1
|
Dryden B, Matsubara J, Wassermann E, Forssberg H, Damiano DL. Effect of individual variations in genes related to dopamine brain transmission on performance with and without rewards during motor sequence and probabilistic learning tasks in children and young adults with and without cerebral palsy. PLoS One 2025; 20:e0314173. [PMID: 39787065 PMCID: PMC11717210 DOI: 10.1371/journal.pone.0314173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/05/2024] [Indexed: 01/12/2025] Open
Abstract
Children with cerebral palsy (CP) often participate in training to improve mobility, hand function and other motor abilities. However, responses to these interventions vary considerably across individuals even those with similar brain injuries, ages and functional levels. Dopamine is a neurotrasmitter known to affect motor skill acquistion in animals and humans and may be influenced by individual variations in genes related to brain transmission of dopamine. To evaluate potential genetic influences on learning in young people with and without CP, we calculated individual dopamine-related gene scores and compared these to the ability to learn two different tasks, an implicit sequence learning task and a probablistic classification task. Each task was also administered in an unrewarded condition and a rewarded one known to increase circulating levels of dopamine. The main finding was an interaction between gene score and condition for the sequence task such that those with low gene scores were poorer learners without rewards but responded positively to rewards whereas the converse was true for those with high gene scores. This is the first prospective study in CP suggesting that genetic variability may influence neurorehabilitation outcomes and could potentially be modulated using rewards or medications for those with poorer learning at baseline, thus promoting more personalized approaches to enhancing motor training in CP and other neurological conditions.
Collapse
Affiliation(s)
- Barrett Dryden
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Jesse Matsubara
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Eric Wassermann
- National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Hans Forssberg
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Diane L. Damiano
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
2
|
Kacprzak B, Stańczak M, Surmacz J, Hagner-Derengowska M. Biophysics of ACL Injuries. Orthop Rev (Pavia) 2024; 16:126041. [PMID: 39911284 PMCID: PMC11798646 DOI: 10.52965/001c.126041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 02/07/2025] Open
Abstract
Anterior Cruciate Ligament (ACL) injuries rank among the most prevalent and severe types of injuries, significantly impacting both athletes and non-athletes alike. These injuries not only result in immediate physical impairment, such as intense pain, substantial swelling, and a marked loss of mobility, but also carry long-term health consequences that can alter a person's quality of life. Chronic pain, persistent instability, and an increased risk of developing osteoarthritis are among the lasting effects that can follow an ACL injury. An in-depth understanding of the biophysics behind ACL injuries is paramount for devising effective prevention and treatment protocols. Biophysics, which combines principles from physics with biological systems, provides crucial insights into the mechanical and structural integrity of the ACL and its susceptibility to injury under various conditions. This systematic review aims to collate and synthesize the current knowledge surrounding the biophysical mechanisms that underlie ACL injuries.
Collapse
Affiliation(s)
| | - Mikołaj Stańczak
- AECC University College, Bournemouth, UK
- Rehab Performance, Lublin, Poland
| | | | | |
Collapse
|
3
|
Hall ECR, John G, Ahmetov II. Testing in Football: A Narrative Review. Sports (Basel) 2024; 12:307. [PMID: 39590909 PMCID: PMC11598473 DOI: 10.3390/sports12110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Football clubs regularly test and monitor players, with different approaches reflecting player age and competitive level. This narrative review aims to summarise justifications for testing and commonly used testing protocols. We also aim to discuss the validity and reliability of specific tests used to assess football players and provide a holistic overview of protocols currently used in football or those demonstrating potential utility. The PubMed, SportDiscus, and Google Scholar databases were screened for relevant articles from inception to September 2024. Articles that met our inclusion criteria documented tests for several purposes, including talent identification or the assessment of growth/maturation, physiological capacity, sport-specific skill, health status, monitoring fatigue/recovery, training adaptation, and injury risk factors. We provide information on specific tests of anthropometry, physical capacity, biochemical markers, psychological indices, injury risk screening, sport-specific skills, and genetic profile and highlight where certain tests may require further evidence to support their use. The available evidence suggests that test selection and implementation are influenced by financial resources, coach perceptions, and playing schedules. The ability to conduct field-based testing at low cost and to test multiple players simultaneously appear to be key drivers of test development and implementation among practitioners working in elite football environments.
Collapse
Affiliation(s)
- Elliott C. R. Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4UA, UK
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - George John
- Transform Specialist Medical Centre, Dubai 119190, United Arab Emirates;
| | - Ildus I. Ahmetov
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St. Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
| |
Collapse
|
4
|
Bogard AT, Hemmerle MR, Smith AC, Tan AQ. Enhanced motor learning and motor savings after acute intermittent hypoxia are associated with a reduction in metabolic cost. J Physiol 2024; 602:5879-5899. [PMID: 37983629 PMCID: PMC11102937 DOI: 10.1113/jp285425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Breathing mild bouts of low oxygen air (i.e. acute intermittent hypoxia, AIH) has been shown to improve locomotor function in humans after a spinal cord injury. How AIH-induced gains in motor performance are achieved remains unclear. We examined the hypothesis that AIH augments motor learning and motor retention during a locomotor adaptation task. We further hypothesized that gains in motor learning and retention will be associated with reductions in net metabolic power, consistent with the acquisition of energetically favourable mechanics. Thirty healthy individuals were randomly allocated into either a control group or an AIH group. We utilized a split-belt treadmill to characterize adaptations to an unexpected belt speed perturbation of equal magnitude during an initial exposure and a second exposure. Adaptation was characterized by changes in spatiotemporal step asymmetry, anterior-posterior force asymmetry, and net metabolic power. While both groups adapted by reducing spatial asymmetry, only the AIH group achieved significant reductions in double support time asymmetry and propulsive force asymmetry during both the initial and the second exposures to the belt speed perturbation. Net metabolic power was also significantly lower in the AIH group, with significant reductions from the initial perturbation exposure to the second. These results provide the first evidence that AIH mediates improvements in both motor learning and retention. Further, our results suggest that reductions in net metabolic power continue to be optimized upon subsequent learning and are driven by more energetically favourable temporal coordination strategies. Our observation that AIH facilitates motor learning and retention can be leveraged to design rehabilitation interventions that promote functional recovery. KEY POINTS: Brief exposures to low oxygen air, known as acute intermittent hypoxia (AIH), improves locomotor function in humans after a spinal cord injury, but it remains unclear how gains in motor performance are achieved. In this study, we tested the hypothesis that AIH induces enhancements in motor learning and retention by quantifying changes in interlimb coordination, anterior-posterior force symmetry and metabolic cost during a locomotor adaptation task. We show the first evidence that AIH improves both motor learning and savings of newly learned temporal interlimb coordination strategies and force asymmetry compared to untreated individuals. We further demonstrate that AIH elicits greater reductions in metabolic cost during motor learning that continues to be optimized upon subsequent learning. Our findings suggest that AIH-induced gains in locomotor performance are facilitated by enhancements in motor learning and retention of more energetically favourable coordination strategies.
Collapse
Affiliation(s)
- Alysha T Bogard
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
| | - Makenna R Hemmerle
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
| | - Andrew C Smith
- Dept. of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrew Q Tan
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
- Center for Neuroscience, University of Colorado, Boulder, CO, USA
| |
Collapse
|
5
|
Giesler LP, Mychasiuk R, Shultz SR, McDonald SJ. BDNF: New Views of an Old Player in Traumatic Brain Injury. Neuroscientist 2024; 30:560-573. [PMID: 37067029 PMCID: PMC11423547 DOI: 10.1177/10738584231164918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Traumatic brain injury is a common health problem affecting millions of people each year. BDNF has been investigated in the context of traumatic brain injury due to its crucial role in maintaining brain homeostasis. Val66Met is a functional single-nucleotide polymorphism that results in a valine-to-methionine amino acid substitution at codon 66 in the BDNF prodomain, which ultimately reduces secretion of BDNF. Here, we review experimental animal models as well as clinical studies investigating the role of the Val66Met single-nucleotide polymorphism in traumatic brain injury outcomes, including cognitive function, motor function, neuropsychiatric symptoms, and nociception. We also review studies investigating the role of BDNF on traumatic brain injury pathophysiology as well as circulating BDNF as a biomarker of traumatic brain injury.
Collapse
Affiliation(s)
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
6
|
Cao J, Gorwood P, Ramoz N, Viltart O. The Role of Central and Peripheral Brain-Derived Neurotrophic Factor (BDNF) as a Biomarker of Anorexia Nervosa Reconceptualized as a Metabo-Psychiatric Disorder. Nutrients 2024; 16:2617. [PMID: 39203753 PMCID: PMC11357464 DOI: 10.3390/nu16162617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024] Open
Abstract
Neurotrophic factors play pivotal roles in shaping brain development and function, with brain-derived neurotrophic factor (BDNF) emerging as a key regulator in various physiological processes. This review explores the intricate relationship between BDNF and anorexia nervosa (AN), a complex psychiatric disorder characterized by disordered eating behaviors and severe medical consequences. Beginning with an overview of BDNF's fundamental functions in neurodevelopment and synaptic plasticity, the review delves into recent clinical and preclinical evidence implicating BDNF in the pathophysiology of AN. Specifically, it examines the impact of BDNF polymorphisms, such as the Val66Met variant, on AN susceptibility, prognosis, and treatment response. Furthermore, the review discusses the interplay between BDNF and stress-related mood disorders, shedding light on the mechanisms underlying AN vulnerability to stress events. Additionally, it explores the involvement of BDNF in metabolic regulation, highlighting its potential implications for understanding the metabolic disturbances observed in AN. Through a comprehensive analysis of clinical data and animal studies, the review elucidates the nuanced role of BDNF in AN etiology and prognosis, emphasizing its potential as a diagnostic and prognostic biomarker. Finally, the review discusses limitations and future directions in BDNF research, underscoring the need for further investigations to elucidate the complex interplay between BDNF signaling and AN pathology.
Collapse
Affiliation(s)
- Jingxian Cao
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
| | - Philip Gorwood
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Nicolas Ramoz
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Odile Viltart
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- SCALab Laboratory, PsySEF Faculty, Université de Lille, UMR CNRS 9193, F-59650 Villeneuve d’Ascq, France
| |
Collapse
|
7
|
Cramer SC, Parodi L, Moslemi Z, Braun R, Aldridge C, Shahbaba B, Rosand J, Holman EA. Genetic Variation and Stroke Recovery: The STRONG Study. Stroke 2024; 55:2094-2102. [PMID: 38979623 PMCID: PMC11262965 DOI: 10.1161/strokeaha.124.047643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Genetic association studies can reveal biology and treatment targets but have received limited attention for stroke recovery. STRONG (Stroke, Stress, Rehabilitation, and Genetics) was a prospective, longitudinal (1-year), genetic study in adults with stroke at 28 US stroke centers. The primary aim was to examine the association that candidate genetic variants have with (1) motor/functional outcomes and (2) stress-related outcomes. METHODS For motor/functional end points, 3 candidate gene variants (ApoE ε4, BDNF [brain-derived neurotrophic factor], and a dopamine polygenic score) were analyzed for associations with change in grip strength (3 months-baseline), function (3-month Stroke Impact Scale-Activities of Daily Living), mood (3-month Patient Health Questionnaire-8), and cognition (12-month telephone-Montreal Cognitive Assessment). For stress-related outcomes, 7 variants (serotonin transporter gene-linked promoter region, ACE [angiotensin-converting enzyme], oxytocin receptor, FKBP5 [FKBP prolyl isomerase 5], FAAH [fatty acid amide hydrolase], BDNF, and COMT [catechol-O-methyltransferase]) were assessed for associations with posttraumatic stress disorder ([PTSD]; PTSD Primary Care Scale) and depression (Patient Health Questionnaire-8) at 6 and 12 months; stress-related genes were examined as a function of poststroke stress level. Statistical models (linear, negative binomial, or Poisson regression) were based on response variable distribution; all included stroke severity, age, sex, and ancestry as covariates. Stroke subtype was explored secondarily. Data were Holm-Bonferroni corrected. A secondary replication analysis tested whether the rs1842681 polymorphism (identified in the GISCOME study [Genetics of Ischaemic Stroke Functional Outcome]) was related to 3-month modified Rankin Scale score in STRONG. RESULTS The 763 enrollees were 63.1±14.9 (mean±SD) years of age, with a median initial National Institutes of Health Stroke Scale score of 4 (interquartile range, 2-9); outcome data were available in n=515 at 3 months, n=500 at 6 months, and n=489 at 12 months. At 1 year poststroke, the rs6265 (BDNF) variant was associated with poorer cognition (0.9-point lower telephone-Montreal Cognitive Assessment score, P=1×10-5). For stress-related outcomes, rs4291 (ACE) and rs324420 (FAAH) were risk factors linking increased poststroke stress with higher 1-year depression and PTSD symptoms (P<0.05), while rs4680 (COMT) linked poststroke stress with lower 1-year depression and PTSD. Findings were unchanged when considering stroke subtype. STRONG replicated GISCOME: rs1842681 was associated with lower 3-month modified Rankin Scale score (P=3.2×10-5). CONCLUSIONS This study identified genetic associations with cognitive function, depression, and PTSD 1 year poststroke. Genetic susceptibility to PTSD and depressive symptoms varied according to the amount of poststroke stress, underscoring the critical role of lived experiences in recovery. Together, the results suggest that genetic association studies provide insights into the biology of stroke recovery in humans.
