1
|
Breveglieri R, Brandolani R, Diomedi S, Lappe M, Galletti C, Fattori P. Role of the Medial Posterior Parietal Cortex in Orchestrating Attention and Reaching. J Neurosci 2025; 45:e0659242024. [PMID: 39500577 DOI: 10.1523/jneurosci.0659-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 01/03/2025] Open
Abstract
The interplay between attention, alertness, and motor planning is crucial for our manual interactions. To investigate the neural bases of this interaction and challenge the views that attention cannot be disentangled from motor planning, we instructed human volunteers of both sexes to plan and execute reaching movements while attending to the target, while attending elsewhere, or without constraining attention. We recorded reaction times to reach initiation and pupil diameter and interfered with the functions of the medial posterior parietal cortex (mPPC) with online repetitive transcranial magnetic stimulation to test the causal role of this cortical region in the interplay between spatial attention and reaching. We found that mPPC plays a key role in the spatial association of reach planning and covert attention. Moreover, we have found that alertness, measured by pupil size, is a good predictor of the promptness of reach initiation only if we plan a reach to attended targets, and mPPC is causally involved in this coupling. Different from previous understanding, we suggest that mPPC is neither involved in reach planning per se, nor in sustained covert attention in the absence of a reach plan, but it is specifically involved in attention functional to reaching.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| | - Riccardo Brandolani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
- Center for Neuroscience, University of Camerino, Camerino 62032, Italy
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| | - Markus Lappe
- Department of Psychology, Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster 48149, Germany
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
2
|
Caceres AH, Barany DA, Dundon NM, Smith J, Marneweck M. Neural Encoding of Direction and Distance across Reference Frames in Visually Guided Reaching. eNeuro 2024; 11:ENEURO.0405-24.2024. [PMID: 39557568 PMCID: PMC11617137 DOI: 10.1523/eneuro.0405-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
Goal-directed actions require transforming sensory information into motor plans defined across multiple parameters and reference frames. Substantial evidence supports the encoding of target direction in gaze- and body-centered coordinates within parietal and premotor regions. However, how the brain encodes the equally critical parameter of target distance remains less understood. Here, using Bayesian pattern component modeling of fMRI data during a delayed reach-to-target task, we dissociated the neural encoding of both target direction and the relative distances between target, gaze, and hand at early and late stages of motor planning. This approach revealed independent representations of direction and distance along the human dorsomedial reach pathway. During early planning, most premotor and superior parietal areas encoded a target's distance in single or multiple reference frames and encoded its direction. In contrast, distance encoding was magnified in gaze- and body-centric reference frames during late planning. These results emphasize a flexible and efficient human central nervous system that achieves goals by remapping sensory information related to multiple parameters, such as distance and direction, in the same brain areas.
Collapse
Affiliation(s)
| | - Deborah A Barany
- Department of Kinesiology, University of Georgia, Athens, Georgia 30602
- Department of Interdisciplinary Biomedical Sciences, School of Medicine, University of Georgia, Athens, Georgia 30606
| | - Neil M Dundon
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Freiburg, Freiburg 79104, Germany
| | - Jolinda Smith
- Department of Human Physiology, University of Oregon, Eugene, Oregon 97403
| | - Michelle Marneweck
- Department of Human Physiology, University of Oregon, Eugene, Oregon 97403
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
- Phil and Penny Knight Campus for Accelerating Scientific Impact, Eugene, Oregon 97403
| |
Collapse
|
3
|
Vaccari FE, Diomedi S, De Vitis M, Filippini M, Fattori P. Similar neural states, but dissimilar decoding patterns for motor control in parietal cortex. Netw Neurosci 2024; 8:486-516. [PMID: 38952818 PMCID: PMC11146678 DOI: 10.1162/netn_a_00364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 07/03/2024] Open
Abstract
Discrete neural states are associated with reaching movements across the fronto-parietal network. Here, the Hidden Markov Model (HMM) applied to spiking activity of the somato-motor parietal area PE revealed a sequence of states similar to those of the contiguous visuomotor areas PEc and V6A. Using a coupled clustering and decoding approach, we proved that these neural states carried spatiotemporal information regarding behaviour in all three posterior parietal areas. However, comparing decoding accuracy, PE was less informative than V6A and PEc. In addition, V6A outperformed PEc in target inference, indicating functional differences among the parietal areas. To check the consistency of these differences, we used both a supervised and an unsupervised variant of the HMM, and compared its performance with two more common classifiers, Support Vector Machine and Long-Short Term Memory. The differences in decoding between areas were invariant to the algorithm used, still showing the dissimilarities found with HMM, thus indicating that these dissimilarities are intrinsic in the information encoded by parietal neurons. These results highlight that, when decoding from the parietal cortex, for example, in brain machine interface implementations, attention should be paid in selecting the most suitable source of neural signals, given the great heterogeneity of this cortical sector.
