1
|
Esmaelpoor J, Peng T, Jelfs B, Mao D, Shader MJ, McKay CM. Cross-modal functional plasticity after cochlear implantation. Cereb Cortex 2025; 35:bhaf084. [PMID: 40267308 DOI: 10.1093/cercor/bhaf084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/20/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
Despite evidence that cross-modal effects after hearing loss and cochlear implantation are primarily driven by synaptic gain and efficacy, few studies have evaluated cross-modal functional connectivity (CMFC) to assess plasticity. This study, inspired by the psychophysiological interaction (PPI) method, addresses its limitations and provides a robust approach for assessing task-induced CMFC. Twenty-three postlingually deafened cochlear implant (CI) recipients and 17 normal-hearing (NH) participants took part in the study. Functional near-infrared spectroscopy was used to measure brain activity during audio-only and visual-only speech tasks, with resting-state FC as a baseline, at 1 month and 1 year postimplantation. CI users' speech understanding was assessed 1 year postimplantation. Significant negative correlations were observed between contralateral task-induced CMFC and speech outcomes, particularly in links from the angular gyrus (AG) to the visual cortex. One year after CI activation, higher task-induced CMFC was found in AG compared to the superior temporal gyrus, reflecting neural efficiency principles. Task-induced CMFC remained elevated in CI users compared to NH even after 1 year. These findings suggest task-induced CMFC as a significant marker of cross-modal plasticity and speech performance in CI recipients.
Collapse
Affiliation(s)
- Jamal Esmaelpoor
- Department of Medical Bionics, University of Melbourne, 29 Royal Parade, Parkville, VIC 3052, Australia
- Bionics Institute, 41 Victoria Parade, Fitzroy, VIC 3065, Australia
| | - Tommy Peng
- Department of Medical Bionics, University of Melbourne, 29 Royal Parade, Parkville, VIC 3052, Australia
- Bionics Institute, 41 Victoria Parade, Fitzroy, VIC 3065, Australia
| | - Beth Jelfs
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Darren Mao
- Department of Medical Bionics, University of Melbourne, 29 Royal Parade, Parkville, VIC 3052, Australia
- Bionics Institute, 41 Victoria Parade, Fitzroy, VIC 3065, Australia
| | - Maureen J Shader
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, West Lafayette, IN 47907, United States
| | - Colette M McKay
- Department of Medical Bionics, University of Melbourne, 29 Royal Parade, Parkville, VIC 3052, Australia
- Bionics Institute, 41 Victoria Parade, Fitzroy, VIC 3065, Australia
| |
Collapse
|
2
|
Fauvet C, Cantini L, Chaudoreille AE, Cancian E, Bonnel B, Sérignac C, Derreumaux A, Robert P, Guevara N, Gros A, Manera V. Assessing the Recognition of Social Interactions Through Body Motion in the Routine Care of Patients with Post-Lingual Sensorineural Hearing Loss. J Clin Med 2025; 14:1604. [PMID: 40095562 PMCID: PMC11900234 DOI: 10.3390/jcm14051604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Body motion significantly contributes to understanding communicative and social interactions, especially when auditory information is impaired. The visual skills of people with hearing loss are often enhanced and compensate for some of the missing auditory information. In the present study, we investigated the recognition of social interactions by observing body motion in people with post-lingual sensorineural hearing loss (SNHL). Methods: In total, 38 participants with post-lingual SNHL and 38 matched normally hearing individuals (NHIs) were presented with point-light stimuli of two agents who were either engaged in a communicative interaction or acting independently. They were asked to classify the actions as communicative vs. independent and to select the correct action description. Results: No significant differences were found between the participants with SNHL and the NHIs when classifying the actions. However, the participants with SNHL showed significantly lower performance compared with the NHIs in the description task due to a higher tendency to misinterpret communicative stimuli. In addition, acquired SNHL was associated with a significantly higher number of errors, with a tendency to over-interpret independent stimuli as communicative and to misinterpret communicative actions. Conclusions: The findings of this study suggest a misinterpretation of visual understanding of social interactions in individuals with SNHL and over-interpretation of communicative intentions in SNHL acquired later in life.
Collapse
Affiliation(s)
| | - Léa Cantini
- CoBTeK Lab, Université Côte d’Azur, 06001 Nice, France
- UFR Medicine of Nice, Department of Speech Therapy, Université Côte d’Azur, 06001 Nice, France
| | - Aude-Eva Chaudoreille
- CoBTeK Lab, Université Côte d’Azur, 06001 Nice, France
- UFR Medicine of Nice, Department of Speech Therapy, Université Côte d’Azur, 06001 Nice, France
| | - Elisa Cancian
- Institut Universitaire de la Face et du Cou (IUFC), Nice University Hospitals (CHU), 06100 Nice, France
| | - Barbara Bonnel
- Institut Médico-Éducatif Cour de Venise 75, Association Autisme en IDF, 75003 Paris, France
| | - Chloé Sérignac
- Institut Universitaire de la Face et du Cou (IUFC), Nice University Hospitals (CHU), 06100 Nice, France
| | | | | | - Nicolas Guevara
- Institut Universitaire de la Face et du Cou (IUFC), Nice University Hospitals (CHU), 06100 Nice, France
| | - Auriane Gros
- CoBTeK Lab, Université Côte d’Azur, 06001 Nice, France
- UFR Medicine of Nice, Department of Speech Therapy, Université Côte d’Azur, 06001 Nice, France
| | - Valeria Manera
- CoBTeK Lab, Université Côte d’Azur, 06001 Nice, France
- UFR Medicine of Nice, Department of Speech Therapy, Université Côte d’Azur, 06001 Nice, France
| |
Collapse
|
3
|
Badarni-Zahalka O, Dakwar-Kawar O, Adelman C, Khoury-Shoufani S, Attias J. Visual Cortical Processing in Children with Early Bilateral Cochlear Implants: A VEP Analysis. CHILDREN (BASEL, SWITZERLAND) 2025; 12:278. [PMID: 40150560 PMCID: PMC11940883 DOI: 10.3390/children12030278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND/OBJECTIVES Cochlear implantation is the primary treatment for severe-to-profound hearing loss, yet outcomes vary significantly among recipients. While visual-auditory cross-modal reorganization has been identified as a contributing factor to this variability, its impact in early-implanted children remains unclear. To address this knowledge gap, we investigated visual processing and its relationship with auditory outcomes in children who received early bilateral cochlear implants. METHODS To examine potential cross-modal reorganization, we recorded visual evoked potentials (VEPs) in response to pattern-reversal stimuli in 25 children with cochlear implants (CIs) (mean implantation age: 1.44 years) and 28 age-matched normal-hearing (NH) controls. Analysis focused on both the occipital region of interest (ROI: O1, OZ, and O2 electrode sites) and right temporal ROI, examining VEP components and their correlation with speech perception outcomes. RESULTS Unlike previous studies in later-implanted children, the overall occipital ROI showed no significant differences between groups. However, the left occipital electrode (O1) revealed reduced P1 amplitudes and delayed N1 latencies in CI users. Importantly, O1 N1 latency negatively correlated with speech-in-noise performance (r = -0.318; p = 0.02). The right temporal region showed no significant differences in VEP N1 between groups and no correlation with speech performance in CI users. CONCLUSIONS Early bilateral cochlear implantation appears to preserve global visual processing, suggesting minimal maladaptive reorganization. However, subtle alterations in left occipital visual processing may influence auditory outcomes, highlighting the importance of early intervention and the complex nature of sensory integration in this population.
