B-containing NMDA receptors (NR2B) at excitatory synapses in the prelimbic region of medial prefrontal cortex (mPFC) contributes to this ameliorative effect. To this end, quantitative electron microscopic analyses of NR2B-subunit immunoreactivity at excitatory synapses of pyramidal neurons (PN) and GABAergic interneurons (GABA-IN) were conducted upon layer 1 of mPFC of the above-described mice that received a single efficacious 30 mg/kg-KET (N=8) versus an inefficacious 3 mg/kg-KET (N=8) dose during the food-restricted day of the first ABA induction (ABA1). Brain tissue was collected after these animals underwent recovery from ABA1, then of recovery from a second ABA induction (ABA2), 22 days after the ketamine injection. For all three parameters used to quantify ABA resilience (increased food consumption, reduced wheel running, body weight gain), 30 mg/kg-KET evoked synaptic plasticity in opposite directions for PN and GABA-IN, with changes at excitatory synapses on GABA-IN dominating the adaptive behaviors more than on PN. The synaptic changes were in directions consistent with changes in the excitatory outflow from mPFC that weaken food consumption-suppression, strengthen wheel running suppression and enhance food consumption. We hypothesize that 30 mg/kg-KET promotes these long-lasting changes in the excitatory outflow from mPFC after acutely blocking the hunger and wheel-access activated synaptic circuits underlying maladaptive behaviors during ABA.
Collapse
|
5
|
Temizer R, Chen YW, Aoki C. Individual differences in the positive outcome from adolescent ketamine treatment in a female mouse model of anorexia nervosa involve drebrin A at excitatory synapses of the medial prefrontal cortex. Synapse 2023; 77:e22253. [PMID: 36121749 PMCID: PMC9691557 DOI: 10.1002/syn.22253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/16/2022] [Accepted: 09/04/2022] [Indexed: 01/29/2023]
Abstract
Anorexia nervosa (AN) is a mental illness with the highest rates of mortality and relapse, and no approved pharmacological treatment. Using an animal model of AN, called activity-based anorexia (ABA), we showed earlier that a single intraperitoneal injection of ketamine at a dose of 30 mg/kg (30mgKET), but not 3 mg/kg (3mgKET), has a long-lasting effect upon adolescent females of ameliorating anorexia-like symptoms through the following changes: enhanced food consumption and body weight; reduced running and anxiety-like behavior. However, there were also individual differences in the drug's efficacy. We hypothesized that individual differences in ketamine's ameliorative effects involve drebrin A, an F-actin-binding protein known to be required for the activity-dependent trafficking of NMDA receptors (NMDARs). We tested this hypothesis by electron microscopic quantifications of drebrin A immunoreactivity at excitatory synapses of pyramidal neurons (PN) and GABAergic interneurons (GABA-IN) in deep layer 1 of prefrontal cortex (PFC) of these mice. Results reveal that (1) the areal density of excitatory synapses on GABA-IN is greater for the 30mgKET group than the 3mgKET group; (2) the proportion of drebrin A+ excitatory synapses is greater for both PN and GABA-IN of 30mgKET than 3mgKET group. Correlation analyses with behavioral measurements revealed that (3) 30mgKET's protection is associated with reduced levels of drebrin A in the cytoplasm of GABA-IN and higher levels at extrasynaptic membranous sites of PN and GABA-IN; (5) altogether pointing to 30mgKET-induced homeostatic plasticity that engages drebrin A at excitatory synapses of both PN and GABA-IN.
Collapse
Affiliation(s)
- Rose Temizer
- Center for Neural Science, New York University, New York City, New York, USA
| | - Yi-Wen Chen
- Center for Neural Science, New York University, New York City, New York, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, New York City, New York, USA
| |
Collapse
|
6
|
Aoki C, Santiago AN. Pathway-specific GABAergic inhibition contributes to the gain of resilience against anorexia-like behavior of adolescent female mice. Front Behav Neurosci 2022; 16:990354. [PMID: 36311865 PMCID: PMC9606475 DOI: 10.3389/fnbeh.2022.990354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Anorexia nervosa is one of the most debilitating mental illnesses that emerges during adolescence, especially among females. Anorexia nervosa is characterized by severe voluntary food restriction and compulsive exercising, which combine to cause extreme body weight loss. We use activity-based anorexia (ABA), an animal model, to investigate the neurobiological bases of vulnerability to anorexia nervosa. This is a Mini-Review, focused on new ideas that have emerged based on recent findings from the Aoki Lab. Our findings point to the cellular and molecular underpinnings of three ABA phenomena: (1) age-dependence of ABA vulnerability; (2) individual differences in the persistence of ABA vulnerability during adolescence; (3) GABAergic synaptic plasticity in the hippocampus and the prefrontal cortex that contributes to the suppression of the maladaptive anorexia-like behaviors. We also include new data on the contribution to ABA vulnerability by cell type-specific knockdown of a GABA receptor subunit, α4, in dorsal hippocampus. Although the GABA system recurs as a key player in the gain of ABA resilience, the data predict why targeting the GABA system, singularly, may have only limited efficacy in treating anorexia nervosa. This is because boosting the GABAergic system may suppress the maladaptive behavior of over-exercising but could also suppress food consumption. We hypothesize that a sub-anesthetic dose of ketamine may be the magic bullet, since a single injection of this drug to mid-adolescent female mice undergoing ABA induction enhances food consumption and reduces wheel running, thereby reducing body weight loss through plasticity at excitatory synaptic inputs to both excitatory and inhibitory neurons. The same treatment is not as efficacious during late adolescence but multiple dosing of ketamine can suppress ABA vulnerability partially. This caveat underscores the importance of conducting behavioral, synaptic and molecular analyses across multiple time points spanning the developmental stage of adolescence and into adulthood. Since this is a Mini-Review, we recommend additional literature for readers seeking more comprehensive reviews on these subjects.
