1
|
Upton S, Froeliger B. Regulation of craving and underlying resting-state neural circuitry predict hazard of smoking lapse. Transl Psychiatry 2025; 15:101. [PMID: 40148270 PMCID: PMC11950297 DOI: 10.1038/s41398-025-03319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/22/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Among individuals with substance use disorders, clinical outcomes may be improved by identifying brain-behavior models that predict drug re/lapse vulnerabilities such as the ability to regulate drug cravings and inhibit drug use. In a sample of nicotine-dependent adult cigarette smokers (N = 213), this laboratory study examined associations between regulation of craving (ROC) efficacy and smoking lapse, utilized functional connectivity multivariate pattern analysis (FC-MVPA) and seed-based connectivity (SBC) analyses to identify resting-state neural circuitry underlying ROC efficacy, and then examined if the identified ROC-mediated circuitry predicted hazard of smoking lapse. Regarding behavior, worse ROC efficacy predicted a greater hazard of smoking lapse. Regarding brain and behavior, FC-MVPA identified 29 brain-wide functional clusters associated with ROC efficacy. Follow-up SBC analyses using 9 of the FC-MVPA-derived clusters identified a total of 64 resting-state edges (i.e., cluster-to-cluster connections) underlying ROC efficacy, 10 of which were also associated with the hazard of smoking lapse. ROC efficacy edges also associated with smoking lapse were largely composed of connections between frontal-striatal-limbic clusters and sensory-motor clusters and better behavioral outcomes were associated with stronger resting-state FC. Findings suggest that both ROC efficacy and underlying resting-state neural circuitry may inform prediction models of re/lapse vulnerabilities and serve as treatment targets for cessation interventions.
Collapse
Affiliation(s)
- Spencer Upton
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA.
| | - Brett Froeliger
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
- Department of Psychiatry, University of Missouri, Columbia, MO, USA
| |
Collapse
|
2
|
Li Y, Li H, Hu C, Cui J, Zhang F, Zhao J, Feng Y, Hu C, Yang L, Qian H, Pan J, Luo X, Tang Z, Hao Y. The role of the dopamine system in autism spectrum disorder revealed using machine learning: an ABIDE database-based study. Cereb Cortex 2025; 35:bhaf022. [PMID: 40036245 DOI: 10.1093/cercor/bhaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/12/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
This study explores the diagnostic value of dopamine system imaging characteristics in children with autism spectrum disorder. Functional magnetic resonance data from 551 children in the Autism Brain Imaging Data Exchange database were analyzed, focusing on six dopamine-related brain regions as regions of interest. Functional connectivity between these ROIs and across the whole brain was assessed. Machine learning techniques then evaluated the ability of the dopamine system's imaging features to predict autism spectrum disorder. Functional connectivity was significantly higher in autism spectrum disorder children between the ventral tegmental area and substantia nigra, prefrontal cortex, nucleus accumbens, and between the substantia nigra and hypothalamus compared to typically developing children. Additionally, clustering methods identified two autism spectrum disorder subtypes, achieving over 0.8 accuracy. Subtype 1 showed higher stereotyped behavior scores than subtype 2 in both genders, with subtype-specific functional connectivity differences between male and female autism spectrum disorder groups. These findings suggest that abnormal functional connectivity in the dopamine system serves as a diagnostic biomarker for autism spectrum disorder and can support clinical decision-making and personalized treatment optimization.
