1
|
Schwen Blackett D, Varkey J, Wilmskoetter J, Roth R, Andrews K, Busby N, Gleichgerrcht E, Desai RH, Riccardi N, Basilakos A, Johnson LP, Kristinsson S, Johnson L, Rorden C, Spell LA, Fridriksson J, Bonilha L. Neural network bases of thematic semantic processing in language production. Cortex 2022; 156:126-143. [PMID: 36244204 PMCID: PMC10041939 DOI: 10.1016/j.cortex.2022.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
Semantic processing is a central component of language and cognition. The anterior temporal lobe is postulated to be a key hub for semantic processing, but the posterior temporoparietal cortex is also involved in thematic associations during language. It is possible that these regions act in concert and depend on an anteroposterior network linking the temporal pole with posterior structures to support thematic semantic processing during language production. We employed connectome-based lesion-symptom mapping to examine the causal relationship between lesioned white matter pathways and thematic processing language deficits among individuals with post-stroke aphasia. Seventy-nine adults with chronic aphasia completed the Philadelphia Naming Test, and semantic errors were coded as either thematic or taxonomic to control for taxonomic errors. Controlling for nonverbal conceptual-semantic knowledge as measured by the Pyramids and Palm Trees Test, lesion size, and the taxonomic error rate, thematic error rate was associated with loss of white matter connections from the temporal pole traversing in peri-Sylvian regions to the posterior cingulate and the insula. These findings support the existence of a distributed network underlying thematic relationship processing in language as opposed to discrete cortical areas.
Collapse
Affiliation(s)
- Deena Schwen Blackett
- Department of Otolaryngology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA; Division of Speech-Language Pathology, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA.
| | - Jesse Varkey
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Janina Wilmskoetter
- Division of Speech-Language Pathology, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA.
| | - Rebecca Roth
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Keeghan Andrews
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Ezequiel Gleichgerrcht
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Rutvik H Desai
- Department of Psychology, University of South Carolina, Barnwell College, Columbia, SC, USA.
| | - Nicholas Riccardi
- Department of Psychology, University of South Carolina, Barnwell College, Columbia, SC, USA.
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Lorelei P Johnson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Lisa Johnson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Barnwell College, Columbia, SC, USA.
| | - Leigh A Spell
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Leonardo Bonilha
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Li J, Pylkkänen L. Disentangling Semantic Composition and Semantic Association in the Left Temporal Lobe. J Neurosci 2021; 41:6526-6538. [PMID: 34131034 PMCID: PMC8318083 DOI: 10.1523/jneurosci.2317-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/21/2022] Open
Abstract
Although composing two words into a complex representation (e.g., "coffee cake") is conceptually different from forming associations between a pair of words (e.g., "coffee, cake"), the brain regions supporting semantic composition have also been implicated for associative encoding. Here, we adopted a two-word magnetoencephalography (MEG) paradigm which varies compositionality ("French/Korean cheese" vs "France/Korea cheese") and strength of association ("France/French cheese" vs "Korea/Korean cheese") between the two words. We collected MEG data while 42 English speakers (24 females) viewed the two words successively in the scanner, and we applied both univariate regression analyses and multivariate pattern classification to the source estimates of the two words. We show that the left anterior temporal lobe (LATL) and left middle temporal lobe (LMTL) are distinctively modulated by semantic composition and semantic association. Specifically, the LATL is mostly sensitive to high-association compositional phrases, while the LMTL responds more to low-association compositional phrases. Pattern-based directed connectivity analyses further revealed a continuous information flow from the anterior to the middle temporal region, suggesting that the integration of adjective and noun properties originated earlier in the LATL is consistently delivered to the LMTL when the complex meaning is newly encountered. Taken together, our findings shed light into a functional dissociation within the left temporal lobe for compositional and distributional semantic processing.SIGNIFICANCE STATEMENT Prior studies on semantic composition and associative encoding have been conducted independently within the subfields of language and memory, and they typically adopt similar two-word experimental paradigms. However, no direct comparison has been made on the neural substrates of the two processes. The current study relates the two streams of literature, and appeals to audiences in both subfields within cognitive neuroscience. Disentangling the neural computations for semantic composition and association also offers insight into modeling compositional and distributional semantics, which has been the subject of much discussion in natural language processing and cognitive science.