Collapse
Affiliation(s)
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy
| |
Collapse
|
4
|
Fattori P, De Vitis M, Filippini M, Vaccari FE, Diomedi S, Gamberini M, Galletti C. Visual sensitivity at the service of action control in posterior parietal cortex. Front Physiol 2024; 15:1408010. [PMID: 38841208 PMCID: PMC11151461 DOI: 10.3389/fphys.2024.1408010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
The posterior parietal cortex (PPC) serves as a crucial hub for the integration of sensory with motor cues related to voluntary actions. Visual input is used in different ways along the dorsomedial and the dorsolateral visual pathways. Here we focus on the dorsomedial pathway and recognize a visual representation at the service of action control. Employing different experimental paradigms applied to behaving monkeys while single neural activity is recorded from the medial PPC (area V6A), we show how plastic visual representation can be, matching the different contexts in which the same object is proposed. We also present data on the exchange between vision and arm actions and highlight how this rich interplay can be used to weight different sensory inputs in order to monitor and correct arm actions online. Indeed, neural activity during reaching or reach-to-grasp actions can be excited or inhibited by visual information, suggesting that the visual perception of action, rather than object recognition, is the most effective factor for area V6A. Also, three-dimensional object shape is encoded dynamically by the neural population, according to the behavioral context of the monkey. Along this line, mirror neuron discharges in V6A indicate the plasticity of visual representation of the graspable objects, that changes according to the context and peaks when the object is the target of one's own action. In other words, object encoding in V6A is a visual encoding for action.
Collapse
Affiliation(s)
- Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), Padova, Italy
| | - Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Borra D, Filippini M, Ursino M, Fattori P, Magosso E. Convolutional neural networks reveal properties of reach-to-grasp encoding in posterior parietal cortex. Comput Biol Med 2024; 172:108188. [PMID: 38492454 DOI: 10.1016/j.compbiomed.2024.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024]
Abstract
Deep neural networks (DNNs) are widely adopted to decode motor states from both non-invasively and invasively recorded neural signals, e.g., for realizing brain-computer interfaces. However, the neurophysiological interpretation of how DNNs make the decision based on the input neural activity is limitedly addressed, especially when applied to invasively recorded data. This reduces decoder reliability and transparency, and prevents the exploitation of decoders to better comprehend motor neural encoding. Here, we adopted an explainable artificial intelligence approach - based on a convolutional neural network and an explanation technique - to reveal spatial and temporal neural properties of reach-to-grasping from single-neuron recordings of the posterior parietal area V6A. The network was able to accurately decode 5 different grip types, and the explanation technique automatically identified the cells and temporal samples that most influenced the network prediction. Grip encoding in V6A neurons already started at movement preparation, peaking during movement execution. A difference was found within V6A: dorsal V6A neurons progressively encoded more for increasingly advanced grips, while ventral V6A neurons for increasingly rudimentary grips, with both subareas following a linear trend between the amount of grip encoding and the level of grip skills. By revealing the elements of the neural activity most relevant for each grip with no a priori assumptions, our approach supports and advances current knowledge about reach-to-grasp encoding in V6A, and it may represent a general tool able to investigate neural correlates of motor or cognitive tasks (e.g., attention and memory tasks) from single-neuron recordings.
Collapse
Affiliation(s)
- Davide Borra
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, Cesena, 47522, Italy.
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, 40126, Italy
| | - Mauro Ursino
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, Cesena, 47522, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, 40126, Italy
| | - Patrizia Fattori
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, 40126, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, 40126, Italy
| | - Elisa Magosso
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, Cesena, 47522, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, 40126, Italy
| |
Collapse
|
6
|
Breveglieri R, Borgomaneri S, Bosco A, Filippini M, De Vitis M, Tessari A, Avenanti A, Galletti C, Fattori P. rTMS over the human medial parietal cortex impairs online reaching corrections. Brain Struct Funct 2024; 229:297-310. [PMID: 38141108 PMCID: PMC10917872 DOI: 10.1007/s00429-023-02735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Indirect correlational evidence suggests that the posteromedial sector of the human parietal cortex (area hV6A) is involved in reaching corrections. We interfered with hV6A functions using repetitive transcranial magnetic stimulation (rTMS) while healthy participants performed reaching movements and in-flight adjustments of the hand trajectory in presence of unexpected target shifts. rTMS over hV6A specifically altered action reprogramming, causing deviations of the shifted trajectories, particularly along the vertical dimension (i.e., distance). This study provides evidence of the functional relevance of hV6A in action reprogramming while a sudden event requires a change in performance and shows that hV6A also plays a role in state estimation during reaching. These findings are in line with neurological data showing impairments in actions performed along the distance dimension when lesions occur in the dorsal posterior parietal cortex.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy.
