1
|
Li J, Wang W, Cheng J, Li H, Feng L, Ren Y, Liu L, Qian Q, Wang Y. Relationships between sensory integration and the core symptoms of attention-deficit/hyperactivity disorder: the mediating effect of executive function. Eur Child Adolesc Psychiatry 2023; 32:2235-2246. [PMID: 35999304 DOI: 10.1007/s00787-022-02069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/14/2022] [Indexed: 11/03/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by executive function deficits and functional alterations in sensory integration. The present study aimed to investigate the relationship between ADHD core symptoms, executive function, and sensory integration in children with ADHD. A total of 228 children with ADHD were recruited for our study. The Sensory Organization Test (SOT) and Child Sensory Integration Scale (CSIS) evaluated the sensory integration ability from lab-based and scaled-based perspectives, respectively. Three core components of executive functions (inhibition, working memory, and set-shifting) were assessed using both lab-based tests and the relevant factors from the behavior rating inventory of executive function (BRIEF). Partial correlation analysis was performed to explore the correlation of sensory integration with EF and ADHD core symptoms. Based on the observed significant correlation, bootstrap analyses were further conducted to explore the potential mediating effect of EF on the relationship between sensory integration and ADHD core symptoms. ADHD symptoms and EF were significantly correlated with CSIS scores; no factors were significantly correlated with SOT performance. In detail, the vestibular-balance score was negatively correlated with both inattention and hyperactivity/impulsivity symptoms, while the hyper-sensory and proprioception scores were negatively correlated with only inattention symptoms. For the scaled-based EF, vestibular-balance was negatively correlated with inhibition and working memory, and the hyper-sensory score was negatively correlated with shift factor. No correlation was found for the lab-based EF tests. The subsequent mediation analysis found that inhibition partially mediated the relationship between vestibular balance and hyperactivity/impulsivity symptoms. Working memory completely mediated the relationship between vestibular-balance, hyper-sensory, proprioception, and inattention symptoms. These results were well validated in an independent sample. Our present findings demonstrated that the functional alteration in basic sensory integration might be associated with impairments of executive functions and then lead to the behavioral expression of ADHD. The present findings might provide a new perspective to understand the occurrence of ADHD symptoms and potential precise intervention methods.
Collapse
Affiliation(s)
- Jing Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenchen Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jia Cheng
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Haimei Li
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lei Feng
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuanchun Ren
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Qiujin Qian
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Yufeng Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
2
|
David FJ, Rivera YM, Entezar TK, Arora R, Drane QH, Munoz MJ, Rosenow JM, Sani SB, Pal GD, Verhagen-Metman L, Corcos DM. Encoding type, medication, and deep brain stimulation differentially affect memory-guided sequential reaching movements in Parkinson's disease. Front Neurol 2022; 13:980935. [PMID: 36324383 PMCID: PMC9618698 DOI: 10.3389/fneur.2022.980935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Memory-guided movements, vital to daily activities, are especially impaired in Parkinson's disease (PD). However, studies examining the effects of how information is encoded in memory and the effects of common treatments of PD, such as medication and subthalamic nucleus deep brain stimulation (STN-DBS), on memory-guided movements are uncommon and their findings are equivocal. We designed two memory-guided sequential reaching tasks, peripheral-vision or proprioception encoded, to investigate the effects of encoding type (peripheral-vision vs. proprioception), medication (on- vs. off-), STN-DBS (on- vs. off-, while off-medication), and compared STN-DBS vs. medication on reaching amplitude, error, and velocity. We collected data from 16 (analyzed n = 7) participants with PD, pre- and post-STN-DBS surgery, and 17 (analyzed n = 14) healthy controls. We had four important findings. First, encoding type differentially affected reaching performance: peripheral-vision reaches were faster and more accurate. Also, encoding type differentially affected reaching deficits in PD compared to healthy controls: peripheral-vision reaches manifested larger deficits in amplitude. Second, the effect of medication depended on encoding type: medication had no effect on amplitude, but reduced error for both encoding types, and increased velocity only during peripheral-vision encoding. Third, the effect of STN-DBS depended on encoding type: STN-DBS increased amplitude for both encoding types, increased error during proprioception encoding, and increased velocity for both encoding types. Fourth, STN-DBS was superior to medication with respect to increasing amplitude and velocity, whereas medication was superior to STN-DBS with respect to reducing error. We discuss our findings in the context of the previous literature and consider mechanisms for the differential effects of medication and STN-DBS.
Collapse
Affiliation(s)
- Fabian J. David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yessenia M. Rivera
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tara K. Entezar
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, United States
| | - Rishabh Arora
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Quentin H. Drane
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Miranda J. Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joshua M. Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sepehr B. Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Gian D. Pal
- Department of Neurology, Rutgers University, New Brunswick, NJ, United States
| | - Leonard Verhagen-Metman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
3
|
Memory-Guided Reaching: Is It Effortful? Motor Control 2022; 27:194-216. [PMID: 36170972 DOI: 10.1123/mc.2021-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
We previously showed that perceived effort during visually guided reaching was altered as task demand varied. Further, self-reported subjective fatigue correlated with perceived effort and reach performance under visually guided conditions. Memory-guided reaching often leads to performance deterioration and can provide insights about the planning and control of reach actions. It is unclear how perceived effort changes during memory-guided reaching and whether self-reported subjective fatigue is associated with perceived effort of memory-guided reaching. Twenty-three young adults performed reach actions under visually- and memory-guided conditions. Perceived effort, reaction time, and endpoint error increased significantly from the visually- to the memory-guided condition. Self-reported subjective fatigue was associated with perceived effort and reach distance error during memory-guided reaching; those with higher levels of fatigue reported greater perceived effort and tended to reach farther when visual information was not available. These findings establish a foundation to examine relationships between subjective fatigue, perceived effort, and reach control.
Collapse
|
4
|
Park W, Kim SP, Eid M. Neural Coding of Vibration Intensity. Front Neurosci 2021; 15:682113. [PMID: 34858124 PMCID: PMC8631937 DOI: 10.3389/fnins.2021.682113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Vibrotactile feedback technology has become widely used in human-computer interaction due to its low cost, wearability, and expressiveness. Although neuroimaging studies have investigated neural processes associated with different types of vibrotactile feedback, encoding vibration intensity in the brain remains largely unknown. The aim of this study is to investigate neural processes associated with vibration intensity using electroencephalography. Twenty-nine healthy participants (aged 18-40 years, nine females) experienced vibrotactile feedback at the distal phalanx of the left index finger with three vibration intensity conditions: no vibration, low-intensity vibration (1.56 g), and high-intensity vibration (2.26 g). The alpha and beta band event-related desynchronization (ERD) as well as P2 and P3 event-related potential components for each of the three vibration intensity conditions are obtained. Results demonstrate that the ERD in the alpha band in the contralateral somatosensory and motor cortex areas is significantly associated with the vibration intensity. The average power spectral density (PSD) of the peak period of the ERD (400-600 ms) is significantly stronger for the high- and low-vibration intensity conditions compared to the no vibration condition. Furthermore, the average PSD of the ERD rebound (700-2,000 ms) is significantly maintained for the high-vibration intensity compared to low-intensity and no vibration conditions. Beta ERD signals the presence of vibration. These findings inform the development of quantitative measurements for vibration intensities based on neural signals.