Collapse
Affiliation(s)
- Jixing Li
- NYUAD Institute, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Liina Pylkkänen
- NYUAD Institute, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Department of Linguistics, New York University, New York, New York 10003
- Department of Psychology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Razorenova AM, Chernyshev BV, Nikolaeva AY, Butorina AV, Prokofyev AO, Tyulenev NB, Stroganova TA. Rapid Cortical Plasticity Induced by Active Associative Learning of Novel Words in Human Adults. Front Neurosci 2020; 14:895. [PMID: 33013296 PMCID: PMC7516206 DOI: 10.3389/fnins.2020.00895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/31/2020] [Indexed: 11/29/2022] Open
Abstract
Human speech requires that new words are routinely memorized, yet neurocognitive mechanisms of such acquisition of memory remain highly debatable. Major controversy concerns the question whether cortical plasticity related to word learning occurs in neocortical speech-related areas immediately after learning, or neocortical plasticity emerges only on the second day after a prolonged time required for consolidation after learning. The functional spatiotemporal pattern of cortical activity related to such learning also remains largely unknown. In order to address these questions, we examined magnetoencephalographic responses elicited in the cerebral cortex by passive presentations of eight novel pseudowords before and immediately after an operant conditioning task. This associative procedure forced participants to perform an active search for unique meaning of four pseudowords that referred to movements of left and right hands and feet. The other four pseudowords did not require any movement and thus were not associated with any meaning. Familiarization with novel pseudowords led to a bilateral repetition suppression of cortical responses to them; the effect started before or around the uniqueness point and lasted for more than 500 ms. After learning, response amplitude to pseudowords that acquired meaning was greater compared with response amplitude to pseudowords that were not assigned meaning; the effect was significant within 144-362 ms after the uniqueness point, and it was found only in the left hemisphere. Within this time interval, a learning-related selective response initially emerged in cortical areas surrounding the Sylvian fissure: anterior superior temporal sulcus, ventral premotor cortex, the anterior part of intraparietal sulcus and insula. Later within this interval, activation additionally spread to more anterior higher-tier brain regions, and reached the left temporal pole and the triangular part of the left inferior frontal gyrus extending to its orbital part. Altogether, current findings evidence rapid plastic changes in cortical representations of meaningful auditory word-forms occurring almost immediately after learning. Additionally, our results suggest that familiarization resulting from stimulus repetition and semantic acquisition resulting from an active learning procedure have separable effects on cortical activity.
Collapse
Affiliation(s)
- Alexandra M Razorenova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
- Center for Computational and Data-Intensive Science and Engineering (CDISE), Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Boris V Chernyshev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
- Department of Psychology, Higher School of Economics, Moscow, Russia
- Department of Higher Nervous Activity, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia Yu Nikolaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
| | - Anna V Butorina
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
- Center for Computational and Data-Intensive Science and Engineering (CDISE), Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Andrey O Prokofyev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
| | - Nikita B Tyulenev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
| | - Tatiana A Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
| |
Collapse
|
4
|
Córcoles-Parada M, Ubero-Martínez M, Morris RGM, Insausti R, Mishkin M, Muñoz-López M. Frontal and Insular Input to the Dorsolateral Temporal Pole in Primates: Implications for Auditory Memory. Front Neurosci 2019; 13:1099. [PMID: 31780878 PMCID: PMC6861303 DOI: 10.3389/fnins.2019.01099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/30/2019] [Indexed: 01/25/2023] Open
Abstract
The temporal pole (TP) has been involved in multiple functions from emotional and social behavior, semantic processing, memory, language in humans and epilepsy surgery, to the fronto-temporal neurodegenerative disorder (semantic) dementia. However, the role of the TP subdivisions is still unclear, in part due to the lack of quantitative data about TP connectivity. This study focuses in the dorsolateral subdivision of the TP: area 38DL. Area 38DL main input originates in the auditory processing areas of the rostral superior temporal gyrus. Among other connections, area 38DL conveys this auditory highly processed information to the entorhinal, rostral perirhinal, and posterior parahippocampal cortices, presumably for storage in long-term memory (Muñoz-López et al., 2015). However, the connections of the TP with cortical areas beyond the temporal cortex suggest that this area is part of a wider network. With the aim to quantitatively determine the topographical, laminar pattern and weighting of the lateral TP afferents from the frontal and insular cortices, we placed a total of 11 tracer injections of the fluorescent retrograde neuronal tracers Fast Blue and Diamidino Yellow at different levels of the lateral TP in rhesus monkeys. The results showed that circa 50% of the total cortical input to area 38DL originates in medial frontal areas 14, 25, 32, and 24 (25%); orbitofrontal areas Pro and PAll (15%); and the agranular, parainsular and disgranular insula (10%). This study sets the anatomical bases to better understand the function of the dorsolateral division of the TP. More specifically, these results suggest that area 38DL forms part of the wider limbic circuit that might contribute, among other functions, with an auditory component to multimodal memory processing.
Collapse
Affiliation(s)
- Marta Córcoles-Parada
- Human Neuroanatomy Laboratory, School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | - Mar Ubero-Martínez
- Human Neuroanatomy Laboratory, School of Medicine, University of Castilla-La Mancha, Albacete, Spain.,Department of Anatomy, Catholic University, Murcia, Spain
| | - Richard G M Morris
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | - Mortimer Mishkin
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, ML, United States
| | - Mónica Muñoz-López
- Human Neuroanatomy Laboratory, School of Medicine, University of Castilla-La Mancha, Albacete, Spain.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, ML, United States
| |
Collapse
|
5
|
Zhan L, Guo D, Chen G, Yang J. Effects of Repetition Learning on Associative Recognition Over Time: Role of the Hippocampus and Prefrontal Cortex. Front Hum Neurosci 2018; 12:277. [PMID: 30050418 PMCID: PMC6050388 DOI: 10.3389/fnhum.2018.00277] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/15/2018] [Indexed: 12/03/2022] Open
Abstract
When stimuli are learned by repetition, they are remembered better and retained for a longer time. However, current findings are lacking as to whether the medial temporal lobe (MTL) and cortical regions are involved in the learning effect when subjects retrieve associative memory, and whether their activations differentially change over time due to learning experience. To address these issues, we designed an fMRI experiment in which face-scene pairs were learned once (L1) or six times (L6). Subjects learned the pairs at four retention intervals, 30-min, 1-day, 1-week and 1-month, after which they finished an associative recognition task in the scanner. The results showed that compared to learning once, learning six times led to stronger activation in the hippocampus, but weaker activation in the perirhinal cortex (PRC) as well as anterior ventrolateral prefrontal cortex (vLPFC). In addition, the hippocampal activation was positively correlated with that of the parahippocampal place area (PPA) and negatively correlated with that of the vLPFC when the L6 group was compared to the L1 group. The hippocampal activation decreased over time after L1 but remained stable after L6. These results clarified how the hippocampus and cortical regions interacted to support associative memory after different learning experiences.