Collapse
Affiliation(s)
- Yunjie Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Heli Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Cong Hu
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jinru Cui
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Feiyan Zhang
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jinzhu Zhao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yangyang Feng
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chen Hu
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Liping Yang
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Hong Qian
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jingxue Pan
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Zhouping Tang
- Division of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yan Hao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
3
|
Klein J, Krahn R, Howe S, Lewis J, McMorris C, Macoun S. A systematic review of social camouflaging in autistic adults and youth: Implications and theory. Dev Psychopathol 2024:1-15. [PMID: 39370528 DOI: 10.1017/s0954579424001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Social camouflaging (SC) is a set of behaviors used by autistic people to assimilate with their social environment. Using SC behaviours may put autistic people at risk for poor mental health outcomes. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, the goal of this systematic review was to investigate the development of SC and inform theory in this area by outlining the predictors, phenotype, and consequences of SC. This review fills a gap in existing literature by integrating quantitative and qualitative methodologies, including all gender identities/age groups of autistic individuals, incorporating a large scope of associated factors with SC, and expanding on theory/implications. Papers were sourced using Medline, PsycInfo, and ERIC. Results indicate that self-protection and desire for social connection motivate SC. Camouflaging behaviors include compensation, masking, and assimilation. Female individuals were found to be more likely to SC. Additionally, this review yielded novel insights including contextual factors of SC, interpersonal relational and identity-related consequences of SC, and possible bidirectional associations between SC and mental health, cognition, and age of diagnosis. Autistic youth and adults have similar SC motivations, outward expression of SC behavior, and experience similar consequences post-camouflaging. Further empirical exploration is needed to investigate the directionality between predictors and consequences of SC, and possible mitigating factors such as social stigma and gender identity.
Collapse
Affiliation(s)
| | | | | | - Jessi Lewis
- University of Victoria, Victoria, BC, Canada
| | | | | |
Collapse
|
4
|
Li H, Zhang Q, Duan T, Li J, Shi L, Hua Q, Li D, Ji GJ, Wang K, Zhu C. Sex differences in brain functional specialization and interhemispheric cooperation among children with autism spectrum disorders. Sci Rep 2024; 14:22096. [PMID: 39333138 PMCID: PMC11437118 DOI: 10.1038/s41598-024-72339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
The prevalence of autism spectrum disorders (ASDs) differs substantially between males and females, suggesting that sex-related neurodevelopmental factors are central to ASD pathogenesis. Numerous studies have suggested that abnormal brain specialization patterns and poor regional cooperation contribute to ASD pathogenesis, but relatively little is known about the related sex differences. Therefore, this study examined sex differences in brain functional specialization and cooperation among children with ASD. The autonomy index (AI) and connectivity between functionally homotopic voxels (CFH) derived from resting-state functional magnetic resonance imaging (rs-fMRI) were compared between 58 male and 13 female children with ASD. In addition, correlations were examined between regional CFH values showing significant sex differences and symptom scores on the autism behavior checklist (ABC) and childhood autism rating scale (CARS). Male children with ASD demonstrated significantly greater CFH in the left fusiform gyrus (FG) and right opercular part of the inferior frontal gyrus (IFGoperc) than female children with ASD. In addition, the CFH value of the left FG in male children with ASD was negatively correlated with total ABC score and subscale scores for sensory and social abilities. In contrast, no sex differences were detected in brain specialization. These regional abnormalities in interhemispheric cooperation among male children with ASD may provide clues to the neural mechanisms underlying sex differences in ASD symptomatology and prevalence. Autism spectrum disorders, sex, resting-state functional magnetic resonance imaging, cerebral specialization, interhemispheric cooperation.
Collapse
Affiliation(s)
- Hong Li
- School of Mental Health and Psychological Sciences, Anhui Hospital Affiliated to the Pediatric Hospital of Fudan University, Hefei, 230002, China
| | - Qingqing Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230000, China
| | - Tao Duan
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jing Li
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lei Shi
- School of Mental Health and Psychological Sciences, Anhui Hospital Affiliated to the Pediatric Hospital of Fudan University, Hefei, 230002, China
| | - Qiang Hua
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Dandan Li
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, China
| | - Gong-Jun Ji
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, China
- Department of Psychology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, China.
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230000, China.
| | - Chunyan Zhu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, China.