Collapse
Affiliation(s)
- Steven C. Cramer
- Dept. Neurology, UCLA; California Rehabilitation Institute; Los Angeles, CA
| | - Livia Parodi
- Dept. Neurology, Center for Genomic Medicine, McCance Center for Brain Health, MGH; Boston, MA
| | | | | | - Chad Aldridge
- Dept. Neurology, Univ. Virginia; Charlottesville, VA
| | | | - Jonathan Rosand
- Dept. Neurology, Center for Genomic Medicine, McCance Center for Brain Health, MGH; Boston, MA
| | - E. Alison Holman
- Sue & Bill Gross School of Nursing and Dept. Psychological Science; UC, Irvine; Irvine, CA
| |
Collapse
|
8
|
Subramanian SK, Morgan RT, Rasmusson C, Shepherd KM, Li CL. Genetic polymorphisms and post-stroke upper limb motor improvement - A systematic review and meta-analysis. J Cent Nerv Syst Dis 2024; 16:11795735241266601. [PMID: 39049838 PMCID: PMC11268047 DOI: 10.1177/11795735241266601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
Background Post-stroke upper limb (UL) motor improvement is associated with adaptive neuroplasticity and motor learning. Both intervention-related (including provision of intensive, variable, and task-specific practice) and individual-specific factors (including the presence of genetic polymorphisms) influence improvement. In individuals with stroke, most commonly, polymorphisms are found in Brain Derived Neurotrophic Factor (BDNF), Apolipoprotein (APOE) and Catechol-O-Methyltransferase (COMT). These involve a replacement of cystine by arginine (APOEε4) or valines by 1 or 2 methionines (BDNF:val66met, met66met; COMT:val158met; met158met). However, the implications of these polymorphisms on post-stroke UL motor improvement specifically have not yet been elucidated. Objective Examine the influence of genetic polymorphism on post-stroke UL motor improvement. Design Systematic Review and Meta-Analysis. Methods We conducted a systematic search of the literature published in English language. The modified Downs and Black checklist helped assess study quality. We compared change in UL motor impairment and activity scores between individuals with and without the polymorphisms. Meta-analyses helped assess change in motor impairment (Fugl Meyer Assessment) scores based upon a minimum of 2 studies/time point. Effect sizes (ES) were quantified based upon the Rehabilitation Treatment Specification System as follows: small (0.08-0.18), medium (0.19 -0.40) and large (≥0.41). Results We retrieved 10 (4 good and 6 fair quality) studies. Compared to those with BDNF val66met and met66met polymorphism, meta-analyses revealed lower motor impairment (large ES) in those without the polymorphism at intervention completion (0.5, 95% CI: 0.11-0.88) and at retention (0.58, 95% CI:0.06-1.11). The presence of CoMT val158met or met158met polymorphism had similar results, with lower impairment (large ES ≥1.5) and higher activity scores (large ES ranging from 0.5-0.76) in those without the polymorphism. Presence of APOEε4 form did not influence UL motor improvement. Conclusion Polymorphisms with the presence of 1 or 2 met alleles in BDNF and COMT negatively influence UL motor improvement. Registration https://osf.io/wk9cf/.
Collapse
Affiliation(s)
- Sandeep K. Subramanian
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physician Assistant Studies, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Rehabilitation Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Center for Biomedical Neurosciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Riley T. Morgan
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Carl Rasmusson
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kayla M. Shepherd
- Department of Physical Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Carol L. Li
- Department of Rehabilitation Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Audie L. Murphy VA Hospital, South Texas Veterans Health Administration, Polytrauma Rehabilitation Center, San Antonio, TX, USA
| |
Collapse
|
9
|
Liu X, Qi S, Hou L, Liu Y, Wang X. Noninvasive Deep Brain Stimulation via Temporal Interference Electric Fields Enhanced Motor Performance of Mice and Its Neuroplasticity Mechanisms. Mol Neurobiol 2024; 61:3314-3329. [PMID: 37987957 DOI: 10.1007/s12035-023-03721-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
A noninvasive deep brain stimulation via temporal interference (TI) electric fields is a novel neuromodulation technology, but few advances about TI stimulation effectiveness and mechanisms have been reported. One hundred twenty-six mice were selected for the experiment by power analysis. In the present study, TI stimulation was proved to stimulate noninvasively primary motor cortex (M1) of mice, and 7-day TI stimulation with an envelope frequency of 20 Hz (∆f =20 Hz), instead of an envelope frequency of 10 Hz (∆f =10 Hz), could obviously improve mice motor performance. The mechanism of action may be related to enhancing the strength of synaptic connections, improving synaptic transmission efficiency, increasing dendritic spine density, promoting neurotransmitter release, and increasing the expression and activity of synapse-related proteins, such as brain-derived neurotrophic factor (BDNF), postsynaptic density protein-95 (PSD-95), and glutamate receptor protein. Furthermore, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and its upstream BDNF play an important role in the enhancement of locomotor performance in mice by TI stimulation. To our knowledge, it is the first report about TI stimulation promoting multiple motor performances and describing its mechanisms. TI stimulation might serve as a novel promising approach to enhance motor performance and treat dysfunction in deep brain regions.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shuo Qi
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lijuan Hou
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Yu Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Xiaohui Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
10
|
Varkanitsa M, Kiran S. Insights gained over 60 years on factors shaping post-stroke aphasia recovery: A commentary on Vignolo (1964). Cortex 2024; 170:90-100. [PMID: 38123405 PMCID: PMC10962385 DOI: 10.1016/j.cortex.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Aphasia is an acquired language disorder resulting from brain injury, including strokes which is the most common etiology, neurodegenerative diseases, tumors, traumatic brain injury, and resective surgery. Aphasia affects a significant portion of stroke survivors, with approximately one third experiencing its debilitating effects in the long term. Despite its challenges, there is growing evidence that recovery from aphasia is possible, even in the chronic phase of stroke. Sixty years ago, Vignolo (1964) outlined the primary challenges confronted by researchers in this field. These challenges encompassed the absence of an objective evaluation of language difficulties, the scarcity of evidence regarding spontaneous aphasia recovery, and the presence of numerous variables that could potentially influence the process of aphasia recovery. In this paper, we discuss the remarkable progress that has been made in the assessment of language and communication in aphasia as well as in understanding the factors influencing post-stroke aphasia recovery.
Collapse
Affiliation(s)
| | - Swathi Kiran
- Center for Brain Recovery, Boston University, USA
| |
Collapse
|
11
|
Nair J, Welch JF, Marciante AB, Hou T, Lu Q, Fox EJ, Mitchell GS. APOE4, Age, and Sex Regulate Respiratory Plasticity Elicited by Acute Intermittent Hypercapnic-Hypoxia. FUNCTION 2023; 4:zqad026. [PMID: 37575478 PMCID: PMC10413930 DOI: 10.1093/function/zqad026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 08/15/2023] Open
Abstract
Rationale Acute intermittent hypoxia (AIH) shows promise for enhancing motor recovery in chronic spinal cord injuries and neurodegenerative diseases. However, human trials of AIH have reported significant variability in individual responses. Objectives Identify individual factors (eg, genetics, age, and sex) that determine response magnitude of healthy adults to an optimized AIH protocol, acute intermittent hypercapnic-hypoxia (AIHH). Methods In 17 healthy individuals (age = 27 ± 5 yr), associations between individual factors and changes in the magnitude of AIHH (15, 1-min O2 = 9.5%, CO2 = 5% episodes) induced changes in diaphragm motor-evoked potential (MEP) amplitude and inspiratory mouth occlusion pressures (P0.1) were evaluated. Single nucleotide polymorphisms (SNPs) in genes linked with mechanisms of AIH induced phrenic motor plasticity (BDNF, HTR2A, TPH2, MAOA, NTRK2) and neuronal plasticity (apolipoprotein E, APOE) were tested. Variations in AIHH induced plasticity with age and sex were also analyzed. Additional experiments in humanized (h)ApoE knock-in rats were performed to test causality. Results AIHH-induced changes in diaphragm MEP amplitudes were lower in individuals heterozygous for APOE4 (i.e., APOE3/4) compared to individuals with other APOE genotypes (P = 0.048) and the other tested SNPs. Males exhibited a greater diaphragm MEP enhancement versus females, regardless of age (P = 0.004). Additionally, age was inversely related with change in P0.1 (P = 0.007). In hApoE4 knock-in rats, AIHH-induced phrenic motor plasticity was significantly lower than hApoE3 controls (P < 0.05). Conclusions APOE4 genotype, sex, and age are important biological determinants of AIHH-induced respiratory motor plasticity in healthy adults. Addition to Knowledge Base AIH is a novel rehabilitation strategy to induce functional recovery of respiratory and non-respiratory motor systems in people with chronic spinal cord injury and/or neurodegenerative disease. Figure 5 Since most AIH trials report considerable inter-individual variability in AIH outcomes, we investigated factors that potentially undermine the response to an optimized AIH protocol, AIHH, in healthy humans. We demonstrate that genetics (particularly the lipid transporter, APOE), age and sex are important biological determinants of AIHH-induced respiratory motor plasticity.
Collapse
Affiliation(s)
- Jayakrishnan Nair
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, 32603, USA
- Department of Physical Therapy, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Joseph F Welch
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, 32603, USA
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, 3- B15 2TT, UK
| | - Alexandria B Marciante
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, 32603, USA
| | - Tingting Hou
- Department of Biostatistics, University of Florida, Gainesville, 32603, USA
| | - Qing Lu
- Department of Biostatistics, University of Florida, Gainesville, 32603, USA
| | - Emily J Fox
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, 32603, USA
- Brooks Rehabilitation, Jacksonville, FL, 32216, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, 32603, USA
| |
Collapse
|
12
|
Rovný R, Marko M, Michalko D, Mitka M, Cimrová B, Vančová Z, Jarčušková D, Dragašek J, Minárik G, Riečanský I. BDNF Val66Met polymorphism is associated with consolidation of episodic memory during sleep. Biol Psychol 2023; 179:108568. [PMID: 37075935 DOI: 10.1016/j.biopsycho.2023.108568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) is an essential regulator of synaptic plasticity, a candidate neurobiological mechanism underlying learning and memory. A functional polymorphism in the BDNF gene, Val66Met (rs6265), has been linked to memory and cognition in healthy individuals and clinical populations. Sleep contributes to memory consolidation, yet information about the possible role of BDNF in this process is scarce. To address this question, we investigated the relationship between the BDNF Val66Met genotype and consolidation of episodic declarative and procedural (motor) non-declarative memories in healthy adults. The carriers of Met66 allele, as compared with Val66 homozygotes, showed stronger forgetting overnight (24hours after encoding), but not over shorter time (immediately or 20minutes after word list presentation). There was no effect of Val66Met genotype on motor learning. These data suggest that BDNF plays a role in neuroplasticity underlying episodic memory consolidation during sleep.
Collapse
Affiliation(s)
- Rastislav Rovný
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Marko
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Drahomír Michalko
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milan Mitka
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Cimrová
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Vančová
- 1st Department of Psychiatry, Faculty of Medicine, Pavol Jozef Šafárik University and University Hospital, Košice, Slovakia
| | - Dominika Jarčušková
- 1st Department of Psychiatry, Faculty of Medicine, Pavol Jozef Šafárik University and University Hospital, Košice, Slovakia
| | - Jozef Dragašek
- 1st Department of Psychiatry, Faculty of Medicine, Pavol Jozef Šafárik University and University Hospital, Košice, Slovakia
| | | | - Igor Riečanský
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Psychiatry, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| |
Collapse
|
13
|
Byczynski G, Vanneste S. Modulating motor learning with brain stimulation: Stage-specific perspectives for transcranial and transcutaneous delivery. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110766. [PMID: 37044280 DOI: 10.1016/j.pnpbp.2023.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/22/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
Brain stimulation has been used in motor learning studies with success in improving aspects of task learning, retention, and consolidation. Using a variety of motor tasks and stimulus parameters, researchers have produced an array of literature supporting the efficacy of brain stimulation to modulate motor task learning. We discuss the use of transcranial direct current stimulation, transcranial alternating current stimulation, and peripheral nerve stimulation to modulate motor learning. In a novel approach, we review literature of motor learning modulation in terms of learning stage, categorizing learning into acquisition, consolidation, and retention. We endeavour to provide a current perspective on the stage-specific mechanism behind modulation of motor task learning, to give insight into how electrical stimulation improves or hinders motor learning, and how mechanisms differ depending on learning stage. Offering a look into the effectiveness of peripheral nerve stimulation for motor learning, we include potential mechanisms and overlapping features with transcranial stimulation. We conclude by exploring how peripheral stimulation may contribute to the results of studies that employed brain stimulation intracranially.