Collapse
Affiliation(s)
- Lexia Zhan
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Dingrong Guo
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jiongjiong Yang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
6
|
Kupers ER, Wang HX, Amano K, Kay KN, Heeger DJ, Winawer J. A non-invasive, quantitative study of broadband spectral responses in human visual cortex. PLoS One 2018. [PMID: 29529085 PMCID: PMC5846788 DOI: 10.1371/journal.pone.0193107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Currently, non-invasive methods for studying the human brain do not routinely and reliably measure spike-rate-dependent signals, independent of responses such as hemodynamic coupling (fMRI) and subthreshold neuronal synchrony (oscillations and event-related potentials). In contrast, invasive methods—microelectrode recordings and electrocorticography (ECoG)—have recently measured broadband power elevation in field potentials (~50–200 Hz) as a proxy for locally averaged spike rates. Here, we sought to detect and quantify stimulus-related broadband responses using magnetoencephalography (MEG). Extracranial measurements like MEG and EEG have multiple global noise sources and relatively low signal-to-noise ratios; moreover high frequency artifacts from eye movements can be confounded with stimulus design and mistaken for signals originating from brain activity. For these reasons, we developed an automated denoising technique that helps reveal the broadband signal of interest. Subjects viewed 12-Hz contrast-reversing patterns in the left, right, or bilateral visual field. Sensor time series were separated into evoked (12-Hz amplitude) and broadband components (60–150 Hz). In all subjects, denoised broadband responses were reliably measured in sensors over occipital cortex, even in trials without microsaccades. The broadband pattern was stimulus-dependent, with greater power contralateral to the stimulus. Because we obtain reliable broadband estimates with short experiments (~20 minutes), and with sufficient signal-to-noise to distinguish responses to different stimuli, we conclude that MEG broadband signals, denoised with our method, offer a practical, non-invasive means for characterizing spike-rate-dependent neural activity for addressing scientific questions about human brain function.
Collapse
Affiliation(s)
- Eline R. Kupers
- Department of Psychology and Center for Neural Science, New York University, New York, New York, United States of America
- * E-mail:
| | - Helena X. Wang
- Department of Psychology and Center for Neural Science, New York University, New York, New York, United States of America
| | - Kaoru Amano
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka, Japan
| | - Kendrick N. Kay
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David J. Heeger
- Department of Psychology and Center for Neural Science, New York University, New York, New York, United States of America
| | - Jonathan Winawer
- Department of Psychology and Center for Neural Science, New York University, New York, New York, United States of America
| |
Collapse
|
7
|
Neurobiology of Schemas and Schema-Mediated Memory. Trends Cogn Sci 2017; 21:618-631. [PMID: 28551107 DOI: 10.1016/j.tics.2017.04.013] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 02/05/2023]
Abstract
Schemas are superordinate knowledge structures that reflect abstracted commonalities across multiple experiences, exerting powerful influences over how events are perceived, interpreted, and remembered. Activated schema templates modulate early perceptual processing, as they get populated with specific informational instances (schema instantiation). Instantiated schemas, in turn, can enhance or distort mnemonic processing from the outset (at encoding), impact offline memory transformation and accelerate neocortical integration. Recent studies demonstrate distinctive neurobiological processes underlying schema-related learning. Interactions between the ventromedial prefrontal cortex (vmPFC), hippocampus, angular gyrus (AG), and unimodal associative cortices support context-relevant schema instantiation and schema mnemonic effects. The vmPFC and hippocampus may compete (as suggested by some models) or synchronize (as suggested by others) to optimize schema-related learning depending on the specific operationalization of schema memory. This highlights the need for more precise definitions of memory schemas.
Collapse
|
8
|
Abstract
Social behavior is often shaped by the rich storehouse of biographical information that we hold for other people. In our daily life, we rapidly and flexibly retrieve a host of biographical details about individuals in our social network, which often guide our decisions as we navigate complex social interactions. Even abstract traits associated with an individual, such as their political affiliation, can cue a rich cascade of person-specific knowledge. Here, we asked whether the anterior temporal lobe (ATL) serves as a hub for a distributed neural circuit that represents person knowledge. Fifty participants across two studies learned biographical information about fictitious people in a 2-d training paradigm. On day 3, they retrieved this biographical information while undergoing an fMRI scan. A series of multivariate and connectivity analyses suggest that the ATL stores abstract person identity representations. Moreover, this region coordinates interactions with a distributed network to support the flexible retrieval of person attributes. Together, our results suggest that the ATL is a central hub for representing and retrieving person knowledge.