Collapse
Affiliation(s)
- Ola Badarni-Zahalka
- Department of Communication, Sciences and Disorders, Haifa University, Haifa 3498838, Israel;
| | - Ornella Dakwar-Kawar
- School of Occupational Therapy, Hebrew University of Jerusalem, Jerusalem 9190501, Israel;
| | - Cahtia Adelman
- Speech & Hearing Department, Hebrew University-Hadassah Medical Center, Jerusalem 9112001, Israel; (C.A.); (S.K.-S.)
- Department of Communication Disorder, Hadassah Academic College, Jerusalem 9101001, Israel
| | - Salma Khoury-Shoufani
- Speech & Hearing Department, Hebrew University-Hadassah Medical Center, Jerusalem 9112001, Israel; (C.A.); (S.K.-S.)
| | - Josef Attias
- Department of Communication, Sciences and Disorders, Haifa University, Haifa 3498838, Israel;
| |
Collapse
|
4
|
Paul BT, Trinh V, Chen J, Le T, Lin V, Dimitrijevic A. Speech outcomes in cochlear implant users depend on visual cross-modal cortical activity measured before or after implantation. Brain Commun 2025; 7:fcaf071. [PMID: 40008325 PMCID: PMC11851104 DOI: 10.1093/braincomms/fcaf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/08/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Cochlear implants can partially restore hearing function in deaf individuals, but long-term speech listening outcomes vary widely across cochlear implant users. Visual cross-modal plasticity, where auditory cortical neurons upregulate visual inputs to assist visual processing, is one factor proposed to worsen cochlear implant users' speech outcomes because it may limit auditory processing capability. However, evidence for this view is conflicting, and the relationship of cross-modal activity to speech perception may depend on other variables such as the type of visual activity and when it is assessed. To clarify, we measured visual cross-modal activity during a silent lip reading task using EEG in a cross-sectional, observational study. The study tested visual brain activation in 14 individuals prior to receiving a cochlear implant, 15 individuals tested at least 1 year after receiving and using a cochlear implant and 13 typical hearing controls who did not use a cochlear implant or hearing aid. Cross-modal responses to the onset of a visual event were positively correlated to speech outcomes in cochlear implant users tested after surgery but were negatively correlated in those tested prior to cochlear implant surgery. In addition, cross-modal increases in neural oscillatory power in the alpha band (8-12 Hz) arising in the lip reading task were associated with worse speech outcomes in both cochlear implant user groups. Taken together, results redress claims that cross-modal plasticity is maladaptive for speech outcomes and instead suggest that this relationship depends on the time point of testing, stage of sensory processing and likely the relevance of the stimulus for speech. In addition, findings form the basis for new neural markers that are predictive of cochlear implant users' long-term speech ability.
Collapse
Affiliation(s)
- Brandon T Paul
- Department of Psychology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Vincent Trinh
- Otolaryngology—Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Joseph Chen
- Otolaryngology—Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Faculty of Medicine, Otolaryngology—Head and Neck Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Trung Le
- Otolaryngology—Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Faculty of Medicine, Otolaryngology—Head and Neck Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Vincent Lin
- Otolaryngology—Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Faculty of Medicine, Otolaryngology—Head and Neck Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Andrew Dimitrijevic
- Otolaryngology—Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Faculty of Medicine, Otolaryngology—Head and Neck Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
- Evaluative Clinical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| |
Collapse
|
5
|
Esmaelpoor J, Peng T, Jelfs B, Mao D, Shader MJ, McKay CM. Resting-State Functional Connectivity Predicts Cochlear-Implant Speech Outcomes. Ear Hear 2025; 46:128-138. [PMID: 39680488 PMCID: PMC11637576 DOI: 10.1097/aud.0000000000001564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/23/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES Cochlear implants (CIs) have revolutionized hearing restoration for individuals with severe or profound hearing loss. However, a substantial and unexplained variability persists in CI outcomes, even when considering subject-specific factors such as age and the duration of deafness. In a pioneering study, we use resting-state functional near-infrared spectroscopy to predict speech-understanding outcomes before and after CI implantation. Our hypothesis centers on resting-state functional connectivity (FC) reflecting brain plasticity post-hearing loss and implantation, specifically targeting the average clustering coefficient in resting FC networks to capture variation among CI users. DESIGN Twenty-three CI candidates participated in this study. Resting-state functional near-infrared spectroscopy data were collected preimplantation and at 1 month, 3 months, and 1 year postimplantation. Speech understanding performance was assessed using consonant-nucleus-consonant words in quiet and Bamford-Kowal-Bench sentences in noise 1-year postimplantation. Resting-state FC networks were constructed using regularized partial correlation, and the average clustering coefficient was measured in the signed weighted networks as a predictive measure for implantation outcomes. RESULTS Our findings demonstrate a significant correlation between the average clustering coefficient in resting-state functional networks and speech understanding outcomes, both pre- and postimplantation. CONCLUSIONS This approach uses an easily deployable resting-state functional brain imaging metric to predict speech-understanding outcomes in implant recipients. The results indicate that the average clustering coefficient, both pre- and postimplantation, correlates with speech understanding outcomes.