Collapse
Affiliation(s)
- Gabriel Byczynski
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40, Ireland; Global Brain Health Institute, Trinity College Dublin, D02 PN40, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40, Ireland; School of Psychology, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40, Ireland; Global Brain Health Institute, Trinity College Dublin, D02 PN40, Ireland.
| |
Collapse
|
14
|
Nair J, Welch JF, Marciante AB, Hou T, Lu Q, Fox EJ, Mitchell GS. APOE4, Age & Sex Regulate Respiratory Plasticity Elicited By Acute Intermittent Hypercapnic-Hypoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.522840. [PMID: 36711653 PMCID: PMC9881941 DOI: 10.1101/2023.01.06.522840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rationale Acute intermittent hypoxia (AIH) is a promising strategy to induce functional motor recovery following chronic spinal cord injuries and neurodegenerative diseases. Although significant results are obtained, human AIH trials report considerable inter-individual response variability. Objectives Identify individual factors ( e.g. , genetics, age, and sex) that determine response magnitude of healthy adults to an optimized AIH protocol, acute intermittent hypercapnic-hypoxia (AIHH). Methods Associations of individual factors with the magnitude of AIHH (15, 1-min O 2 =9.5%, CO 2 =5% episodes) induced changes in diaphragm motor-evoked potential amplitude (MEP) and inspiratory mouth occlusion pressures (P 0.1 ) were evaluated in 17 healthy individuals (age=27±5 years) compared to Sham. Single nucleotide polymorphisms (SNPs) in genes linked with mechanisms of AIH induced phrenic motor plasticity ( BDNF, HTR 2A , TPH 2 , MAOA, NTRK 2 ) and neuronal plasticity (apolipoprotein E, APOE ) were tested. Variations in AIHH induced plasticity with age and sex were also analyzed. Additional experiments in humanized ( h ) ApoE knock-in rats were performed to test causality. Results AIHH-induced changes in diaphragm MEP amplitudes were lower in individuals heterozygous for APOE 4 ( i.e., APOE 3/4 ) allele versus other APOE genotypes (p=0.048). No significant differences were observed between any other SNPs investigated, notably BDNFval/met ( all p>0.05 ). Males exhibited a greater diaphragm MEP enhancement versus females, regardless of age (p=0.004). Age was inversely related with change in P 0.1 within the limited age range studied (p=0.007). In hApoE 4 knock-in rats, AIHH-induced phrenic motor plasticity was significantly lower than hApoE 3 controls (p<0.05). Conclusions APOE 4 genotype, sex and age are important biological determinants of AIHH-induced respiratory motor plasticity in healthy adults. ADDITION TO KNOWLEDGE BASE Acute intermittent hypoxia (AIH) is a novel rehabilitation strategy to induce functional recovery of respiratory and non-respiratory motor systems in people with chronic spinal cord injury and/or neurodegenerative diseases. Since most AIH trials report considerable inter-individual variability in AIH outcomes, we investigated factors that potentially undermine the response to an optimized AIH protocol, acute intermittent hypercapnic-hypoxia (AIHH), in healthy humans. We demonstrate that genetics (particularly the lipid transporter, APOE ), age and sex are important biological determinants of AIHH-induced respiratory motor plasticity.
Collapse
Affiliation(s)
- Jayakrishnan Nair
- Breathing Research and Therapeutics Center Department of Physical Therapy, University of Florida
- Current address: Department of Physical Therapy, Thomas Jefferson University, PA
| | - Joseph F. Welch
- Breathing Research and Therapeutics Center Department of Physical Therapy, University of Florida
- Current address: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Alexandria B. Marciante
- Breathing Research and Therapeutics Center Department of Physical Therapy, University of Florida
| | - Tingting Hou
- Department of Biostatistics, University of Florida
| | - Qing Lu
- Department of Biostatistics, University of Florida
| | - Emily J. Fox
- Breathing Research and Therapeutics Center Department of Physical Therapy, University of Florida
- Brooks Rehabilitation, Jacksonville, Florida
| | - Gordon S. Mitchell
- Breathing Research and Therapeutics Center Department of Physical Therapy, University of Florida
| |
Collapse
|
15
|
Trevarrow M, Sanmann JN, Wilson TW, Kurz MJ. A Val 66Met polymorphism is associated with weaker somatosensory cortical activity in individuals with cerebral palsy. Heliyon 2022; 8:e10545. [PMID: 36119851 PMCID: PMC9474307 DOI: 10.1016/j.heliyon.2022.e10545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 06/21/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022] Open
Abstract
Background The brain-derived neurotrophic factor (BDNF) protein plays a prominent role in the capacity for neuroplastic change. However, a single nucleotide polymorphism at codon 66 of the BDNF gene results in significant reductions in neuroplastic change. Potentially, this polymorphism also contributes to the weaker somatosensory cortical activity that has been extensively reported in the neuroimaging literature on cerebral palsy (CP). Aims The primary objective of this study was to use magnetoencephalography (MEG) to probe if BDNF genotype affects the strength of the somatosensory-evoked cortical activity seen within individuals with CP. Methods and procedures and Procedures: Twenty individuals with CP and eighteen neurotypical controls participated. Standardized low resolution brain electromagnetic tomography (sLORETA) was used to image the somatosensory cortical activity evoked by stimulation of the tibial nerve. BDNF genotypes were determined from saliva samples. Outcomes and results The somatosensory cortical activity was weaker in individuals with CP compared to healthy controls (P = 0.04). The individuals with a Val66Met or Met66Met BDNF polymorphism also showed a reduced response compared to the individuals without the polymorphism (P = 0.03), had higher GMFCS levels (P = 0.04), and decreased walking velocity (P = 0.05). Conclusions and implications These results convey that BDNF genotype influences the strength of the somatosensory activity and mobility in individuals with CP. What this paper adds Previous literature has extensively documented altered sensorimotor cortical activity in individuals with CP, which ultimately contributes to the clinical deficits in sensorimotor processing documented in this population. While some individuals with CP see vast improvements in their sensorimotor functioning following therapeutic intervention, others are clear non-responders. The underlying basis for this discrepancy is not well understood. Our study is the first to identify that a polymorphism at the gene that codes for brain derived neurotrophic factor (BDNF), a protein well-known to be involved in the capacity for neuroplastic change, may influence the altered sensorimotor cortical activity within this population. Potentially, individuals with CP that have a polymorphism at the BDNF gene may reflect those that have difficulties in achieving beneficial outcomes following intervention. Thus, these individuals may require different therapeutic approaches in order to stimulate neuroplastic change and get similar benefits from therapy as their neurotypical peers.
Collapse
Affiliation(s)
- Michael Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Jennifer N Sanmann
- Department of Genetic Medicine, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA.,Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE, USA
| | - Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA.,Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE, USA
| |
Collapse
|
16
|
Zhu K, Liu Q, Xie X, Jiang Q, Feng Y, Xiao P, Wu X, Song R. The combined effect between BDNF genetic polymorphisms and exposure to metals on the risk of Chinese dyslexia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119640. [PMID: 35718045 DOI: 10.1016/j.envpol.2022.119640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
BDNF gene has been implicated in the development of cognition and language. Meanwhile, exposure to metals might interact with BDNF gene to increase the risk of neurodevelopmental disorders. The present study aimed to explore the association between BDNF genetic polymorphisms and dyslexic risk and examine whether BDNF polymorphisms would interact with metal exposures, jointly contributing to dyslexia. Among a case-control study composed of 238 children with dyslexia and 228 healthy controls, the BDNF genetic polymorphisms were genotyped by the Sequenom MassARRAY system, and the exposure to eight metals, such as lead (Pb), mercury (Hg) and copper (Cu), were measured using an inductively coupled plasma-mass spectrometer (ICP-MS). Multivariable logistic regression models were used to assess the adjusted odds ratios (ORs) and 95% confidence interval (CI) of dyslexia. After multivariate adjustment, significant associations of dyslexic risk with rs6265 polymorphisms of the BDNF gene were observed (OR = 1.99; 95% CI: 1.15-3.44). Furthermore, exposure to Cu could interact with rs6265 to increase the risk of dyslexia (P interaction = 0.045). High-Cu children with the rs6265 TT genotype were more likely to have dyslexia compared with low-Cu children carrying CC + CT genotypes (OR = 3.19; 95% CI: 1.38-7.39). The findings of this study suggested that the polymorphism of rs6265 in BDNF gene could interact with Cu exposure to increase the occurrence of dyslexia.
Collapse
Affiliation(s)
- Kaiheng Zhu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Liu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Jiang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Feng
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Xiao
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Wu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Parchure S, Harvey DY, Shah-Basak PP, DeLoretta L, Wurzman R, Sacchetti D, Faseyitan O, Lohoff FW, Hamilton RH. Brain-Derived Neurotrophic Factor Gene Polymorphism Predicts Response to Continuous Theta Burst Stimulation in Chronic Stroke Patients. Neuromodulation 2022; 25:569-577. [PMID: 35667772 PMCID: PMC8913155 DOI: 10.1111/ner.13495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The efficacy of repetitive transcranial magnetic stimulation (rTMS) in clinically relevant neuroplasticity research depends on the degree to which stimulation induces robust, reliable effects. The high degree of interindividual and intraindividual variability observed in response to rTMS protocols, such as continuous theta burst stimulation (cTBS), therefore represents an obstacle to its utilization as treatment for neurological disorders. Brain-derived neurotrophic factor (BDNF) is a protein involved in human synaptic and neural plasticity, and a common polymorphism in the BDNF gene (Val66Met) may influence the capacity for neuroplastic changes that underlie the effects of cTBS and other rTMS protocols. While evidence from healthy individuals suggests that Val66Met polymorphism carriers may show diminished or facilitative effects of rTMS compared to their homozygous Val66Val counterparts, this has yet to be demonstrated in the patient populations where neuromodulatory therapies are most relevant. MATERIALS AND METHODS We examined the effects of BDNF Val66Met polymorphism on cTBS aftereffects in stroke patients. We compared approximately 30 log-transformed motor-evoked potentials (LnMEPs) obtained per time point: at baseline and at 0, 10, 20, and 30 min after cTBS-600, from 18 patients with chronic stroke using single TMS pulses. We used linear mixed-effects regression with trial-level data nested by subject for higher statistical power. RESULTS We found a significant interaction between BDNF genotype and pre-/post-cTBS LnMEPs. Val66Val carriers showed decrease in cortical excitability, whereas Val66Met carriers exhibited a modest increase in cortical excitability for 20 min poststimulation, followed by inhibition 30 min after cTBS-600. CONCLUSIONS Our findings strongly suggest that BDNF genotype differentially affects neuroplastic responses to TMS in individuals with chronic stroke. This provides novel insight into potential sources of variability in cTBS response in patients, which has important implications for optimizing the utility of this neuromodulation approach. Incorporating BDNF polymorphism genetic screening to stratify patients prior to use of cTBS as a neuromodulatory technique in therapy or research may optimize response rates.
Collapse
Affiliation(s)
- Shreya Parchure
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Denise Y Harvey
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyanka P Shah-Basak
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Laura DeLoretta
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Wurzman
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniela Sacchetti
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Olufunsho Faseyitan
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Falk W Lohoff
- National Institute for Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Roy H Hamilton
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Dresang HC, Harvey DY, Xie SX, Shah-Basak PP, DeLoretta L, Wurzman R, Parchure SY, Sacchetti D, Faseyitan O, Lohoff FW, Hamilton RH. Genetic and Neurophysiological Biomarkers of Neuroplasticity Inform Post-Stroke Language Recovery. Neurorehabil Neural Repair 2022; 36:371-380. [PMID: 35428413 PMCID: PMC9133188 DOI: 10.1177/15459683221096391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND There is high variability in post-stroke aphasia severity and predicting recovery remains imprecise. Standard prognostics do not include neurophysiological indicators or genetic biomarkers of neuroplasticity, which may be critical sources of variability. OBJECTIVE To evaluate whether a common polymorphism (Val66Met) in the gene for brain-derived neurotrophic factor (BDNF) contributes to variability in post-stroke aphasia, and to assess whether BDNF polymorphism interacts with neurophysiological indicators of neuroplasticity (cortical excitability and stimulation-induced neuroplasticity) to improve estimates of aphasia severity. METHODS Saliva samples and motor-evoked potentials (MEPs) were collected from participants with chronic aphasia subsequent to left-hemisphere stroke. MEPs were collected prior to continuous theta burst stimulation (cTBS; index for cortical excitability) and 10 minutes following cTBS (index for stimulation-induced neuroplasticity) to the right primary motor cortex. Analyses assessed the extent to which BDNF polymorphism interacted with cortical excitability and stimulation-induced neuroplasticity to predict aphasia severity beyond established predictors. RESULTS Val66Val carriers showed less aphasia severity than Val66Met carriers, after controlling for lesion volume and time post-stroke. Furthermore, Val66Val carriers showed expected effects of age on aphasia severity, and positive associations between severity and both cortical excitability and stimulation-induced neuroplasticity. In contrast, Val66Met carriers showed weaker effects of age and negative associations between cortical excitability, stimulation-induced neuroplasticity and aphasia severity. CONCLUSIONS Neurophysiological indicators and genetic biomarkers of neuroplasticity improved aphasia severity predictions. Furthermore, BDNF polymorphism interacted with cortical excitability and stimulation-induced neuroplasticity to improve predictions. These findings provide novel insights into mechanisms of variability in stroke recovery and may improve aphasia prognostics.