Collapse
|
9
|
Effects of HD-tDCS on memory and metamemory for general knowledge questions that vary by difficulty. Brain Stimul 2016; 10:231-241. [PMID: 27876306 DOI: 10.1016/j.brs.2016.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The ability to monitor one's own memory is an important feature of normal memory and is an aspect of 'metamemory'. Lesion studies have shown dissociations between memory and metamemory, but only single dissociations have been shown using transcranial direct current stimulation (tDCS). One potential reason that only single dissociations have been shown is that tDCS effects may be moderated by task difficulty. OBJECTIVE/HYPOTHESIS We used high definition (HD) tDCS to test for dissociable roles of the dorsolateral prefrontal cortex (DLPFC) and anterior temporal lobe (ATL) in semantic long-term memory and metamemory tasks. We also tested whether general knowledge question difficulty moderated the effects of HD-tDCS. METHODS Across 3 sessions, participants received active HD-tDCS over the left DLPFC or left ATL, or sham HD-tDCS during general knowledge recall and recognition tests, and a 'feeling-of-knowing' metamemory task. General knowledge questions were blocked by difficulty. Repeated measures ANOVAs were used to examine the effects of HD-tDCS on memory and metamemory tasks by memory question difficulty. RESULTS HD-tDCS over the ATL led to improved recall compared to DLPFC and sham HD-tDCS, and this occurred only for medium difficulty questions. In contrast, for non-recalled questions, HD-tDCS over the DLPFC led to improved recognition accuracy and improved feeling-of-knowing accuracy compared to ATL and sham HD-tDCS, and this was not moderated by memory question difficulty. CONCLUSION (S) HD-tDCS can be used to dissociate the roles of the ATL and DLPFC in different memory and 'metamemory' tasks. The effects of HD-tDCS on task may be moderated by task difficulty, depending on the nature of the task and site of stimulation.
Collapse
|
10
|
Soto JLP, Lachaux JP, Baillet S, Jerbi K. A multivariate method for estimating cross-frequency neuronal interactions and correcting linear mixing in MEG data, using canonical correlations. J Neurosci Methods 2016; 271:169-81. [PMID: 27468679 DOI: 10.1016/j.jneumeth.2016.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/22/2016] [Accepted: 07/24/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cross-frequency interactions between distinct brain areas have been observed in connection with a variety of cognitive tasks. With electro- and magnetoencephalography (EEG/MEG) data, typical connectivity measures between two brain regions analyze a single quantity from each region within a specific frequency band; given the wideband nature of EEG/MEG signals, many statistical tests may be required to identify true coupling. Furthermore, because of the poor spatial resolution of activity reconstructed from EEG/MEG, some interactions may actually be due to the linear mixing of brain sources. NEW METHOD In the present work, a method for the detection of cross-frequency functional connectivity in MEG data using canonical correlation analysis (CCA) is described. We demonstrate that CCA identifies correlated signals and also the frequencies that cause the correlation. We also implement a procedure to deal with linear mixing based on symmetry properties of cross-covariance matrices. RESULTS Our tests with both simulated and real MEG data demonstrate that CCA is able to detect interacting locations and the frequencies that cause them, while accurately discarding spurious coupling. COMPARISON WITH EXISTING METHODS Recent techniques look at time delays in the activity between two locations to discard spurious interactions, while we propose a linear mixing model and demonstrate its relationship with symmetry aspects of cross-covariance matrices. CONCLUSIONS Our tests indicate the benefits of the CCA approach in connectivity studies, as it allows the simultaneous evaluation of several possible combinations of cross-frequency interactions in a single statistical test.
Collapse
Affiliation(s)
- Juan L P Soto
- Department of Telecommunications and Control Engineering, University of São Paulo, São Paulo, Brazil.
| | - Jean-Philippe Lachaux
- Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, INSERM U1028 - CNRS UMR5292 - Lyon University, Lyon, France
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Karim Jerbi
- Department of Psychology, University of Montreal, Montreal, Canada
| |
Collapse
|
11
|
Hwang K, Ghuman AS, Manoach DS, Jones SR, Luna B. Frontal preparatory neural oscillations associated with cognitive control: A developmental study comparing young adults and adolescents. Neuroimage 2016; 136:139-48. [PMID: 27173759 DOI: 10.1016/j.neuroimage.2016.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/24/2016] [Accepted: 05/05/2016] [Indexed: 01/22/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies suggest that age-related changes in the frontal cortex may underlie developmental improvements in cognitive control. In the present study we used magnetoencephalography (MEG) to identify frontal oscillatory neurodynamics that support age-related improvements in cognitive control during adolescence. We characterized the differences in neural oscillations in adolescents and adults during the preparation to suppress a prepotent saccade (antisaccade trials-AS) compared to preparing to generate a more automatic saccade (prosaccade trials-PS). We found that for adults, AS were associated with increased beta-band (16-38Hz) power in the dorsal lateral prefrontal cortex (DLPFC), enhanced alpha- to low beta-band (10-18Hz) power in the frontal eye field (FEF) that predicted performance, and increased cross-frequency alpha-beta (10-26Hz) amplitude coupling between the DLPFC and the FEF. Developmental comparisons between adults and adolescents revealed similar engagement of DLPFC beta-band power but weaker FEF alpha-band power, and lower cross-frequency coupling between the DLPFC and the FEF in adolescents. These results suggest that lateral prefrontal neural activity associated with cognitive control is adult-like by adolescence; the development of cognitive control from adolescence to adulthood is instead associated with increases in frontal connectivity and strengthening of inhibition signaling for suppressing task-incompatible processes.