Collapse
Affiliation(s)
- Jamal Esmaelpoor
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- The Bionics Institute of Australia, Melbourne, Australia
| | - Tommy Peng
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- The Bionics Institute of Australia, Melbourne, Australia
| | - Beth Jelfs
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Darren Mao
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- The Bionics Institute of Australia, Melbourne, Australia
| | - Maureen J. Shader
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Colette M. McKay
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- The Bionics Institute of Australia, Melbourne, Australia
| |
Collapse
|
6
|
Ávila-Cascajares F, Waleczek C, Kerres S, Suchan B, Völter C. Cross-Modal Plasticity in Postlingual Hearing Loss Predicts Speech Perception Outcomes After Cochlear Implantation. J Clin Med 2024; 13:7016. [PMID: 39685477 DOI: 10.3390/jcm13237016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Sensory loss may lead to intra- and cross-modal cortical reorganization. Previous research showed a significant correlation between the cross-modal contribution of the right auditory cortex to visual evoked potentials (VEP) and speech perception in cochlear implant (CI) users with prelingual hearing loss (HL), but not in those with postlingual HL. The present study aimed to explore the cortical reorganization induced by postlingual HL, particularly in the right temporal region, and how it correlates with speech perception outcome with a CI. Material and Methods: A total of 53 adult participants were divided into two groups according to hearing ability: 35 had normal hearing (NH) (mean age = 62.10 years (±7.48)) and 18 had profound postlingual HL (mean age = 63.78 years (±8.44)). VEPs, using a 29-channel electroencephalogram (EEG) system, were recorded preoperatively in the 18 patients scheduled for cochlear implantation and in 35 NH adults who served as the control group. Amplitudes and latencies of the P100, N100, and P200 components were analyzed across frontal, temporal, and occipital areas and compared between NH and HL subjects using repeated measures ANOVA. For the HL group, speech perception in quiet was assessed at 6 and 12 months of CI use. Results: No difference was found in amplitudes or latencies of the P100, N100, and P200 VEP components between the NH and HL groups. Further analysis using Spearman correlations between preoperative amplitudes and latencies of the P100, N100, and P200 VEP components at the right temporal electrode position T8 and postoperative speech perception showed that the HL group had either significantly higher or significantly lower amplitudes of the P200 component at the right temporal electrode position T8 compared to the NH controls. The HL subgroup with higher amplitudes had better speech perception than the subgroup with lower amplitudes at 6 months and 12 months of CI use. Conclusions: Preoperative evaluation of cortical plasticity can reveal plasticity profiles, which might help to better predict postoperative speech outcomes and adapt the rehabilitation regimen after CI activation. Further research is needed to understand the susceptibility of each component to cross-modal reorganization and their specific contribution to outcome prediction.
Collapse
Affiliation(s)
- Fátima Ávila-Cascajares
- Cochlear Implant Center, Department of Otorhinolaryngology, Head and Neck Surgery, Catholic Hospital Bochum, Ruhr University Bochum, Bleichstr. 15, 44787 Bochum, Germany
- Clinical Neuropsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Clara Waleczek
- Cochlear Implant Center, Department of Otorhinolaryngology, Head and Neck Surgery, Catholic Hospital Bochum, Ruhr University Bochum, Bleichstr. 15, 44787 Bochum, Germany
| | - Sophie Kerres
- Cochlear Implant Center, Department of Otorhinolaryngology, Head and Neck Surgery, Catholic Hospital Bochum, Ruhr University Bochum, Bleichstr. 15, 44787 Bochum, Germany
| | - Boris Suchan
- Clinical Neuropsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Christiane Völter
- Cochlear Implant Center, Department of Otorhinolaryngology, Head and Neck Surgery, Catholic Hospital Bochum, Ruhr University Bochum, Bleichstr. 15, 44787 Bochum, Germany
| |
Collapse
|
7
|
Farrar R, Ashjaei S, Arjmandi MK. Speech-evoked cortical activities and speech recognition in adult cochlear implant listeners: a review of functional near-infrared spectroscopy studies. Exp Brain Res 2024; 242:2509-2530. [PMID: 39305309 PMCID: PMC11527908 DOI: 10.1007/s00221-024-06921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/04/2024] [Indexed: 11/01/2024]
Abstract
Cochlear implants (CIs) are the most successful neural prostheses, enabling individuals with severe to profound hearing loss to access sounds and understand speech. While CI has demonstrated success, speech perception outcomes vary largely among CI listeners, with significantly reduced performance in noise. This review paper summarizes prior findings on speech-evoked cortical activities in adult CI listeners using functional near-infrared spectroscopy (fNIRS) to understand (a) speech-evoked cortical processing in CI listeners compared to normal-hearing (NH) individuals, (b) the relationship between these activities and behavioral speech recognition scores, (c) the extent to which current fNIRS-measured speech-evoked cortical activities in CI listeners account for their differences in speech perception, and (d) challenges in using fNIRS for CI research. Compared to NH listeners, CI listeners had diminished speech-evoked activation in the middle temporal gyrus (MTG) and in the superior temporal gyrus (STG), except one study reporting an opposite pattern for STG. NH listeners exhibited higher inferior frontal gyrus (IFG) activity when listening to CI-simulated speech compared to natural speech. Among CI listeners, higher speech recognition scores correlated with lower speech-evoked activation in the STG, higher activation in the left IFG and left fusiform gyrus, with mixed findings in the MTG. fNIRS shows promise for enhancing our understanding of cortical processing of speech in CI listeners, though findings are mixed. Challenges include test-retest reliability, managing noise, replicating natural conditions, optimizing montage design, and standardizing methods to establish a strong predictive relationship between fNIRS-based cortical activities and speech perception in CI listeners.
Collapse
Affiliation(s)
- Reed Farrar
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Samin Ashjaei
- Department of Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, SC, 29208, USA
| | - Meisam K Arjmandi
- Department of Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, SC, 29208, USA.
- Institute for Mind and Brain, University of South Carolina, Barnwell Street, Columbia, SC, 29208, USA.
| |
Collapse
|
8
|
Mai G, Jiang Z, Wang X, Tachtsidis I, Howell P. Neuroplasticity of Speech-in-Noise Processing in Older Adults Assessed by Functional Near-Infrared Spectroscopy (fNIRS). Brain Topogr 2024; 37:1139-1157. [PMID: 39042322 PMCID: PMC11408581 DOI: 10.1007/s10548-024-01070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 07/13/2024] [Indexed: 07/24/2024]
Abstract
Functional near-infrared spectroscopy (fNIRS), a non-invasive optical neuroimaging technique that is portable and acoustically silent, has become a promising tool for evaluating auditory brain functions in hearing-vulnerable individuals. This study, for the first time, used fNIRS to evaluate neuroplasticity of speech-in-noise processing in older adults. Ten older adults, most of whom had moderate-to-mild hearing loss, participated in a 4-week speech-in-noise training. Their speech-in-noise performances and fNIRS brain responses to speech (auditory sentences in noise), non-speech (spectrally-rotated speech in noise) and visual (flashing chequerboards) stimuli were evaluated pre- (T0) and post-training (immediately after training, T1; and after a 4-week retention, T2). Behaviourally, speech-in-noise performances were improved after retention (T2 vs. T0) but not immediately after training (T1 vs. T0). Neurally, we intriguingly found brain responses to speech vs. non-speech decreased significantly in the left auditory cortex after retention (T2 vs. T0 and T2 vs. T1) for which we interpret as suppressed processing of background noise during speech listening alongside the significant behavioural improvements. Meanwhile, functional connectivity within and between multiple regions of temporal, parietal and frontal lobes was significantly enhanced in the speech condition after retention (T2 vs. T0). We also found neural changes before the emergence of significant behavioural improvements. Compared to pre-training, responses to speech vs. non-speech in the left frontal/prefrontal cortex were decreased significantly both immediately after training (T1 vs. T0) and retention (T2 vs. T0), reflecting possible alleviation of listening efforts. Finally, connectivity was significantly decreased between auditory and higher-level non-auditory (parietal and frontal) cortices in response to visual stimuli immediately after training (T1 vs. T0), indicating decreased cross-modal takeover of speech-related regions during visual processing. The results thus showed that neuroplasticity can be observed not only at the same time with, but also before, behavioural changes in speech-in-noise perception. To our knowledge, this is the first fNIRS study to evaluate speech-based auditory neuroplasticity in older adults. It thus provides important implications for current research by illustrating the promises of detecting neuroplasticity using fNIRS in hearing-vulnerable individuals.