Collapse
Affiliation(s)
- Haley C. Dresang
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104,Moss Rehabilitation Research Institute, Einstein Medical Center, 50 Township Line Road, Philadelphia, PA 19027,Corresponding author:, Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Denise Y. Harvey
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Sharon Xiangwen Xie
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Perelman School of Medicine, 607 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104
| | - Priyanka P. Shah-Basak
- Medical College of Wisconsin, Department of Neurology, 8701 Watertown Plank Road Milwaukee, WI 53226
| | - Laura DeLoretta
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Rachel Wurzman
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Shreya Y. Parchure
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Daniela Sacchetti
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Olufunsho Faseyitan
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Falk W. Lohoff
- National Institute for Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), 10 Center Drive (10CRC/2-2352), Bethesda, MD 20892
| | - Roy H. Hamilton
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| |
Collapse
|
19
|
Dimyan MA, Harcum S, Ermer E, Boos AF, Conroy SS, Liu F, Horn LB, Xu H, Zhan M, Chen H, Whitall J, Wittenberg GF. Baseline Predictors of Response to Repetitive Task Practice in Chronic Stroke. Neurorehabil Neural Repair 2022; 36:426-436. [PMID: 35616437 DOI: 10.1177/15459683221095171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Repetitive task practice reduces mean upper extremity motor impairment in populations of patients with chronic stroke, but individual response is highly variable. A method to predict meaningful reduction in impairment in response to training based on biomarkers and other data collected prior to an intervention is needed to establish realistic rehabilitation goals and to effectively allocate resources. OBJECTIVES To identify prognostic factors and better understand the biological substrate for reductions in arm impairment in response to repetitive task practice among patients with chronic (≥6 months) post-stroke hemiparesis. METHODS The intervention is a form of repetitive task practice using a combination of robot-assisted therapy and functional arm use in real-world tasks. Baseline measures include the Fugl-Meyer Assessment, Wolf Motor Function Test, Action Research Arm Test, Stroke Impact Scale, questionnaires on pain and expectancy, MRI, transcranial magnetic stimulation, kinematics, accelerometry, and genomic testing. RESULTS Mean increase in FM-UE was 4.6 ± 1.0 SE, median 2.5. Approximately one-third of participants had a clinically meaningful response to the intervention, defined as an increase in FM ≥ 5. The selected logistic regression model had a receiver operating curve with AUC = .988 (Std Error = .011, 95% Wald confidence limits: .967-1) showed little evidence of overfitting. Six variables that predicted response represented impairment, functional, and genomic measures. CONCLUSION A simple weighted sum of 6 baseline factors can accurately predict clinically meaningful impairment reduction after outpatient intensive practice intervention in chronic stroke. Reduction of impairment may be a critical first step to functional improvement. Further validation and generalization of this model will increase its utility in clinical decision-making.
Collapse
Affiliation(s)
- Michael A Dimyan
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.,Geriatrics Research, Education and Clinical Center and Maryland Exercise and Robotics Center of Excellence, Veterans Affairs Medical Center, Older Americans Independence Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stacey Harcum
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Elsa Ermer
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy F Boos
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan S Conroy
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Fang Liu
- Rehab & Neural Engineering Labs, Department of Physical Medicine & Rehabilitation, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Linda B Horn
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Huichun Xu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Min Zhan
- Department of Epidemiology and Preventative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hegang Chen
- Department of Epidemiology and Preventative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jill Whitall
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George F Wittenberg
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.,Geriatrics Research, Education and Clinical Center and Maryland Exercise and Robotics Center of Excellence, Veterans Affairs Medical Center, Older Americans Independence Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA.,Geriatrics Research, Education and Clinical Center, Human Engineering Research Laboratory, VA Maryland Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Val66et Polymorphism Is Associated with Altered Motor-Related Oscillatory Activity in Youth with Cerebral Palsy. Brain Sci 2022; 12:brainsci12040435. [PMID: 35447966 PMCID: PMC9027490 DOI: 10.3390/brainsci12040435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a critical role in the capacity for neuroplastic change. A single nucleotide polymorphism of the BDNF gene is well known to alter the activity-dependent release of the protein and may impact the capacity for neuroplastic change. Numerous studies have shown altered sensorimotor beta event-related desynchronization (ERD) responses in youth with cerebral palsy (CP), which is thought to be directly related to motor planning. The objective of the current investigation was to use magnetoencephalography (MEG) to evaluate whether the BDNF genotype affects the strength of the sensorimotor beta ERD seen in youth with CP while youth with CP performed a leg isometric target matching task. In addition, we collected saliva samples and used polymerase chain reaction (PCR) amplification to determine the status of the amino acid fragment containing codon 66 of the BDNF gene. Our genotyping results identified that 25% of the youth with CP had a Val66Met or Met66Met polymorphism at codon 66 of the BDNF gene. Furthermore, we identified that the beta ERD was stronger in youth with CP who had the Val66Met or Met66Met polymorphism in comparison to those without the polymorphism (p = 0.042). Overall, these novel findings suggest that a polymorphism at the BDNF gene may alter sensorimotor cortical oscillations in youth with CP.
Collapse
|
21
|
Cataloging the potential SNPs (single nucleotide polymorphisms) associated with quantitative traits, viz. BMI (body mass index), IQ (intelligence quotient) and BP (blood pressure): an updated review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Single nucleotide polymorphism (SNP) variants are abundant, persistent and widely distributed across the genome and are frequently linked to the development of genetic diseases. Identifying SNPs that underpin complex diseases can aid scientists in the discovery of disease-related genes by allowing for early detection, effective medication and eventually disease prevention.
Main body
Various SNP or polymorphism-based studies were used to categorize different SNPs potentially related to three quantitative traits: body mass index (BMI), intelligence quotient (IQ) and blood pressure, and then uncovered common SNPs for these three traits. We employed SNPedia, RefSNP Report, GWAS Catalog, Gene Cards (Data Bases), PubMed and Google Scholar search engines to find relevant material on SNPs associated with three quantitative traits. As a result, we detected three common SNPs for all three quantitative traits in global populations: SNP rs6265 of the BDNF gene on chromosome 11p14.1, SNP rs131070325 of the SL39A8 gene on chromosome 4p24 and SNP rs4680 of the COMT gene on chromosome 22q11.21.
Conclusion
In our review, we focused on the prevalent SNPs and gene expression activities that influence these three quantitative traits. These SNPs have been used to detect and map complex, common illnesses in communities for homogeneity testing and pharmacogenetic studies. High blood pressure, diabetes and heart disease, as well as BMI, schizophrenia and IQ, can all be predicted using common SNPs. Finally, the results of our work can be used to find common SNPs and genes that regulate these three quantitative features across the genome.
Collapse
|
22
|
Harnish SM, Diedrichs VA, Bartlett CW. EARLY CONSIDERATIONS OF GENETICS IN APHASIA REHABILITATION: A NARRATIVE REVIEW. APHASIOLOGY 2022; 37:835-853. [PMID: 37346093 PMCID: PMC10281715 DOI: 10.1080/02687038.2022.2043234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/14/2022] [Indexed: 06/23/2023]
Abstract
Background Early investigations linking language and genetics were focused on the evolution of human communication in populations with developmental speech and language disorders. Recently, studies suggest that genes may also modulate recovery from post-stroke aphasia. Aims Our goal is to review current literature related to the influence of genetics on post-stroke recovery, and the implications for aphasia rehabilitation. We describe candidate genes implicated by empirical findings and address additional clinical considerations. Main Contribution We describe existing evidence and mechanisms supporting future investigations into how genetic factors may modulate aphasia recovery and propose that two candidate genes, brain derived neurotrophic factor (BDNF) and apolipoprotein E (APOE), may be important considerations for future research assessing response to aphasia treatment. Evidence suggests that BDNF is important for learning, memory, and neuroplasticity. APOE influences cognitive functioning and memory in older individuals and has also been implicated in neural repair. Moreover, recent data suggest an interaction between specific alleles of the BDNF and APOE genes in influencing episodic memory. Conclusions Genetic influences on recovery from aphasia have been largely unexplored in the literature despite evidence that genetic factors influence behaviour and recovery from brain injury. As researchers continue to explore prognostic factors that may influence response to aphasia treatment, it is time for genetic factors to be considered as a source of variability. As the field moves in the direction of personalized medicine, eventually allied health professionals may utilize genetic profiles to inform treatment decisions and education for patients and care partners.
Collapse
Affiliation(s)
- Stacy M Harnish
- Department of Speech and Hearing Science, The Ohio State University
| | | | - Christopher W Bartlett
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital and Department of Pediatrics, College of Medicine, The Ohio State University
| |
Collapse
|
23
|
Giordano A, Clarelli F, Cannizzaro M, Mascia E, Santoro S, Sorosina M, Ferrè L, Leocani L, Esposito F. BDNF Val66Met Polymorphism Is Associated With Motor Recovery After Rehabilitation in Progressive Multiple Sclerosis Patients. Front Neurol 2022; 13:790360. [PMID: 35265024 PMCID: PMC8899087 DOI: 10.3389/fneur.2022.790360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022] Open
Abstract
Background Rehabilitation is fundamental for progressive multiple sclerosis (MS), but predictive biomarkers of motor recovery are lacking, making patient selection difficult. Motor recovery depends on synaptic plasticity, in which the Brain-Derived Neurotrophic Factor (BDNF) is a key player, through its binding to the Neurotrophic-Tyrosine Kinase-2 (NTRK2) receptor. Therefore, genetic polymorphisms in the BDNF pathway may impact motor recovery. The most well-known polymorphism in BDNF gene (rs6265) causes valine to methionine substitution (Val66Met) and it influences memory and motor learning in healthy individuals and neurodegenerative diseases. To date, no studies have explored whether polymorphisms in BDNF or NTRK2 genes may impact motor recovery in MS. Objectives To assess whether genetic variants in BDNF and NTRK2 genes affect motor recovery after rehabilitation in progressive MS. Methods The association between motor recovery after intensive neurorehabilitation and polymorphisms in BDNF (rs6265) and NTKR2 receptor (rs2289656 and rs1212171) was assessed using Six-Minutes-Walking-Test (6MWT), 10-Metres-Test (10MT) and Nine-Hole-Peg-Test (9HPT) in 100 progressive MS patients. Results We observed greater improvement at 6MWT after rehabilitation in carriers of the BDNF Val66Met substitution, compared to BDNF Val homozygotes (p = 0.024). No significant association was found for 10MT and 9HPT. NTRK2 polymorphisms did not affect the results of motor function tests. Conclusion BDNF Val66Met was associated with walking function improvement after rehabilitation in progressive MS patients. This result is in line with previous evidence showing a protective effect of Val66Met substitution on brain atrophy in MS. Larger studies are needed to explore its potential as a predictive biomarker of rehabilitation outcome.
Collapse
Affiliation(s)
- Antonino Giordano
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ferdinando Clarelli
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Miryam Cannizzaro
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Melissa Sorosina
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Ferrè
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Letizia Leocani
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
24
|
Kristinsson S, Fridriksson J. Genetics in aphasia recovery. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:283-296. [PMID: 35078606 DOI: 10.1016/b978-0-12-823384-9.00015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Considerable research efforts have been exerted toward understanding the mechanisms underlying recovery in aphasia. However, predictive models of spontaneous and treatment-induced recovery remain imprecise. Some of the hitherto unexplained variability in recovery may be accounted for with genetic data. A few studies have examined the effects of the BDNF val66met polymorphism on aphasia recovery, yielding mixed results. Advances in the study of stroke genetics and genetics of stroke recovery, including identification of several susceptibility genes through candidate-gene or genome-wide association studies, may have implications for the recovery of language function. The current chapter discusses both the direct and indirect evidence for a genetic basis of aphasia recovery, the implications of recent findings within the field, and potential future directions to advance understanding of the genetics-recovery associations.
Collapse
Affiliation(s)
- Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
25
|
Lehmann N, Villringer A, Taubert M. Priming cardiovascular exercise improves complex motor skill learning by affecting the trajectory of learning-related brain plasticity. Sci Rep 2022; 12:1107. [PMID: 35064175 PMCID: PMC8783021 DOI: 10.1038/s41598-022-05145-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/31/2021] [Indexed: 11/24/2022] Open
Abstract
In recent years, mounting evidence from animal models and studies in humans has accumulated for the role of cardiovascular exercise (CE) in improving motor performance and learning. Both CE and motor learning may induce highly dynamic structural and functional brain changes, but how both processes interact to boost learning is presently unclear. Here, we hypothesized that subjects receiving CE would show a different pattern of learning-related brain plasticity compared to non-CE controls, which in turn associates with improved motor learning. To address this issue, we paired CE and motor learning sequentially in a randomized controlled trial with healthy human participants. Specifically, we compared the effects of a 2-week CE intervention against a non-CE control group on subsequent learning of a challenging dynamic balancing task (DBT) over 6 consecutive weeks. Structural and functional MRI measurements were conducted at regular 2-week time intervals to investigate dynamic brain changes during the experiment. The trajectory of learning-related changes in white matter microstructure beneath parieto-occipital and primary sensorimotor areas of the right hemisphere differed between the CE vs. non-CE groups, and these changes correlated with improved learning of the CE group. While group differences in sensorimotor white matter were already present immediately after CE and persisted during DBT learning, parieto-occipital effects gradually emerged during motor learning. Finally, we found that spontaneous neural activity at rest in gray matter spatially adjacent to white matter findings was also altered, therefore indicating a meaningful link between structural and functional plasticity. Collectively, these findings may lead to a better understanding of the neural mechanisms mediating the CE-learning link within the brain.