Collapse
Affiliation(s)
- Kai Hwang
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, United States.
| | - Avniel S Ghuman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Stephanie R Jones
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Collins JA, Koski JE, Olson IR. More Than Meets the Eye: The Merging of Perceptual and Conceptual Knowledge in the Anterior Temporal Face Area. Front Hum Neurosci 2016; 10:189. [PMID: 27199711 PMCID: PMC4852584 DOI: 10.3389/fnhum.2016.00189] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/14/2016] [Indexed: 11/13/2022] Open
Abstract
An emerging body of research has supported the existence of a small face sensitive region in the ventral anterior temporal lobe (ATL), referred to here as the "anterior temporal face area". The contribution of this region in the greater face-processing network remains poorly understood. The goal of the present study was to test the relative sensitivity of this region to perceptual as well as conceptual information about people and objects. We contrasted the sensitivity of this region to that of two highly-studied face-sensitive regions, the fusiform face area (FFA) and the occipital face area (OFA), as well as a control region in early visual cortex (EVC). Our findings revealed that multivoxel activity patterns in the anterior temporal face area contain information about facial identity, as well as conceptual attributes such as one's occupation. The sensitivity of this region to the conceptual attributes of people was greater than that of posterior face processing regions. In addition, the anterior temporal face area overlaps with voxels that contain information about the conceptual attributes of concrete objects, supporting a generalized role of the ventral ATLs in the identification and conceptual processing of multiple stimulus classes.
Collapse
Affiliation(s)
- Jessica A Collins
- Frontotemporal Dementia Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Jessica E Koski
- Department of Psychology, University of Texas Austin Austin, TX, USA
| | - Ingrid R Olson
- Department of Psychology, Temple University Philadelphia, PA, USA
| |
Collapse
|
13
|
Dede AJO, Smith CN. The Functional and Structural Neuroanatomy of Systems Consolidation for Autobiographical and Semantic Memory. Curr Top Behav Neurosci 2016; 37:119-150. [PMID: 27677778 DOI: 10.1007/7854_2016_452] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is well established that patients with memory impairment have more difficulty retrieving memories from the recent past relative to the remote past and that damage to the medial temporal lobe (MTL) plays a key role in this pattern of impairment. The precise role of the MTL and how it may interact with other brain regions remains an area of active research. We investigated the role of structures in a memory network that supports remembering. Our chapter focuses on two types of memory: episodic memory and semantic memory. Findings from studies of patients with brain damage and neuroimaging studies in patients and healthy individuals were considered together to identify the functional and structural neuroanatomy of past remembrance.
Collapse
Affiliation(s)
- Adam J O Dede
- Department of Psychology, University of California San Diego, San Diego, CA, 92093, USA
- Veteran Affairs San Diego Healthcare System, 3350 La Jolla Village Drive (116A), San Diego, CA, 92161, USA
| | - Christine N Smith
- Department of Psychiatry, University of California San Diego, San Diego, CA, 92093, USA.
- Veteran Affairs San Diego Healthcare System, 3350 La Jolla Village Drive (116A), San Diego, CA, 92161, USA.
| |
Collapse
|
14
|
Cramer NP, Xu X, F Haydar T, Galdzicki Z. Altered intrinsic and network properties of neocortical neurons in the Ts65Dn mouse model of Down syndrome. Physiol Rep 2015; 3:3/12/e12655. [PMID: 26702072 PMCID: PMC4760451 DOI: 10.14814/phy2.12655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 11/24/2022] Open
Abstract
All individuals with Down syndrome (DS) have a varying but significant degree of cognitive disability. Although hippocampal deficits clearly play an important role, behavioral studies also suggest that deficits within the neocortex contribute to somatosensory deficits and impaired cognition in DS. Using thalamocortical slices from the Ts65Dn mouse model of DS, we investigated the intrinsic and network properties of regular spiking neurons within layer 4 of the somatosensory cortex. In these neurons, the membrane capacitance was increased and specific membrane resistance decreased in slices from Ts65Dn mice. Examination of combined active and passive membrane properties suggests that trisomic layer 4 neurons are less excitable than those from euploid mice. The frequencies of excitatory and inhibitory spontaneous synaptic activities were also reduced in Ts65Dn neurons. With respect to network activity, spontaneous network oscillations (Up states) were shorter and less numerous in the neocortex from Ts65Dn mice when compared to euploid. Up states evoked by electrical stimulation of the ventrobasal nucleus (VBN) of the thalamus were similarly affected in Ts65Dn mice. Additionally, monosynaptic EPSCs and polysynaptic IPSCs evoked by VBN stimulation were significantly delayed in layer 4 regular spiking neurons from Ts65Dn mice. These results indicate that, in the Ts65Dn model of DS, the overall electrophysiological properties of neocortical neurons are altered leading to aberrant network activity within the neocortex. Similar changes in DS individuals may contribute to sensory and cognitive dysfunction and therefore may implicate new targets for cognitive therapies in this developmental disorder.
