1
|
Yang Y, Leopold DA, Duyn JH, Sipe GO, Liu X. Sensory Encoding Alternates With Hippocampal Ripples across Cycles of Forebrain Spiking Cascades. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406224. [PMID: 40017060 PMCID: PMC12021030 DOI: 10.1002/advs.202406224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/08/2024] [Indexed: 03/01/2025]
Abstract
The brain's response to external events depends on its internal arousal states, which are dynamically governed by neuromodulatory systems and have recently been linked to coordinated spike timing cascades in widespread brain networks. At rest, both arousal fluctuations and spiking cascades are evident throughout the forebrain and play out over multisecond time scales. Here, by analyzing large-scale neural recording data collected by the Allen Institute, it is demonstrated that these intrinsic processes persist across the mouse brain even during periods of continuous visual stimulation. In the stationary animal, each quasi-periodic cascade cycle systematically influenced 1) the efficacy of encoding in visually responsive brain areas and 2) the incidence of memory-related hippocampal ripples. During this cycle, the phase of high arousal is marked by high efficiency in visual encoding whereas the phase of low arousal is marked by the occurrence of hippocampal ripples. However, during bouts of active locomotion, this cycle is abolished and brain maintained a state of elevated visual coding efficiency, with ripples being nearly absent. It is hypothesized that the infra-slow cascade dynamics reflect an adaptive cycle of alternating exteroceptive sensory sampling and internal mnemonic function that persistently pervades the forebrain, only stopping during active exploration of the environment.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - David A. Leopold
- Neurophysiology Imaging FacilityNational Institute of Mental HealthNational Institute of Neurological. Disorders and Strokeand National Eye InstituteNational Institutes of HealthBethesdaMD20892USA
- Section on Cognitive Neurophysiology and ImagingSystems Neurodevelopment LaboratoryNational Institute of Mental HealthNational Institutes of HealthBethesdaMD20892USA
| | - Jeff H. Duyn
- Advanced MRI SectionLaboratory of Functional and Molecular ImagingNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMD20892USA
| | - Grayson O. Sipe
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Xiao Liu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Institute for Computational and Data SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
2
|
Chen X, Cramer SR, Chan DC, Han X, Zhang N. Sequential Deactivation Across the Hippocampus-Thalamus-mPFC Pathway During Loss of Consciousness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406320. [PMID: 39248326 PMCID: PMC11558098 DOI: 10.1002/advs.202406320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Indexed: 09/10/2024]
Abstract
How consciousness is lost in states such as sleep or anesthesia remains a mystery. To gain insight into this phenomenon, concurrent recordings of electrophysiology signals in the anterior cingulate cortex and whole-brain functional magnetic resonance imaging (fMRI) are conducted in rats exposed to graded propofol, undergoing the transition from consciousness to unconsciousness. The results reveal that upon the loss of consciousness (LOC), there is a sharp increase in low-frequency power of the electrophysiological signal. Additionally, fMRI signals exhibit a cascade of deactivation across a pathway including the hippocampus, thalamus, and medial prefrontal cortex (mPFC) surrounding the moment of LOC, followed by a broader increase in brain activity across the cortex during sustained unconsciousness. Furthermore, sliding window analysis demonstrates a temporary increase in synchrony of fMRI signals across the hippocampus-thalamus-mPFC pathway preceding LOC. These data suggest that LOC may be triggered by sequential activities in the hippocampus, thalamus, and mPFC, while wide-spread activity increases in other cortical regions commonly observed during anesthesia-induced unconsciousness may be a consequence, rather than a cause of LOC. Taken together, the study identifies a cascade of neural events unfolding as the brain transitions into unconsciousness, offering insight into the systems-level neural mechanisms underpinning LOC.