Collapse
Affiliation(s)
- Chiye Aoki
- Center for Neural Science, New York University, New York, NY, United States
- NYU Langone Medical Center, Neuroscience Institute, New York, NY, United States
| | | |
Collapse
|
7
|
Du M, Santiago A, Akiz C, Aoki C. GABAergic interneurons' feedback inhibition of dorsal raphe-projecting pyramidal neurons of the medial prefrontal cortex suppresses feeding of adolescent female mice undergoing activity-based anorexia. Brain Struct Funct 2022; 227:2127-2151. [PMID: 35635653 DOI: 10.1007/s00429-022-02507-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/30/2022] [Indexed: 12/19/2022]
Abstract
Anorexia Nervosa (AN) is characterized by voluntary food restriction, excessive exercise and extreme body weight loss. AN is particularly prevalent among adolescent females experiencing stress-induced anxiety. We used the animal model, activity-based anorexia (ABA), which captures these characteristics of AN, to reveal the neurobiology underlying individual differences in AN vulnerability. Dorsal raphe (DR) regulates feeding and is recruited when coping inescapable stress. Through chemogenetic activation, we investigated the role of mPFC pyramidal neurons projecting to DR (mPFC→DR) in adolescent female mice's decision to eat or exercise following ABA induction. Although the DREADD ligand C21 could activate 44% of the mPFC→DR neurons, this did not generate significant group mean difference in the amount of food intake, compared to control ABA mice without chemogenetic activation. However, analysis of individuals' responses to C21 revealed a significant, positive correlation between food intake and mPFC→DR neurons that co-express cFos, a marker for neuronal activity. cFos expression by GABAergic interneurons (GABA-IN) in mPFC was significantly greater than that for the control ABA mice, indicating recruitment of GABA-IN by mPFC→DR neurons. Electron microscopic immunohistochemistry revealed that GABAergic innervation is 60% greater for the PFC→DR neurons than adjacent Layer 5 pyramidal neurons without projections to DR. Moreover, individual differences in this innervation correlated negatively with food intake specifically on the day of C21 administration. We propose that C21 activates two antagonistic pathways: (1) PFC→DR pyramidal neurons that promote food intake; and (2) GABA-IN in the mPFC that dampen food intake through feedback inhibition of mPFC→DR neurons.
Collapse
Affiliation(s)
- Muzi Du
- Center for Neural Science, New York University, New York, NY, 10003, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Adrienne Santiago
- Center for Neural Science, New York University, New York, NY, 10003, USA.,New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cenk Akiz
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, NY, 10003, USA. .,Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
8
|
Mottarlini F, Targa G, Bottan G, Tarenzi B, Fumagalli F, Caffino L. Cortical reorganization of the glutamate synapse in the activity-based anorexia rat model: Impact on cognition. J Neurochem 2022; 161:350-365. [PMID: 35257377 PMCID: PMC9313878 DOI: 10.1111/jnc.15605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 12/01/2022]
Abstract
Patients suffering from anorexia nervosa (AN) display altered neural activity, morphological, and functional connectivity in the fronto-striatal circuit. In addition, hypoglutamatergic transmission and aberrant excitability of the medial prefrontal cortex (mPFC) observed in AN patients might underpin cognitive deficits that fuel the vicious cycle of dieting behavior. To provide a molecular mechanism, we employed the activity-based anorexia (ABA) rat model, which combines the two hallmarks of AN (i.e., caloric restriction and intense physical exercise), to evaluate structural remodeling together with alterations in the glutamatergic signaling in the mPFC and their impact on temporal memory, as measured by the temporal order object recognition (TOOR) test. Our data indicate that the combination of caloric restriction and intense physical exercise altered the homeostasis of the glutamate synapse and reduced spine density in the mPFC. These events, paralleled by an impairment in recency discrimination in the TOOR test, are associated with the ABA endophenotype. Of note, after a 7-day recovery period, body weight was recovered and the mPFC structure normalized but ABA rats still exhibited reduced post-synaptic stability of AMPA and NMDA glutamate receptors associated with cognitive dysfunction. Taken together, these data suggest that the combination of reduced food intake and hyperactivity affects the homeostasis of the excitatory synapse in the mPFC contributing to maintain the aberrant behaviors observed in AN patients. Our findings, by identifying novel potential targets of AN, may contribute to more effectively direct the therapeutic interventions to ameliorate, at least, the cognitive effects of this psychopathology.
Collapse
Affiliation(s)
- Francesca Mottarlini
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Giorgia Bottan
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Benedetta Tarenzi
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| |
Collapse
|