Collapse
Affiliation(s)
- Nico Lehmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany. .,Faculty of Humanities, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.,Mind and Brain Institute, Charité and Humboldt University, Luisenstraße 56, 10117, Berlin, Germany
| | - Marco Taubert
- Faculty of Humanities, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.,Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
26
|
BDNF Val66Met gene polymorphism modulates brain activity following rTMS-induced memory impairment. Sci Rep 2022; 12:176. [PMID: 34997117 PMCID: PMC8741781 DOI: 10.1038/s41598-021-04175-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023] Open
Abstract
The BDNF Val66Met gene polymorphism is a relevant factor explaining inter-individual differences to TMS responses in studies of the motor system. However, whether this variant also contributes to TMS-induced memory effects, as well as their underlying brain mechanisms, remains unexplored. In this investigation, we applied rTMS during encoding of a visual memory task either over the left frontal cortex (LFC; experimental condition) or the cranial vertex (control condition). Subsequently, individuals underwent a recognition memory phase during a functional MRI acquisition. We included 43 young volunteers and classified them as 19 Met allele carriers and 24 as Val/Val individuals. The results revealed that rTMS delivered over LFC compared to vertex stimulation resulted in reduced memory performance only amongst Val/Val allele carriers. This genetic group also exhibited greater fMRI brain activity during memory recognition, mainly over frontal regions, which was positively associated with cognitive performance. We concluded that BDNF Val66Met gene polymorphism, known to exert a significant effect on neuroplasticity, modulates the impact of rTMS both at the cognitive as well as at the associated brain networks expression levels. This data provides new insights on the brain mechanisms explaining cognitive inter-individual differences to TMS, and may inform future, more individually-tailored rTMS interventions.
Collapse
|
27
|
Vose AK, Welch JF, Nair J, Dale EA, Fox EJ, Muir GD, Trumbower RD, Mitchell GS. Therapeutic acute intermittent hypoxia: A translational roadmap for spinal cord injury and neuromuscular disease. Exp Neurol 2022; 347:113891. [PMID: 34637802 PMCID: PMC8820239 DOI: 10.1016/j.expneurol.2021.113891] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023]
Abstract
We review progress towards greater mechanistic understanding and clinical translation of a strategy to improve respiratory and non-respiratory motor function in people with neuromuscular disorders, therapeutic acute intermittent hypoxia (tAIH). In 2016 and 2020, workshops to create and update a "road map to clinical translation" were held to help guide future research and development of tAIH to restore movement in people living with chronic, incomplete spinal cord injuries. After briefly discussing the pioneering, non-targeted basic research inspiring this novel therapeutic approach, we then summarize workshop recommendations, emphasizing critical knowledge gaps, priorities for future research effort, and steps needed to accelerate progress as we evaluate the potential of tAIH for routine clinical use. Highlighted areas include: 1) greater mechanistic understanding, particularly in non-respiratory motor systems; 2) optimization of tAIH protocols to maximize benefits; 3) identification of combinatorial treatments that amplify plasticity or remove plasticity constraints, including task-specific training; 4) identification of biomarkers for individuals most/least likely to benefit from tAIH; 5) assessment of long-term tAIH safety; and 6) development of a simple, safe and effective device to administer tAIH in clinical and home settings. Finally, we update ongoing clinical trials and recent investigations of tAIH in SCI and other clinical disorders that compromise motor function, including ALS, multiple sclerosis, and stroke.
Collapse
Affiliation(s)
- Alicia K Vose
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Brooks Rehabilitation, Jacksonville, FL 32216, USA
| | - Joseph F Welch
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Brooks Rehabilitation, Jacksonville, FL 32216, USA
| | - Jayakrishnan Nair
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Erica A Dale
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Emily J Fox
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Brooks Rehabilitation, Jacksonville, FL 32216, USA
| | - Gillian D Muir
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Randy D Trumbower
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
28
|
Dubbioso R, Pellegrino G, Ranieri F, Di Pino G, Capone F, Dileone M, Iodice R, Ruggiero L, Tozza S, Uncini A, Manganelli F, Di Lazzaro V. BDNF polymorphism and inter hemispheric balance of motor cortex excitability: a preliminary study. J Neurophysiol 2021; 127:204-212. [PMID: 34936818 DOI: 10.1152/jn.00268.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preclinical studies have demonstrated that Brain-Derived Neurotrophic Factor (BDNF) plays a crucial role in the homeostatic regulation of cortical excitability and excitation/inhibition balance. Using transcranial magnetic stimulation (TMS) techniques we investigated whether BDNF polymorphism could influence cortical excitability of the left and right primary motor cortex in healthy humans. Twenty-nine participants were recruited and genotyped for the presence of the BDNF Val66Met polymorphism, namely homozygous for the valine allele (Val/Val), heterozygotes (Val/Met), and homozygous for the methionine allele (Met/Met). Blinded to the latter, we evaluated inhibitory and facilitatory circuits of the left (LH) and right motor cortex (RH) by measuring resting (RMT) and active motor threshold (AMT), short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). For each neurophysiological metric we also considered the inter-hemispheric balance expressed by the Laterality Index (LI). Val/Val participants (n= 21) exhibited an overall higher excitability of the LH compared to the RH, as probed by lower motor thresholds, lower SICI and higher ICF. Val/Val participants displayed positive LI, especially for AMT and ICF (all p< 0.05), indicating higher LH excitability and more pronounced inter-hemispheric excitability imbalance as compared to Met carriers. Our preliminary results suggest that BDNF Val66Met polymorphism might influence interhemispheric balance of motor cortex excitability.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Giovanni Pellegrino
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Federico Ranieri
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Michele Dileone
- Faculty of Health Sciences, University of Castilla La Mancha, Talavera de la Reina, Spain
| | - Rosa Iodice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Stefano Tozza
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Antonino Uncini
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
29
|
Sasaki R, Miyaguchi S, Onishi H. Effect of brain-derived neurotrophic factor gene polymorphisms on motor performance and motor learning: A systematic review and meta-analysis. Behav Brain Res 2021; 420:113712. [PMID: 34915075 DOI: 10.1016/j.bbr.2021.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) gene polymorphisms may modulate neurotransmitter efficiency, thereby influencing motor performance and motor learning. However, studies to date have provided no consensus regarding the genetic influence of BDNF genotypes (i.e., Val/Val, Val/Met, or Met/Met type). This study aimed to investigate the effect of BDNF genotype on motor performance and motor learning in healthy human adults via a systematic review and meta-analysis. A total of 19 relevant studies were identified using PubMed and Web of Science search for articles published between 2000 and 2021 with motor performance or motor learning as the primary outcome measures. The results of our systematic review suggest that the BDNF genotype is unlikely to contribute to motor performance and motor learning abilities because only 2/32 datasets (6.3%) from 16 studies on motor performance and 3/19 datasets (17.6%) from 13 studies on motor learning indicated a significant genetic effect. Moreover, a meta-analysis of motor learning publications involving 17 datasets from 11 studies revealed that there was no significant difference in the learning score normalized using baseline data between Val/Val and Met carriers (Val/Met + Met/Met or Val/Met; standardized mean differences = 0.08, P = 0.37) with zero heterogeneity (I2 = 0) and a relatively low risk of publication bias. Taken together, the BDNF genotype may have only a minor impact on individual motor performance and motor learning abilities.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia.
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| |
Collapse
|
30
|
Sasaki R, Kojima S, Onishi H. Do Brain-Derived Neurotrophic Factor Genetic Polymorphisms Modulate the Efficacy of Motor Cortex Plasticity Induced by Non-invasive Brain Stimulation? A Systematic Review. Front Hum Neurosci 2021; 15:742373. [PMID: 34650418 PMCID: PMC8505675 DOI: 10.3389/fnhum.2021.742373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Techniques of non-invasive brain stimulation (NIBS) of the human primary motor cortex (M1) are widely used in basic and clinical research to induce neural plasticity. The induction of neural plasticity in the M1 may improve motor performance ability in healthy individuals and patients with motor deficit caused by brain disorders. However, several recent studies revealed that various NIBS techniques yield high interindividual variability in the response, and that the brain-derived neurotrophic factor (BDNF) genotype (i.e., Val/Val and Met carrier types) may be a factor contributing to this variability. Here, we conducted a systematic review of all published studies that investigated the effects of the BDNF genotype on various forms of NIBS techniques applied to the human M1. The motor-evoked potential (MEP) amplitudes elicited by single-pulse transcranial magnetic stimulation (TMS), which can evaluate M1 excitability, were investigated as the main outcome. A total of 1,827 articles were identified, of which 17 (facilitatory NIBS protocol, 27 data) and 10 (inhibitory NIBS protocol, 14 data) were included in this review. More than two-thirds of the data (70.4–78.6%) on both NIBS protocols did not show a significant genotype effect of NIBS on MEP changes. Conversely, most of the remaining data revealed that the Val/Val type is likely to yield a greater MEP response after NIBS than the Met carrier type in both NIBS protocols (21.4–25.9%). Finally, to aid future investigation, we discuss the potential effect of the BDNF genotype based on mechanisms and methodological issues.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
31
|
Kao PC, Pierro MA, Wu T, Gonzalez DM, Seeley R. Association between functional physical capacity and cognitive performance under destabilizing walking conditions in older adults. Exp Gerontol 2021; 155:111582. [PMID: 34637948 DOI: 10.1016/j.exger.2021.111582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cognitive decline increases the risk of falls in older adults. Understanding the association between cognitive function, functional physical capacity, and falls may help identify targets for fall screening and intervention. This study examined (1) cognitive and functional physical capacity in community-dwelling older adults with and without a history of falls or the presence of brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism (Val/Met), and (2) the association between their cognitive and functional physical capacity, focusing on the cognitive performance during dual-task, challenging walking conditions. METHODS Twenty-nine healthy, community-dwelling older adults attended two testing sessions for (1) functional assessments of physical capacity and global cognitive status, and (2) performing four cognitive tasks (visual and auditory Stroop tasks, Clock task, and Paced Auditory Serial Addition Test) during standing and while walking on the treadmill with and without medio-lateral treadmill platform sways. RESULTS Participants with a fall history had reduced functional reach distance whereas individuals with Val/Met had reduced functional gait assessment (FGA) score compared to their controls. In addition, participants with a fall history or Val/Met showed reduced Clock task performance under dual-task conditions. Among all cognitive tasks, visual-Stroop performance, especially during the perturbed walking conditions, was significantly correlated with more physical capacity items. The performance of the other three cognitive tasks provided complementary information on those items not correlated with visual-Stroop performance. CONCLUSIONS Clock task performance can distinguish fallers from non-fallers as well as older adults with and without the BDNF gene polymorphism. Administering different types of cognitive tasks and under more challenging walking conditions can better reveal the association between cognitive and functional physical capacity in older adults. Fall screening and prevention intervention should integrate cognitive tasks into the functional physical capacity assessment and training regime, and progress to a more challenging condition such as introducing gait or balance perturbations during the assessment or training.
Collapse
Affiliation(s)
- Pei-Chun Kao
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States; New England Robotics Validation and Experimentation (NERVE) Center, University of Massachusetts Lowell, Lowell, MA, United States.
| | - Michaela A Pierro
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, United States
| | - Tong Wu
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| | - Daniela M Gonzalez
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| | - Rachel Seeley
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
32
|
Watanabe H, Kojima S, Nagasaka K, Ohno K, Sakurai N, Kodama N, Otsuru N, Onishi H. Gray Matter Volume Variability in Young Healthy Adults: Influence of Gender Difference and Brain-Derived Neurotrophic Factor Genotype. Cereb Cortex 2021; 32:2635-2643. [PMID: 34635909 PMCID: PMC9201594 DOI: 10.1093/cercor/bhab370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022] Open
Abstract
Although brain gray matter (GM) plastically changes during short-term training, it is still unclear whether brain structures are stable for short periods (several months). Therefore, this study aimed to re-test the short-term variability of GM volumes and to clarify the effect of factors (gender and BDNF-genotype) expected to contribute to such variability. The subjects comprised 41 young healthy adults. T1-weighted images were acquired twice with an interval of approximately 4 months using a 3 T-MRI scanner. Voxel-based morphometry (VBM) was used to calculate GM volumes in 47 regions. The intraclass correlation coefficient (ICC) and Test–retest variability (%TRV) were used as indices of variability. As a result, the ICCs in 43 regions were excellent (ICC > 0.90) and those in 3 regions were good (ICC > 0.80), whereas the ICC in the thalamus was moderate (ICC = 0.694). Women had a higher %TRV than men in 5 regions, and %TRV of the Val66Val group was higher than that of the Met carrier group in 2 regions. Moreover, the Female-Val66Val group had a higher %TRV than the Male-Met carrier group in 3 regions. These results indicate that although the short-term variability of GM volumes is small, it is affected by within-subject factors.