Collapse
Affiliation(s)
- Nathan P Cramer
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Xiufen Xu
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Zygmunt Galdzicki
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Merhav M, Karni A, Gilboa A. Not all declarative memories are created equal: Fast Mapping as a direct route to cortical declarative representations. Neuroimage 2015; 117:80-92. [DOI: 10.1016/j.neuroimage.2015.05.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 05/08/2015] [Accepted: 05/09/2015] [Indexed: 10/23/2022] Open
|
16
|
Marstaller L, Burianová H, Sowman PF. High gamma oscillations in medial temporal lobe during overt production of speech and gestures. PLoS One 2014; 9:e111473. [PMID: 25340347 PMCID: PMC4207813 DOI: 10.1371/journal.pone.0111473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 10/01/2014] [Indexed: 01/27/2023] Open
Abstract
The study of the production of co-speech gestures (CSGs), i.e., meaningful hand movements that often accompany speech during everyday discourse, provides an important opportunity to investigate the integration of language, action, and memory because of the semantic overlap between gesture movements and speech content. Behavioral studies of CSGs and speech suggest that they have a common base in memory and predict that overt production of both speech and CSGs would be preceded by neural activity related to memory processes. However, to date the neural correlates and timing of CSG production are still largely unknown. In the current study, we addressed these questions with magnetoencephalography and a semantic association paradigm in which participants overtly produced speech or gesture responses that were either meaningfully related to a stimulus or not. Using spectral and beamforming analyses to investigate the neural activity preceding the responses, we found a desynchronization in the beta band (15-25 Hz), which originated 900 ms prior to the onset of speech and was localized to motor and somatosensory regions in the cortex and cerebellum, as well as right inferior frontal gyrus. Beta desynchronization is often seen as an indicator of motor processing and thus reflects motor activity related to the hand movements that gestures add to speech. Furthermore, our results show oscillations in the high gamma band (50-90 Hz), which originated 400 ms prior to speech onset and were localized to the left medial temporal lobe. High gamma oscillations have previously been found to be involved in memory processes and we thus interpret them to be related to contextual association of semantic information in memory. The results of our study show that high gamma oscillations in medial temporal cortex play an important role in the binding of information in human memory during speech and CSG production.
Collapse
Affiliation(s)
- Lars Marstaller
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- ARC Science of Learning Research Centre, University of Queensland, Brisbane, Australia
- * E-mail:
| | - Hana Burianová
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia
| | - Paul F. Sowman
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia
- Department of Cognitive Science, Macquarie University, Sydney, Australia
| |
Collapse
|
17
|
Abstract
The ability to inhibit prepotent responses is critical for successful goal-directed behaviors. To investigate the neural basis of inhibitory control, we conducted a magnetoencephalography study where human participants performed the antisaccade task. Results indicated that neural oscillations in the prefrontal cortex (PFC) showed significant task modulations in preparation to suppress saccades. Before successfully inhibiting a saccade, beta-band power (18-38 Hz) in the lateral PFC and alpha-band power (10-18 Hz) in the frontal eye field (FEF) increased. Trial-by-trial prestimulus FEF alpha-band power predicted successful saccadic inhibition. Further, inhibitory control enhanced cross-frequency amplitude coupling between PFC beta-band (18-38 Hz) activity and FEF alpha-band activity, and the coupling appeared to be initiated by the PFC. Our results suggest a generalized mechanism for top-down inhibitory control: prefrontal beta-band activity initiates alpha-band activity for functional inhibition of the effector and/or sensory system.
Collapse
|
18
|
Collins JA, Olson IR. Beyond the FFA: The role of the ventral anterior temporal lobes in face processing. Neuropsychologia 2014; 61:65-79. [PMID: 24937188 DOI: 10.1016/j.neuropsychologia.2014.06.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 05/19/2014] [Accepted: 06/08/2014] [Indexed: 11/17/2022]
Abstract
Extensive research has supported the existence of a specialized face-processing network that is distinct from the visual processing areas used for general object recognition. The majority of this work has been aimed at characterizing the response properties of the fusiform face area (FFA) and the occipital face area (OFA), which together are thought to constitute the core network of brain areas responsible for facial identification. Although accruing evidence has shown that face-selective patches in the ventral anterior temporal lobes (vATLs) are interconnected with the FFA and OFA, and that they play a role in facial identification, the relative contribution of these brain areas to the core face-processing network has remained unarticulated. Here we review recent research critically implicating the vATLs in face perception and memory. We propose that current models of face processing should be revised such that the ventral anterior temporal lobes serve a centralized role in the visual face-processing network. We speculate that a hierarchically organized system of face processing areas extends bilaterally from the inferior occipital gyri to the vATLs, with facial representations becoming increasingly complex and abstracted from low-level perceptual features as they move forward along this network. The anterior temporal face areas may serve as the apex of this hierarchy, instantiating the final stages of face recognition. We further argue that the anterior temporal face areas are ideally suited to serve as an interface between face perception and face memory, linking perceptual representations of individual identity with person-specific semantic knowledge.