- Department of Psychology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230000, China.
| |
Collapse
|
5
|
Lacroix A, Harquel S, Barbosa LS, Kovarski K, Garrido MI, Vercueil L, Kauffmann L, Dutheil F, Gomot M, Mermillod M. Reduced spatial frequency differentiation and sex-related specificities in fearful face detection in autism: Insights from EEG and the predictive brain model. Autism Res 2024; 17:1778-1795. [PMID: 39092565 DOI: 10.1002/aur.3209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Face processing relies on predictive processes driven by low spatial frequencies (LSF) that convey coarse information prior to fine information conveyed by high spatial frequencies. However, autistic individuals might have atypical predictive processes, contributing to facial processing difficulties. This may be more normalized in autistic females, who often exhibit better socio-communicational abilities than males. We hypothesized that autistic females would display a more typical coarse-to-fine processing for socio-emotional stimuli compared to autistic males. To test this hypothesis, we asked adult participants (44 autistic, 51 non-autistic) to detect fearful faces among neutral faces, filtered in two orders: from coarse-to-fine (CtF) and from fine-to-coarse (FtC). Results show lower d' values and longer reaction times for fearful detection in autism compared to non-autistic (NA) individuals, regardless of the filtering order. Both groups presented shorter P100 latency after CtF compared to FtC, and larger amplitude for N170 after FtC compared to CtF. However, autistic participants presented a reduced difference in source activity between CtF and FtC in the fusiform. There was also a more spatially spread activation pattern in autistic females compared to NA females. Finally, females had faster P100 and N170 latencies, as well as larger occipital activation for FtC sequences than males, irrespective of the group. Overall, the results do not suggest impaired predictive processes from LSF in autism despite behavioral differences in fear detection. However, they do indicate reduced brain modulation by spatial frequency in autism. In addition, the findings highlight sex differences that warrant consideration in understanding autistic females.
Collapse
Affiliation(s)
- Adeline Lacroix
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Sylvain Harquel
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, EPFL, Geneva, Switzerland
| | - Leonardo S Barbosa
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, Virginia, USA
| | - Klara Kovarski
- Sorbonne Université, Faculté des Lettres, INSPE, Paris, France
- LaPsyDÉ, Université Paris-Cité, CNRS, Paris, France
| | - Marta I Garrido
- Cognitive Neuroscience and Computational Psychiatry Lab, Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Laurent Vercueil
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Louise Kauffmann
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Marie Gomot
- Université de Tours, INSERM, Imaging Brain and Neuropsychiatry iBraiN U1253, Tours, France
| | - Martial Mermillod
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| |
Collapse
|
6
|
Bress KS, Cascio CJ. Sensorimotor regulation of facial expression - An untouched frontier. Neurosci Biobehav Rev 2024; 162:105684. [PMID: 38710425 DOI: 10.1016/j.neubiorev.2024.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Facial expression is a critical form of nonverbal social communication which promotes emotional exchange and affiliation among humans. Facial expressions are generated via precise contraction of the facial muscles, guided by sensory feedback. While the neural pathways underlying facial motor control are well characterized in humans and primates, it remains unknown how tactile and proprioceptive information reaches these pathways to guide facial muscle contraction. Thus, despite the importance of facial expressions for social functioning, little is known about how they are generated as a unique sensorimotor behavior. In this review, we highlight current knowledge about sensory feedback from the face and how it is distinct from other body regions. We describe connectivity between the facial sensory and motor brain systems, and call attention to the other brain systems which influence facial expression behavior, including vision, gustation, emotion, and interoception. Finally, we petition for more research on the sensory basis of facial expressions, asserting that incomplete understanding of sensorimotor mechanisms is a barrier to addressing atypical facial expressivity in clinical populations.
