1
|
Bogaj K, Urban‐Ciecko J. Inhibition of BK channels by GABAb receptors enhances intrinsic excitability of layer 2/3 vasoactive intestinal polypeptide-expressing interneurons in mouse neocortex. J Physiol 2025; 603:1171-1196. [PMID: 39901494 PMCID: PMC11870045 DOI: 10.1113/jp286439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
GABAb receptors (GABAbRs) affect many signalling pathways, and hence the net effect of the activity of these receptors depends upon the specific ion channels that they are linked to, leading to different effects on specific neuronal populations. Typically, GABAbRs suppress neuronal activity in the cerebral cortex. Previously, we found that neocortical parvalbumin-expressing cells are strongly inhibited through GABAbRs, whereas somatostatin interneurons are immune to this modulation. Here, we employed in vitro whole-cell patch-clamp recordings to study whether GABAbRs modulate the activity of vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) in layer (L) 2/3 of the mouse primary somatosensory cortex. Utilizing machine learning algorithms (hierarchical clustering and principal component analysis), we revealed that one VIP-IN cluster (about 68% of all VIP-INs) was sensitive to GABAbR activation. Paradoxically, when recordings were performed in standard conditions with high extracellular Ca2+ level, GABAbRs indirectly inhibited the activity of large conductance voltage- and calcium-activated potassium (BK) channels and reduced GABAaR-mediated inhibition, leading to an increase in intrinsic excitability of these interneurons. However, a classical inhibitory effect of GABAbRs on L2/3 VIP-INs was observed in modified artificial cerebrospinal fluid with physiological (low) Ca2+ concentration. Our results are essential for a deeper understanding of mechanisms underlying the modulation of cortical networks. KEY POINTS: Layer 2/3 vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) in the mouse somatosensory cortex cluster into three electrophysiological types differentially sensitive to GABAb receptors (GABAbRs). The majority of VIP-INs (type 1, about 68% of all VIP-INs) are regulated through pre- and postsynaptic GABAbRs, while a subset of these interneurons (types 2 and 3) is controlled only presynaptically. The net effect of GABAbR activation on VIP-IN excitability depends on [Ca2+] in artificial cerebrospinal fluid. When [Ca2+] is high (2.5 mM), GABAbRs indirectly inhibit BK channels and reduce GABAaR inhibition leading to increased intrinsic excitability of type 1 VIP-INs. When [Ca2+] is low (1 mM), which is more physiological, BK channels do not regulate the intrinsic excitability of VIP-INs and thus postsynaptic GABAbRs canonically decrease the intrinsic excitability of type 1 VIP-INs.
Collapse
Affiliation(s)
- Karolina Bogaj
- Laboratory of Electrophysiology, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Joanna Urban‐Ciecko
- Laboratory of Electrophysiology, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
2
|
Yang D, Qi G, Delev D, Maskos U, Feldmeyer D. Linking altered neuronal and synaptic properties to nicotinic receptor Alpha5 subunit gene dysfunction: a translational investigation in rat mPFC and human cortical layer 6. Transl Psychiatry 2025; 15:12. [PMID: 39824806 PMCID: PMC11748723 DOI: 10.1038/s41398-025-03230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
Genetic variation in the α5 nicotinic acetylcholine receptor (nAChR) subunit of mice results in behavioral deficits linked to the prefrontal cortex (PFC). rs16969968 is the primary Single Nucleotide Polymorphism (SNP) in CHRNA5 strongly associated with nicotine dependence and schizophrenia in humans. We performed single cell-electrophysiology combined with morphological reconstructions on layer 6 (L6) excitatory neurons in the medial PFC (mPFC) of wild type (WT) rats, rats carrying the human coding polymorphism rs16969968 in Chrna5 and α5 knockout (KO) rats. Neuronal and synaptic properties were determined for the three rat genotypes. Compared with neurons in WT rats, L6 regular spiking (RS) neurons in the α5KO group exhibited altered electrophysiological properties, while those in α5SNP rats remained unchanged. L6 RS neurons in mPFC of α5SNP and α5KO rats differed from WT rats in dendritic morphology, spine density and spontaneous synaptic activity. Galantamine was applied to identified L6 neuron populations to specifically boost the nicotinic responses mediated by α5*nAChRs. Remarkably, it restored nicotinic modulation in neurons of α5SNP rats, while no such effect was observed in α5KO rats. Additionally, galantamine functioned as a positive allosteric modulator of α5*nAChRs in RS neurons, both in rat and human cortical L6, but did not affect burst spiking (BS) neurons. Our findings suggest that dysfunction in the α5 subunit gene leads to aberrant neuronal and synaptic properties, shedding light on the underlying mechanisms of cognitive deficits observed in human populations carrying α5SNPs. They highlight a potential pharmacological target for restoring the relevant behavioral output.