Collapse
Affiliation(s)
- Xiaoai Chen
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Samuel R. Cramer
- The Neuroscience Graduate ProgramThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Dennis C.Y. Chan
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Xu Han
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Nanyin Zhang
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- The Neuroscience Graduate ProgramThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neurotechnology in Mental Health ResearchThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
3
|
Chen X, Cramer SR, Chan DCY, Han X, Zhang N. Sequential deactivation across the thalamus-hippocampus-mPFC pathway during loss of consciousness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594986. [PMID: 38826282 PMCID: PMC11142108 DOI: 10.1101/2024.05.20.594986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
How consciousness is lost in states such as sleep or anesthesia remains a mystery. To gain insight into this phenomenon, we conducted concurrent recordings of electrophysiology signals in the anterior cingulate cortex and whole-brain functional magnetic resonance imaging (fMRI) in rats exposed to graded propofol, undergoing the transition from consciousness to unconsciousness. Our results reveal that upon the loss of consciousness (LOC), as indicated by the loss of righting reflex, there is a sharp increase in low-frequency power of the electrophysiological signal. Additionally, simultaneously measured fMRI signals exhibit a cascade of deactivation across a pathway including the hippocampus, thalamus, and medial prefrontal cortex (mPFC) surrounding the moment of LOC, followed by a broader increase in brain activity across the cortex during sustained unconsciousness. Furthermore, sliding window analysis demonstrates a temporary increase in synchrony of fMRI signals across the hippocampus-thalamus-mPFC pathway preceding LOC. These data suggest that LOC might be triggered by sequential activities in the hippocampus, thalamus and mPFC, while wide-spread activity increases in other cortical regions commonly observed during anesthesia-induced unconsciousness might be a consequence, rather than a cause of LOC. Taken together, our study identifies a cascade of neural events unfolding as the brain transitions into unconsciousness, offering critical insight into the systems-level neural mechanisms underpinning LOC.
Collapse
|
4
|
Gil R, Valente M, Shemesh N. Rat superior colliculus encodes the transition between static and dynamic vision modes. Nat Commun 2024; 15:849. [PMID: 38346973 PMCID: PMC10861507 DOI: 10.1038/s41467-024-44934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
The visual continuity illusion involves a shift in visual perception from static to dynamic vision modes when the stimuli arrive at high temporal frequency, and is critical for recognizing objects moving in the environment. However, how this illusion is encoded across the visual pathway remains poorly understood, with disparate frequency thresholds at retinal, cortical, and behavioural levels suggesting the involvement of other brain areas. Here, we employ a multimodal approach encompassing behaviour, whole-brain functional MRI, and electrophysiological measurements, for investigating the encoding of the continuity illusion in rats. Behavioural experiments report a frequency threshold of 18±2 Hz. Functional MRI reveal that superior colliculus signals transition from positive to negative at the behaviourally-driven threshold, unlike thalamic and cortical areas. Electrophysiological recordings indicate that these transitions are underpinned by neural activation/suppression. Lesions in the primary visual cortex reveal this effect to be intrinsic to the superior colliculus (under a cortical gain effect). Our findings highlight the superior colliculus' crucial involvement in encoding temporal frequency shifts, especially the change from static to dynamic vision modes.
Collapse
Affiliation(s)
- Rita Gil
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Mafalda Valente
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
5
|
Mandino F, Vujic S, Grandjean J, Lake EMR. Where do we stand on fMRI in awake mice? Cereb Cortex 2024; 34:bhad478. [PMID: 38100331 PMCID: PMC10793583 DOI: 10.1093/cercor/bhad478] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Imaging awake animals is quickly gaining traction in neuroscience as it offers a means to eliminate the confounding effects of anesthesia, difficulties of inter-species translation (when humans are typically imaged while awake), and the inability to investigate the full range of brain and behavioral states in unconscious animals. In this systematic review, we focus on the development of awake mouse blood oxygen level dependent functional magnetic resonance imaging (fMRI). Mice are widely used in research due to their fast-breeding cycle, genetic malleability, and low cost. Functional MRI yields whole-brain coverage and can be performed on both humans and animal models making it an ideal modality for comparing study findings across species. We provide an analysis of 30 articles (years 2011-2022) identified through a systematic literature search. Our conclusions include that head-posts are favorable, acclimation training for 10-14 d is likely ample under certain conditions, stress has been poorly characterized, and more standardization is needed to accelerate progress. For context, an overview of awake rat fMRI studies is also included. We make recommendations that will benefit a wide range of neuroscience applications.