Collapse
Affiliation(s)
- Kimberly S Bress
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | - Carissa J Cascio
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
7
|
Rippon G. Differently different?: A commentary on the emerging social cognitive neuroscience of female autism. Biol Sex Differ 2024; 15:49. [PMID: 38872228 PMCID: PMC11177439 DOI: 10.1186/s13293-024-00621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Autism is a neurodevelopmental condition, behaviourally identified, which is generally characterised by social communication differences, and restrictive and repetitive patterns of behaviour and interests. It has long been claimed that it is more common in males. This observed preponderance of males in autistic populations has served as a focussing framework in all spheres of autism-related issues, from recognition and diagnosis through to theoretical models and research agendas. One related issue is the near total absence of females in key research areas. For example, this paper reports a review of over 120 brain-imaging studies of social brain processes in autism that reveals that nearly 70% only included male participants or minimal numbers (just one or two) of females. Authors of such studies very rarely report that their cohorts are virtually female-free and discuss their findings as though applicable to all autistic individuals. The absence of females can be linked to exclusionary consequences of autism diagnostic procedures, which have mainly been developed on male-only cohorts. There is clear evidence that disproportionately large numbers of females do not meet diagnostic criteria and are then excluded from ongoing autism research. Another issue is a long-standing assumption that the female autism phenotype is broadly equivalent to that of the male autism phenotype. Thus, models derived from male-based studies could be applicable to females. However, it is now emerging that certain patterns of social behaviour may be very different in females. This includes a specific type of social behaviour called camouflaging or masking, linked to attempts to disguise autistic characteristics. With respect to research in the field of sex/gender cognitive neuroscience, there is emerging evidence of female differences in patterns of connectivity and/or activation in the social brain that are at odds with those reported in previous, male-only studies. Decades of research have excluded or overlooked females on the autistic spectrum, resulting in the construction of inaccurate and misleading cognitive neuroscience models, and missed opportunities to explore the brain bases of this highly complex condition. A note of warning needs to be sounded about inferences drawn from past research, but if future research addresses this problem of male bias, then a deeper understanding of autism as a whole, as well as in previously overlooked females, will start to emerge.
Collapse
Affiliation(s)
- Gina Rippon
- Emeritus of Cognitive NeuroImaging, Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
8
|
Lee Y, Chahal R, Gotlib IH. The default mode network is associated with changes in internalizing and externalizing problems differently in adolescent boys and girls. Dev Psychopathol 2024; 36:834-843. [PMID: 36847268 DOI: 10.1017/s0954579423000111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Internalizing and externalizing problems that emerge during adolescence differentially increase boys' and girls' risk for developing psychiatric disorders. It is not clear, however, whether there are sex differences in the intrinsic functional architecture of the brain that underlie changes in the severity of internalizing and externalizing problems in adolescents. Using resting-state fMRI data and self-reports of behavioral problems obtained from 128 adolescents (73 females; 9-14 years old) at two timepoints, we conducted multivoxel pattern analysis to identify resting-state functional connectivity markers at baseline that predict changes in the severity of internalizing and externalizing problems in boys and girls 2 years later. We found sex-differentiated involvement of the default mode network in changes in internalizing and externalizing problems. Whereas changes in internalizing problems were associated with the dorsal medial subsystem in boys and with the medial temporal subsystem in girls, changes in externalizing problems were predicted by hyperconnectivity between core nodes of the DMN and frontoparietal network in boys and hypoconnectivity between the DMN and affective networks in girls. Our results suggest that different neural mechanisms predict changes in internalizing and externalizing problems in adolescent boys and girls and offer insights concerning mechanisms that underlie sex differences in the expression of psychopathology in adolescence.
Collapse
Affiliation(s)
- Yoonji Lee
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Rajpreet Chahal
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
9
|