Collapse
Affiliation(s)
- Hiraku Watanabe
- Address correspondence to Hiraku Watanabe, Graduate School, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata-City, Niigata 950-3198, Japan. Tel: +81-25-257-4445; Fax: +81-25-257-4445.
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Niigata, 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, 950-3198, Japan
| | - Kazuaki Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Niigata, 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, 950-3198, Japan
| | - Ken Ohno
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Niigata, 950-3198, Japan
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata, 950-3198, Japan
| | - Noriko Sakurai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Niigata, 950-3198, Japan
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata, 950-3198, Japan
| | - Naoki Kodama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Niigata, 950-3198, Japan
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata, 950-3198, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Niigata, 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Niigata, 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, 950-3198, Japan
| |
Collapse
|
33
|
Hooyman A, Gordon J, Winstein C. Unique behavioral strategies in visuomotor learning: Hope for the non-learner. Hum Mov Sci 2021; 79:102858. [PMID: 34392189 DOI: 10.1016/j.humov.2021.102858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/06/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
The existence of individual differences in motor learning capability is well known but the behaviors or strategies that contribute to this variability have been vastly understudied. What performance characteristics distinguish an expert level performer from individuals who experience little to no success, those labeled non-learners? We designed a rule-based visuomotor task which requires identification (discovery) and then exploitation of specific explicit and implicit task components that requires a specific movement pattern, the task rule, for goal achievement. When participants first attempt the task, they are informed about the goal, but are naïve to the task rule. Therefore, the purpose of this experiment is to determine how acquisition of both implicit and explicit task components, the inherent elements of the task rule, reveals differing strategies associated with performance and task success. We test the hypothesis that an examination of performance will reveal sub-groups with varying levels of success. Further, for each subgroup, we expect to find a unique relationship between visual Time-in-Target feedback (a measure of success) and subsequent updating of each task component. Out of 32 non-disabled adults, we identified three distinct sub-groups: (Low Performer/Non-Learner (LP, N = 9), Moderate Performer (MP, N = 12) and High Performer (HP, N = 11)). A quantitative analysis of behavioral patterns reveals three findings: First, the LP sub-group demonstrated significantly lower task success which was associated with difficulty identifying the explicit component of the task. Second, the HP sub-group acquired the two task components in parallel over practice. Third, when both explicit and implicit component performance is plotted across sub-groups, a task component continuum emerges that seamlessly progresses from low to moderate to high performer groups. An exploratory analysis reveals that self-reported level of prior lifetime accumulation of video game and physical activity experience is a significant predictor of individual task performance (R2 = 0.50). In summary, what appears to be a key distinction between varying levels of human rule-based motor learning is the process by which feedback is used to update performance of inherent elements of the task rule. Evidence of a performance continuum and limited prior experience suggests that Low Performer/Non-Learners are generally inexperienced with these kinds of tasks, although the role of genetics and other innate learning capabilities in visuomotor learning is still largely unknown. These findings provoke new research directions toward probing the differential performance strategies associated with expertise and the development of interventions aimed to convert non-learners into learners.
Collapse
Affiliation(s)
- Andrew Hooyman
- School of Biological and Health Systems Engineering, Arizona State University, United States of America.
| | - James Gordon
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, and Department of Neurology, Keck School of Medicine, University of Southern California, United States of America
| | - Carolee Winstein
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, and Department of Neurology, Keck School of Medicine, University of Southern California, United States of America
| |
Collapse
|
34
|
Anderson DI, Lohse KR, Lopes TCV, Williams AM. Individual differences in motor skill learning: Past, present and future. Hum Mov Sci 2021; 78:102818. [PMID: 34049152 DOI: 10.1016/j.humov.2021.102818] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 11/25/2022]
Abstract
Humans vary considerably in their ability to perform and learn new motor skills. In addition, they respond to different performance and practice conditions in varying ways. Historically, experimental psychologists have characterized these differences as 'experimental noise', yet for those who embrace differential psychology, the study of individual differences promises to deepen insights into the processes that mediate motor control and learning. In this paper, we highlight what we know about predicting motor learning based on individual difference characteristics and renew a call made by Lee Cronbach several decades ago to combine the methodologies used by experimental and differential psychologists to further our understanding of how to promote motor learning. The paper provides a brief historical overview of research on individual differences and motor learning followed by a systematic review of the last 20 years of research on this issue. The paper ends by highlighting some of the methodological challenges associated with conducting research on individual differences, as well as providing suggestions for future research. The study of individual differences has important implications for furthering our understanding of motor learning and when tailoring interventions for diverse learners at different stages of practice.
Collapse
Affiliation(s)
- David I Anderson
- Marian Wright Edelman Institute, San Francisco State University, USA.
| | - Keith R Lohse
- Department of Health & Kinesiology, University of Utah, USA
| | | | | |
Collapse
|
35
|
Sortwell CE, Hacker ML, Fischer DL, Konrad PE, Davis TL, Neimat JS, Wang L, Song Y, Mattingly ZR, Cole-Strauss A, Lipton JW, Charles PD. BDNF rs6265 Genotype Influences Outcomes of Pharmacotherapy and Subthalamic Nucleus Deep Brain Stimulation in Early-Stage Parkinson's Disease. Neuromodulation 2021; 25:846-853. [PMID: 34288271 PMCID: PMC8770717 DOI: 10.1111/ner.13504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/09/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The efficacy of pharmacotherapy and deep brain stimulation of the subthalamic nucleus in treating Parkinson's disease motor symptoms is highly variable and may be influenced by patient genotype. The relatively common (prevalence about one in three) and protein-altering rs6265 single nucleotide polymorphism (C > T) in the gene BDNF has been associated with different clinical outcomes with levodopa. OBJECTIVE We sought to replicate this reported association in early-stage Parkinson's disease subjects and to examine whether a difference in clinical outcomes was present with subthalamic nucleus deep brain stimulation. MATERIALS AND METHODS Fifteen deep brain stimulation and 13 medical therapy subjects were followed for 24 months as part of the Vanderbilt DBS in Early Stage PD clinical trial (NCT00282152, FDA IDE #G050016). Primary outcome measures were the Unified Parkinson's Disease Rating Scale (UPDRS) and Parkinson's Disease Questionnaire-39. RESULTS Outcomes with drug therapy in subjects carrying the rs6265 T allele were significantly worse following 12 months of treatment compared to C/C subjects (UPDRS: +20 points, p = 0.019; PDQ-39: +16 points, p = 0.018). In contrast, rs6265 genotype had no effect on overall motor response to subthalamic nucleus deep brain stimulation at any time point; further, rs6265 C/C subjects treated with stimulation were associated with worse UPDRS part II scores at 24 months compared to medical therapy. CONCLUSIONS Genotyping for the rs6265 polymorphism may be useful for predicting long-term response to drug therapy and counseling Parkinson's disease patients regarding whether to consider earlier subthalamic nucleus deep brain stimulation. Validation in a larger cohort of early-stage Parkinson's disease subjects is warranted.
Collapse
Affiliation(s)
- Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.,Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA
| | - Mallory L Hacker
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David Luke Fischer
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Peter E Konrad
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas L Davis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph S Neimat
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lily Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yanna Song
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zach R Mattingly
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Allyson Cole-Strauss
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Jack W Lipton
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.,Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA
| | - P David Charles
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
36
|
van der Cruijsen J, Manoochehri M, Jonker ZD, Andrinopoulou ER, Frens MA, Ribbers GM, Schouten AC, Selles RW. Theta but not beta power is positively associated with better explicit motor task learning. Neuroimage 2021; 240:118373. [PMID: 34246767 DOI: 10.1016/j.neuroimage.2021.118373] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/26/2022] Open
Abstract
Neurophysiologic correlates of motor learning that can be monitored during neurorehabilitation interventions can facilitate the development of more effective learning methods. Previous studies have focused on the role of the beta band (14-30 Hz) because of its clear response during motor activity. However, it is difficult to discriminate between beta activity related to learning a movement and performing the movement. In this study, we analysed differences in the electroencephalography (EEG) power spectra of complex and simple explicit sequential motor tasks in healthy young subjects. The complex motor task (CMT) allowed EEG measurement related to motor learning. In contrast, the simple motor task (SMT) made it possible to control for EEG activity associated with performing the movement without significant motor learning. Source reconstruction of the EEG revealed task-related activity from 5 clusters covering both primary motor cortices (M1) and 3 clusters localised to different parts of the cingulate cortex (CC). We found no association between M1 beta power and learning, but the CMT produced stronger bilateral beta suppression compared to the SMT. However, there was a positive association between contralateral M1 theta (5-8 Hz) and alpha (8-12 Hz) power and motor learning, and theta and alpha power in the posterior mid-CC and posterior CC were positively associated with greater motor learning. These findings suggest that the theta and alpha bands are more related to motor learning than the beta band, which might merely relate to the level of perceived difficulty during learning.
Collapse
Affiliation(s)
- Joris van der Cruijsen
- Erasmus MC, University Medical Center Rotterdam, Department of Rehabilitation Medicine, 3015 GD Rotterdam, Netherlands.
| | - Mana Manoochehri
- Delft University of Technology, Department of Biomechanical Engineering, 2628 DS Delft, Netherlands
| | - Zeb D Jonker
- Erasmus MC, University Medical Center Rotterdam, Department of Rehabilitation Medicine, 3015 GD Rotterdam, Netherlands; Erasmus MC, University Medical Center Rotterdam, Department of Neuroscience, 3015 GD Rotterdam, Netherlands; Rijndam Rehabilitation Center, 3015 LJ Rotterdam, Netherlands
| | | | - Maarten A Frens
- Erasmus MC, University Medical Center Rotterdam, Department of Neuroscience, 3015 GD Rotterdam, Netherlands
| | - Gerard M Ribbers
- Erasmus MC, University Medical Center Rotterdam, Department of Rehabilitation Medicine, 3015 GD Rotterdam, Netherlands; Rijndam Rehabilitation Center, 3015 LJ Rotterdam, Netherlands
| | - Alfred C Schouten
- Delft University of Technology, Department of Biomechanical Engineering, 2628 DS Delft, Netherlands; University of Twente, Department of Biomechanical Engineering, 7522 NB Enschede, Netherlands
| | - Ruud W Selles
- Erasmus MC, University Medical Center Rotterdam, Department of Rehabilitation Medicine, 3015 GD Rotterdam, Netherlands; Erasmus MC, University Medical Center Rotterdam, Department of Plastic and Reconstructive Surgery and Hand Surgery, 3015 GD Rotterdam, Netherlands
| |
Collapse
|
37
|
Sasaki R, Watanabe H, Miyaguchi S, Otsuru N, Ohno K, Sakurai N, Kodama N, Onishi H. Contribution of the brain-derived neurotrophic factor and neurometabolites to the motor performance. Behav Brain Res 2021; 412:113433. [PMID: 34175359 DOI: 10.1016/j.bbr.2021.113433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 01/04/2023]
Abstract
Individual motor performance ability is affected by various factors. Although the key factor has not yet completely been elucidated, the brain-derived neurotrophic factor (BDNF) genotype as well as neurometabolites may become contibuting factors depending on the learning stage. We investigated the effects of the Met allele of the BDNF gene and those of the neurometabolites on visuomotor learning. In total, 43 healthy participants performed a visuomotor learning task consisting of 10 blocks using the right index finger (Val66Val, n = 15; Val66Met, n = 15; and Met66Met, n = 13). Glutamate plus glutamine (Glx) concentrations in the primary motor cortex, primary somatosensory cortex (S1), and cerebellum were evaluated using 3-T magnetic resonance spectroscopy in 19 participants who participated in the visuomotor learning task. For the learning stage, the task error (i.e., learning ability) was significantly smaller in the Met66Met group compared with that observed in the remaining groups, irrespective of the learning stage (all p values < 0.003). A significant difference was observed between the Val66Val and Met66Met groups in the learning slope (i.e., learning speed) in the early learning stage (p = 0.048) but not in the late learning stage (all p values> 0.54). Moreover, positive correlations were detected between the learning slope and Glx concentrations in S1 only in the early learning stage (r = 0.579, p = 0.009). The BDNF genotype and Glx concentrations in S1 partially contribute to interindividual variability on learning speed in the early learning stage.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.
| | - Hiraku Watanabe
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Ken Ohno
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Noriko Sakurai
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Naoki Kodama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| |
Collapse
|
38
|
Harvey DY, DeLoretta L, Shah-Basak PP, Wurzman R, Sacchetti D, Ahmed A, Thiam A, Lohoff FW, Faseyitan O, Hamilton RH. Variability in cTBS Aftereffects Attributed to the Interaction of Stimulus Intensity With BDNF Val66Met Polymorphism. Front Hum Neurosci 2021; 15:585533. [PMID: 34220466 PMCID: PMC8249815 DOI: 10.3389/fnhum.2021.585533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To evaluate whether a common polymorphism (Val66Met) in the gene for brain-derived neurotrophic factor (BDNF)-a gene thought to influence plasticity-contributes to inter-individual variability in responses to continuous theta-burst stimulation (cTBS), and explore whether variability in stimulation-induced plasticity among Val66Met carriers relates to differences in stimulation intensity (SI) used to probe plasticity. Methods: Motor evoked potentials (MEPs) were collected from 33 healthy individuals (11 Val66Met) prior to cTBS (baseline) and in 10 min intervals immediately following cTBS for a total of 30 min post-cTBS (0 min post-cTBS, 10 min post-cTBS, 20 min post cTBS, and 30 min post-cTBS) of the left primary motor cortex. Analyses assessed changes in cortical excitability as a function of BDNF (Val66Val vs. Val66Met) and SI. Results: For both BDNF groups, MEP-suppression from baseline to post-cTBS time points decreased as a function of increasing SI. However, the effect of SI on MEPs was more pronounced for Val66Met vs. Val66Val carriers, whereby individuals probed with higher vs. lower SIs resulted in paradoxical cTBS aftereffects (MEP-facilitation), which persisted at least 30 min post-cTBS administration. Conclusions: cTBS aftereffects among BDNF Met allele carriers are more variable depending on the SI used to probe cortical excitability when compared to homozygous Val allele carriers, which could, to some extent, account for the inconsistency of previously reported cTBS effects. Significance: These data provide insight into the sources of cTBS response variability, which can inform how best to stratify and optimize its use in investigational and clinical contexts.