Collapse
Affiliation(s)
- Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Stella Vujic
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Radboud University, Nijmegen, The Netherlands
- Department for Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, United States
| |
Collapse
|
6
|
Yang Y, Leopold DA, Duyn JH, Sipe GO, Liu X. Intrinsic forebrain arousal dynamics governs sensory stimulus encoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560900. [PMID: 37986990 PMCID: PMC10659438 DOI: 10.1101/2023.10.04.560900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The neural encoding of sensory stimuli is subject to the brain's internal circuit dynamics. Recent work has demonstrated that the resting brain exhibits widespread, coordinated activity that plays out over multisecond timescales in the form of quasi-periodic spiking cascades. Here we demonstrate that these intrinsic dynamics persist during the presentation of visual stimuli and markedly influence the efficacy of feature encoding in the visual cortex. During periods of passive viewing, the sensory encoding of visual stimuli was determined by quasi-periodic cascade cycle evolving over several seconds. During this cycle, high efficiency encoding occurred during peak arousal states, alternating in time with hippocampal ripples, which were most frequent in low arousal states. However, during bouts of active locomotion, these arousal dynamics were abolished: the brain remained in a state in which visual coding efficiency remained high and ripples were absent. We hypothesize that the brain's observed dynamics during awake, passive viewing reflect an adaptive cycle of alternating exteroceptive sensory sampling and internal mnemonic function.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David A. Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological. Disorders and Stroke, and National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeff H. Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grayson O. Sipe
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
7
|
Gheres KW, Ünsal HS, Han X, Zhang Q, Turner KL, Zhang N, Drew PJ. Arousal state transitions occlude sensory-evoked neurovascular coupling in neonatal mice. Commun Biol 2023; 6:738. [PMID: 37460780 PMCID: PMC10352318 DOI: 10.1038/s42003-023-05121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
In the adult sensory cortex, increases in neural activity elicited by sensory stimulation usually drive vasodilation mediated by neurovascular coupling. However, whether neurovascular coupling is the same in neonatal animals as adults is controversial, as both canonical and inverted responses have been observed. We investigated the nature of neurovascular coupling in unanesthetized neonatal mice using optical imaging, electrophysiology, and BOLD fMRI. We find in neonatal (postnatal day 15, P15) mice, sensory stimulation induces a small increase in blood volume/BOLD signal, often followed by a large decrease in blood volume. An examination of arousal state of the mice revealed that neonatal mice were asleep a substantial fraction of the time, and that stimulation caused the animal to awaken. As cortical blood volume is much higher during REM and NREM sleep than the awake state, awakening occludes any sensory-evoked neurovascular coupling. When neonatal mice are stimulated during an awake period, they showed relatively normal (but slowed) neurovascular coupling, showing that that the typically observed constriction is due to arousal state changes. These result show that sleep-related vascular changes dominate over any sensory-evoked changes, and hemodynamic measures need to be considered in the context of arousal state changes.
Collapse
Affiliation(s)
- Kyle W Gheres
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hayreddin S Ünsal
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Electrical and Electronics Engineering, Abdullah Gul University, Kayseri, Türkiye
| | - Xu Han
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Qingguang Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kevin L Turner
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Patrick J Drew
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park, PA, 16802, USA.
- Departments of Neurosurgery and Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
8
|
Zhang Q, Cramer SR, Turner KL, Neuberger T, Drew PJ, Zhang N. High-frequency neuronal signal better explains multi-phase BOLD response. Neuroimage 2023; 268:119887. [PMID: 36681134 PMCID: PMC9962576 DOI: 10.1016/j.neuroimage.2023.119887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Visual stimulation-evoked blood-oxygen-level dependent (BOLD) responses can exhibit more complex temporal dynamics than a simple monophasic response. For instance, BOLD responses sometimes include a phase of positive response followed by a phase of post-stimulus undershoot. Whether the BOLD response during these phases reflects the underlying neuronal signal fluctuations or is contributed by non-neuronal physiological factors remains elusive. When presenting blocks of sustained (i.e. DC) light ON-OFF stimulations to unanesthetized rats, we observed that the response following a decrease in illumination (i.e. OFF stimulation-evoked BOLD response) in the visual cortices displayed reproducible multiple phases, including an initial positive BOLD response, followed by an undershoot and then an overshoot before the next ON trial. This multi-phase BOLD response did not result from the entrainment of the periodic stimulation structure. When we measured the neural correlates of these responses, we found that the high-frequency band from the LFP power (300 - 3000 Hz, multi-unit activity (MUA)), but not the power in the gamma band (30 - 100 Hz) exhibited the same multiphasic dynamics as the BOLD signal. This study suggests that the post-stimulus phases of the BOLD response can be better explained by the high-frequency neuronal signal.