Collapse
Affiliation(s)
- Danqing Yang
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany.
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen, Germany.
| | - Guanxiao Qi
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany
| | - Daniel Delev
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Uwe Maskos
- Institut Pasteur, Université de Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Paris, Cedex 15, France
| | - Dirk Feldmeyer
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany.
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen, Germany.
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany.
| |
Collapse
|
3
|
Qi G, Yang D, Messore F, Bast A, Yáñez F, Oberlaender M, Feldmeyer D. FOXP2-immunoreactive corticothalamic neurons in neocortical layers 6a and 6b are tightly regulated by neuromodulatory systems. iScience 2025; 28:111646. [PMID: 39868047 PMCID: PMC11758397 DOI: 10.1016/j.isci.2024.111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/25/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
The FOXP2/Foxp2 gene, linked to fine motor control in vertebrates, is a potential candidate gene thought to play a prominent role in human language production. It is expressed specifically in a subset of corticothalamic (CT) pyramidal cells (PCs) in layer 6 (L6) of the neocortex. These L6 FOXP2+ PCs project exclusively to the thalamus, with L6a PCs targeting first-order or both first- and higher-order thalamic nuclei, whereas L6b PCs connect only to higher-order nuclei. Synaptic connections established by both L6a and L6b FOXP2+ PCs have low release probabilities and respond strongly to acetylcholine (ACh), triggering action potential (AP) trains. Notably, L6b FOXP2- PCs are more sensitive to ACh than L6a, and L6b FOXP2+ PCs also react robustly to dopamine. Thus, FOXP2 labels L6a and L6b CT PCs, which are precisely regulated by neuromodulators, highlighting their roles as potent modulators of thalamic activity.
Collapse
Affiliation(s)
- Guanxiao Qi
- Institute of Neuroscience and Medicine 10, Research Centre Jülich, 52425 Jülich, Germany
| | - Danqing Yang
- Institute of Neuroscience and Medicine 10, Research Centre Jülich, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH University Hospital, 52074 Aachen, Germany
| | - Fernando Messore
- In Silico Brain Sciences Group, Max Planck Institute for Neurobiology of Behaviour – Caesar, 53175 Bonn, Germany
- International Max Planck Research School (IMPRS) for Brain and Behavior, 53175 Bonn, Germany
| | - Arco Bast
- In Silico Brain Sciences Group, Max Planck Institute for Neurobiology of Behaviour – Caesar, 53175 Bonn, Germany
- International Max Planck Research School (IMPRS) for Brain and Behavior, 53175 Bonn, Germany
| | - Felipe Yáñez
- In Silico Brain Sciences Group, Max Planck Institute for Neurobiology of Behaviour – Caesar, 53175 Bonn, Germany
- International Max Planck Research School (IMPRS) for Intelligent Systems, 72076 Tübingen, Germany
| | - Marcel Oberlaender
- In Silico Brain Sciences Group, Max Planck Institute for Neurobiology of Behaviour – Caesar, 53175 Bonn, Germany
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 Amsterdam, the Netherlands
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine 10, Research Centre Jülich, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH University Hospital, 52074 Aachen, Germany
- Jülich-Aachen-Research Alliance ‘Brain’ - Translational Brain Medicine, Aachen, Germany
| |
Collapse
|
4
|
Mahon S. Variation and convergence in the morpho-functional properties of the mammalian neocortex. Front Syst Neurosci 2024; 18:1413780. [PMID: 38966330 PMCID: PMC11222651 DOI: 10.3389/fnsys.2024.1413780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Man's natural inclination to classify and hierarchize the living world has prompted neurophysiologists to explore possible differences in brain organisation between mammals, with the aim of understanding the diversity of their behavioural repertoires. But what really distinguishes the human brain from that of a platypus, an opossum or a rodent? In this review, we compare the structural and electrical properties of neocortical neurons in the main mammalian radiations and examine their impact on the functioning of the networks they form. We discuss variations in overall brain size, number of neurons, length of their dendritic trees and density of spines, acknowledging their increase in humans as in most large-brained species. Our comparative analysis also highlights a remarkable consistency, particularly pronounced in marsupial and placental mammals, in the cell typology, intrinsic and synaptic electrical properties of pyramidal neuron subtypes, and in their organisation into functional circuits. These shared cellular and network characteristics contribute to the emergence of strikingly similar large-scale physiological and pathological brain dynamics across a wide range of species. These findings support the existence of a core set of neural principles and processes conserved throughout mammalian evolution, from which a number of species-specific adaptations appear, likely allowing distinct functional needs to be met in a variety of environmental contexts.