Collapse
Affiliation(s)
- Jessica A Collins
- Department of Psychology, Temple University, 1701 North 13th street, Philadelphia, PA 19122, USA.
| | - Ingrid R Olson
- Department of Psychology, Temple University, 1701 North 13th street, Philadelphia, PA 19122, USA.
| |
Collapse
|
19
|
Von Der Heide RJ, Skipper LM, Klobusicky E, Olson IR. Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. ACTA ACUST UNITED AC 2013; 136:1692-707. [PMID: 23649697 DOI: 10.1093/brain/awt094] [Citation(s) in RCA: 574] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The uncinate fasciculus is a bidirectional, long-range white matter tract that connects lateral orbitofrontal cortex and Brodmann area 10 with the anterior temporal lobes. Although abnormalities in the uncinate fasciculus have been associated with several psychiatric disorders and previous studies suggest it plays a putative role in episodic memory, language and social emotional processing, its exact function is not well understood. In this review we summarize what is currently known about the anatomy of the uncinate, we review its role in psychiatric and neurological illnesses, and we evaluate evidence related to its putative functions. We propose that an overarching role of the uncinate fasciculus is to allow temporal lobe-based mnemonic associations (e.g. an individual's name + face + voice) to modify behaviour through interactions with the lateral orbitofrontal cortex, which provides valence-based biasing of decisions. The bidirectionality of the uncinate fasciculus information flow allows orbital frontal cortex-based reward and punishment history to rapidly modulate temporal lobe-based mnemonic representations. According to this view, disruption of the uncinate may cause problems in the expression of memory to guide decisions and in the acquisition of certain types of learning and memory. Moreover, uncinate perturbation should cause problems that extend beyond memory to include social-emotional problems owing to people and objects being stripped of personal value and emotional history and lacking in higher-level motivational value.
Collapse
|
20
|
Reduced occipital alpha power indexes enhanced excitability rather than improved visual perception. J Neurosci 2013; 33:3212-20. [PMID: 23407974 DOI: 10.1523/jneurosci.3755-12.2013] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several studies have demonstrated that prestimulus occipital alpha-band activity substantially influences subjective perception and discrimination of near-threshold or masked visual stimuli. Here, we studied the role of prestimulus power fluctuations in two visual phenomena called double-flash illusion (DFI) and fusion effect (FE), both consisting of suprathreshold stimuli. In both phenomena, human subjects' perception varies on a trial-by-trial basis between perceiving one or two visual stimuli, despite constant stimulation. In the FE, two stimuli correspond to veridical perception. In the DFI, two stimuli correspond to an illusory perception. This provides for a critical test of whether reduced alpha power indeed promotes veridical perception in general. We find that in both, DFI and FE, reduced prestimulus occipital alpha predicts the perception of two stimuli, regardless of whether this is veridical (FE) or illusory (DFI). Our results suggest that reduced alpha-band power does not always predict improved visual processing, but rather enhanced excitability. In addition, for the DFI, enhanced prestimulus occipital gamma-band power predicted the perception of two visual stimuli. These findings provide new insights into the role of prestimulus rhythmic activity for visual processing.
Collapse
|
21
|
Von Der Heide RJ, Skipper LM, Olson IR. Anterior temporal face patches: a meta-analysis and empirical study. Front Hum Neurosci 2013; 7:17. [PMID: 23378834 PMCID: PMC3561664 DOI: 10.3389/fnhum.2013.00017] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/14/2013] [Indexed: 01/06/2023] Open
Abstract
Evidence suggests the anterior temporal lobe (ATL) plays an important role in person identification and memory. In humans, neuroimaging studies of person memory report consistent activations in the ATL to famous and personally familiar faces and studies of patients report resection or damage of the ATL causes an associative prosopagnosia in which face perception is intact but face memory is compromised. In addition, high-resolution fMRI studies of non-human primates and electrophysiological studies of humans also suggest regions of the ventral ATL are sensitive to novel faces. The current study extends previous findings by investigating whether similar subregions in the dorsal, ventral, lateral, or polar aspects of the ATL are sensitive to personally familiar, famous, and novel faces. We present the results of two studies of person memory: a meta-analysis of existing fMRI studies and an empirical fMRI study using optimized imaging parameters. Both studies showed left-lateralized ATL activations to familiar individuals while novel faces activated the right ATL. Activations to famous faces were quite ventral, similar to what has been reported in previous high-resolution fMRI studies of non-human primates. These findings suggest that face memory-sensitive patches in the human ATL are in the ventral/polar ATL.
Collapse
|
22
|
Olson IR, McCoy D, Klobusicky E, Ross LA. Social cognition and the anterior temporal lobes: a review and theoretical framework. Soc Cogn Affect Neurosci 2012; 8:123-33. [PMID: 23051902 DOI: 10.1093/scan/nss119] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Memory for people and their relationships, along with memory for social language and social behaviors, constitutes a specific type of semantic memory termed social knowledge. This review focuses on how and where social knowledge is represented in the brain. We propose that portions of the anterior temporal lobe (ATL) play a critical role in representing and retrieving social knowledge. This includes memory about people, their names and biographies and more abstract forms of social memory such as memory for traits and social concepts. This hypothesis is based on the convergence of several lines of research including anatomical findings, lesion evidence from both humans and non-human primates and neuroimaging evidence. Moreover, the ATL is closely interconnected with cortical nuclei of the amygdala and orbitofrontal cortex via the uncinate fasciculus. We propose that this pattern of connectivity underlies the function of the ATL in encoding and storing emotionally tagged knowledge that is used to guide orbitofrontal-based decision processes.