Collapse
Affiliation(s)
- Qingqing Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Samuel R Cramer
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Kevin L Turner
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Thomas Neuberger
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA
| | - Patrick J Drew
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA; Departments of Engineering Science and Mechanics, Neurosurgery, and Biology, The Pennsylvania State University, University Park, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA.
| |
Collapse
|
9
|
Gheres KW, Ünsal HS, Han X, Zhang Q, Turner KL, Zhang N, Drew PJ. Arousal state transitions occlude sensory-evoked neurovascular coupling in neonatal mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529057. [PMID: 36824895 PMCID: PMC9949139 DOI: 10.1101/2023.02.18.529057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
In the adult sensory cortex, increases in neural activity elicited by sensory stimulation usually drives vasodilation mediated by neurovascular coupling. However, whether neurovascular coupling is the same in neonatal animals as adults is controversial, as both canonical and inverted responses have been observed. We investigated the nature of neurovascular coupling in unanesthetized neonatal mice using optical imaging, electrophysiology, and BOLD fMRI. We find in neonatal (postnatal day 15, P15) mice, sensory stimulation induces a small increase in blood volume/BOLD signal, often followed by a large decrease in blood volume. An examination of arousal state of the mice revealed that neonatal mice were asleep a substantial fraction of the time, and that stimulation caused the animal to awaken. As cortical blood volume is much higher during REM and NREM sleep than the awake state, awakening occludes any sensory-evoked neurovascular coupling. When neonatal mice are stimulated during an awake period, they showed relatively normal (but slowed) neurovascular coupling, showing that that the typically observed constriction is due to arousal state changes. These result show that sleep-related vascular changes dominate over any sensory-evoked changes, and hemodynamic measures need to be considered in the context of arousal state changes. Significance Statement In the adult brain, increases in neural activity are often followed by vasodilation, allowing activity to be monitored using optical or magnetic resonance imaging. However, in neonates, sensory stimulation can drive vasoconstriction, whose origin was not understood. We used optical and magnetic resonance imaging approaches to investigate hemodynamics in neonatal mice. We found that sensory-induced vasoconstriction occurred when the mice were asleep, as sleep is associated with dilation of the vasculature of the brain relative to the awake state. The stimulus awakens the mice, causing a constriction due to the arousal state change. Our study shows the importance of monitoring arousal state, particularly when investigating subjects that may sleep, and the dominance arousal effects on brain hemodynamics.