Collapse
Affiliation(s)
- Guangting Mai
- National Institute for Health and Care Research Nottingham Biomedical Research Centre, Nottingham, UK.
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK.
- Division of Psychology and Language Sciences, University College London, London, UK.
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Zhizhao Jiang
- Division of Psychology and Language Sciences, University College London, London, UK
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Xinran Wang
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Peter Howell
- Division of Psychology and Language Sciences, University College London, London, UK
| |
Collapse
|
9
|
Gomes LF, Vasconcelos ICD, Taveira KVM, Balen SA, Brazorotto JS. Functional near-infrared spectrometry for auditory speech stimuli in cochlear implant users: a systematic literature review. Cochlear Implants Int 2024; 25:445-458. [PMID: 39570907 DOI: 10.1080/14670100.2024.2427506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
OBJECTIVE This study aims to identify the acquisition features of functional near-infrared spectroscopy (fNIRS) in cochlear implant users. METHODS A systematic literature review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed, EMBASE, LILACS, Web of Science, Scopus, PsycINFO, IEEE Xplore, Google Scholar, and ProQuest Dissertations & Theses Global were searched using the PECOS acronym. Inclusion criteria encompassed studies involving fNIRS with speech stimuli in cochlear implant users of any age, with information on acquisition parameters and features. Risk of bias assessment was performed using the Joanna Briggs Institute tool. RESULTS Nineteen studies were included, with thirteen exhibiting a low risk of bias. Noteworthy uniformity was observed in certain fNIRS acquisition features among cochlear implant users, including the waking state (awake), auditory stimuli of words or phrases presented in a free field, visual stimuli displayed during data collection as a secondary task, recording of responses in the bilateral temporal lobe, and a three-centimeter distance between optodes. Variations in acquisition were attributed to differing study purposes. CONCLUSION This review identifies common acquisition characteristics for fNIRS in cochlear implant users. Multicenter research efforts are advocated to further advance the utility of fNIRS in this population.
Collapse
Affiliation(s)
- Larissa Fernandes Gomes
- Laboratory of Technological Innovation in Health (LAIS), Graduate Program in Speech, Language and Hearing Sciences (PPGFON), Department of Speech, Language and Hearing Sciences, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Isabelle Costa de Vasconcelos
- Laboratory of Technological Innovation in Health (LAIS), Graduate Program in Speech, Language and Hearing Sciences (PPGFON), Department of Speech, Language and Hearing Sciences, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Karinna Veríssimo Meira Taveira
- Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Center for Advanced Studies in Systematic Review and Meta-Analysis (NARSM) and UFRN, Natal, Brazil
| | - Sheila Andreoli Balen
- Laboratory of Technological Innovation in Health (LAIS), Graduate Program in Speech, Language and Hearing Sciences (PPGFON), Department of Speech, Language and Hearing Sciences, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Joseli Soares Brazorotto
- Laboratory of Technological Innovation in Health (LAIS), Graduate Program in Speech, Language and Hearing Sciences (PPGFON), Department of Speech, Language and Hearing Sciences, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| |
Collapse
|
10
|
Kartheiser G, Cormier K, Bell-Souder D, Dye M, Sharma A. Neurocognitive outcomes in young adults with cochlear implants: The role of early language access and crossmodal plasticity. Hear Res 2024; 451:109074. [PMID: 39018768 PMCID: PMC11878232 DOI: 10.1016/j.heares.2024.109074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Abstract
Many children with profound hearing loss have received cochlear implants (CI) to help restore some sense of hearing. There is, however, limited research on long-term neurocognitive outcomes in young adults who have grown up hearing through a CI. This study compared the cognitive outcomes of early-implanted (n = 20) and late-implanted (n = 21) young adult CI users, and typically hearing (TH) controls (n=56), all of whom were enrolled in college. Cognitive fluidity, nonverbal intelligence, and American Sign Language (ASL) comprehension were assessed, revealing no significant differences in cognition and nonverbal intelligence between the early and late-implanted groups. However, there was a difference in ASL comprehension, with the late-implanted group having significantly higher ASL comprehension. Although young adult CI users showed significantly lower scores in a working memory and processing speed task than TH age-matched controls, there were no significant differences in tasks involving executive function shifting, inhibitory control, and episodic memory between young adult CI and young adult TH participants. In an exploratory analysis of a subset of CI participants (n = 17) in whom we were able to examine crossmodal plasticity, we saw greater evidence of crossmodal recruitment from the visual system in late-implanted compared with early-implanted CI young adults. However, cortical visual evoked potential latency biomarkers of crossmodal plasticity were not correlated with cognitive measures or ASL comprehension. The results suggest that in the late-implanted CI users, early access to sign language may have served as a scaffold for appropriate cognitive development, while in the early-implanted group early access to oral language benefited cognitive development. Furthermore, our results suggest that the persistence of crossmodal neuroplasticity into adulthood does not necessarily impact cognitive development. In conclusion, early access to language - spoken or signed - may be important for cognitive development, with no observable effect of crossmodal plasticity on cognitive outcomes.