Yang C, Wang XK, Ma SZ, Lee NY, Zhang QR, Dong WQ, Zang YF, Yuan LX. Abnormal functional connectivity of the reward network is associated with social communication impairments in autism spectrum disorder: A large-scale multi-site resting-state fMRI study. J Affect Disord 2024; 347:608-618. [PMID: 38070748 DOI: 10.1016/j.jad.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/28/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The social motivation hypothesis proposes that the social deficits of autism spectrum disorder (ASD) are related to reward system dysfunction. However, functional connectivity (FC) patterns of the reward network in ASD have not been systematically explored yet. METHODS The reward network was defined as eight regions of interest (ROIs) per hemisphere, including the nucleus accumbens (NAc), caudate, putamen, anterior cingulate cortex (ACC), ventromedial prefrontal cortex (vmPFC), orbitofrontal cortex (OFC), amygdala, and insula. We computed both the ROI-wise resting-state FC and seed-based whole-brain FC in 298 ASD participants and 348 typically developing (TD) controls from the Autism Brain Imaging Data Exchange I dataset. Two-sample t-tests were applied to obtain the aberrant FCs. Then, the association between aberrant FCs and clinical symptoms was assessed with Pearson's correlation or Spearman's correlation. In addition, Neurosynth Image Decoder was used to generate word clouds verifying the cognitive functions of the aberrant pathways. Furthermore, a three-way multivariate analysis of variance (MANOVA) was conducted to examine the effects of gender, subtype and age on the atypical FCs. RESULTS For the within network analysis, the left ACC showed weaker FCs with both the right amygdala and left NAc in ASD compared with TD, which were negatively correlated with the Autism Diagnostic Observation Schedule (ADOS) total scores and Social Responsiveness Scale (SRS) total scores respectively. For the whole-brain analysis, weaker FC (i.e., FC between the left vmPFC and left calcarine gyrus, and between the right vmPFC and left precuneus) accompanied by stronger FC (i.e., FC between the left caudate and right insula) were exhibited in ASD relative to TD, which were positively associated with the SRS motivation scores. Additionally, we detected the main effect of age on FC between the left vmPFC and left calcarine gyrus, of subtype on FC between the right vmPFC and left precuneus, of age and age-by-gender interaction on FC between the left caudate and right insula. CONCLUSIONS Our findings highlight the crucial role of abnormal FC patterns of the reward network in the core social deficits of ASD, which have the potential to reveal new biomarkers for ASD.
Collapse
Affiliation(s)
- Chen Yang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Xing-Ke Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Sheng-Zhi Ma
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Nathan Yee Lee
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Qiu-Rong Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Wen-Qiang Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China; TMS Center, Hangzhou Normal University Affiliated Deqing Hospital, Huzhou, China
| | - Li-Xia Yuan
- School of Physics, Zhejiang University, Hangzhou, China; National Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China.
| |
Collapse
|
10
|
Vuijk R, Turner W, Zimmerman D, Walker H, Dandachi-FitzGerald B. Schema therapy in adults with autism spectrum disorder: A scoping review. Clin Psychol Psychother 2024. [PMID: 38214936 DOI: 10.1002/cpp.2949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Schema therapy (ST) in adults with autism spectrum disorder (ASD) have gained increasing interest in clinical practice and research. However, to date, there has been no synthesis of the literature on ST as treatment for adults with ASD. Through a scoping review, we aim to summarize the emerging research and literature on ST for adults with ASD. METHODS A comprehensive literature search of three electronic databases was conducted using the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. Publications were included that examined ST in adults with ASD and non-clinical adults with autistic traits. RESULTS Systematic searches identified a total of 11 publications, all published since 2014, with the majority being conducted by Dutch and Japanese researchers. Of the 11 publications, 1 described an ST-informed social interaction training, 1 was an ST protocol, 2 described conceptual ST models, 2 were case examples, 2 examined early maladaptive schemas (EMSs) and 3 investigated the effectiveness of ST interventions. In summary, the theoretical exploration, practical examples of the application of ST and research findings with preliminary evidence of ST, EMSs and schema modes (SMs) in adults with ASD point towards the potential of ST for the treatment of adults with ASD. DISCUSSION The current scoping review highlights preliminary research findings and offers valuable suggestions for clinicians treating adults with ASD. This review underscores the need for development of and research in specialized ST protocols and programmes tailored to adults with ASD with chronic mental conditions, such as personality disorders (PDs).