| | - Sara Borgomaneri
- Center for studies and research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Cesena Campus, 47521, Cesena, Italy
| | - Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
| | - Alessia Tessari
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
- Department of Psychology, University of Bologna, 40127, Bologna, Italy
| | - Alessio Avenanti
- Center for studies and research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Cesena Campus, 47521, Cesena, Italy
- Center for research in Neuropsychology and Cognitive Neurosciences, Catholic University of Maule, 3460000, Talca, Chile
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Sulpizio V, Fattori P, Pitzalis S, Galletti C. Functional organization of the caudal part of the human superior parietal lobule. Neurosci Biobehav Rev 2023; 153:105357. [PMID: 37572972 DOI: 10.1016/j.neubiorev.2023.105357] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Like in macaque, the caudal portion of the human superior parietal lobule (SPL) plays a key role in a series of perceptive, visuomotor and somatosensory processes. Here, we review the functional properties of three separate portions of the caudal SPL, i.e., the posterior parieto-occipital sulcus (POs), the anterior POs, and the anterior part of the caudal SPL. We propose that the posterior POs is mainly dedicated to the analysis of visual motion cues useful for object motion detection during self-motion and for spatial navigation, while the more anterior parts are implicated in visuomotor control of limb actions. The anterior POs is mainly involved in using the spotlight of attention to guide reach-to-grasp hand movements, especially in dynamic environments. The anterior part of the caudal SPL plays a central role in visually guided locomotion, being implicated in controlling leg-related movements as well as the four limbs interaction with the environment, and in encoding egomotion-compatible optic flow. Together, these functions reveal how the caudal SPL is strongly implicated in skilled visually-guided behaviors.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Department of Psychology, Sapienza University, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Breveglieri R, Borgomaneri S, Diomedi S, Tessari A, Galletti C, Fattori P. A Short Route for Reach Planning between Human V6A and the Motor Cortex. J Neurosci 2023; 43:2116-2125. [PMID: 36788027 PMCID: PMC10039742 DOI: 10.1523/jneurosci.1609-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 02/16/2023] Open
Abstract
In the macaque monkey, area V6A, located in the medial posterior parietal cortex, contains cells that encode the spatial position of a reaching target. It has been suggested that during reach planning this information is sent to the frontal cortex along a parieto-frontal pathway that connects V6A-premotor cortex-M1. A similar parieto-frontal network may also exist in the human brain, and we aimed here to study the timing of this functional connection during planning of a reaching movement toward different spatial positions. We probed the functional connectivity between human area V6A (hV6A) and the primary motor cortex (M1) using dual-site, paired-pulse transcranial magnetic stimulation with a short (4 ms) and a longer (10 ms) interstimulus interval while healthy participants (18 men and 18 women) planned a visually-guided or a memory-guided reaching movement toward positions located at different depths and directions. We found that, when the stimulation over hV6A is sent 4 ms before the stimulation over M1, hV6A inhibits motor-evoked potentials during planning of either rightward or leftward reaching movements. No modulations were found when the stimulation over hV6A was sent 10 ms before the stimulation over M1, suggesting that only short medial parieto-frontal routes are active during reach planning. Moreover, the short route of hV6A-premotor cortex-M1 is active during reach planning irrespectively of the nature (visual or memory) of the reaching target. These results agree with previous neuroimaging studies and provide the first demonstration of the flow of inhibitory signals between hV6A and M1.SIGNIFICANCE STATEMENT All our dexterous movements depend on the correct functioning of the network of brain areas. Knowing the functional timing of these networks is useful to gain a deeper understanding of how the brain works to enable accurate arm movements. In this article, we probed the parieto-frontal network and demonstrated that it takes 4 ms for the medial posterior parietal cortex to send inhibitory signals to the frontal cortex during reach planning. This fast flow of information seems not to be dependent on the availability of visual information regarding the reaching target. This study opens the way for future studies to test how this timing could be impaired in different neurological disorders.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sara Borgomaneri
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, 00179 Rome, Italy
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessia Tessari
- Department of Psychology "Renzo Canestrari", University of Bologna, 40127 Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
9
|
Hadjidimitrakis K, De Vitis M, Ghodrati M, Filippini M, Fattori P. Anterior-posterior gradient in the integrated processing of forelimb movement direction and distance in macaque parietal cortex. Cell Rep 2022; 41:111608. [DOI: 10.1016/j.celrep.2022.111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 07/16/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
|
10
|
Caprara I, Janssen P. Effect of viewing distance on object responses in macaque areas 45B, F5a and F5p. Sci Rep 2022; 12:16527. [PMID: 36192562 PMCID: PMC9530235 DOI: 10.1038/s41598-022-18482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
To perform tasks like grasping, the brain has to process visual object information so that the grip aperture can be adjusted before touching the object. Previous studies have demonstrated that the posterior subsector of the Anterior Intraparietal area is connected to area 45B, and its anterior counterpart to F5a. However, the role of area 45B and F5a in visually-guided grasping is poorly understood. Here, we investigated the role of area 45B, F5a and F5p in object processing during visually-guided grasping in two monkeys. We tested whether the presentation of an object in near peripersonal space activated F5p neurons more than objects with the same retinal size presented beyond reachable distance and conversely, whether neurons in 45B and F5a—which may encode a purely visual object representation—were less affected by viewing distance when equalizing retinal size. Contrary to our expectations, we found that most neurons in area 45B were object- and viewing distance-selective, and preferred mostly Near presentations. Area F5a showed much weaker object selectivity compared to 45B, with a similar preference for objects presented at the Near position. Finally, F5p neurons were less object selective and frequently Far-preferring. In sum, area 45B—but not F5p– prefers objects presented in peripersonal space.