Collapse
Affiliation(s)
- Denise Y. Harvey
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Research Department, Moss Rehabilitation Research Institute, Philadelphia, PA, United States
| | - Laura DeLoretta
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Rachel Wurzman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniela Sacchetti
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ahmed Ahmed
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Abdou Thiam
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Falk W. Lohoff
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Olufunsho Faseyitan
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Roy H. Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
39
|
Turco CV, Toepp SL, Foglia SD, Dans PW, Nelson AJ. Association of short- and long-latency afferent inhibition with human behavior. Clin Neurophysiol 2021; 132:1462-1480. [PMID: 34030051 DOI: 10.1016/j.clinph.2021.02.402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 01/04/2023]
Abstract
Transcranial magnetic stimulation (TMS) paired with nerve stimulation evokes short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI), which are non-invasive assessments of the excitability of the sensorimotor system. SAI and LAI are abnormally reduced in various special populations in comparison to healthy controls. However, the relationship between afferent inhibition and human behavior remains unclear. The purpose of this review is to survey the current literature and synthesize observations and patterns that affect the interpretation of SAI and LAI in the context of human behavior. We discuss human behaviour across the motor and cognitive domains, and in special and control populations. Further, we discuss future considerations for research in this field and the potential for clinical applications. By understanding how human behavior is mediated by changes in SAI and LAI, this can allow us to better understand the neurophysiological underpinnings of human motor control.
Collapse
Affiliation(s)
- Claudia V Turco
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Stephen L Toepp
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Stevie D Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Patrick W Dans
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
40
|
Pham MV, Miyaguchi S, Watanabe H, Saito K, Otsuru N, Onishi H. Effect of Repetitive Passive Movement Before Motor Skill Training on Corticospinal Excitability and Motor Learning Depend on BDNF Polymorphisms. Front Hum Neurosci 2021; 15:621358. [PMID: 33633556 PMCID: PMC7901944 DOI: 10.3389/fnhum.2021.621358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
A decrease in cortical excitability tends to be easily followed by an increase induced by external stimuli via a mechanism aimed at restoring it; this phenomenon is called “homeostatic plasticity.” In recent years, although intervention methods aimed at promoting motor learning using this phenomenon have been studied, an optimal intervention method has not been established. In the present study, we examined whether subsequent motor learning can be promoted further by a repetitive passive movement, which reduces the excitability of the primary motor cortex (M1) before motor learning tasks. We also examined the relationship between motor learning and the brain-derived neurotrophic factor. Forty healthy subjects (Val/Val genotype, 17 subjects; Met carrier genotype, 23 subjects) participated. Subjects were divided into two groups of 20 individuals each. The first group was assigned to perform the motor learning task after an intervention consisting in the passive adduction–abduction movement of the right index finger at 5 Hz for 10 min (RPM condition), while the second group was assigned to perform the task without the passive movement (control condition). The motor learning task consisted in the visual tracking of the right index finger. The results showed that the corticospinal excitability was transiently reduced after the passive movement in the RPM condition, whereas it was increased to the level detected in the control condition after the motor learning task. Furthermore, the motor learning ability was decreased immediately after the passive movement; however, the motor performance finally improved to the level observed in the control condition. In individuals carrying the Val/Val genotype, higher motor learning was also found to be related to the more remarkable changes in corticospinal excitability caused by the RPM condition. This study revealed that the implementation of a passive movement before a motor learning tasks did not affect M1 excitatory changes and motor learning efficiency; in contrast, in subjects carrying the Val/Val polymorphism, the more significant excitatory changes in the M1 induced by the passive movement and motor learning task led to the improvement of motor learning efficiency. Our results also suggest that homeostatic plasticity occurring in the M1 is involved in this improvement.
Collapse
Affiliation(s)
- Manh Van Pham
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Graduate School, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Hai Duong Medical Technical University, Hai Duong, Vietnam
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hiraku Watanabe
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Graduate School, Niigata University of Health and Welfare, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
41
|
Nicolini C, Fahnestock M, Gibala MJ, Nelson AJ. Understanding the Neurophysiological and Molecular Mechanisms of Exercise-Induced Neuroplasticity in Cortical and Descending Motor Pathways: Where Do We Stand? Neuroscience 2020; 457:259-282. [PMID: 33359477 DOI: 10.1016/j.neuroscience.2020.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Exercise is a promising, cost-effective intervention to augment successful aging and neurorehabilitation. Decline of gray and white matter accompanies physiological aging and contributes to motor deficits in older adults. Exercise is believed to reduce atrophy within the motor system and induce neuroplasticity which, in turn, helps preserve motor function during aging and promote re-learning of motor skills, for example after stroke. To fully exploit the benefits of exercise, it is crucial to gain a greater understanding of the neurophysiological and molecular mechanisms underlying exercise-induced brain changes that prime neuroplasticity and thus contribute to postponing, slowing, and ameliorating age- and disease-related impairments in motor function. This knowledge will allow us to develop more effective, personalized exercise protocols that meet individual needs, thereby increasing the utility of exercise strategies in clinical and non-clinical settings. Here, we review findings from studies that investigated neurophysiological and molecular changes associated with acute or long-term exercise in healthy, young adults and in healthy, postmenopausal women.
Collapse
Affiliation(s)
- Chiara Nicolini
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
42
|
Influences of Blood Lactate Levels on Cognitive Domains and Physical Health during a Sports Stress. Brief Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17239043. [PMID: 33291577 PMCID: PMC7729439 DOI: 10.3390/ijerph17239043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/13/2023]
Abstract
The present review aims to examine the effects of high blood lactate levels in healthy adult humans, for instance, after a period of exhaustive exercise, on the functioning of the cerebral cortex. In some of the examined studies, high blood lactate levels were obtained not only through exhaustive exercise but also with an intravenous infusion of lactate while the subject was immobile. This allowed us to exclude the possibility that the observed post-exercise effects were nonspecific (e.g., cortical changes in temperature, acidity, etc.). We observed that, in both experimental conditions, high levels of blood lactate are associated with a worsening of important cognitive domains such as attention or working memory or stress, without gender differences. Moreover, in both experimental conditions, high levels of blood lactate are associated with an improvement of the primary motor area (M1) excitability. Outside the frontal lobe, the use of visual evoked potentials and somatosensory evoked potentials allowed us to observe, in the occipital and parietal lobe respectively, that high levels of blood lactate are associated with an amplitude’s increase and a latency’s reduction of the early components of the evoked responses. In conclusion, significant increases of blood lactate levels could exercise a double-action in the central nervous system (CNS), with a protecting role on primary cortical areas (such as M1, primary visual area, or primary somatosensory cortex), while reducing the efficiency of adjacent regions, such as the supplementary motor area (SMA) or prefrontal cortex. These observations are compatible with the possibility that lactate works in the brain not only as an energy substrate or an angiogenetic factor but also as a true neuromodulator, which can protect from stress. In this review, we will discuss the mechanisms and effects of lactic acid products produced during an anaerobic exercise lactate, focusing on their action at the level of the central nervous system with particular attention to the primary motor, the somatosensory evoked potentials, and the occipital and parietal lobe.
Collapse
|
43
|
Shi J, Sun Y, Hua J. Functional Genetic Variation in the 3'-UTRNTRK2 is Associated with Risk of Ischemic Stroke. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:577-584. [PMID: 33209049 PMCID: PMC7669521 DOI: 10.2147/pgpm.s270319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/30/2020] [Indexed: 12/05/2022]
Abstract
Background Stroke is a leading cause of death and disability worldwide. It remains difficult to treat brain injury and improve functional rehabilitation after cerebral ischemia. Brain-derived neurotrophic factor (BDNF) is involved in ischemic stroke (IS) through interactions in the CREB1-BDNF-NTRk2 pathway. In this study, we aimed to determine the association of NTRK2 gene polymorphisms and the effects of intergenetic interactions in the Chinese population. Materials and Methods A total of 400 patients diagnosed with IS and 400 healthy controls were enrolled for genotyping. Detailed sequence-based analysis was predicted through bioinformatical investigation. Polymorphisms associated with miRNA were analyzed by a dual-luciferase reporter assay system. Results Analysis of clinical characteristics revealed that IS was highly associated with exposure to cigarette smoking, alcohol intake, as well as metabolic diseases, such as diabetes, hypertension, and higher serum triglyceride concentration. Three polymorphisms in NTRK2 located in the 3ʹ-untranslated region (3ʹ-UTR) were genotyped. Logistic regression analysis showed that IS patients with rs11140793, rs7047042, and rs1221 polymorphisms had a higher risk of stroke and indicated a worse short-term recovery. The mRNA level of NTRK2 was suppressed in a mutant genotype compared with wild genotype. The suppression of NTRK2 was induced by the gain-of-binding ability of certain miRNAs through the direct binding of 3ʹ-UTR. Conclusion Our research indicated that, by influencing the expression of NTRK2, the SNPs rs11140793, rs7047042, and rs1221 in the 3′UTR of NTRK2 can be used as risk factors for IS patients.
Collapse
Affiliation(s)
- Jiajia Shi
- Department of Rehabilitation Medicine, Kunshan Rehabilitation Hospital, Suzhou, Jiangsu, People's Republic of China
| | - Ying Sun
- Department of Rehabilitation Medicine, Kunshan Rehabilitation Hospital, Suzhou, Jiangsu, People's Republic of China
| | - Jiajia Hua
- Department of Rehabilitation Medicine, The Sixth People's Hospital of Nantong, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
44
|
Santoro M, Siotto M, Germanotta M, Bray E, Mastrorosa A, Galli C, Papadopoulou D, Aprile I. BDNF rs6265 Polymorphism and Its Methylation in Patients with Stroke Undergoing Rehabilitation. Int J Mol Sci 2020; 21:ijms21228438. [PMID: 33182716 PMCID: PMC7696026 DOI: 10.3390/ijms21228438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/19/2023] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) and its rs6265 single nucleotide polymorphism (SNP) play an important role in post-stroke recovery. We investigated the correlation between BDNF rs6265 SNP and recovery outcome, measured by the modified Barthel index, in 49 patients with stroke hospitalized in our rehabilitation center at baseline (T0) and after 30 sessions of rehabilitation treatment (T1); moreover, we analyzed the methylation level of the CpG site created or abolished into BDNF rs6265 SNP. In total, 11 patients (22.4%) were heterozygous GA, and 32 (65.3%) and 6 (12.2%) patients were homozygous GG and AA, respectively. The univariate analysis showed a significant relationship between the BDNF rs6265 SNP and the modified Barthel index cut-off (χ2(1, N = 48) = 3.86, p = 0.049), considering patients divided for carrying (A+) or not carrying (A−) the A allele. A higher percentage of A− patients obtained a favorable outcome, as showed by the logistic regression model corrected by age and time since the stroke onset, compared with the A+ patients (OR: 5.59). At baseline (T0), the percentage of BDNF methylation was significantly different between GG (44.6 ± 1.1%), GA (39.5 ± 2.8%) and AA (28.5 ± 1.7%) alleles (p < 0.001). After rehabilitation (T1), only patients A− showed a significant increase in methylation percentages (mean change = 1.3, CI: 0.4–2.2, p = 0.007). This preliminary study deserves more investigation to confirm if BDNF rs6265 SNP and its methylation could be used as a biological marker of recovery in patients with stroke undergoing rehabilitation treatment.