Collapse
Affiliation(s)
- Geo Kartheiser
- Rochester Institute of Technology, Rochester, NY, United States of America
| | - Kayla Cormier
- Department of Speech Language and Hearing Sciences, University of Colorado Boulder, Boulder, CO, United States of America
| | - Don Bell-Souder
- Department of Speech Language and Hearing Sciences, University of Colorado Boulder, Boulder, CO, United States of America
| | - Matthew Dye
- Rochester Institute of Technology, Rochester, NY, United States of America
| | - Anu Sharma
- Department of Speech Language and Hearing Sciences, University of Colorado Boulder, Boulder, CO, United States of America.
| |
Collapse
|
11
|
Qiao XF, Liu LD, Han LY, Chen Y, Li X. Exploring cross-modal plasticity in the auditory-visual cortex post cochlear implantation: implications for auditory and speech function recovery and mechanisms. Front Neurosci 2024; 18:1411058. [PMID: 39224575 PMCID: PMC11366596 DOI: 10.3389/fnins.2024.1411058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Objective The aim of this is to explore changes in cross-modal reorganization within the auditory-visual cortex after cochlear implantation, examining their influence on auditory and speech functions along with their underlying mechanisms. Methods Twenty prelingually deaf children who received cochlear implantation and rehabilitation training at our hospital between February 2022 and February 2023 comprised the prelingual deaf group. Simultaneously, 20 healthy children served as the control group. The prelingual deaf group underwent brain cortical activity assessment and evaluation of auditory-speech recovery pre-surgery, at postoperative weeks 1 and 2, and at months 1, 3, 6, 9, and 12. The control group underwent parallel assessments and evaluations. We analyzed the correlation between cortical activity in the auditory-visual cortex of patients and their auditory-speech functional recovery. Results The group with prelingual deafness displayed elevated levels of auditory and visual cortical electromagnetic intensity compared to the control group, both prior to and 9 months after surgery. However, by the 12-month mark post-surgery, there was no discernible distinction between the two groups. Following surgery, the prelingually deaf group exhibited a progressive improvement in both Categories of Auditory Performance (CAP) and Speech Intelligibility Rate (SIR), initially lagging behind the control group. Notably, a negative correlation emerged between auditory and visual cortical electromagnetic intensity values and CAP/SIR scores at the 12-month post-surgery assessment. Conclusion Cochlear implantation in prelingually deaf children results in elevated activity within the auditory and visual cortices, demonstrated by heightened electromagnetic intensity readings. Cross-modal reorganization is observed temporarily at 3 months post-surgery, which resolves to baseline levels by 12 months post-surgery. This phenomenon of reversal correlates with the restoration of auditory and speech functions in these children.
Collapse
Affiliation(s)
- Xiao-Feng Qiao
- Department of Otorhinolaryngology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Lu-Dan Liu
- Graduate School, Shanxi Medical University, Taiyuan, China
| | - Ling-Yan Han
- Graduate School, Shanxi Medical University, Taiyuan, China
| | - Ying Chen
- Department of Otorhinolaryngology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xin Li
- Department of Surgery, Children's Hospital of Shanxi Province, Taiyuan, China
| |
Collapse
|
12
|
Balint A, Wimmer W, Rummel C, Caversaccio M, Weder S. Neural Correlates of Speech Comprehension in Normal Hearing Individuals and Cochlear Implant Users - An fNIRS Study in Quiet and Noisy Environments. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-5. [PMID: 40039903 DOI: 10.1109/embc53108.2024.10781642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
This study investigates neural activity during a clinical hearing test transformed into a neuroimaging speech paradigm, focusing on individuals with cochlear implants (CIs) and normal hearing (NH) controls. Participants listened to sentences in quiet and noise conditions, and answered comprehension questions, while brain activation patterns were measured using functional near-infrared spectroscopy (fNIRS). NH participants exhibited effective strategies for speech comprehension in noise, with increased activity in left prefrontal regions. Good-performing CI users showed reduced accuracy and confidence, coupled with elevated listening effort in both conditions. Their brain activity in the bilateral temporal and left prefrontal regions were comparable to NH. Poor-performing CI users exhibited high effort and low accuracy in noise, with unclear brain activation patterns, suggesting cortical challenges in adapting to the auditory input provided by CIs.Clinical relevance- The study provides important insights into the compensatory strategies and cognitive demands of CI users during different hearing conditions. This contributes to our understanding of the neural aspects in speech processing for individuals with hearing loss and guide potential interventions and further improvement of devices to improve the auditory experience of CI users.
Collapse
|
13
|
Weglage A, Layer N, Meister H, Müller V, Lang-Roth R, Walger M, Sandmann P. Changes in visually and auditory attended audiovisual speech processing in cochlear implant users: A longitudinal ERP study. Hear Res 2024; 447:109023. [PMID: 38733710 DOI: 10.1016/j.heares.2024.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Limited auditory input, whether caused by hearing loss or by electrical stimulation through a cochlear implant (CI), can be compensated by the remaining senses. Specifically for CI users, previous studies reported not only improved visual skills, but also altered cortical processing of unisensory visual and auditory stimuli. However, in multisensory scenarios, it is still unclear how auditory deprivation (before implantation) and electrical hearing experience (after implantation) affect cortical audiovisual speech processing. Here, we present a prospective longitudinal electroencephalography (EEG) study which systematically examined the deprivation- and CI-induced alterations of cortical processing of audiovisual words by comparing event-related potentials (ERPs) in postlingually deafened CI users before and after implantation (five weeks and six months of CI use). A group of matched normal-hearing (NH) listeners served as controls. The participants performed a word-identification task with congruent and incongruent audiovisual words, focusing their attention on either the visual (lip movement) or the auditory speech signal. This allowed us to study the (top-down) attention effect on the (bottom-up) sensory cortical processing of audiovisual speech. When compared to the NH listeners, the CI candidates (before implantation) and the CI users (after implantation) exhibited enhanced lipreading abilities and an altered cortical response at the N1 latency range (90-150 ms) that was characterized by a decreased theta oscillation power (4-8 Hz) and a smaller amplitude in the auditory cortex. After implantation, however, the auditory-cortex response gradually increased and developed a stronger intra-modal connectivity. Nevertheless, task efficiency and activation in the visual cortex was significantly modulated in both groups by focusing attention on the visual as compared to the auditory speech signal, with the NH listeners additionally showing an attention-dependent decrease in beta oscillation power (13-30 Hz). In sum, these results suggest remarkable deprivation effects on audiovisual speech processing in the auditory cortex, which partially reverse after implantation. Although even experienced CI users still show distinct audiovisual speech processing compared to NH listeners, pronounced effects of (top-down) direction of attention on (bottom-up) audiovisual processing can be observed in both groups. However, NH listeners but not CI users appear to show enhanced allocation of cognitive resources in visually as compared to auditory attended audiovisual speech conditions, which supports our behavioural observations of poorer lipreading abilities and reduced visual influence on audition in NH listeners as compared to CI users.