Collapse
Affiliation(s)
- I Caprara
- Laboratorium Voor Neuro-en Psychofysiologie, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Neurosurgery, Department of Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - P Janssen
- Laboratorium Voor Neuro-en Psychofysiologie, Katholieke Universiteit Leuven, Leuven, Belgium. .,The Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
11
|
Vaccari FE, Diomedi S, Filippini M, Hadjidimitrakis K, Fattori P. New insights on single-neuron selectivity in the era of population-level approaches. Front Integr Neurosci 2022; 16:929052. [PMID: 36249900 PMCID: PMC9554653 DOI: 10.3389/fnint.2022.929052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
In the past, neuroscience was focused on individual neurons seen as the functional units of the nervous system, but this approach fell short over time to account for new experimental evidence, especially for what concerns associative and motor cortices. For this reason and thanks to great technological advances, a part of modern research has shifted the focus from the responses of single neurons to the activity of neural ensembles, now considered the real functional units of the system. However, on a microscale, individual neurons remain the computational components of these networks, thus the study of population dynamics cannot prescind from studying also individual neurons which represent their natural substrate. In this new framework, ideas such as the capability of single cells to encode a specific stimulus (neural selectivity) may become obsolete and need to be profoundly revised. One step in this direction was made by introducing the concept of “mixed selectivity,” the capacity of single cells to integrate multiple variables in a flexible way, allowing individual neurons to participate in different networks. In this review, we outline the most important features of mixed selectivity and we also present recent works demonstrating its presence in the associative areas of the posterior parietal cortex. Finally, in discussing these findings, we present some open questions that could be addressed by future studies.
Collapse
Affiliation(s)
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, Italy
- *Correspondence: Patrizia Fattori
| | | | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, Italy
- Matteo Filippini
| |
Collapse
|
12
|
Bosco A, Bertini C, Filippini M, Foglino C, Fattori P. Machine learning methods detect arm movement impairments in a patient with parieto-occipital lesion using only early kinematic information. J Vis 2022; 22:3. [PMID: 36069943 PMCID: PMC9465938 DOI: 10.1167/jov.22.10.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Patients with lesions of the parieto-occipital cortex typically misreach visual targets that they correctly perceive (optic ataxia). Although optic ataxia was described more than 30 years ago, distinguishing this condition from physiological behavior using kinematic data is still far from being an achievement. Here, combining kinematic analysis with machine learning methods, we compared the reaching performance of a patient with bilateral occipitoparietal damage with that of 10 healthy controls. They performed visually guided reaches toward targets located at different depths and directions. Using the horizontal, sagittal, and vertical deviation of the trajectories, we extracted classification accuracy in discriminating the reaching performance of patient from that of controls. Specifically, accurate predictions of the patient's deviations were detected after the 20% of the movement execution in all the spatial positions tested. This classification based on initial trajectory decoding was possible for both directional and depth components of the movement, suggesting the possibility of applying this method to characterize pathological motor behavior in wider frameworks.
Collapse
Affiliation(s)
- Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| | - Caterina Bertini
- Department of Psychology, University of Bologna, Bologna, Italy
- CsrNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Foglino
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Filippini M, Borra D, Ursino M, Magosso E, Fattori P. Decoding sensorimotor information from superior parietal lobule of macaque via Convolutional Neural Networks. Neural Netw 2022; 151:276-294. [PMID: 35452895 DOI: 10.1016/j.neunet.2022.03.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/17/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Despite the well-recognized role of the posterior parietal cortex (PPC) in processing sensory information to guide action, the differential encoding properties of this dynamic processing, as operated by different PPC brain areas, are scarcely known. Within the monkey's PPC, the superior parietal lobule hosts areas V6A, PEc, and PE included in the dorso-medial visual stream that is specialized in planning and guiding reaching movements. Here, a Convolutional Neural Network (CNN) approach is used to investigate how the information is processed in these areas. We trained two macaque monkeys to perform a delayed reaching task towards 9 positions (distributed on 3 different depth and direction levels) in the 3D peripersonal space. The activity of single cells was recorded from V6A, PEc, PE and fed to convolutional neural networks that were designed and trained to exploit the temporal structure of neuronal activation patterns, to decode the target positions reached by the monkey. Bayesian Optimization was used to define the main CNN hyper-parameters. In addition to discrete positions in space, we used the same network architecture to decode plausible reaching trajectories. We found that data from the most caudal V6A and PEc areas outperformed PE area in the spatial position decoding. In all areas, decoding accuracies started to increase at the time the target to reach was instructed to the monkey, and reached a plateau at movement onset. The results support a dynamic encoding of the different phases and properties of the reaching movement differentially distributed over a network of interconnected areas. This study highlights the usefulness of neurons' firing rate decoding via CNNs to improve our understanding of how sensorimotor information is encoded in PPC to perform reaching movements. The obtained results may have implications in the perspective of novel neuroprosthetic devices based on the decoding of these rich signals for faithfully carrying out patient's intentions.