Collapse
|
45
|
Shah-Basak P, Harvey DY, Parchure S, Faseyitan O, Sacchetti D, Ahmed A, Thiam A, Lohoff FW, Hamilton RH. Brain-Derived Neurotrophic Factor Polymorphism Influences Response to Single-Pulse Transcranial Magnetic Stimulation at Rest. Neuromodulation 2020; 24:S1094-7159(21)06197-3. [PMID: 33090650 PMCID: PMC8032803 DOI: 10.1111/ner.13287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVES The ability of noninvasive brain stimulation to modulate corticospinal excitability and plasticity is influenced by genetic predilections such as the coding for brain-derived neurotrophic factor (BDNF). Otherwise healthy individuals presenting with BDNF Val66Met (Val/Met) polymorphism are less susceptible to changes in excitability in response to repetitive transcranial magnetic stimulation (TMS) and paired associative stimulation paradigms, reflecting reduced neuroplasticity, compared to Val homozygotes (Val/Val). In the current study, we investigated whether BDNF polymorphism influences "baseline" excitability under TMS conditions that are not repetitive or plasticity-inducing. Cross-sectional BDNF levels could predict TMS response more generally because of the ongoing plasticity processes. MATERIALS AND METHODS Forty-five healthy individuals (23 females; age: 25.3 ± 7.0 years) participated in the study, comprising two groups. Motor evoked potentials (MEP) were collected using single-pulse TMS paradigms at fixed stimulation intensities at 110% of the resting motor threshold in one group, and individually-derived intensities based on MEP sizes of 1 mV in the second group. Functional variant Val66Met (rs6265) was genotyped from saliva samples by a technician blinded to the identity of DNA samples. RESULTS Twenty-seven participants (60.0%) were identified with Val/Val, sixteen (35.5%) with Val/Met genotype, and two with Met/Met genotype. MEP amplitudes were significantly diminished in the Val/Met than Val/Val individuals. These results held independent of the single-pulse TMS paradigm of choice (p = 0.017110% group; p = 0.035 1 mV group), age, and scalp-to-coil distances. CONCLUSIONS The findings should be further substantiated in larger-scale studies. If validated, intrinsic differences by BDNF polymorphism status could index response to TMS prior to implementing plasticity-inducing protocols.
Collapse
Affiliation(s)
- Priyanka Shah-Basak
- Department of Neurology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Denise Y. Harvey
- Department of Neurology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104
- Research Department, Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, PA 19027
| | - Shreya Parchure
- Department of Neurology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Olufunsho Faseyitan
- Department of Neurology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Daniela Sacchetti
- Department of Neurology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Ahmed Ahmed
- Department of Neurology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Abdou Thiam
- Department of Neurology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Falk W. Lohoff
- National Institute for Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), 10 Center Drive (10CRC/2-2352), Bethesda, MD 20892-1540
| | - Roy H. Hamilton
- Department of Neurology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104
| |
Collapse
|
46
|
Fischer DL, Auinger P, Goudreau JL, Cole-Strauss A, Kieburtz K, Elm JJ, Hacker ML, Charles PD, Lipton JW, Pickut BA, Sortwell CE. BDNF rs6265 Variant Alters Outcomes with Levodopa in Early-Stage Parkinson's Disease. Neurotherapeutics 2020; 17:1785-1795. [PMID: 33215284 PMCID: PMC7851242 DOI: 10.1007/s13311-020-00965-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 11/25/2022] Open
Abstract
Disease outcomes are heterogeneous in Parkinson's disease and may be predicted by gene variants. This study investigated if the BDNF rs6265 single nucleotide polymorphism (SNP) is associated with differential outcomes with specific pharmacotherapy treatment strategies in the "NIH Exploratory Trials in PD Long-term Study 1" (NET-PD LS-1, n = 540). DNA samples were genotyped for the rs6265 SNP and others (rs11030094, rs10501087, rs1491850, rs908867, and rs1157659). The primary measures were the Unified Parkinson's Disease Rating Scale (UPDRS) and its motor component (UPDRS-III). Groups were divided by genotype and treatment regimen (levodopa monotherapy vs levodopa with other medications vs no levodopa). T allele carriers were associated with worse UPDRS outcomes compared to C/C subjects when treated with levodopa monotherapy (+ 6 points, p = 0.02) and to T allele carriers treated with no levodopa treatment strategies (UPDRS: + 8 points, p = 0.01; UPDRS-III: + 6 points, p = 0.01). Similar effects of worse outcomes associated with levodopa monotherapy were observed in the BDNF rs11030094, rs10501087, and rs1491850 SNPs. This study suggests the levodopa monotherapy strategy is associated with worse disease outcomes in BDNF rs6265 T carriers. Pending prospective validation, BDNF variants may be precision medicine factors to consider for symptomatic treatment decisions for early-stage PD patients.
Collapse
Affiliation(s)
- D Luke Fischer
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
| | - Peggy Auinger
- Center for Health and Technology, Department of Neurology, University of Rochester, Rochester, NY, USA
| | - John L Goudreau
- Department of Neurology and Ophthalmology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Allyson Cole-Strauss
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
| | - Karl Kieburtz
- Center for Health and Technology, Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Jordan J Elm
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Mallory L Hacker
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P David Charles
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jack W Lipton
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA
| | - Barbara A Pickut
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA.
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA.
| |
Collapse
|
47
|
Franke K, Van den Bergh BRH, de Rooij SR, Kroegel N, Nathanielsz PW, Rakers F, Roseboom TJ, Witte OW, Schwab M. Effects of maternal stress and nutrient restriction during gestation on offspring neuroanatomy in humans. Neurosci Biobehav Rev 2020; 117:5-25. [PMID: 32001273 PMCID: PMC8207653 DOI: 10.1016/j.neubiorev.2020.01.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/06/2023]
Abstract
Cognitive and mental health are major determinants of quality of life, allowing integration into society at all ages. Human epidemiological and animal studies indicate that in addition to genetic factors and lifestyle, prenatal environmental influences may program neuropsychiatric disorders in later life. While several human studies have examined the effects of prenatal stress and nutrient restriction on brain function and mental health in later life, potentially mediating effects of prenatal stress and nutrient restriction on offspring neuroanatomy in humans have been studied only in recent years. Based on neuroimaging and anatomical data, we comprehensively review the studies in this emerging field. We relate prenatal environmental influences to neuroanatomical abnormalities in the offspring, measured in utero and throughout life. We also assess the relationship between neuroanatomical abnormalities and cognitive and mental disorders. Timing- and gender-specific effects are considered, if reported. Our review provides evidence for adverse effects of an unfavorable prenatal environment on structural brain development that may contribute to the risk for cognitive, behavioral and mental health problems throughout life.
Collapse
Affiliation(s)
- Katja Franke
- Department of Neurology, Jena University Hospital, Jena, Germany.
| | - Bea R H Van den Bergh
- Research Group on Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium; Department for Welfare, Public Health and Family, Flemish Government, Brussels, Belgium
| | - Susanne R de Rooij
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centres, University of Amsterdam, The Netherlands
| | - Nasim Kroegel
- Department of Neurology, Jena University Hospital, Jena, Germany; acatech - National Academy of Science and Engineering, Berlin, Germany
| | - Peter W Nathanielsz
- Texas Pregnancy & Life Course Health Research Center, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States; Dept. of Animal Science, University of Wyoming, Laramie, WY, United States
| | - Florian Rakers
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Tessa J Roseboom
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centres, University of Amsterdam, The Netherlands; Department of Obstetrics and Gynaecology, Amsterdam University Medical Centres, University of Amsterdam, The Netherlands
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
48
|
Rauscher M, Yavari F, Batsikadze G, Ludolph N, Ilg W, Nitsche MA, Timmann D, Steiner KM. Lack of cerebellar tDCS effects on learning of a complex whole body dynamic balance task in middle-aged (50-65 years) adults. Neurol Res Pract 2020; 2:38. [PMID: 33324938 PMCID: PMC7650141 DOI: 10.1186/s42466-020-00085-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Cerebellar transcranial direct current stimulation (tDCS) is widely considered as a promising non-invasive tool to foster motor performance and learning in health and disease. The results of previous studies, however, are inconsistent. Our group failed to provide evidence for an effect of cerebellar tDCS on learning of a complex whole body dynamic balance task in young and healthy participants. Ceiling effects in the young study population are one possible explanation for the negative findings. Methods In the present study, we therefore tested 40 middle-aged healthy participants between the ages of 50 to 65 years. Participants received either anodal or sham cerebellar tDCS using a double-blinded study design while performing a balance task on a Lafayette Instrument 16,030 stability platform®. Mean platform angle and mean balance time were assessed as outcome measures. Results Significant learning effects were found in all participants. Balancing performance and learning rate was significantly less in the group of middle-aged adults compared to our previous group of young adults. No significant effects of cerebellar tDCS were observed. Conclusions Our findings are in line with other studies that have failed to prove robust effects of cerebellar tDCS on motor learning. The present findings, however, do not exclude cerebellar tDCS effects. tDCS effects may be more prominent after repeated stimulation, using other stimulus parameters, in patient populations, or in other motor learning tasks. Trial registration Not applicable.
Collapse
Affiliation(s)
- M Rauscher
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - F Yavari
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - G Batsikadze
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - N Ludolph
- Cognitive Neurology, Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research and Center for Integrative Neuroscience, Eberhard Karls University, Tübingen, Germany
| | - W Ilg
- Cognitive Neurology, Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research and Center for Integrative Neuroscience, Eberhard Karls University, Tübingen, Germany
| | - M A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - D Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - K M Steiner
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
49
|
Pitts BL, Wen V, Whealin JM, Fogle BM, Southwick SM, Esterlis I, Pietrzak RH. Depression and Cognitive Dysfunction in Older U.S. Military Veterans: Moderating Effects of BDNF Val66Met Polymorphism and Physical Exercise. Am J Geriatr Psychiatry 2020; 28:959-967. [PMID: 32122804 DOI: 10.1016/j.jagp.2020.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/14/2020] [Accepted: 02/02/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Depression is associated with increased risk for cognitive dysfunction, yet little is known about genetic and behavioral factors that may moderate this association. Using data from a nationally representative sample of older U.S. military veterans, we examined the direct and interactive effects of depression, brain-derived neurotropic factor (BDNF) Val66Met genotype, and physical exercise on cognitive functioning. METHODS One thousand three hundred eighty-six older European-American U.S. military veterans (mean age = 63) completed a web-based survey and cognitive assessment. Analyses of covariance were conducted to evaluate the effects of depression, BDNF Met allele carrier status, and physical exercise on these measures. RESULTS Depressed veterans scored worse than nondepressed veterans on subjective measures of cognitive functioning (Cohen d's = 0.34-0.57) and objective measures of visual learning (d = 0.39) and working memory (d = 0.28). Among depressed veterans, those who were Met allele carriers scored worse than Val/Val homozygotes on subjective cognitive measures (d's = 0.52-0.97) and an objective measure of visual learning (d = 0.36). Engagement in physical exercise moderated the association between depression and cognitive function, with depressed exercisers scoring better than depressed nonexercisers on a subjective measure of reasoning, and objective measures of processing speed, attention, and visual learning (d = 0.58-0.99): further, in depressed Met allele carriers, exercisers scored better than nonexercisers on subjective cognitive (d's = 0.80-1.92), and objective measures of visual learning (d = 0.8-1.31) and working memory (d = 0.67). CONCLUSION Depression is associated with moderate decrements in cognitive functioning in older U.S. military veterans, and this association is moderated by BDNF Val66Met genotype and physical exercise. Prevention and treatment efforts designed to promote physical exercise may help preserve cognitive functioning in at-risk veterans.
Collapse
Affiliation(s)
- Barbara L Pitts
- Department of Psychological Sciences (BLP), Kansas State University, Manhattan, KS
| | - Vivian Wen
- Department of Psychiatry (VW, BMF, SMS, IE, RHP), Yale University School of Medicine, New Haven, CT
| | - Julia M Whealin
- U.S. Department of Veterans Affairs, VA Pacific Islands Healthcare System (JMW), Honolulu, HI; University of Hawaii School of Medicine (JMW), Manoa, HI
| | - Brienna M Fogle
- Department of Psychiatry (VW, BMF, SMS, IE, RHP), Yale University School of Medicine, New Haven, CT; U.S. Department of Veterans Affairs, Clinical Neurosciences Division (BMF, SMS, RHP), National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT
| | - Steven M Southwick
- Department of Psychiatry (VW, BMF, SMS, IE, RHP), Yale University School of Medicine, New Haven, CT; U.S. Department of Veterans Affairs, Clinical Neurosciences Division (BMF, SMS, RHP), National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT
| | - Irina Esterlis
- Department of Psychiatry (VW, BMF, SMS, IE, RHP), Yale University School of Medicine, New Haven, CT
| | - Robert H Pietrzak
- Department of Psychiatry (VW, BMF, SMS, IE, RHP), Yale University School of Medicine, New Haven, CT; U.S. Department of Veterans Affairs, Clinical Neurosciences Division (BMF, SMS, RHP), National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT.
| |
Collapse
|
50
|
Perez-Fernandez C, Morales-Navas M, Guardia-Escote L, Colomina MT, Giménez E, Sánchez-Santed F. Postnatal exposure to low doses of Chlorpyrifos induces long-term effects on 5C-SRTT learning and performance, cholinergic and GABAergic systems and BDNF expression. Exp Neurol 2020; 330:113356. [DOI: 10.1016/j.expneurol.2020.113356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/13/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
|