Collapse
Affiliation(s)
- Anna Weglage
- Head and Neck Surgery, Audiology and Pediatric Audiology, Cochlear Implant Centre, University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Otorhinolaryngology, Germany.
| | - Natalie Layer
- Head and Neck Surgery, Audiology and Pediatric Audiology, Cochlear Implant Centre, University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Otorhinolaryngology, Germany
| | - Hartmut Meister
- Head and Neck Surgery, Audiology and Pediatric Audiology, Cochlear Implant Centre, University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Otorhinolaryngology, Germany; Jean-Uhrmacher-Institute for Clinical ENT Research, University of Cologne, Germany
| | - Verena Müller
- Head and Neck Surgery, Audiology and Pediatric Audiology, Cochlear Implant Centre, University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Otorhinolaryngology, Germany
| | - Ruth Lang-Roth
- Head and Neck Surgery, Audiology and Pediatric Audiology, Cochlear Implant Centre, University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Otorhinolaryngology, Germany
| | - Martin Walger
- Head and Neck Surgery, Audiology and Pediatric Audiology, Cochlear Implant Centre, University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Otorhinolaryngology, Germany; Jean-Uhrmacher-Institute for Clinical ENT Research, University of Cologne, Germany
| | - Pascale Sandmann
- Department of Otolaryngology, Head and Neck Surgery, Carl von Ossietzky University of Oldenburg, Germany; Research Center Neurosensory Science University of Oldenburg, Germany; Cluster of Excellence "Hearing4all", University of Oldenburg, Germany
| |
Collapse
|
14
|
Liu Y, Wang S, Lu J, Ding J, Chen Y, Yang L, Wang S. Neural processing of speech comprehension in noise predicts individual age using fNIRS-based brain-behavior models. Cereb Cortex 2024; 34:bhae178. [PMID: 38715408 DOI: 10.1093/cercor/bhae178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 01/28/2025] Open
Abstract
Speech comprehension in noise depends on complex interactions between peripheral sensory and central cognitive systems. Despite having normal peripheral hearing, older adults show difficulties in speech comprehension. It remains unclear whether the brain's neural responses could indicate aging. The current study examined whether individual brain activation during speech perception in different listening environments could predict age. We applied functional near-infrared spectroscopy to 93 normal-hearing human adults (20 to 70 years old) during a sentence listening task, which contained a quiet condition and 4 different signal-to-noise ratios (SNR = 10, 5, 0, -5 dB) noisy conditions. A data-driven approach, the region-based brain-age predictive modeling was adopted. We observed a significant behavioral decrease with age under the 4 noisy conditions, but not under the quiet condition. Brain activations in SNR = 10 dB listening condition could successfully predict individual's age. Moreover, we found that the bilateral visual sensory cortex, left dorsal speech pathway, left cerebellum, right temporal-parietal junction area, right homolog Wernicke's area, and right middle temporal gyrus contributed most to prediction performance. These results demonstrate that the activations of regions about sensory-motor mapping of sound, especially in noisy conditions, could be sensitive measures for age prediction than external behavior measures.
Collapse
Affiliation(s)
- Yi Liu
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, No. 17, Hougou Hutong, Dongcheng District, Beijing 100005, China
| | - Songjian Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, No. 17, Hougou Hutong, Dongcheng District, Beijing 100005, China
| | - Jing Lu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, No. 19, Xinjiekou Wai Street, Haidian District, Beijing 100875, China
| | - Junhua Ding
- Department of Psychology, University of Edinburgh, 15Kings Buildings, Edinburgh EH8 9JZ, United Kingdom
| | - Younuo Chen
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, No. 17, Hougou Hutong, Dongcheng District, Beijing 100005, China
| | - Liu Yang
- School of Biomedical Engineering, Capital Medical University, No. 10, Xitoutiao, YouAnMen, Fengtai District, Beijing 100069, China
| | - Shuo Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, No. 17, Hougou Hutong, Dongcheng District, Beijing 100005, China
| |
Collapse
|
15
|
Alemi R, Wolfe J, Neumann S, Manning J, Hanna L, Towler W, Wilson C, Bien A, Miller S, Schafer E, Gemignani J, Koirala N, Gracco VL, Deroche M. Motor Processing in Children With Cochlear Implants as Assessed by Functional Near-Infrared Spectroscopy. Percept Mot Skills 2024; 131:74-105. [PMID: 37977135 PMCID: PMC10863375 DOI: 10.1177/00315125231213167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Auditory-motor and visual-motor networks are often coupled in daily activities, such as when listening to music and dancing; but these networks are known to be highly malleable as a function of sensory input. Thus, congenital deafness may modify neural activities within the connections between the motor, auditory, and visual cortices. Here, we investigated whether the cortical responses of children with cochlear implants (CI) to a simple and repetitive motor task would differ from that of children with typical hearing (TH) and we sought to understand whether this response related to their language development. Participants were 75 school-aged children, including 50 with CI (with varying language abilities) and 25 controls with TH. We used functional near-infrared spectroscopy (fNIRS) to record cortical responses over the whole brain, as children squeezed the back triggers of a joystick that vibrated or not with the squeeze. Motor cortex activity was reflected by an increase in oxygenated hemoglobin concentration (HbO) and a decrease in deoxygenated hemoglobin concentration (HbR) in all children, irrespective of their hearing status. Unexpectedly, the visual cortex (supposedly an irrelevant region) was deactivated in this task, particularly for children with CI who had good language skills when compared to those with CI who had language delays. Presence or absence of vibrotactile feedback made no difference in cortical activation. These findings support the potential of fNIRS to examine cognitive functions related to language in children with CI.
Collapse
Affiliation(s)
- Razieh Alemi
- Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Jace Wolfe
- Oberkotter Foundation, Oklahoma City, OK, USA
| | - Sara Neumann
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Jacy Manning
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Lindsay Hanna
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Will Towler
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Caleb Wilson
- Department of Otolaryngology-Head & Neck Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Alexander Bien
- Department of Otolaryngology-Head & Neck Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sharon Miller
- Department of Audiology & Speech-Language Pathology, University of North Texas, Denton, TX, USA
| | - Erin Schafer
- Department of Audiology & Speech-Language Pathology, University of North Texas, Denton, TX, USA
| | - Jessica Gemignani
- Department of Developmental and Social Psychology, University of Padua, Padova, Italy
| | | | | | - Mickael Deroche
- Department of Psychology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
16
|
Chen Y, Wang S, Yang L, Liu Y, Fu X, Wang Y, Zhang X, Wang S. Features of the speech processing network in post- and prelingually deaf cochlear implant users. Cereb Cortex 2024; 34:bhad417. [PMID: 38163443 DOI: 10.1093/cercor/bhad417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 01/03/2024] Open
Abstract
The onset of hearing loss can lead to altered brain structure and functions. However, hearing restoration may also result in distinct cortical reorganization. A differential pattern of functional remodeling was observed between post- and prelingual cochlear implant users, but it remains unclear how these speech processing networks are reorganized after cochlear implantation. To explore the impact of language acquisition and hearing restoration on speech perception in cochlear implant users, we conducted assessments of brain activation, functional connectivity, and graph theory-based analysis using functional near-infrared spectroscopy. We examined the effects of speech-in-noise stimuli on three groups: postlingual cochlear implant users (n = 12), prelingual cochlear implant users (n = 10), and age-matched individuals with hearing controls (HC) (n = 22). The activation of auditory-related areas in cochlear implant users showed a lower response compared with the HC group. Wernicke's area and Broca's area demonstrated differences network attributes in speech processing networks in post- and prelingual cochlear implant users. In addition, cochlear implant users maintain a high efficiency of the speech processing network to process speech information. Taken together, our results characterize the speech processing networks, in varying noise environments, in post- and prelingual cochlear implant users and provide new insights for theories of how implantation modes impact remodeling of the speech processing functional networks.