Collapse
Affiliation(s)
- Wanjoo Park
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Mohamad Eid
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Working memory for stereoscopic depth is limited and imprecise-evidence from a change detection task. Psychon Bull Rev 2020; 26:1657-1665. [PMID: 31388836 DOI: 10.3758/s13423-019-01640-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most studies on visual working memory (VWM) and spatial working memory (SWM) have employed visual stimuli presented at the fronto-parallel plane and few have involved depth perception. VWM is often considered as a memory buffer for temporarily holding and manipulating visual information that relates to visual features of an object, and SWM for holding and manipulating spatial information that concerns the spatial location of an object. Although previous research has investigated the effect of stereoscopic depth on VWM, the question of how depth positions are stored in working memory has not been systematically investigated, leaving gaps in the existing literature on working memory. Here, we explore working memory for depth by using a change detection task. The memory items were presented at various stereoscopic depth planes perpendicular to the line of sight, with one item per depth plane. Participants were asked to make judgments on whether the depth position of the target (one of the memory items) had changed. The results showed a conservative response bias that observers tended to make 'no change' responses when detecting changes in depth. In addition, we found that similar to VWM, the change detection accuracy degraded with the number of memory items presented, but the accuracy was much lower than that reported for VWM, suggesting that the storage for depth information is severely limited and less precise than that for visual information. The detection sensitivity was higher for the nearest and farthest depths and was better when the probe was presented along with the other items originally in the memory array, indicating that how well the to-be-stored depth can be stored in working memory depends on its relation with the other depth positions.
Collapse
|
6
|
Sidarta A, van Vugt FT, Ostry DJ. Somatosensory working memory in human reinforcement-based motor learning. J Neurophysiol 2018; 120:3275-3286. [PMID: 30354856 DOI: 10.1152/jn.00442.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent studies using visuomotor adaptation and sequence learning tasks have assessed the involvement of working memory in the visuospatial domain. The capacity to maintain previously performed movements in working memory is perhaps even more important in reinforcement-based learning to repeat accurate movements and avoid mistakes. Using this kind of task in the present work, we tested the relationship between somatosensory working memory and motor learning. The first experiment involved separate memory and motor learning tasks. In the memory task, the participant's arm was displaced in different directions by a robotic arm, and the participant was asked to judge whether a subsequent test direction was one of the previously presented directions. In the motor learning task, participants made reaching movements to a hidden visual target and were provided with positive feedback as reinforcement when the movement ended in the target zone. It was found that participants that had better somatosensory working memory showed greater motor learning. In a second experiment, we designed a new task in which learning and working memory trials were interleaved, allowing us to study participants' memory for movements they performed as part of learning. As in the first experiment, we found that participants with better somatosensory working memory also learned more. Moreover, memory performance for successful movements was better than for movements that failed to reach the target. These results suggest that somatosensory working memory is involved in reinforcement motor learning and that this memory preferentially keeps track of reinforced movements. NEW & NOTEWORTHY The present work examined somatosensory working memory in reinforcement-based motor learning. Working memory performance was reliably correlated with the extent of learning. With the use of a paradigm in which learning and memory trials were interleaved, memory was assessed for movements performed during learning. Movements that received positive feedback were better remembered than movements that did not. Thus working memory does not track all movements equally but is biased to retain movements that were rewarded.
Collapse
Affiliation(s)
- Ananda Sidarta
- Department of Psychology, McGill University , Montréal, Quebec , Canada
| | - Floris T van Vugt
- Department of Psychology, McGill University , Montréal, Quebec , Canada.,Haskins Laboratories , New Haven, Connecticut
| | - David J Ostry
- Department of Psychology, McGill University , Montréal, Quebec , Canada.,Haskins Laboratories , New Haven, Connecticut
| |
Collapse
|
7
|
Iandolo R, Bellini A, Saiote C, Marre I, Bommarito G, Oesingmann N, Fleysher L, Mancardi GL, Casadio M, Inglese M. Neural correlates of lower limbs proprioception: An fMRI study of foot position matching. Hum Brain Mapp 2018; 39:1929-1944. [PMID: 29359521 PMCID: PMC6866268 DOI: 10.1002/hbm.23972] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/20/2017] [Accepted: 01/07/2018] [Indexed: 12/13/2022] Open
Abstract
Little is known about the neural correlates of lower limbs position sense, despite the impact that proprioceptive deficits have on everyday life activities, such as posture and gait control. We used fMRI to investigate in 30 healthy right-handed and right-footed subjects the regional distribution of brain activity during position matching tasks performed with the right dominant and the left nondominant foot. Along with the brain activation, we assessed the performance during both ipsilateral and contralateral matching tasks. Subjects had lower errors when matching was performed by the left nondominant foot. The fMRI analysis suggested that the significant regions responsible for position sense are in the right parietal and frontal cortex, providing a first characterization of the neural correlates of foot position matching.
Collapse
Affiliation(s)
- Riccardo Iandolo
- Department of Robotics, Brain and Cognitive Science (RBCS)Italian Institute of TechnologyGenoaItaly
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS)University of GenoaGenoaItaly
| | - Alessandro Bellini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of Genoa and IRCCS AOU San Martino‐ISTGenoaItaly
| | - Catarina Saiote
- Department of NeurologyMount Sinai School of MedicineNew YorkNew York
- Department of PsychiatryMount Sinai School of MedicineNew YorkNew York
| | - Ilaria Marre
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS)University of GenoaGenoaItaly
| | - Giulia Bommarito
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of Genoa and IRCCS AOU San Martino‐ISTGenoaItaly
| | - Niels Oesingmann
- Department of RadiologyMount Sinai School of MedicineNew YorkNew York
- UK Biobank StockportCheshireSK3 0SAUnited Kingdom
| | - Lazar Fleysher
- Department of NeurologyMount Sinai School of MedicineNew YorkNew York
| | - Giovanni Luigi Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of Genoa and IRCCS AOU San Martino‐ISTGenoaItaly
| | - Maura Casadio
- Department of Robotics, Brain and Cognitive Science (RBCS)Italian Institute of TechnologyGenoaItaly
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS)University of GenoaGenoaItaly
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of Genoa and IRCCS AOU San Martino‐ISTGenoaItaly
- Department of NeurologyMount Sinai School of MedicineNew YorkNew York
- Department of RadiologyMount Sinai School of MedicineNew YorkNew York
- Department of NeuroscienceMount Sinai School of MedicineNew YorkNew York
| |
Collapse
|
8
|
Wu S, Li J, Gao L, Chen C, He S. Suppressing Systemic Interference in fNIRS Monitoring of the Hemodynamic Cortical Response to Motor Execution and Imagery. Front Hum Neurosci 2018; 12:85. [PMID: 29556184 PMCID: PMC5845019 DOI: 10.3389/fnhum.2018.00085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
Hemodynamic response to motor execution (ME) and motor imagery (MI) was investigated using functional near-infrared spectroscopy (fNIRS). We used a 31 channel fNIRS system which allows non-invasive monitoring of cerebral oxygenation changes induced by cortical activation. Sixteen healthy subjects (mean-age 24.5 yeas) were recruited and the changes in concentration of hemoglobin were examined during right and left hand finger tapping tasks and kinesthetic MI. To suppress the systemic physiological interference, we developed a preprocessing procedure which prevents over-activated reporting in NIRS-SPM. In the condition of ME, more activation was observed in the anterior part of the motor cortex including the pre-motor and supplementary motor area (pre-motor and SMA), primary motor cortex (M1) and somatosensory motor cortex (SMC; t(15) > 2.27), however, in the condition of MI, more activation was found in the posterior part of motor cortex including SMC (t(15) > 1.81), which is in line with previous observations with functional magnetic resonance imaging (fMRI).
Collapse
Affiliation(s)
- Shijing Wu
- School of Information and Optoelectronic Science and Engineering, South China Normal University (SCNU), Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Center for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Center for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Lantian Gao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Center for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Changshui Chen
- School of Information and Optoelectronic Science and Engineering, South China Normal University (SCNU), Guangzhou, China
| | - Sailing He
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Center for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| |
Collapse
|
9
|
Wu S, Li J, Gao L, Chen C, He S. Suppressing Systemic Interference in fNIRS Monitoring of the Hemodynamic Cortical Response to Motor Execution and Imagery. Front Hum Neurosci 2018. [PMID: 29556184 DOI: 10.3389/fnhum.2018.0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Hemodynamic response to motor execution (ME) and motor imagery (MI) was investigated using functional near-infrared spectroscopy (fNIRS). We used a 31 channel fNIRS system which allows non-invasive monitoring of cerebral oxygenation changes induced by cortical activation. Sixteen healthy subjects (mean-age 24.5 yeas) were recruited and the changes in concentration of hemoglobin were examined during right and left hand finger tapping tasks and kinesthetic MI. To suppress the systemic physiological interference, we developed a preprocessing procedure which prevents over-activated reporting in NIRS-SPM. In the condition of ME, more activation was observed in the anterior part of the motor cortex including the pre-motor and supplementary motor area (pre-motor and SMA), primary motor cortex (M1) and somatosensory motor cortex (SMC; t(15) > 2.27), however, in the condition of MI, more activation was found in the posterior part of motor cortex including SMC (t(15) > 1.81), which is in line with previous observations with functional magnetic resonance imaging (fMRI).