Collapse
|
10
|
Turner KL, Gheres KW, Drew PJ. Relating Pupil Diameter and Blinking to Cortical Activity and Hemodynamics across Arousal States. J Neurosci 2023; 43:949-964. [PMID: 36517240 PMCID: PMC9908322 DOI: 10.1523/jneurosci.1244-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Arousal state affects neural activity and vascular dynamics in the cortex, with sleep associated with large changes in the local field potential and increases in cortical blood flow. We investigated the relationship between pupil diameter and blink rate with neural activity and blood volume in the somatosensory cortex in male and female unanesthetized, head-fixed mice. We monitored these variables while the mice were awake, during periods of rapid eye movement (REM), and non-rapid eye movement (NREM) sleep. Pupil diameter was smaller during sleep than in the awake state. Changes in pupil diameter were coherent with both gamma-band power and blood volume in the somatosensory cortex, but the strength and sign of this relationship varied with arousal state. We observed a strong negative correlation between pupil diameter and both gamma-band power and blood volume during periods of awake rest and NREM sleep, although the correlations between pupil diameter and these signals became positive during periods of alertness, active whisking, and REM. Blinking was associated with increases in arousal and decreases in blood volume when the mouse was asleep. Bilateral coherence in gamma-band power and in blood volume dropped following awake blinking, indicating a reset of neural and vascular activity. Using only eye metrics (pupil diameter and eye motion), we could determine the arousal state of the mouse ('Awake,' 'NREM,' 'REM') with >90% accuracy with a 5 s resolution. There is a strong relationship between pupil diameter and hemodynamics signals in mice, reflecting the pronounced effects of arousal on cerebrovascular dynamics.SIGNIFICANCE STATEMENT Determining arousal state is a critical component of any neuroscience experiment. Pupil diameter and blinking are influenced by arousal state, as are hemodynamics signals in the cortex. We investigated the relationship between cortical hemodynamics and pupil diameter and found that pupil diameter was strongly related to the blood volume in the cortex. Mice were more likely to be awake after blinking than before, and blinking resets neural activity. Pupil diameter and eye motion can be used as a reliable, noninvasive indicator of arousal state. As mice transition from wake to sleep and back again over a timescale of seconds, monitoring pupil diameter and eye motion permits the noninvasive detection of sleep events during behavioral or resting-state experiments.
Collapse
Affiliation(s)
- Kevin L Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Kyle W Gheres
- Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Departments of Engineering Science and Mechanics
| | - Patrick J Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Departments of Engineering Science and Mechanics
- Biology and Neurosurgery, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
11
|
Han X, Cramer SR, Zhang N. Deriving causal relationships in resting-state functional connectivity using SSFO-based optogenetic fMRI. J Neural Eng 2022; 19:10.1088/1741-2552/ac9d66. [PMID: 36301683 PMCID: PMC9681600 DOI: 10.1088/1741-2552/ac9d66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/25/2022] [Indexed: 01/07/2023]
Abstract
Objective.The brain network has been extensively studied as a collection of brain regions that are functionally inter-connected. However, the study of the causal relationship in brain-wide functional connectivity, which is critical to the brain function, remains challenging. We aim to examine the feasibility of using (SSFO)-based optogenetic functional magnetic resonance imaging to infer the causal relationship (i.e. directional information) in the brain network.Approach.We combined SSFO-based optogenetics with fMRI in a resting-state rodent model to study how a local increase of excitability affects brain-wide neural activity and resting-state functional connectivity (RSFC). We incorporated Pearson's correlation and partial correlation analyses in a graphic model to derive the directional information in connections exhibiting RSFC modulations.Main results. When the dentate gyrus (DG) was sensitized by SSFO activation, we found significantly changed activity and connectivity in several brain regions associated with the DG, particularly in the medial prefrontal cortex Our causal inference result shows an 84%-100% accuracy rate compared to the directional information based on anatomical tracing data.Significance.This study establishes a system to investigate the relationship between local region activity and RSFC modulation, and provides a way to analyze the underlying causal relationship between brain regions.
Collapse
Affiliation(s)
- Xu Han
- Graduate Program in Molecular, Cellular, and Integrative Biosciences, The Pennsylvania State University, University Park, USA
| | - Samuel R. Cramer
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA
| | - Nanyin Zhang
- Graduate Program in Molecular, Cellular, and Integrative Biosciences, The Pennsylvania State University, University Park, USA
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park, USA 16802
| |
Collapse
|
12
|
Beloate LN, Zhang N. Connecting the dots between cell populations, whole-brain activity, and behavior. NEUROPHOTONICS 2022; 9:032208. [PMID: 35350137 PMCID: PMC8957372 DOI: 10.1117/1.nph.9.3.032208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Simultaneously manipulating and monitoring both microscopic and macroscopic brain activity in vivo and identifying the linkage to behavior are powerful tools in neuroscience research. These capabilities have been realized with the recent technical advances of optogenetics and its combination with fMRI, here termed "opto-fMRI." Opto-fMRI allows for targeted brain region-, cell-type-, or projection-specific manipulation and targetedCa 2 + activity measurement to be linked with global brain signaling and behavior. We cover the history, technical advances, applications, and important considerations of opto-fMRI in anesthetized and awake rodents and the future directions of the combined techniques in neuroscience and neuroimaging.