Collapse
Affiliation(s)
- Younuo Chen
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Songjian Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Liu Yang
- School of Biomedical Engineering, Capital Medical University, No. 10, Xitoutiao, YouAnMen, Fengtai District, Beijing 100069, China
| | - Yi Liu
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xinxing Fu
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Yuan Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, No. 10, Xitoutiao, YouAnMen, Fengtai District, Beijing 100069, China
| | - Shuo Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| |
Collapse
|
17
|
Wang S, Chen Y, Liu Y, Yang L, Wang Y, Fu X, Hu J, Pugh E, Wang S. Aging effects on dual-route speech processing networks during speech perception in noise. Hum Brain Mapp 2024; 45:e26577. [PMID: 38224542 PMCID: PMC10789214 DOI: 10.1002/hbm.26577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 01/17/2024] Open
Abstract
Healthy aging leads to complex changes in the functional network of speech processing in a noisy environment. The dual-route neural architecture has been applied to the study of speech processing. Although evidence suggests that senescent increases activity in the brain regions across the dorsal and ventral stream regions to offset reduced periphery, the regulatory mechanism of dual-route functional networks underlying such compensation remains largely unknown. Here, by utilizing functional near-infrared spectroscopy (fNIRS), we investigated the compensatory mechanism of the dual-route functional connectivity, and its relationship with healthy aging by using a speech perception task at varying signal-to-noise ratios (SNR) in healthy individuals (young adults, middle-aged adults, and older adults). Results showed that the speech perception scores showed a significant age-related decrease with the reduction of the SNR. The analysis results of dual-route speech processing networks showed that the functional connection of Wernicke's area and homolog Wernicke's area were age-related increases. Further to clarify the age-related characteristics of the dual-route speech processing networks, graph-theoretical network analysis revealed an age-related increase in the efficiency of the networks, and the age-related differences in nodal characteristics were found both in Wernicke's area and homolog Wernicke's area under noise environment. Thus, Wernicke's area might be a key network hub to maintain efficient information transfer across the speech process network with healthy aging. Moreover, older adults would recruit more resources from the homologous Wernicke's area in a noisy environment. The recruitment of the homolog of Wernicke's area might provide a means of compensation for older adults for decoding speech in an adverse listening environment. Together, our results characterized dual-route speech processing networks at varying noise environments and provided new insight for the compensatory theories of how aging modulates the dual-route speech processing functional networks.
Collapse
Affiliation(s)
- Songjian Wang
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Younuo Chen
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Yi Liu
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Liu Yang
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Yuan Wang
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Xinxing Fu
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Jiong Hu
- Department of AudiologyUniversity of the PacificSan FranciscoCaliforniaUSA
| | | | - Shuo Wang
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
18
|
Alemi R, Wolfe J, Neumann S, Manning J, Towler W, Koirala N, Gracco VL, Deroche M. Audiovisual integration in children with cochlear implants revealed through EEG and fNIRS. Brain Res Bull 2023; 205:110817. [PMID: 37989460 DOI: 10.1016/j.brainresbull.2023.110817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Sensory deprivation can offset the balance of audio versus visual information in multimodal processing. Such a phenomenon could persist for children born deaf, even after they receive cochlear implants (CIs), and could potentially explain why one modality is given priority over the other. Here, we recorded cortical responses to a single speaker uttering two syllables, presented in audio-only (A), visual-only (V), and audio-visual (AV) modes. Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) were successively recorded in seventy-five school-aged children. Twenty-five were children with normal hearing (NH) and fifty wore CIs, among whom 26 had relatively high language abilities (HL) comparable to those of NH children, while 24 others had low language abilities (LL). In EEG data, visual-evoked potentials were captured in occipital regions, in response to V and AV stimuli, and they were accentuated in the HL group compared to the LL group (the NH group being intermediate). Close to the vertex, auditory-evoked potentials were captured in response to A and AV stimuli and reflected a differential treatment of the two syllables but only in the NH group. None of the EEG metrics revealed any interaction between group and modality. In fNIRS data, each modality induced a corresponding activity in visual or auditory regions, but no group difference was observed in A, V, or AV stimulation. The present study did not reveal any sign of abnormal AV integration in children with CI. An efficient multimodal integrative network (at least for rudimentary speech materials) is clearly not a sufficient condition to exhibit good language and literacy.
Collapse
Affiliation(s)
- Razieh Alemi
- Department of Psychology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec H4B 1R6, Canada.
| | - Jace Wolfe
- Oberkotter Foundation, Oklahoma City, OK, USA
| | - Sara Neumann
- Hearts for Hearing Foundation, 11500 Portland Av., Oklahoma City, OK 73120, USA
| | - Jacy Manning
- Hearts for Hearing Foundation, 11500 Portland Av., Oklahoma City, OK 73120, USA
| | - Will Towler
- Hearts for Hearing Foundation, 11500 Portland Av., Oklahoma City, OK 73120, USA
| | - Nabin Koirala
- Haskins Laboratories, 300 George St., New Haven, CT 06511, USA
| | | | - Mickael Deroche
- Department of Psychology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
19
|
Zhou XQ, Zhang QL, Xi X, Leng MR, Liu H, Liu S, Zhang T, Yuan W. Cortical responses correlate with speech performance in pre-lingually deaf cochlear implant children. Front Neurosci 2023; 17:1126813. [PMID: 37332858 PMCID: PMC10272438 DOI: 10.3389/fnins.2023.1126813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Cochlear implantation is currently the most successful intervention for severe-to-profound sensorineural hearing loss, particularly in deaf infants and children. Nonetheless, there remains a significant degree of variability in the outcomes of CI post-implantation. The purpose of this study was to understand the cortical correlates of the variability in speech outcomes with a cochlear implant in pre-lingually deaf children using functional near-infrared spectroscopy (fNIRS), an emerging brain-imaging technique. Methods In this experiment, cortical activities when processing visual speech and two levels of auditory speech, including auditory speech in quiet and in noise with signal-to-noise ratios of 10 dB, were examined in 38 CI recipients with pre-lingual deafness and 36 normally hearing children whose age and sex matched CI users. The HOPE corpus (a corpus of Mandarin sentences) was used to generate speech stimuli. The regions of interest (ROIs) for the fNIRS measurements were fronto-temporal-parietal networks involved in language processing, including bilateral superior temporal gyrus, left inferior frontal gyrus, and bilateral inferior parietal lobes. Results The fNIRS results confirmed and extended findings previously reported in the neuroimaging literature. Firstly, cortical responses of superior temporal gyrus to both auditory and visual speech in CI users were directly correlated to auditory speech perception scores, with the strongest positive association between the levels of cross-modal reorganization and CI outcome. Secondly, compared to NH controls, CI users, particularly those with good speech perception, showed larger cortical activation in the left inferior frontal gyrus in response to all speech stimuli used in the experiment. Discussion In conclusion, cross-modal activation to visual speech in the auditory cortex of pre-lingually deaf CI children may be at least one of the neural bases of highly variable CI performance due to its beneficial effects for speech understanding, thus supporting the prediction and assessment of CI outcomes in clinic. Additionally, cortical activation of the left inferior frontal gyrus may be a cortical marker for effortful listening.