Collapse
Affiliation(s)
- Shijing Wu
- School of Information and Optoelectronic Science and Engineering, South China Normal University (SCNU), Guangzhou, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Center for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Center for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Lantian Gao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Center for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Changshui Chen
- School of Information and Optoelectronic Science and Engineering, South China Normal University (SCNU), Guangzhou, China
| | - Sailing He
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Center for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| |
Collapse
|
10
|
Disentangling Representations of Object and Grasp Properties in the Human Brain. J Neurosci 2017; 36:7648-62. [PMID: 27445143 DOI: 10.1523/jneurosci.0313-16.2016] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/06/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The properties of objects, such as shape, influence the way we grasp them. To quantify the role of different brain regions during grasping, it is necessary to disentangle the processing of visual dimensions related to object properties from the motor aspects related to the specific hand configuration. We orthogonally varied object properties (shape, size, and elongation) and task (passive viewing, precision grip with two or five digits, or coarse grip with five digits) and used representational similarity analysis of functional magnetic resonance imaging data to infer the representation of object properties and hand configuration in the human brain. We found that object elongation is the most strongly represented object feature during grasping and is coded preferentially in the primary visual cortex as well as the anterior and posterior superior-parieto-occipital cortex. By contrast, primary somatosensory, motor, and ventral premotor cortices coded preferentially the number of digits while ventral-stream and dorsal-stream regions coded a mix of visual and motor dimensions. The representation of object features varied with task modality, as object elongation was less relevant during passive viewing than grasping. To summarize, this study shows that elongation is a particularly relevant property of the object to grasp, which along with the number of digits used, is represented within both ventral-stream and parietal regions, suggesting that communication between the two streams about these specific visual and motor dimensions might be relevant to the execution of efficient grasping actions. SIGNIFICANCE STATEMENT To grasp something, the visual properties of an object guide preshaping of the hand into the appropriate configuration. Different grips can be used, and different objects require different hand configurations. However, in natural actions, grip and object type are often confounded, and the few experiments that have attempted to separate them have produced conflicting results. As such, it is unclear how visual and motor properties are represented across brain regions during grasping. Here we orthogonally manipulated object properties and grip, and revealed the visual dimension (object elongation) and the motor dimension (number of digits) that are more strongly coded in ventral and dorsal streams. These results suggest that both streams play a role in the visuomotor coding essential for grasping.
Collapse
|
11
|
Moustafa AA, Tindle R, Ansari Z, Doyle MJ, Hewedi DH, Eissa A. Mathematics, anxiety, and the brain. Rev Neurosci 2017; 28:417-429. [PMID: 28157694 DOI: 10.1515/revneuro-2016-0065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/10/2016] [Indexed: 11/15/2022]
Abstract
Given that achievement in learning mathematics at school correlates with work and social achievements, it is important to understand the cognitive processes underlying abilities to learn mathematics efficiently as well as reasons underlying the occurrence of mathematics anxiety (i.e. feelings of tension and fear upon facing mathematical problems or numbers) among certain individuals. Over the last two decades, many studies have shown that learning mathematical and numerical concepts relies on many cognitive processes, including working memory, spatial skills, and linguistic abilities. In this review, we discuss the relationship between mathematical learning and cognitive processes as well as the neural substrates underlying successful mathematical learning and problem solving. More importantly, we also discuss the relationship between these cognitive processes, mathematics anxiety, and mathematics learning disabilities (dyscalculia). Our review shows that mathematical cognition relies on a complex brain network, and dysfunction to different segments of this network leads to varying manifestations of mathematical learning disabilities.
Collapse
|
12
|
Proulx MJ, Gwinnutt J, Dell'Erba S, Levy-Tzedek S, de Sousa AA, Brown DJ. Other ways of seeing: From behavior to neural mechanisms in the online "visual" control of action with sensory substitution. Restor Neurol Neurosci 2016; 34:29-44. [PMID: 26599473 PMCID: PMC4927905 DOI: 10.3233/rnn-150541] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vision is the dominant sense for perception-for-action in humans and other higher primates. Advances in sight restoration now utilize the other intact senses to provide information that is normally sensed visually through sensory substitution to replace missing visual information. Sensory substitution devices translate visual information from a sensor, such as a camera or ultrasound device, into a format that the auditory or tactile systems can detect and process, so the visually impaired can see through hearing or touch. Online control of action is essential for many daily tasks such as pointing, grasping and navigating, and adapting to a sensory substitution device successfully requires extensive learning. Here we review the research on sensory substitution for vision restoration in the context of providing the means of online control for action in the blind or blindfolded. It appears that the use of sensory substitution devices utilizes the neural visual system; this suggests the hypothesis that sensory substitution draws on the same underlying mechanisms as unimpaired visual control of action. Here we review the current state of the art for sensory substitution approaches to object recognition, localization, and navigation, and the potential these approaches have for revealing a metamodal behavioral and neural basis for the online control of action.
Collapse
Affiliation(s)
- Michael J Proulx
- Crossmodal Cognition Lab, Department of Psychology, University of Bath, Bath, UK
| | - James Gwinnutt
- Crossmodal Cognition Lab, Department of Psychology, University of Bath, Bath, UK
| | - Sara Dell'Erba
- Crossmodal Cognition Lab, Department of Psychology, University of Bath, Bath, UK
| | - Shelly Levy-Tzedek
- Cognition, Aging and Rehabilitation Lab, Recanati School for Community Health Professions, Department of Physical Therapy & Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexandra A de Sousa
- Crossmodal Cognition Lab, Department of Psychology, University of Bath, Bath, UK.,Department of Science, Bath Spa University, Bath, UK
| | - David J Brown
- Crossmodal Cognition Lab, Department of Psychology, University of Bath, Bath, UK
| |
Collapse
|
13
|
Gordeev SA, Voronin SG. [The modified method registration of kinesthetic evoked potentials and its application for research of proprioceptive sensitivity disorders at spondylogenic cervical myelopathy]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:76-79. [PMID: 27029453 DOI: 10.17116/jnevro20161162176-79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To analyze the efficacy of modified (passive radiocarpal articulation flexion/extension) and «standard» (passive radiocarpal articulation flexion) methods of kinesthetic evoked potentials for proprioceptive sensitivity assessment in healthy subjects and patients with spondylotic cervical myelopathy. MATERIAL AND METHODS The study included 14 healthy subjects (4 women and 10 men, mean age 54.1±10.5 years) and 8 patients (2 women and 6 men, mean age 55.8±10.9 years) with spondylotic cervical myelopathy. Muscle-joint sensation was examined during the clinical study. A modified method of kinesthetic evoked potentials was developed. This method differed from the "standard" one by the organization of a cycle including several passive movements,where each new movement differed from the preceding one by the direction. RESULTS AND СONCLUSION The modified method of kinesthetic evoked potentials ensures more reliable kinesthetic sensitivity assessment due to movement variability. Asignificant increaseof the latent periods of the early components of the response was found in patients compared to healthy subjects. The modified method of kinesthetic evoked potentials can be used for objective diagnosis of proprioceptive sensitivity disorders in patients with spondylotic cervical myelopathy.