Collapse
Affiliation(s)
- Matteo Filippini
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy.
| | - Davide Borra
- University of Bologna, Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", Cesena Campus, Cesena, Italy
| | - Mauro Ursino
- University of Bologna, Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", Cesena Campus, Cesena, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, Bologna, Italy
| | - Elisa Magosso
- University of Bologna, Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", Cesena Campus, Cesena, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, Bologna, Italy
| | - Patrizia Fattori
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, Bologna, Italy.
| |
Collapse
|
14
|
The structure of the superior and inferior parietal lobes predicts inter-individual suitability for virtual reality. Sci Rep 2021; 11:23688. [PMID: 34880322 PMCID: PMC8654954 DOI: 10.1038/s41598-021-02957-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/24/2021] [Indexed: 01/21/2023] Open
Abstract
The global virtual reality (VR) market is significantly expanding and being challenged with an increased demand owing to COVID-19. Unfortunately, VR is not useful for everyone due to large interindividual variability existing in VR suitability. To understand the neurobiological basis of this variability, we obtained neural structural and functional data from the participants using 3T magnetic resonance imaging. The participants completed one of two tasks (sports training or cognitive task) using VR, which differed in the time scale (months/minutes) and domain (motor learning/attention task). Behavioral results showed that some participants improved their motor skills in the real world after 1-month training in the virtual space or obtained high scores in the 3D attention task (high suitability for VR), whereas others did not (low suitability for VR). Brain structure analysis revealed that the structural properties of the superior and inferior parietal lobes contain information that can predict an individual’s suitability for VR.
Collapse
|
15
|
Anagnostou E, Koutsoudaki P, Tountopoulou A, Spengos K, Vassilopoulou S. Bedside Assessment of Vergence in Stroke Patients. J Neuroophthalmol 2021; 41:424-430. [PMID: 32868577 DOI: 10.1097/wno.0000000000001035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Given the widely distributed network of midbrain, pontine, cerebellar, and cortical areas involved in the neural control of vergence, one might expect various vergence deficits in stroke patients. In this article, we investigated the localizing value of bedside vergence testing with respect to different supratentorial and infratentorial infarction locations. METHODS Three hundred five stroke patients and 50 age-matched controls were examined prospectively by means of bedside tests to assess slow and fast binocular (i.e., symmetrical) as well as slow and fast monocular (i.e., asymmetrical) convergence. Infarction locations, as identified on MRI, were correlated with vergence performance using multinomial logistic regression. RESULTS Vergence deteriorated with age in both stroke patients and healthy controls. Most infarction locations did not show significant associations with vergence parameters, apart from cases with parietal lobe lesions, which exhibited insufficient asymmetrical, slow and fast vergence for both the left and the right eye. Finally, patients with severe ischemic small vessel disease showed a slight but significant decrease in their fast binocular vergence performance. CONCLUSIONS There is only a limited localizing value of vergence deficits in stroke. Parietal lobe infarctions are more frequently associated with insufficient binocular and monocular vergence. Midbrain strokes were too few to draw final conclusions. However the most robust factor to emerge from our data is age. Older subjects show poor slow binocular as well as slow and fast monocular vergence. Extended white matter lesions are also correlated with deficient vergence ability suggesting a role for subcortical wide range connections in maintaining an intact vergence circuitry.
Collapse
Affiliation(s)
- Evangelos Anagnostou
- Department of Neurology, University of Athens, Eginition Hospital, Athens, Greece
| | | | | | | | | |
Collapse
|
16
|
Breveglieri R, Borgomaneri S, Filippini M, De Vitis M, Tessari A, Fattori P. Functional Connectivity at Rest between the Human Medial Posterior Parietal Cortex and the Primary Motor Cortex Detected by Paired-Pulse Transcranial Magnetic Stimulation. Brain Sci 2021; 11:brainsci11101357. [PMID: 34679421 PMCID: PMC8534070 DOI: 10.3390/brainsci11101357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
The medial posterior parietal cortex (PPC) is involved in the complex processes of visuomotor integration. Its connections to the dorsal premotor cortex, which in turn is connected to the primary motor cortex (M1), complete the fronto-parietal network that supports important cognitive functions in the planning and execution of goal-oriented movements. In this study, we wanted to investigate the time-course of the functional connectivity at rest between the medial PPC and the M1 using dual-site transcranial magnetic stimulation in healthy humans. We stimulated the left M1 using a suprathreshold test stimulus to elicit motor-evoked potentials in the hand, and a subthreshold conditioning stimulus was applied over the left medial PPC at different inter-stimulus intervals (ISIs). The conditioning stimulus affected the M1 excitability depending on the ISI, with inhibition at longer ISIs (12 and 15 ms). We suggest that these modulations may reflect the activation of different parieto-frontal pathways, with long latency inhibitions likely recruiting polisynaptic pathways, presumably through anterolateral PPC.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.F.); (M.D.V.); (P.F.)
- Correspondence: ; Tel.: +39-05-1209-1890; Fax: +39-05-1209-1737
| | - Sara Borgomaneri
- Center for Studies and Research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy;
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.F.); (M.D.V.); (P.F.)
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.F.); (M.D.V.); (P.F.)
| | - Alessia Tessari
- Department of Psychology “Renzo Canestrari”, University of Bologna, 40127 Bologna, Italy;
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.F.); (M.D.V.); (P.F.)