Collapse
Affiliation(s)
- Ingrid R Olson
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA.
| | | | | | | |
Collapse
|
23
|
Functional dissociation between anterior and posterior temporal cortical regions during retrieval of remote memory. J Neurosci 2012; 32:9659-70. [PMID: 22787051 DOI: 10.1523/jneurosci.5553-11.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retrieval of remote memory is considered to differentially involve the anterior and posterior temporal neocortices. Previous neuropsychological studies suggest that the different posterior temporal cortical regions are involved in the retrieval of remote memory of different categories of stimuli, whereas the anterior region is involved more generally in remote memory retrieval. In the present study, using functional magnetic resonance imaging of human brains, we tested this dissociation by examining the more precise characteristics of the anterior and posterior temporal cortical regions. Two categories of stimuli, faces and scenes, were used for paired stimuli to be retrieved, and the brain activity during retrieval of paired stimuli that were learned immediately before the scanning was compared with that during retrieval of paired stimuli that were learned ∼8 weeks earlier. We found that the different posterior temporal cortical regions were activated during retrieval of different categories of remote memory in a category-specific manner, whereas the anterior temporal cortical region was activated during retrieval of remote memory in a category-general manner. Furthermore, by applying a multivariate pattern analysis to psychophysiological interactions during retrieval of remote memory relative to recent memory, we revealed the significant interaction from the category-specific posterior temporal cortical regions to the category-general anterior temporal region. These results suggest that the posterior temporal cortical regions are involved in representation and retrieval of category-specific remote memory, whereas the anterior cortical temporal region is involved in category-general retrieval process of remote memory.
Collapse
|
24
|
Banerjee A, Pillai AS, Sperling JR, Smith JF, Horwitz B. Temporal microstructure of cortical networks (TMCN) underlying task-related differences. Neuroimage 2012; 62:1643-57. [PMID: 22728151 PMCID: PMC3408836 DOI: 10.1016/j.neuroimage.2012.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/02/2012] [Accepted: 06/08/2012] [Indexed: 12/01/2022] Open
Abstract
Neuro-electromagnetic recording techniques (EEG, MEG, iEEG) provide high temporal resolution data to study the dynamics of neurocognitive networks: large scale neural assemblies involved in task-specific information processing. How does a neurocognitive network reorganize spatiotemporally on the order of a few milliseconds to process specific aspects of the task? At what times do networks segregate for task processing, and at what time scales does integration of information occur via changes in functional connectivity? Here, we propose a data analysis framework-Temporal microstructure of cortical networks (TMCN)-that answers these questions for EEG/MEG recordings in the signal space. Method validation is established on simulated MEG data from a delayed-match to-sample (DMS) task. We then provide an example application on MEG recordings during a paired associate task (modified from the simpler DMS paradigm) designed to study modality specific long term memory recall. Our analysis identified the times at which network segregation occurs for processing the memory recall of an auditory object paired to a visual stimulus (visual-auditory) in comparison to an analogous visual-visual pair. Across all subjects, onset times for first network divergence appeared within a range of 0.08-0.47 s after initial visual stimulus onset. This indicates that visual-visual and visual auditory memory recollection involves equivalent network components without any additional recruitment during an initial period of the sensory processing stage which is then followed by recruitment of additional network components for modality specific memory recollection. Therefore, we propose TMCN as a viable computational tool for extracting network timing in various cognitive tasks.
Collapse
Affiliation(s)
- Arpan Banerjee
- Brain Imaging and Modeling Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
25
|
van Dongen EV, Thielen JW, Takashima A, Barth M, Fernández G. Sleep supports selective retention of associative memories based on relevance for future utilization. PLoS One 2012; 7:e43426. [PMID: 22916259 PMCID: PMC3420871 DOI: 10.1371/journal.pone.0043426] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/24/2012] [Indexed: 11/18/2022] Open
Abstract
An outstanding question is whether memory consolidation occurs passively or involves active processes that selectively stabilize memories based on future utility. Here, we differentially modulated the expected future relevance of two sets of picture-location associations after learning. Participants first studied two sets of picture-location associations. After a baseline memory test, they were instructed that only one set of associations would be retested after a 14-hour delay. For half of the participants, this test-retest delay contained a night of sleep; for the other half the delay included a normal working day. At retest, participants were re-instructed and against their expectations tested on both sets of associations. Our results show that post-learning instruction about subsequent relevance selectively improves memory retention for specific associative memories. This effect was sleep-dependent; it was present only in the group of subjects for which the test-retest delay contained sleep. Moreover, time spent asleep for participants in this sleep group correlated with retention of relevant but not irrelevant associations; participants who slept longer forgot fewer associations from the relevant category. In contrast, participants that did not sleep forgot more relevant than irrelevant associations across the test-retest delay. In summary, our results indicate that it is possible to modulate the retention of selected memories after learning with simple verbal instructions on their future relevance. The finding that this effect depends on sleep demonstrates this state's active role in memory consolidation and may have utility for educational settings.
Collapse
Affiliation(s)
- Eelco V van Dongen
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|