Collapse
|
14
|
Marangon M, Kubiak A, Króliczak G. Haptically Guided Grasping. fMRI Shows Right-Hemisphere Parietal Stimulus Encoding, and Bilateral Dorso-Ventral Parietal Gradients of Object- and Action-Related Processing during Grasp Execution. Front Hum Neurosci 2016; 9:691. [PMID: 26779002 PMCID: PMC4700263 DOI: 10.3389/fnhum.2015.00691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/07/2015] [Indexed: 11/13/2022] Open
Abstract
The neural bases of haptically-guided grasp planning and execution are largely unknown, especially for stimuli having no visual representations. Therefore, we used functional magnetic resonance imaging (fMRI) to monitor brain activity during haptic exploration of novel 3D complex objects, subsequent grasp planning, and the execution of the pre-planned grasps. Haptic object exploration, involving extraction of shape, orientation, and length of the to-be-grasped targets, was associated with the fronto-parietal, temporo-occipital, and insular cortex activity. Yet, only the anterior divisions of the posterior parietal cortex (PPC) of the right hemisphere were significantly more engaged in exploration of complex objects (vs. simple control disks). None of these regions were re-recruited during the planning phase. Even more surprisingly, the left-hemisphere intraparietal, temporal, and occipital areas that were significantly invoked for grasp planning did not show sensitivity to object features. Finally, grasp execution, involving the re-recruitment of the critical right-hemisphere PPC clusters, was also significantly associated with two kinds of bilateral parieto-frontal processes. The first represents transformations of grasp-relevant target features and is linked to the dorso-dorsal (lateral and medial) parieto-frontal networks. The second monitors grasp kinematics and belongs to the ventro-dorsal networks. Indeed, signal modulations associated with these distinct functions follow dorso-ventral gradients, with left aIPS showing significant sensitivity to both target features and the characteristics of the required grasp. Thus, our results from the haptic domain are consistent with the notion that the parietal processing for action guidance reflects primarily transformations from object-related to effector-related coding, and these mechanisms are rather independent of sensory input modality.
Collapse
Affiliation(s)
- Mattia Marangon
- Action and Cognition Laboratory, Department of Social Sciences, Institute of Psychology, Adam Mickiewicz University in Poznań Poznań, Poland
| | - Agnieszka Kubiak
- Action and Cognition Laboratory, Department of Social Sciences, Institute of Psychology, Adam Mickiewicz University in Poznań Poznań, Poland
| | - Gregory Króliczak
- Action and Cognition Laboratory, Department of Social Sciences, Institute of Psychology, Adam Mickiewicz University in Poznań Poznań, Poland
| |
Collapse
|
15
|
Stone KD, Gonzalez CLR. The contributions of vision and haptics to reaching and grasping. Front Psychol 2015; 6:1403. [PMID: 26441777 PMCID: PMC4584943 DOI: 10.3389/fpsyg.2015.01403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/02/2015] [Indexed: 11/23/2022] Open
Abstract
This review aims to provide a comprehensive outlook on the sensory (visual and haptic) contributions to reaching and grasping. The focus is on studies in developing children, normal, and neuropsychological populations, and in sensory-deprived individuals. Studies have suggested a right-hand/left-hemisphere specialization for visually guided grasping and a left-hand/right-hemisphere specialization for haptically guided object recognition. This poses the interesting possibility that when vision is not available and grasping relies heavily on the haptic system, there is an advantage to use the left hand. We review the evidence for this possibility and dissect the unique contributions of the visual and haptic systems to grasping. We ultimately discuss how the integration of these two sensory modalities shape hand preference.
Collapse
Affiliation(s)
- Kayla D Stone
- The Brain in Action Laboratory, Department of Kinesiology, University of Lethbridge, Lethbridge AB, Canada
| | - Claudia L R Gonzalez
- The Brain in Action Laboratory, Department of Kinesiology, University of Lethbridge, Lethbridge AB, Canada
| |
Collapse
|
16
|
Differential roles of delay-period neural activity in the monkey dorsolateral prefrontal cortex in visual-haptic crossmodal working memory. Proc Natl Acad Sci U S A 2014; 112:E214-9. [PMID: 25540412 DOI: 10.1073/pnas.1410130112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that neurons of monkey dorsolateral prefrontal cortex (DLPFC) integrate information across modalities and maintain it throughout the delay period of working-memory (WM) tasks. However, the mechanisms of this temporal integration in the DLPFC are still poorly understood. In the present study, to further elucidate the role of the DLPFC in crossmodal WM, we trained monkeys to perform visuo-haptic (VH) crossmodal and haptic-haptic (HH) unimodal WM tasks. The neuronal activity recorded in the DLPFC in the delay period of both tasks indicates that the early-delay differential activity probably is related to the encoding of sample information with different strengths depending on task modality, that the late-delay differential activity reflects the associated (modality-independent) action component of haptic choice in both tasks (that is, the anticipation of the behavioral choice and/or active recall and maintenance of sample information for subsequent action), and that the sustained whole-delay differential activity likely bridges and integrates the sensory and action components. In addition, the VH late-delay differential activity was significantly diminished when the haptic choice was not required. Taken together, the results show that, in addition to the whole-delay differential activity, DLPFC neurons also show early- and late-delay differential activities. These previously unidentified findings indicate that DLPFC is capable of (i) holding the coded sample information (e.g., visual or tactile information) in the early-delay activity, (ii) retrieving the abstract information (orientations) of the sample (whether the sample has been haptic or visual) and holding it in the late-delay activity, and (iii) preparing for behavioral choice acting on that abstract information.
Collapse
|
17
|
Yang J, Yu Y, Kunita A, Huang Q, Wu J, Sawamoto N, Fukuyama H. Tactile priming modulates the activation of the fronto-parietal circuit during tactile angle match and non-match processing: an fMRI study. Front Hum Neurosci 2014; 8:926. [PMID: 25566010 PMCID: PMC4266023 DOI: 10.3389/fnhum.2014.00926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 10/30/2014] [Indexed: 11/25/2022] Open
Abstract
The repetition of a stimulus task reduces the neural activity within certain cortical regions responsible for working memory (WM) processing. Although previous evidence has shown that repeated vibrotactile stimuli reduce the activation in the ventrolateral prefrontal cortex, whether the repeated tactile spatial stimuli triggered the priming effect correlated with the same cortical region remains unclear. Therefore, we used event-related functional magnetic resonance imaging (fMRI) and a delayed match-to-sample task to investigate the contributions of the priming effect to tactile spatial WM processing. Fourteen healthy volunteers were asked to encode three tactile angle stimuli during the encoding phase and one tactile angle stimulus during the recognition phase. Then, they answered whether the last angle stimulus was presented during the encoding phase. As expected, both the Match and Non-Match tasks activated a similar cerebral network. The critical new finding was decreased brain activity in the left inferior frontal gyrus (IFG), the right posterior parietal cortex (PPC) and bilateral medial frontal gyri (mFG) for the match task compared to the Non-Match task. Therefore, we suggest that the tactile priming engaged repetition suppression mechanisms during tactile angle matching, and this process decreased the activation of the fronto-parietal circuit, including IFG, mFG and PPC.
Collapse
Affiliation(s)
- Jiajia Yang
- Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University Okayama, Japan
| | - Yinghua Yu
- Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University Okayama, Japan
| | - Akinori Kunita
- Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University Okayama, Japan
| | - Qiang Huang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology Beijing, China ; Key Laboratory of Biomimetic Robots and Systems, Ministry of Education China
| | - Jinglong Wu
- Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University Okayama, Japan ; Key Laboratory of Biomimetic Robots and Systems, Ministry of Education China
| | - Nobukatsu Sawamoto
- Human Brain Research Center (HBRC), Kyoto University Graduate School of Medicine Kyoto, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center (HBRC), Kyoto University Graduate School of Medicine Kyoto, Japan
| |
Collapse
|
18
|
Rojas-Hortelano E, Concha L, de Lafuente V. The parietal cortices participate in encoding, short-term memory, and decision-making related to tactile shape. J Neurophysiol 2014; 112:1894-902. [DOI: 10.1152/jn.00177.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We routinely identify objects with our hands, and the physical attributes of touched objects are often held in short-term memory to aid future decisions. However, the brain structures that selectively process tactile information to encode object shape are not fully identified. In this article we describe the areas within the human cerebral cortex that specialize in encoding, short-term memory, and decision-making related to the shape of objects explored with the hand. We performed event-related functional magnetic resonance imaging in subjects performing a shape discrimination task in which two sequentially presented objects had to be explored to determine whether they had the same shape or not. To control for low-level and nonspecific brain activations, subjects performed a temperature discrimination task in which they compared the temperature of two spheres. Our results show that although a large network of brain structures is engaged in somatosensory processing, it is the areas lining the intraparietal sulcus that selectively participate in encoding, maintaining, and deciding on tactile information related to the shape of objects.