- Alma Mater Research Institute for Human—Centered Artificial Intelligence (Alma Human AI), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
17
|
Diomedi S, Vaccari FE, Galletti C, Hadjidimitrakis K, Fattori P. Motor-like neural dynamics in two parietal areas during arm reaching. Prog Neurobiol 2021; 205:102116. [PMID: 34217822 DOI: 10.1016/j.pneurobio.2021.102116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
The classical view on motor control makes a clear distinction between the role of motor cortex in controlling muscles and parietal cortex in processing movement plans and goals. However, the strong parieto-frontal connections argue against such clear-cut separation of function. Modern dynamical approaches revealed that population activity in motor cortex can be captured by a limited number of patterns, called neural states that are preserved across diverse motor behaviors. Whether such dynamics are also present in parietal cortex is unclear. Here, we studied neural dynamics in the primate parietal cortex during arm movements and found three main states temporally coupled to the planning, execution and target holding epochs. Strikingly, as reported recently in motor cortex, execution was subdivided into distinct, arm acceleration- and deceleration-related, states. These results suggest that dynamics across parieto-frontal areas are highly consistent and hint that parietal population activity largely reflects timing constraints while motor actions unfold.
Collapse
Affiliation(s)
- S Diomedi
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - F E Vaccari
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - C Galletti
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - K Hadjidimitrakis
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy.
| | - P Fattori
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy.
| |
Collapse
|
18
|
Cheung VCK, Seki K. Approaches to revealing the neural basis of muscle synergies: a review and a critique. J Neurophysiol 2021; 125:1580-1597. [PMID: 33729869 DOI: 10.1152/jn.00625.2019] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The central nervous system (CNS) may produce coordinated motor outputs via the combination of motor modules representable as muscle synergies. Identification of muscle synergies has hitherto relied on applying factorization algorithms to multimuscle electromyographic data (EMGs) recorded during motor behaviors. Recent studies have attempted to validate the neural basis of the muscle synergies identified by independently retrieving the muscle synergies through CNS manipulations and analytic techniques such as spike-triggered averaging of EMGs. Experimental data have demonstrated the pivotal role of the spinal premotor interneurons in the synergies' organization and the presence of motor cortical loci whose stimulations offer access to the synergies, but whether the motor cortex is also involved in organizing the synergies has remained unsettled. We argue that one difficulty inherent in current approaches to probing the synergies' neural basis is that the EMG generative model based on linear combination of synergies and the decomposition algorithms used for synergy identification are not grounded on enough prior knowledge from neurophysiology. Progress may be facilitated by constraining or updating the model and algorithms with knowledge derived directly from CNS manipulations or recordings. An investigative framework based on evaluating the relevance of neurophysiologically constrained models of muscle synergies to natural motor behaviors will allow a more sophisticated understanding of motor modularity, which will help the community move forward from the current debate on the neural versus nonneural origin of muscle synergies.
Collapse
Affiliation(s)
- Vincent C K Cheung
- School of Biomedical Sciences and The Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, Kodaira, Tokyo, Japan
| |
Collapse
|
19
|
Breveglieri R, Bosco A, Borgomaneri S, Tessari A, Galletti C, Avenanti A, Fattori P. Transcranial Magnetic Stimulation Over the Human Medial Posterior Parietal Cortex Disrupts Depth Encoding During Reach Planning. Cereb Cortex 2021; 31:267-280. [PMID: 32995831 DOI: 10.1093/cercor/bhaa224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 11/12/2022] Open
Abstract
Accumulating evidence supports the view that the medial part of the posterior parietal cortex (mPPC) is involved in the planning of reaching, but while plenty of studies investigated reaching performed toward different directions, only a few studied different depths. Here, we investigated the causal role of mPPC (putatively, human area V6A-hV6A) in encoding depth and direction of reaching. Specifically, we applied single-pulse transcranial magnetic stimulation (TMS) over the left hV6A at different time points while 15 participants were planning immediate, visually guided reaching by using different eye-hand configurations. We found that TMS delivered over hV6A 200 ms after the Go signal affected the encoding of the depth of reaching by decreasing the accuracy of movements toward targets located farther with respect to the gazed position, but only when they were also far from the body. The effectiveness of both retinotopic (farther with respect to the gaze) and spatial position (far from the body) is in agreement with the presence in the monkey V6A of neurons employing either retinotopic, spatial, or mixed reference frames during reach plan. This work provides the first causal evidence of the critical role of hV6A in the planning of visually guided reaching movements in depth.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sara Borgomaneri
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy.,IRCCS, Santa Lucia Foundation, 00179 Rome, Italy
| | - Alessia Tessari
- Department of Psychology, University of Bologna, 40127 Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessio Avenanti
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy.,Center for research in Neuropsychology and Cognitive Neurosciences, Catholic University of Maule, 3460000 Talca, Chile
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
20
|
Forelimb force direction and magnitude independently controlled by spinal modules in the macaque. Proc Natl Acad Sci U S A 2020; 117:27655-27666. [PMID: 33060294 PMCID: PMC7959559 DOI: 10.1073/pnas.1919253117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Studies in frogs and rodents have shown that to deal with the complexity of controlling all the muscles in the body the brain can activate sets of neurons in the spinal cord with a single signal. Here, we provide confirmation of a similar system of “modular” output in nonhuman primates. Costimulation at two spinal sites resulted in force field directionality that was the linear sum of the fields from each site. However, unlike the frog and rodent, the magnitude of the force vectors was greater than the simple sum (supralinear). Thus, while force direction in primates is controlled by the linear sum of modular output, force amplitude might be adjusted by additional sources shared by those modules. Modular organization of the spinal motor system is thought to reduce the cognitive complexity of simultaneously controlling the large number of muscles and joints in the human body. Although modular organization has been confirmed in the hindlimb control system of several animal species, it has yet to be established in the forelimb motor system or in primates. Expanding upon experiments originally performed in the frog lumbar spinal cord, we examined whether costimulation of two sites in the macaque monkey cervical spinal cord results in motor activity that is a simple linear sum of the responses evoked by stimulating each site individually. Similar to previous observations in the frog and rodent hindlimb, our analysis revealed that in most cases (77% of all pairs) the directions of the force fields elicited by costimulation were highly similar to those predicted by the simple linear sum of those elicited by stimulating each site individually. A comparable simple summation of electromyography (EMG) output, especially in the proximal muscles, suggested that this linear summation of force field direction was produced by a spinal neural mechanism whereby the forelimb motor output recruited by costimulation was also summed linearly. We further found that the force field magnitudes exhibited supralinear (amplified) summation, which was also observed in the EMG output of distal forelimb muscles, implying a novel feature of primate forelimb control. Overall, our observations support the idea that complex movements in the primate forelimb control system are made possible by flexibly combined spinal motor modules.