Collapse
Affiliation(s)
- Richard Vuijk
- Sarr Autism Rotterdam (Parnassia Psychiatric Institute), Rotterdam, The Netherlands
| | - Wesley Turner
- Minds & Hearts, Stones Corner, Queensland, Australia
- University of Queensland, Brisbane, Queensland, Australia
| | - David Zimmerman
- Minds & Hearts, Stones Corner, Queensland, Australia
- University of Queensland, Brisbane, Queensland, Australia
| | - Hugh Walker
- Minds & Hearts, Stones Corner, Queensland, Australia
| | | |
Collapse
|
11
|
Zhang L, Xu Y, Sun S, Liang C, Li W, Li H, Zhang X, Pang D, Li M, Li H, Lang Y, Liu J, Jiang S, Shi X, Li B, Yang Y, Wang Y, Li Z, Song C, Duan G, Leavenworth JW, Wang X, Zhu C. Integrative analysis of γδT cells and dietary factors reveals predictive values for autism spectrum disorder in children. Brain Behav Immun 2023; 111:76-89. [PMID: 37011865 DOI: 10.1016/j.bbi.2023.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) includes a range of multifactorial neurodevelopmental disabilities characterized by a variable set of neuropsychiatric symptoms. Immunological abnormalities have been considered to play important roles in the pathogenesis of ASD, but it is still unknown which abnormalities are more prominent. METHODS A total of 105 children with ASD and 105 age and gender-matched typically developing (TD) children were recruited. An eating and mealtime behavior questionnaire, dietary habits, and the Bristol Stool Scale were investigated. The immune cell profiles in peripheral blood were analyzed by flow cytometry, and cytokines (IFN-γ, IL-8, IL-10, IL-17A, and TNF-α) in plasma were examined by Luminex assay. The obtained results were further validated using an external validation cohort including 82 children with ASD and 51 TD children. RESULTS Compared to TD children, children with ASD had significant eating and mealtime behavioral changes and gastrointestinal symptoms characterized by increased food fussiness and emotional eating, decreased fruit and vegetable consumption, and increased stool astriction. The proportion of γδT cells was significantly higher in children with ASD than TD children (β: 0.156; 95% CI: 0.888 ∼ 2.135, p < 0.001) even after adjusting for gender, eating and mealtime behaviors, and dietary habits. In addition, the increased γδT cells were evident in all age groups (age < 48 months: β: 0.288; 95% CI: 0.420 ∼ 4.899, p = 0.020; age ≥ 48 months: β: 0.458; 95% CI: 0.694 ∼ 9.352, p = 0.024), as well as in boys (β: 0.174; 95% CI: 0.834 ∼ 2.625, p < 0.001) but not in girls. These findings were also confirmed by an external validation cohort. Furthermore, IL-17, but not IFN-γ, secretion by the circulating γδT cells was increased in ASD children. Machine learning revealed that the area under the curve in nomogram plots for increased γδT cells combined with eating behavior/dietary factors was 0.905, which held true in both boys and girls and in all the age groups of ASD children. The decision curves showed that children can receive significantly higher diagnostic benefit within the threshold probability range from 0 to 1.0 in the nomogram model. CONCLUSIONS Children with ASD present with divergent eating and mealtime behaviors and dietary habits as well as gastrointestinal symptoms. In peripheral blood, γδT cells but not αβT cells are associated with ASD. The increased γδT cells combined with eating and mealtime behavior/dietary factors have a high value for assisting in the diagnosis of ASD.
Collapse
Affiliation(s)
- Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuang Sun
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Cailing Liang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wenhua Li
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dizhou Pang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengyue Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huihui Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yongbin Lang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiatian Liu
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuqin Jiang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoyi Shi
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bingbing Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yanyan Yang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yazhe Wang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhenghua Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunlan Song
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guiqin Duan
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jianmei W Leavenworth
- Department of Neurosurgery and Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Centre of Perinatal Medicine and Health, Institute of Clinical Science, University of Gothenburg, 40530 Gothenburg, Sweden.
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Göteborg 40530, Sweden.
| |
Collapse
|
12
|
Bylemans T, Heleven E, Asselman E, Baetens K, Deroost N, Baeken C, Van Overwalle F. Sex differences in autistic adults: A preliminary study showing differences in mentalizing, but not in narrative coherence. Acta Psychol (Amst) 2023; 236:103918. [PMID: 37071947 DOI: 10.1016/j.actpsy.2023.103918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/27/2023] [Accepted: 04/14/2023] [Indexed: 04/20/2023] Open
Abstract
Studying autism might be a complex endeavor due to its clinical heterogeneity. Little is currently known about potential sex differences in autistic adults, especially regarding mentalizing and narrative coherence. In this study, male and female participants told a personal story about one of their most positive and most negative life events and performed two mentalizing tasks. One of these mentalizing tasks was a recently developed Picture and Verbal Sequencing task that has shown cerebellar recruitment, and which requires mentalizing in a sequential context (i.e., participants chronologically ordered scenarios that required true and false belief mentalizing). Our preliminary comparison shows that males were faster and more accurate on the Picture Sequencing task compared to female participants when ordering sequences involving false beliefs, but not true beliefs. No sex differences were found for the other mentalizing and narrative tasks. These results highlight the importance of looking at sex differences in autistic adults and provide a possible explanation for sex-related differences in daily life mentalizing functions, which suggest a need for more sensitive diagnosis and tailored support.