Collapse
Affiliation(s)
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Victor de Lafuente
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
19
|
Balser N, Lorey B, Pilgramm S, Naumann T, Kindermann S, Stark R, Zentgraf K, Williams AM, Munzert J. The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves. Front Hum Neurosci 2014; 8:568. [PMID: 25136305 PMCID: PMC4117995 DOI: 10.3389/fnhum.2014.00568] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/11/2014] [Indexed: 11/29/2022] Open
Abstract
In many daily activities, and especially in sport, it is necessary to predict the effects of others' actions in order to initiate appropriate responses. Recently, researchers have suggested that the action–observation network (AON) including the cerebellum plays an essential role during such anticipation, particularly in sport expert performers. In the present study, we examined the influence of task-specific expertise on the AON by investigating differences between two expert groups trained in different sports while anticipating action effects. Altogether, 15 tennis and 16 volleyball experts anticipated the direction of observed tennis and volleyball serves while undergoing functional magnetic resonance imaging (fMRI). The expert group in each sport acted as novice controls in the other sport with which they had only little experience. When contrasting anticipation in both expertise conditions with the corresponding untrained sport, a stronger activation of AON areas (SPL, SMA), and particularly of cerebellar structures, was observed. Furthermore, the neural activation within the cerebellum and the SPL was linearly correlated with participant's anticipation performance, irrespective of the specific expertise. For the SPL, this relationship also holds when an expert performs a domain-specific anticipation task. Notably, the stronger activation of the cerebellum as well as of the SMA and the SPL in the expertise conditions suggests that experts rely on their more fine-tuned perceptual-motor representations that have improved during years of training when anticipating the effects of others' actions in their preferred sport. The association of activation within the SPL and the cerebellum with the task achievement suggests that these areas are the predominant brain sites involved in fast motor predictions. The SPL reflects the processing of domain-specific contextual information and the cerebellum the usage of a predictive internal model to solve the anticipation task.
Collapse
Affiliation(s)
- Nils Balser
- Institute for Sport Science, University of Giessen Giessen, Germany
| | - Britta Lorey
- Institute for Sport Science, University of Giessen Giessen, Germany ; Bender Institute of Neuroimaging, University of Giessen Giessen, Germany
| | - Sebastian Pilgramm
- Bender Institute of Neuroimaging, University of Giessen Giessen, Germany
| | - Tim Naumann
- Institute for Sport Science, University of Giessen Giessen, Germany
| | | | - Rudolf Stark
- Bender Institute of Neuroimaging, University of Giessen Giessen, Germany
| | - Karen Zentgraf
- Bender Institute of Neuroimaging, University of Giessen Giessen, Germany ; Institute of Sport and Exercise Sciences, Westfälische Wilhelms-University of Münster Münster, Germany
| | - A Mark Williams
- Centre for Sports Medicine and Human Performance, Brunel University London London, UK
| | - Jörn Munzert
- Institute for Sport Science, University of Giessen Giessen, Germany
| |
Collapse
|
20
|
Dempsey-Jones H, Kritikos A. Higher-order cognitive factors affect subjective but not proprioceptive aspects of self-representation in the rubber hand illusion. Conscious Cogn 2014; 26:74-89. [PMID: 24681243 DOI: 10.1016/j.concog.2014.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 02/05/2014] [Accepted: 02/24/2014] [Indexed: 11/18/2022]
Abstract
In the current study we look at whether subjective and proprioceptive aspects of selfrepresentation are separable components subserved by distinct systems of multisensory integration. We used the rubber hand illusion (RHI) to draw the location of the 'self' away from the body, towards extracorporeal space (Out Condition), thereby violating top-down information about the body location. This was compared with the traditional RHI which drew position of the 'self' towards the body (In Condition). We were successfully able to draw proprioceptive position of the limbs in and out from the body suggesting body perception is a purely bottom-up process, resistant to top-down effects. Conversely, we found subjective self-representation was altered by the violation of top-down body information - as the strong association of subjective and proprioceptive factors found in the In Condition became non-significant in the Out Condition. Interestingly, we also found evidence that subjective embodiment can modulate tactile perception.
Collapse
Affiliation(s)
- Harriet Dempsey-Jones
- The School of Psychology, The University of Queensland, McElwain Building, St. Lucia Campus, Brisbane 4072, Australia.
| | - Ada Kritikos
- The School of Psychology, The University of Queensland, McElwain Building, St. Lucia Campus, Brisbane 4072, Australia.
| |
Collapse
|
21
|
Karl JM, Whishaw IQ. Different evolutionary origins for the reach and the grasp: an explanation for dual visuomotor channels in primate parietofrontal cortex. Front Neurol 2013; 4:208. [PMID: 24391626 PMCID: PMC3870330 DOI: 10.3389/fneur.2013.00208] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022] Open
Abstract
The Dual Visuomotor Channel Theory proposes that manual prehension consists of two temporally integrated movements, each subserved by distinct visuomotor pathways in occipitoparietofrontal cortex. The Reach is mediated by a dorsomedial pathway and transports the hand in relation to the target's extrinsic properties (i.e., location and orientation). The Grasp is mediated by a dorsolateral pathway and opens, preshapes, and closes the hand in relation to the target's intrinsic properties (i.e., size and shape). Here, neuropsychological, developmental, and comparative evidence is reviewed to show that the Reach and the Grasp have different evolutionary origins. First, the removal or degradation of vision causes prehension to decompose into its constituent Reach and Grasp components, which are then executed in sequence or isolation. Similar decomposition occurs in optic ataxic patients following cortical injury to the Reach and the Grasp pathways and after corticospinal tract lesions in non-human primates. Second, early non-visual PreReach and PreGrasp movements develop into mature Reach and Grasp movements but are only integrated under visual control after a prolonged developmental period. Third, comparative studies reveal many similarities between stepping movements and the Reach and between food handling movements and the Grasp, suggesting that the Reach and the Grasp are derived from different evolutionary antecedents. The evidence is discussed in relation to the ideas that dual visuomotor channels in primate parietofrontal cortex emerged as a result of distinct evolutionary origins for the Reach and the Grasp; that foveated vision in primates serves to integrate the Reach and the Grasp into a single prehensile act; and, that flexible recombination of discrete Reach and Grasp movements under various forms of sensory and cognitive control can produce adaptive behavior.