Collapse
|
21
|
Diomedi S, Vaccari FE, Filippini M, Fattori P, Galletti C. Mixed Selectivity in Macaque Medial Parietal Cortex during Eye-Hand Reaching. iScience 2020; 23:101616. [PMID: 33089104 PMCID: PMC7559278 DOI: 10.1016/j.isci.2020.101616] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/18/2020] [Accepted: 09/23/2020] [Indexed: 01/07/2023] Open
Abstract
The activity of neurons of the medial posterior parietal area V6A in macaque monkeys is modulated by many aspects of reach task. In the past, research was mostly focused on modulating the effect of single parameters upon the activity of V6A cells. Here, we used Generalized Linear Models (GLMs) to simultaneously test the contribution of several factors upon V6A cells during a fix-to-reach task. This approach resulted in the definition of a representative “functional fingerprint” for each neuron. We first studied how the features are distributed in the population. Our analysis highlighted the virtual absence of units strictly selective for only one factor and revealed that most cells are characterized by “mixed selectivity.” Then, exploiting our GLM framework, we investigated the dynamics of spatial parameters encoded within V6A. We found that the tuning is not static, but changed along the trial, indicating the sequential occurrence of visuospatial transformations helpful to guide arm movement. The parietal cortex integrates a variety of sensorimotor inputs to guide reaching GLM disentangled the effect of various reaching parameters upon cell activity V6A neurons were not functionally clustered, but characterized by mixed selectivity Spatial selectivity was dynamic and reached its peak during the movement phase
Collapse
Affiliation(s)
- Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesco E. Vaccari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Corresponding author
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Corresponding author
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
22
|
Filippini M, Morris AP, Breveglieri R, Hadjidimitrakis K, Fattori P. Decoding of standard and non-standard visuomotor associations from parietal cortex. J Neural Eng 2020; 17:046027. [PMID: 32698164 DOI: 10.1088/1741-2552/aba87e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Neural signals can be decoded and used to move neural prostheses with the purpose of restoring motor function in patients with mobility impairments. Such patients typically have intact eye movement control and visual function, suggesting that cortical visuospatial signals could be used to guide external devices. Neurons in parietal cortex mediate sensory-motor transformations, encode the spatial coordinates for reaching goals, hand position and movements, and other spatial variables. We studied how spatial information is represented at the population level, and the possibility to decode not only the position of visual targets and the plans to reach them, but also conditional, non-spatial motor responses. APPROACH The animals first fixated one of nine targets in 3D space and then, after the target changed color, either reached toward it, or performed a non-spatial motor response (lift hand from a button). Spiking activity of parietal neurons was recorded in monkeys during two tasks. We then decoded different task related parameters. MAIN RESULTS We first show that a maximum-likelihood estimation (MLE) algorithm trained separately in each task transformed neural activity into accurate metric predictions of target location. Furthermore, by combining MLE with a Naïve Bayes classifier, we decoded the monkey's motor intention (reach or hand lift) and the different phases of the tasks. These results show that, although V6A encodes the spatial location of a target during a delay period, the signals they carry are updated around the movement execution in an intention/motor specific way. SIGNIFICANCE These findings show the presence of multiple levels of information in parietal cortex that could be decoded and used in brain machine interfaces to control both goal-directed movements and more cognitive visuomotor associations.