Collapse
Affiliation(s)
- Xiao-Qing Zhou
- Department of Otolaryngology, Chongqing Medical University, Chongqing, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Qing-Ling Zhang
- Department of Otolaryngology, Chongqing Medical University, Chongqing, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Xin Xi
- Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
| | - Ming-Rong Leng
- Chongqing Integrated Service Center for Disabled Persons, Chongqing, China
| | - Hao Liu
- Chongqing Integrated Service Center for Disabled Persons, Chongqing, China
| | - Shu Liu
- Chongqing Integrated Service Center for Disabled Persons, Chongqing, China
| | - Ting Zhang
- Chongqing Integrated Service Center for Disabled Persons, Chongqing, China
| | - Wei Yuan
- Department of Otolaryngology, Chongqing Medical University, Chongqing, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
20
|
Kral A, Sharma A. Crossmodal plasticity in hearing loss. Trends Neurosci 2023; 46:377-393. [PMID: 36990952 PMCID: PMC10121905 DOI: 10.1016/j.tins.2023.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
Crossmodal plasticity is a textbook example of the ability of the brain to reorganize based on use. We review evidence from the auditory system showing that such reorganization has significant limits, is dependent on pre-existing circuitry and top-down interactions, and that extensive reorganization is often absent. We argue that the evidence does not support the hypothesis that crossmodal reorganization is responsible for closing critical periods in deafness, and crossmodal plasticity instead represents a neuronal process that is dynamically adaptable. We evaluate the evidence for crossmodal changes in both developmental and adult-onset deafness, which start as early as mild-moderate hearing loss and show reversibility when hearing is restored. Finally, crossmodal plasticity does not appear to affect the neuronal preconditions for successful hearing restoration. Given its dynamic and versatile nature, we describe how this plasticity can be exploited for improving clinical outcomes after neurosensory restoration.
Collapse
Affiliation(s)
- Andrej Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology, Otolaryngology Clinics, Hannover Medical School, Hannover, Germany; Australian Hearing Hub, School of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Anu Sharma
- Department of Speech Language and Hearing Science, Center for Neuroscience, Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
21
|
Frosolini A, Badin G, Sorrentino F, Brotto D, Pessot N, Fantin F, Ceschin F, Lovato A, Coppola N, Mancuso A, Vedovelli L, Marioni G, de Filippis C. Application of Patient Reported Outcome Measures in Cochlear Implant Patients: Implications for the Design of Specific Rehabilitation Programs. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22228770. [PMID: 36433364 PMCID: PMC9698641 DOI: 10.3390/s22228770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 06/01/2023]
Abstract
INTRODUCTION Cochlear implants (CI) have been developed to enable satisfying verbal communication, while music perception has remained in the background in both the research and technological development, thus making CI users dissatisfied by the experience of listening to music. Indications for clinicians to test and train music abilities are at a preliminary stage compared to the existing and well-established hearing and speech rehabilitation programs. The main aim of the present study was to test the utility of the application of two different patient reporting outcome (PRO) measures in a group of CI users. A secondary objective was to identify items capable of driving the indication and design specific music rehabilitation programs for CI patients. MATERIALS AND METHODS A consecutive series of 73 CI patients referred to the Audiology Unit, University of Padova, was enrolled from November 2021 to May 2022 and evaluated with the audiological battery test and PRO measures: Musica e Qualità della Vita (MUSQUAV) and Nijmegen Cochlear Implant Questionnaire (NCIQ) Italian version. RESULTS The reliability analysis showed good consistency between the different PRO measures (Cronbach's alpha = 0.873). After accounting for the epidemiological and clinical variables, the PRO measures showed a correlation with audiological outcomes in only one case (rho = -0.304; adj. p = 0.039) for NCIQ-T with the CI-pure tone average. A willingness for musical rehabilitation was present in 63% of patients (Rehab Factor, mean value of 0.791 ± 0.675). CONCLUSIONS We support the role of the application of MUSQUAV and NCIQ to improve the clinical and audiological evaluation of CI patients. Moreover, we proposed a derivative item, called the rehab factor, which could be used in clinical practice and future studies to clarify the indication and priority of specific music rehabilitation programs.
Collapse
Affiliation(s)
- Andrea Frosolini
- Audiology Unit, Department of Neuroscience DNS, University of Padova, 31100 Treviso, Italy
| | - Giulio Badin
- Audiology Unit, Department of Neuroscience DNS, University of Padova, 31100 Treviso, Italy
| | - Flavia Sorrentino
- Audiology Unit, Department of Neuroscience DNS, University of Padova, 31100 Treviso, Italy
- Department of Information Science, University of Milan, 20133 Milan, Italy
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35100 Padova, Italy
- Otolaryngology Section, Department of Neuroscience DNS, University of Padova, 35100 Padova, Italy
| | - Davide Brotto
- Audiology Unit, Department of Neuroscience DNS, University of Padova, 31100 Treviso, Italy
- Department of Information Science, University of Milan, 20133 Milan, Italy
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35100 Padova, Italy
- Otolaryngology Section, Department of Neuroscience DNS, University of Padova, 35100 Padova, Italy
| | - Nicholas Pessot
- Audiology Unit, Department of Neuroscience DNS, University of Padova, 31100 Treviso, Italy
| | - Francesco Fantin
- Audiology Unit, Department of Neuroscience DNS, University of Padova, 31100 Treviso, Italy
| | - Federica Ceschin
- Audiology Unit, Department of Neuroscience DNS, University of Padova, 31100 Treviso, Italy
| | - Andrea Lovato
- Audiology Unit, Department of Neuroscience DNS, University of Padova, 31100 Treviso, Italy
| | - Nicola Coppola
- Department of Information Science, University of Milan, 20133 Milan, Italy
| | - Antonio Mancuso
- Department of Information Science, University of Milan, 20133 Milan, Italy
| | - Luca Vedovelli
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35100 Padova, Italy
| | - Gino Marioni
- Otolaryngology Section, Department of Neuroscience DNS, University of Padova, 35100 Padova, Italy
| | - Cosimo de Filippis
- Audiology Unit, Department of Neuroscience DNS, University of Padova, 31100 Treviso, Italy
| |
Collapse
|