Collapse
Affiliation(s)
- Jenni M. Karl
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ian Q. Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
22
|
Wang L, Bodner M, Zhou YD. Distributed neural networks of tactile working memory. ACTA ACUST UNITED AC 2013; 107:452-8. [PMID: 23792021 DOI: 10.1016/j.jphysparis.2013.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/26/2013] [Accepted: 06/03/2013] [Indexed: 12/22/2022]
Abstract
Microelectrode recordings of cortical activity in primates performing working memory tasks reveal some cortical neurons exhibiting sustained or graded persistent elevations in firing rate during the period in which sensory information is actively maintained in short-term memory. These neurons are called "memory cells". Imaging and transcranial magnetic stimulation studies indicate that memory cells may arise from distributed cortical networks. Depending on the sensory modality of the memorandum in working memory tasks, neurons exhibiting memory-correlated patterns of firing have been detected in different association cortices including prefrontal cortex, and primary sensory cortices as well. Here we elaborate on neurophysiological experiments that lead to our understanding of the neuromechanisms of working memory, and mainly discuss findings on widely distributed cortical networks involved in tactile working memory.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory of Brain Functional Genomics, MOE & STCSM, Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China.
| | | | | |
Collapse
|
23
|
Bias and sensitivity of proprioception of a passively felt hand path with and without a secondary task. Exp Brain Res 2013; 228:385-96. [PMID: 23700130 DOI: 10.1007/s00221-013-3572-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/10/2013] [Indexed: 12/23/2022]
Abstract
Previously, we observed changes in the scale, rotation, and location of drawn shapes when subjects simultaneously performed a secondary task, but not in the shape or proportion of the drawing. We suggested the secondary task impacted motor planning and execution or proprioception of the primary task. To isolate for proprioceptive effects, here we used the same secondary task during passive shape perception. A robotic manipulandum moved the subject's hand around the perimeter of a template shape and then a test shape differing in size, proportion, or location. Subjects also performed the same primary task while simultaneously performing a secondary task of reporting the orientation of right or left tilted arrows. We compared the performance between single and dual task, and different workspaces. In single-task conditions, subjects perceived scale, location, and proportion very close to the actual (all biases under 1 cm). A secondary task only increased the uncertainty range for judgment of scale, with no other effect. Subjects judged shapes in the centered workspace to be smaller and closer relative to the template compared with those in the peripheral workspace, although in that workspace, it was more difficult to discern changes in the proportion of the shape. The result for scale in the current passive paradigm is not different from our active study in which efference copy was available. This suggests that the scale parameters of the shape, whether actively or passively encountered, are disrupted by task interference at the level of proprioception or sensory integration rather than motor planning and execution.
Collapse
|
24
|
Monaco S, Chen Y, Medendorp WP, Crawford JD, Fiehler K, Henriques DYP. Functional magnetic resonance imaging adaptation reveals the cortical networks for processing grasp-relevant object properties. Cereb Cortex 2013; 24:1540-54. [PMID: 23362111 DOI: 10.1093/cercor/bht006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Grasping behaviors require the selection of grasp-relevant object dimensions, independent of overall object size. Previous neuroimaging studies found that the intraparietal cortex processes object size, but it is unknown whether the graspable dimension (i.e., grasp axis between selected points on the object) or the overall size of objects triggers activation in that region. We used functional magnetic resonance imaging adaptation to investigate human brain areas involved in processing the grasp-relevant dimension of real 3-dimensional objects in grasping and viewing tasks. Trials consisted of 2 sequential stimuli in which the object's grasp-relevant dimension, its global size, or both were novel or repeated. We found that calcarine and extrastriate visual areas adapted to object size regardless of the grasp-relevant dimension during viewing tasks. In contrast, the superior parietal occipital cortex (SPOC) and lateral occipital complex of the left hemisphere adapted to the grasp-relevant dimension regardless of object size and task. Finally, the dorsal premotor cortex adapted to the grasp-relevant dimension in grasping, but not in viewing, tasks, suggesting that motor processing was complete at this stage. Taken together, our results provide a complete cortical circuit for progressive transformation of general object properties into grasp-related responses.
Collapse
Affiliation(s)
- Simona Monaco
- York University, Centre for Vision Research, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Ballesteros S, Mayas J, Reales JM, Heller M. The effect of age on the haptic horizontal-vertical curvature illusion with raised-line shapes. Dev Neuropsychol 2012; 37:653-67. [PMID: 23145564 DOI: 10.1080/87565641.2012.688901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we investigated the effect of age in the haptic horizontal-vertical curvature illusion from adolescence to old age. Blindfolded participants explored raised-line convex curves with one finger and two fingers (Experiment 1). They judged the size of the curves (horizontal/vertical), using two sliding rulers. The results suggest that young and older haptic explorers overestimated the vertical. Adolescents did not show the haptic illusion. In Experiment 2, adolescents performed the task visually showing a stronger horizontal-vertical illusion. The findings suggest that the illusion develops later in touch than in vision. The theoretical implications of the results are discussed.
Collapse
Affiliation(s)
- Soledad Ballesteros
- Department of Basic Psychology II, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
| | | | | | | |
Collapse
|
26
|
Reiswich J, Krumova EK, David M, Stude P, Tegenthoff M, Maier C. Intact 2D-form recognition despite impaired tactile spatial acuity in complex regional pain syndrome type I. Pain 2012; 153:1484-1494. [DOI: 10.1016/j.pain.2012.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/27/2012] [Accepted: 04/05/2012] [Indexed: 12/01/2022]
|
27
|
Calmels C, Foutren M, Stam CJ. β functional connectivity modulation during the maintenance of motion information in working memory: importance of the familiarity of the visual context. Neuroscience 2012; 212:49-58. [PMID: 22516020 DOI: 10.1016/j.neuroscience.2012.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/19/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
The purpose of this study was to examine whether mechanisms, involved during the maintenance of familiar movement information in memory, were influenced by the degree of familiarity of the display in which the movements were embedded. Twelve gymnasts who possessed high visual and motor familiarity with the movements employed in this study, were recruited. They were invited to retain for a short period of time familiar movements viewed previously and presented under different displays with the aim of recognizing them at a later stage. The first display was a realistic, familiar display which presented videos of movements. The second display was an unfamiliar impoverished display never experienced in every day life which showed point-light movements. Activity during the maintenance period was considered in five frequency bands (4-8 Hz, 8-10 Hz, 10-13 Hz, 13-20 Hz, 20-30 Hz) using a non-linear measure of functional connectivity. The results in the 13-20 Hz frequency band showed that functional connectivity was greater within the frontal and right temporal areas during the unfamiliar display (i.e., point-light maintenance condition) compared to the familiar display (i.e., video maintenance condition). Differences in functional connectivity between the two maintenance conditions in the beta frequency band are mainly discussed in the light of the process of anticipation. Subjects' perception of the expected difficulty of the upcoming recognition task is discussed.
Collapse
Affiliation(s)
- C Calmels
- INSEP, Institut National du Sport, de l'Expertise et de la Performance, Paris, France.
| | | | | |
Collapse
|
28
|
Slowing of motor imagery after a right hemispheric stroke. Stroke Res Treat 2012; 2012:297217. [PMID: 22567540 PMCID: PMC3337513 DOI: 10.1155/2012/297217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/11/2012] [Accepted: 02/07/2012] [Indexed: 11/17/2022] Open
Abstract
The temporal congruence between real and imagined movements is not always preserved after stroke. We investigated the dependence of temporal incongruence on the side of the hemispheric lesion and its link with working memory deficits. Thirty-seven persons with a chronic stroke after a right or left hemispheric lesion (RHL : n = 19; LHL : n = 18) and 32 age-matched healthy persons (CTL) were administered a motor imagery questionnaire, mental chronometry and working memory tests. In contrast to persons in the CTL group and LHL subgroup, persons with a RHL had longer movement times during the imagination than the physical execution of stepping movements on both sides, indicating a reduced ability to predict movement duration (temporal incongruence). While motor imagery vividness was good in both subgroups, the RHL group had greater visuospatial working memory deficits. The bilateral slowing of stepping movements in the RHL group indicates that temporal congruence during motor imagery is impaired after a right hemispheric stroke and is also associated with greater visuospatial working memory deficits. Findings emphasize the need to use mental chronometry to control for movement representation during motor imagery training and may indicate that mental practice through motor imagery will have limitations in patients with a right hemispheric stroke.