Collapse
Affiliation(s)
- Lauren N. Beloate
- Pennsylvania State University, Department of Biomedical Engineering, Pennsylvania, United States
| | - Nanyin Zhang
- Pennsylvania State University, Department of Biomedical Engineering, Pennsylvania, United States
- Pennsylvania State University, Huck Institutes of the Life Sciences, Pennsylvania, United States
| |
Collapse
|
13
|
Cleppien D, Aedo-Jury F, Stroh A. Beyond correlation: functional OPTO-MAgnetic Integration Concept (OPTOMAIC) to reveal the brain-wide signature of local neuronal signals-of-interest. NEUROPHOTONICS 2022; 9:032213. [PMID: 35813935 PMCID: PMC9259002 DOI: 10.1117/1.nph.9.3.032213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Significance: Due to the vascular origin of the fMRI signal, the spatiotemporally precise interpretation of the blood oxygen level-dependent (BOLD) response as brain-wide correlate of neuronal activity is limited. Optical fiber-based neuronal calcium recordings provide a specific and temporally highly resolved signal yet lacking brain-wide coverage. The cross-modal integration of both modalities holds the potential for unique synergies. Aim: The OPTO-MAgnetic Integration Concept (OPTOMAIC) extracts the very fraction of the BOLD response that reacts to optically recorded neuronal signals-of-interest. Approach and Results: First, OPTOMAIC identifies the trials containing neuronal signal-of-interest (SoI) in the optical recordings. The long duration of the BOLD response is considered by calculating and thresholding neuronal interevent intervals. The resulting optical regression vector is probed for a positive BOLD response with single-event and single-voxel resolution, generating a BOLD response matrix containing only those events and voxels with both a neuronal SoI and a positive fMRI signal increase. Last, the onset of the BOLD response is being quantified, representing the section of the BOLD response most reliably reporting at least components of the neuronal signal. Conclusions: The seven OPTOMAIC steps result in a brain-wide BOLD signature reflecting the underlying neuronal SoI with utmost cross-modal integration depth and taking full advantage of the specific strengths of each method.
Collapse
Affiliation(s)
- Dirk Cleppien
- Leibniz Institute for Resilience Research, Mainz, Germany
| | | | - Albrecht Stroh
- Leibniz Institute for Resilience Research, Mainz, Germany
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
14
|
Sihn D, Kim SP. Spatio-Temporally Efficient Coding Assigns Functions to Hierarchical Structures of the Visual System. Front Comput Neurosci 2022; 16:890447. [PMID: 35694611 PMCID: PMC9184804 DOI: 10.3389/fncom.2022.890447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Hierarchical structures constitute a wide array of brain areas, including the visual system. One of the important questions regarding visual hierarchical structures is to identify computational principles for assigning functions that represent the external world to hierarchical structures of the visual system. Given that visual hierarchical structures contain both bottom-up and top-down pathways, the derived principles should encompass these bidirectional pathways. However, existing principles such as predictive coding do not provide an effective principle for bidirectional pathways. Therefore, we propose a novel computational principle for visual hierarchical structures as spatio-temporally efficient coding underscored by the efficient use of given resources in both neural activity space and processing time. This coding principle optimises bidirectional information transmissions over hierarchical structures by simultaneously minimising temporal differences in neural responses and maximising entropy in neural representations. Simulations demonstrated that the proposed spatio-temporally efficient coding was able to assign the function of appropriate neural representations of natural visual scenes to visual hierarchical structures. Furthermore, spatio-temporally efficient coding was able to predict well-known phenomena, including deviations in neural responses to unlearned inputs and bias in preferred orientations. Our proposed spatio-temporally efficient coding may facilitate deeper mechanistic understanding of the computational processes of hierarchical brain structures.
Collapse
Affiliation(s)
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| |
Collapse
|