Collapse
Affiliation(s)
- Séverine Mahon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
5
|
Ding C, Yang D, Feldmeyer D. Adenosinergic Modulation of Layer 6 Microcircuitry in the Medial Prefrontal Cortex Is Specific to Presynaptic Cell Type. J Neurosci 2024; 44:e1606232023. [PMID: 38429106 PMCID: PMC11007316 DOI: 10.1523/jneurosci.1606-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/03/2024] Open
Abstract
Adenosinergic modulation in the PFC is recognized for its involvement in various behavioral aspects including sleep homoeostasis, decision-making, spatial working memory and anxiety. While the principal cells of layer 6 (L6) exhibit a significant morphological diversity, the detailed cell-specific regulatory mechanisms of adenosine in L6 remain unexplored. Here, we quantitatively analyzed the morphological and electrophysiological parameters of L6 neurons in the rat medial prefrontal cortex (mPFC) using whole-cell recordings combined with morphological reconstructions. We were able to identify two different morphological categories of excitatory neurons in the mPFC of both juvenile and young adult rats with both sexes. These categories were characterized by a leading dendrite that was oriented either upright (toward the pial surface) or inverted (toward the white matter). These two excitatory neuron subtypes exhibited different electrophysiological and synaptic properties. Adenosine at a concentration of 30 µM indiscriminately suppressed connections with either an upright or an inverted presynaptic excitatory neuron. However, using lower concentrations of adenosine (10 µM) revealed that synapses originating from L6 upright neurons have a higher sensitivity to adenosine-induced inhibition of synaptic release. Adenosine receptor activation causes a reduction in the probability of presynaptic neurotransmitter release that could be abolished by specifically blocking A1 adenosine receptors (A1ARs) using 8-cyclopentyltheophylline (CPT). Our results demonstrate a differential expression level of A1ARs at presynaptic sites of two functionally and morphologically distinct subpopulations of L6 principal neurons, suggesting the intricate functional role of adenosine in neuronal signaling in the brain.
Collapse
Affiliation(s)
- Chao Ding
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich 52425, Germany
| | - Danqing Yang
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich 52425, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Dirk Feldmeyer
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich 52425, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen 52074, Germany
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen 52074, Germany
| |
Collapse
|
6
|
de Kock CPJ, Feldmeyer D. Shared and divergent principles of synaptic transmission between cortical excitatory neurons in rodent and human brain. Front Synaptic Neurosci 2023; 15:1274383. [PMID: 37731775 PMCID: PMC10508294 DOI: 10.3389/fnsyn.2023.1274383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Information transfer between principal neurons in neocortex occurs through (glutamatergic) synaptic transmission. In this focussed review, we provide a detailed overview on the strength of synaptic neurotransmission between pairs of excitatory neurons in human and laboratory animals with a specific focus on data obtained using patch clamp electrophysiology. We reach two major conclusions: (1) the synaptic strength, measured as unitary excitatory postsynaptic potential (or uEPSP), is remarkably consistent across species, cortical regions, layers and/or cell-types (median 0.5 mV, interquartile range 0.4-1.0 mV) with most variability associated with the cell-type specific connection studied (min 0.1-max 1.4 mV), (2) synaptic function cannot be generalized across human and rodent, which we exemplify by discussing the differences in anatomical and functional properties of pyramidal-to-pyramidal connections within human and rodent cortical layers 2 and 3. With only a handful of studies available on synaptic transmission in human, it is obvious that much remains unknown to date. Uncovering the shared and divergent principles of synaptic transmission across species however, will almost certainly be a pivotal step toward understanding human cognitive ability and brain function in health and disease.
Collapse
Affiliation(s)
- Christiaan P. J. de Kock
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dirk Feldmeyer
- Research Center Juelich, Institute of Neuroscience and Medicine, Jülich, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen, Germany
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany
| |
Collapse
|