Collapse
|
29
|
Ventral and dorsal fiber systems for imagined and executed movement. Exp Brain Res 2012; 219:203-16. [DOI: 10.1007/s00221-012-3079-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
|
30
|
Kaas AL, van Mier H, Visser M, Goebel R. The neural substrate for working memory of tactile surface texture. Hum Brain Mapp 2012; 34:1148-62. [PMID: 22576840 DOI: 10.1002/hbm.21500] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/09/2011] [Accepted: 09/28/2011] [Indexed: 12/12/2022] Open
Abstract
Fine surface texture is best discriminated by touch, in contrast to macro geometric features like shape. We used functional magnetic resonance imaging and a delayed match-to-sample task to investigate the neural substrate for working memory of tactile surface texture. Blindfolded right-handed males encoded the texture or location of up to four sandpaper stimuli using the dominant or non-dominant hand. They maintained the information for 10-12 s and then answered whether a probe stimulus matched the memory array. Analyses of variance with the factors Hand, Task, and Load were performed on the estimated percent signal change for the encoding and delay phase. During encoding, contralateral effects of Hand were found in sensorimotor regions, whereas Load effects were observed in bilateral postcentral sulcus (BA2), secondary somatosensory cortex (S2), pre-SMA, dorsolateral prefrontal cortex (dlPFC), and superior parietal lobule (SPL). During encoding and delay, Task effects (texture > location) were found in central sulcus, S2, pre-SMA, dlPFC, and SPL. The Task and Load effects found in hand- and modality-specific regions BA2 and S2 indicate involvement of these regions in the tactile encoding and maintenance of fine surface textures. Similar effects in hand- and modality-unspecific areas dlPFC, pre-SMA and SPL suggest that these regions contribute to the cognitive monitoring required to encode and maintain multiple items. Our findings stress both the particular importance of S2 for the encoding and maintenance of tactile surface texture, as well as the supramodal nature of parieto-frontal networks involved in cognitive control.
Collapse
Affiliation(s)
- Amanda L Kaas
- Department of Cognitive Neuroscience, Faculty of Psychology, Maastricht University, The Netherlands.
| | | | | | | |
Collapse
|
31
|
Mizelle JC, Tang T, Pirouz N, Wheaton LA. Forming Tool Use Representations: A Neurophysiological Investigation into Tool Exposure. J Cogn Neurosci 2011; 23:2920-34. [DOI: 10.1162/jocn_a_00004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Prior work has identified a common left parietofrontal network for storage of tool-related information for various tasks. How these representations become established within this network on the basis of different modes of exposure is unclear. Here, healthy subjects engaged in physical practice (direct exposure) with familiar and unfamiliar tools. A separate group of subjects engaged in video-based observation (indirect exposure) of the same tools to understand how these learning strategies create representations. To assess neural mechanisms engaged for pantomime after different modes of exposure, a pantomime task was performed for both tools while recording neural activation with high-density EEG. Motor planning–related neural activation was evaluated using beta band (13–22 Hz) event-related desynchronization. Hemispheric dominance was assessed, and activation maps were generated to understand topography of activations. Comparison of conditions (effects of tool familiarity and tool exposure) was performed with standardized low-resolution brain electromagnetic tomography. Novel tool pantomime following direct exposure resulted in greater activations of bilateral parietofrontal regions. Activations following indirect training varied by tool familiarity; pantomime of the familiar tool showed greater activations in left parietofrontal areas, whereas the novel tool showed greater activations at right temporoparieto-occipital areas. These findings have relevance to the mechanisms for understanding motor-related behaviors involved in new tools that we have little or no experience with and can extend into advancing theories of tool use motor learning.
Collapse
|
32
|
|
33
|
Fiehler K, Bannert MM, Bischoff M, Blecker C, Stark R, Vaitl D, Franz VH, Rösler F. Working memory maintenance of grasp-target information in the human posterior parietal cortex. Neuroimage 2011; 54:2401-11. [DOI: 10.1016/j.neuroimage.2010.09.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 08/14/2010] [Accepted: 09/27/2010] [Indexed: 11/16/2022] Open
|
34
|
Cazalis F, Babikian T, Giza C, Copeland S, Hovda D, Asarnow RF. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth. Front Neurol 2011; 1:158. [PMID: 21270956 PMCID: PMC3026484 DOI: 10.3389/fneur.2010.00158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 12/16/2010] [Indexed: 11/13/2022] Open
Abstract
In this fMRI study, the functions of the anterior cingulate cortex (ACC) were studied in a group of adolescents who had sustained a moderate to severe traumatic brain injury (TBI). A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered. In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the ACC in the TBI group, but not in the Control group, was associated with task difficulty; conversely, activity of the left sensorimotor cortex (lSMC) in the Control group, but not in the TBI group, was correlated with task difficulty. In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe TBI was done using fMRI and the same spatial working memory task. The patient group was studied at two time-points: one time-point during the post-acute phase and one time-point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12-month period, patients recruited less of the ACC and more of the lSMC in response to increasing task difficulty. The role of ACC in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the ACC functions in the existing literature.
Collapse
Affiliation(s)
- Fabienne Cazalis
- Psychiatry and Biobehavioral Sciences, University of California Los Angeles David Geffen School of MedicineLos Angeles, CA, USA
- Department of Anatomy, Ross University School of MedicineRoseau, Commonwealth of Dominica
| | - Talin Babikian
- Psychiatry and Biobehavioral Sciences, University of California Los Angeles David Geffen School of MedicineLos Angeles, CA, USA
| | - Christopher Giza
- Department of Neurosurgery, University of California Los Angeles David Geffen School of MedicineLos Angeles, CA, USA
| | - Sarah Copeland
- Department of Neurosurgery, University of California Los Angeles David Geffen School of MedicineLos Angeles, CA, USA
| | - David Hovda
- Department of Neurosurgery, University of California Los Angeles David Geffen School of MedicineLos Angeles, CA, USA
| | - Robert F. Asarnow
- Psychiatry and Biobehavioral Sciences, University of California Los Angeles David Geffen School of MedicineLos Angeles, CA, USA
| |
Collapse
|
35
|
Gaze-centered spatial updating of reach targets across different memory delays. Vision Res 2011; 51:890-7. [PMID: 21219923 DOI: 10.1016/j.visres.2010.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 11/26/2010] [Accepted: 12/22/2010] [Indexed: 11/22/2022]
Abstract
Previous research has demonstrated that remembered targets for reaching are coded and updated relative to gaze, at least when the reaching movement is made soon after the target has been extinguished. In this study, we want to test whether reach targets are updated relative to gaze following different time delays. Reaching endpoints systematically varied as a function of gaze relative to target irrespective of whether the action was executed immediately or after a delay of 5 s, 8 s or 12 s. The present results suggest that memory traces for reach targets continue to be coded in a gaze-dependent reference frame if no external cues are present.
Collapse
|
36
|
Leung AWS, Alain C. Working memory load modulates the auditory "What" and "Where" neural networks. Neuroimage 2010; 55:1260-9. [PMID: 21195187 DOI: 10.1016/j.neuroimage.2010.12.055] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 11/15/2022] Open
Abstract
Working memory for sound identity (What) and sound location (Where) has been associated with increased neural activity in ventral and dorsal brain regions, respectively. To further ascertain this domain specificity, we measured fMRI signals during an n-back (n=1, 2) working memory task for sound identity or location, where stimuli selected randomly from three semantic categories (human, animal, and music) were presented at three possible virtual locations. Accuracy and reaction times were comparable in both "What" and "Where" tasks, albeit worse for the 2-back than for the 1-back condition. The analysis of fMRI data revealed greater activity in ventral and dorsal brain regions during sound identity and sound location, respectively. More importantly, there was an interaction between task and working memory load in the inferior parietal lobule (IPL). Within the right IPL, there were two sub-regions modulated differentially by working memory load: an anterior ventromedial region modulated by location load and a posterior dorsolateral region modulated by category load. These specific changes in neural activity as a function of working memory load reveal domain-specificity within the parietal cortex.