Collapse
Affiliation(s)
- Tom Bylemans
- Brain Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Belgium.
| | - Elien Heleven
- Brain Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Belgium.
| | - Emma Asselman
- Brain Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Belgium.
| | - Kris Baetens
- Brain Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Belgium.
| | - Natacha Deroost
- Brain Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Belgium.
| | - Chris Baeken
- Ghent University: Department of Head and Skin (UZGent), Ghent Experimental Psychiatry (GHEP) Lab, Belgium; Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZ Brussel), Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands.
| | - Frank Van Overwalle
- Brain Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Belgium.
| |
Collapse
|
13
|
Langan MT, Kirkland AE, Rice LC, Mucciarone VC, Baraniuk J, VanMeter A, Holton KF. Low glutamate diet improves working memory and contributes to altering BOLD response and functional connectivity within working memory networks in Gulf War Illness. Sci Rep 2022; 12:18004. [PMID: 36289291 PMCID: PMC9606252 DOI: 10.1038/s41598-022-21837-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/04/2022] [Indexed: 01/24/2023] Open
Abstract
Gulf War Illness is a chronic multi-symptom disorder with severe cognitive impairments which may be related to glutamate excitotoxicity and central nervous system dysfunction. The low glutamate diet has been proposed as a comprehensive intervention for Gulf War Illness. We examined the effects of the low glutamate diet on verbal working memory using a fMRI N-back task. Accuracy, whole-brain blood oxygen level dependency (BOLD) response, and task-based functional connectivity were assessed at baseline and after 1 month on the diet (N = 24). Multi-voxel pattern analysis identified regions of whole-brain BOLD pattern differences after the diet to be used as seeds for subsequent seed-to-voxel functional connectivity analyses. Verbal working memory accuracy improved after the diet (+ 13%; p = 0.006). Whole-brain BOLD signal changes were observed, revealing lower activation within regions of the frontoparietal network and default mode network after the low glutamate diet. Multi-voxel pattern analysis resulted in 3 clusters comprising parts of the frontoparietal network (clusters 1 and 2) and ventral attention network (cluster 3). The seed-to-voxel analyses identified significant functional connectivity changes post-diet for clusters 1 and 2 (peak p < 0.001, cluster FDR p < 0.05). Relative to baseline, clusters 1 and 2 had decreased functional connectivity with regions in the ventral attention and somatomotor networks. Cluster 2 also had increased functional connectivity with regions of the default mode and frontoparietal networks. These findings suggest that among veterans with Gulf War Illness, the low glutamate diet improves verbal working memory accuracy, alters BOLD response, and alters functional connectivity within two networks central to working memory.
Collapse
Affiliation(s)
| | - Anna E Kirkland
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Laura C Rice
- Department of Neuroscience, American University, Washington, DC, USA
| | - Veronica C Mucciarone
- Department of Neurology, Center for Functional and Molecular Imaging, Georgetown University, Washington, DC, USA
| | - James Baraniuk
- Department of Medicine, Georgetown University, Washington, DC, USA
| | - Ashley VanMeter
- Department of Neurology, Center for Functional and Molecular Imaging, Georgetown University, Washington, DC, USA
| | - Kathleen F Holton
- Department of Neuroscience, American University, Washington, DC, USA.
- Department of Health Studies, American University, Washington, DC, USA.
- Center for Neuroscience and Behavior, American University, Washington, DC, USA.
- Nutritional Neuroscience Lab, American University, 4400 Massachusetts Ave NW, Washington, DC, 20016, USA.
| |
Collapse
|