Collapse
Affiliation(s)
- Ada W S Leung
- Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada M6A 2E1
| | | |
Collapse
|
37
|
Powell LJ, Macrae CN, Cloutier J, Metcalfe J, Mitchell JP. Dissociable neural substrates for agentic versus conceptual representations of self. J Cogn Neurosci 2010; 22:2186-97. [PMID: 19925182 DOI: 10.1162/jocn.2009.21368] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although humans generally experience a coherent sense of selfhood, we can nevertheless articulate different aspects of self. Recent research has demonstrated that one such aspect of self--conceptual knowledge of one's own personality traits--is subserved by ventromedial prefrontal cortex (vMPFC). Here, we examined whether an alternative aspect of "self"--being an agent who acts to achieve one's own goals--relies on cognitive processes that overlap with or diverge from conceptual operationalizations of selfhood. While undergoing fMRI, participants completed tasks of both conceptual self-reference, in which they judged their own or another person's personality traits, and agentic self-reference, in which they freely chose an object or watched passively as one was chosen. The agentic task failed to modulate vMPFC, despite producing the same memory enhancement frequently observed during conceptual self-referential processing (the "self-reference" effect). Instead, agentic self-reference was associated with activation of the intraparietal sulcus (IPS), a region previously implicated in planning and executing actions. Experiment 2 further demonstrated that IPS activity correlated with later memory performance for the agentic, but not conceptual, task. These results support views of the "self" as a collection of distinct mental operations distributed throughout the brain, rather than a unitary cognitive system.
Collapse
|
38
|
Kilintari M, Raos V, Savaki HE. Grasping in the dark activates early visual cortices. Cereb Cortex 2010; 21:949-63. [PMID: 20833697 DOI: 10.1093/cercor/bhq175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have previously demonstrated that the primary motor and somatosensory cortices of monkeys are somatotopically activated for action-observation as are for action-generation, indicating that the recruitment of learned somatosensory-motor representations underlies the perception of others' actions. Here we examined the effects of seen and unseen actions on the early visual cortices, to determine whether stored visual representations are employed in addition to the somatosensory-motor ones. We used the quantitative (14)C-deoxyglucose method to map the activity throughout the cortex of the occipital operculum, lunate, and inferior occipital sulci of "rhesus monkeys" who reached to grasp a 3D object either in the light or in the dark or who observed the same action executed by another subject. In all cases, the extrastriate areas V3d and V3A displayed marked activation. We suggest that these activations reflect processing of visuospatial information useful for the reaching component of action, and 3D object-related information useful for the grasping part. We suggest that a memorized visual representation of the action supports action-recognition, as well as action-execution in complete darkness when the object and its environment are invisible. Accordingly, the internal representation that serves action-cognition is not purely somatosensory-motor but also includes a visual component.
Collapse
Affiliation(s)
- Marina Kilintari
- Department of Basic Sciences, Faculty of Medicine, School of Health Sciences, University of Crete, Crete, 71003 Greece
| | | | | |
Collapse
|
39
|
Interaction between gaze and visual and proprioceptive position judgements. Exp Brain Res 2010; 203:485-98. [DOI: 10.1007/s00221-010-2251-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
|
40
|
Reuschel J, Drewing K, Henriques DYP, Rösler F, Fiehler K. Optimal integration of visual and proprioceptive movement information for the perception of trajectory geometry. Exp Brain Res 2009; 201:853-62. [DOI: 10.1007/s00221-009-2099-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
|
41
|
Fleming MK, Stinear CM, Byblow WD. Bilateral parietal cortex function during motor imagery. Exp Brain Res 2009; 201:499-508. [DOI: 10.1007/s00221-009-2062-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 10/16/2009] [Indexed: 10/20/2022]
|
42
|
Fiehler K, Reuschel J, Rösler F. Early non-visual experience influences proprioceptive-spatial discrimination acuity in adulthood. Neuropsychologia 2009; 47:897-906. [DOI: 10.1016/j.neuropsychologia.2008.12.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 12/14/2008] [Accepted: 12/19/2008] [Indexed: 11/16/2022]
|
43
|
Engel A, Burke M, Fiehler K, Bien S, Rösler F. What activates the human mirror neuron system during observation of artificial movements: Bottom-up visual features or top-down intentions? Neuropsychologia 2008; 46:2033-42. [DOI: 10.1016/j.neuropsychologia.2008.01.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/14/2008] [Accepted: 01/31/2008] [Indexed: 11/26/2022]
|
44
|
Fiehler K, Burke M, Bien S, Roder B, Rosler F. The Human Dorsal Action Control System Develops in the Absence of Vision. Cereb Cortex 2008; 19:1-12. [DOI: 10.1093/cercor/bhn067] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Gosselin-Kessiby N, Messier J, Kalaska JF. Evidence for Automatic On-Line Adjustments of Hand Orientation During Natural Reaching Movements to Stationary Targets. J Neurophysiol 2008; 99:1653-71. [PMID: 18256170 DOI: 10.1152/jn.00980.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Control of the spatial orientation of the hand is an important component of reaching and grasping movements. We studied the contribution of vision and proprioception to the perception and control of hand orientation in orientation-matching and letter-posting tasks. In the orientation-matching task, subjects aligned a “match” handle to a “target” handle that was fixed in different orientations. In letter-posting task 1, subjects simultaneously reached and rotated the right hand to insert a match handle into a target slot fixed in the same orientations. Similar sensory conditions produced different error patterns in the two tasks. Furthermore, without vision of the hand, final hand-orientation errors were smaller overall in letter-posting task 1 than in the orientation-matching task. In letter-posting task 2, subjects first aligned their hand to the angle of the target and then reached to it with the instruction not to change their initial hand orientation. Nevertheless, hand orientation changed during reaching in a way that reduced the initial orientation errors. This did not occur when there was no explicitly defined target toward which the subjects reached (letter-posting task 3). The reduction in hand-orientation errors during reach, even when told not to change it, suggests the engagement of an automatic error correction mechanism for hand orientation during reaching movements toward stationary targets. The correction mechanism was engaged when the task involved transitive actions directed at the target object. The on-line adjustments can occur without vision of the hand and even when target orientation is defined only by proprioceptive inputs.
Collapse
|
46
|
Neuronal substrates of haptic shape encoding and matching: A functional magnetic resonance imaging study. Neuroscience 2008; 152:29-39. [PMID: 18255234 DOI: 10.1016/j.neuroscience.2007.12.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Revised: 12/05/2007] [Accepted: 12/06/2007] [Indexed: 11/20/2022]
|
47
|
Scheperjans F, Eickhoff SB, Hömke L, Mohlberg H, Hermann K, Amunts K, Zilles K. Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex 2008; 18:2141-57. [PMID: 18245042 DOI: 10.1093/cercor/bhm241] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recently, 8 areas (5Ci, 5M, 5L, 7PC, 7A, 7P, 7M, hIP3) in the human superior parietal cortex (SPC) were delineated in 10 postmortem brains using observer-independent cytoarchitectonic analysis. Here we present 3D probabilistic maps of these areas, quantifying the interindividual overlap for each voxel in stereotaxic reference space, and a maximum probability map, providing a contiguous parcellation. For all areas, we determined probabilities of mutual borders, calculated stereotaxic centers of gravity, and estimated volumes. A basic pattern of areas and borders was observed, which showed, however, intersubject variations and a significant interhemispheric asymmetry (7P, 7M) that may be functionally relevant. There was a trend toward higher intersubject anatomical variability in lateral compared with medial areas. For several areas (5M, 7PC, 7A, 7P), variability was significantly higher in the left hemisphere and/or in men, whereas for areas 5Ci and 5M there was a hemisphere-by-gender interaction. Differences in anatomical variability could bias group analyses in functional imaging studies by reducing sensitivity for activations of entities with high variability. The probabilistic maps provide an objective anatomical reference and account for the structural variability of the human brain. Integrated into functional imaging experiments, they can improve structure-function investigations of the human SPC.
Collapse
Affiliation(s)
- Filip Scheperjans
- Institute of Medicine, Research Center Jülich, D-52425 Jülich, Germany.
| | | | | | | | | | | | | |
Collapse
|