Collapse
Affiliation(s)
- M Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, Bologna 40126, Italy. ALMA-AI: Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
23
|
Hadjidimitrakis K, Ghodrati M, Breveglieri R, Rosa MGP, Fattori P. Neural coding of action in three dimensions: Task- and time-invariant reference frames for visuospatial and motor-related activity in parietal area V6A. J Comp Neurol 2020; 528:3108-3122. [PMID: 32080849 DOI: 10.1002/cne.24889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Goal-directed movements involve a series of neural computations that compare the sensory representations of goal location and effector position, and transform these into motor commands. Neurons in posterior parietal cortex (PPC) control several effectors (e.g., eye, hand, foot) and encode goal location in a variety of spatial coordinate systems, including those anchored to gaze direction, and to the positions of the head, shoulder, or hand. However, there is little evidence on whether reference frames depend also on the effector and/or type of motor response. We addressed this issue in macaque PPC area V6A, where previous reports using a fixate-to-reach in depth task, from different starting arm positions, indicated that most units use mixed body/hand-centered coordinates. Here, we applied singular value decomposition and gradient analyses to characterize the reference frames in V6A while the animals, instead of arm reaching, performed a nonspatial motor response (hand lift). We found that most neurons used mixed body/hand coordinates, instead of "pure" body-, or hand-centered coordinates. During the task progress the effect of hand position on activity became stronger compared to target location. Activity consistent with body-centered coding was present only in a subset of neurons active early in the task. Applying the same analyses to a population of V6A neurons recorded during the fixate-to-reach task yielded similar results. These findings suggest that V6A neurons use consistent reference frames between spatial and nonspatial motor responses, a functional property that may allow the integration of spatial awareness and movement control.
Collapse
Affiliation(s)
- Kostas Hadjidimitrakis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Masoud Ghodrati
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence for Integrative Brain function, Monash University, Clayton, Victoria, Australia
| | - Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcello G P Rosa
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence for Integrative Brain function, Monash University, Clayton, Victoria, Australia
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Structural connectivity and functional properties of the macaque superior parietal lobule. Brain Struct Funct 2019; 225:1349-1367. [DOI: 10.1007/s00429-019-01976-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
|
25
|
Passarelli L, Rosa MGP, Bakola S, Gamberini M, Worthy KH, Fattori P, Galletti C. Uniformity and Diversity of Cortical Projections to Precuneate Areas in the Macaque Monkey: What Defines Area PGm? Cereb Cortex 2019; 28:1700-1717. [PMID: 28369235 DOI: 10.1093/cercor/bhx067] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
We report on the corticocortical connections of areas on the mesial surface of the macaque posterior parietal cortex, based on 10 retrograde tracer injections targeting different parts of the precuneate gyrus. Analysis of afferent connections supported the existence of two areas: PGm (also known as 7 m) and area 31. Both areas received major afferents from the V6A complex and from the external subdivision of area 23, but they differed in most other aspects. Area 31 showed greater emphasis on connections with premotor and parietal sensorimotor areas, whereas PGm received a greater proportion of its afferents from visuomotor structures involved in spatial cognition (including the lateral intraparietal cortex, inferior parietal lobule, and the putative visual areas in the ventral part of the precuneus). Medially, the anterior cingulate cortex (area 24) preferentially targeted area 31, whereas retrosplenial areas preferentially targeted PGm. These results indicate that earlier views on the connections of PGm were based on tracer injections that included parts of adjacent areas (including area 31), and prompt a reassessment of the limits of PGm. Our findings are compatible with a primary role of PGm in visuospatial cognition (including navigation), while supporting a role for area 31 in sensorimotor planning and coordination.
Collapse
Affiliation(s)
- Lauretta Passarelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marcello G P Rosa
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Sophia Bakola
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.,Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Michela Gamberini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Katrina H Worthy
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
26
|
Pitzalis S, Serra C, Sulpizio V, Di Marco S, Fattori P, Galati G, Galletti C. A putative human homologue of the macaque area PEc. Neuroimage 2019; 202:116092. [PMID: 31408715 DOI: 10.1016/j.neuroimage.2019.116092] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
The cortical area PEc is anatomically and functionally well-defined in macaque, but it is unknown whether it has a counterpart in human. Since we know that macaque PEc, but not the nearby posterior regions, hosts a lower limb representation, in an attempt to recognize a possible human PEc we looked for the existence of leg representations in the human parietal cortex using individual cortical surface-based analysis, task-evoked paradigms and resting-state functional connectivity. fMRI images were acquired while thirty-one participants performed long-range leg movements through an in-house MRI-compatible set-up. We revealed the existence of multiple leg representations in the human dorsomedial parietal cortex, here defined as S-I (somatosensory-I), hPE (human PE, in the postcentral sulcus), and hPEc (human PEc, in the anterior precuneus). Among the three "leg" regions, hPEc had a unique functional profile, in that it was the only one responding to both arm and leg movements, to both hand-pointing and foot pointing movements, and to flow field visual stimulation, very similar to macaque area PEc. In addition, hPEc showed functional connections with the somatomotor regions hosting a lower limb representation, again as in macaque area PEc. Therefore, based on similarity in brain position, functional organization, cortical connections, and relationship with the neighboring areas, we propose that this cortical region is the human homologue of macaque area PEc.
Collapse
Affiliation(s)
- Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico", 00135, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00142, Rome, Italy.
| | - Chiara Serra
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico", 00135, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00142, Rome, Italy
| | - Valentina Sulpizio
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00142, Rome, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Sara Di Marco
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico", 00135, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00142, Rome, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Gaspare Galati
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00142, Rome, Italy; Brain Imaging Laboratory, Department of Psychology, Sapienza University, 00185, Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| |
Collapse
|
27
|
The neglected medial part of macaque area PE: segregated processing of reach depth and direction. Brain Struct Funct 2019; 224:2537-2557. [DOI: 10.1007/s00429-019-01923-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/13/2019] [Indexed: 11/26/2022]
|
28
|
Hadjidimitrakis K, Bakola S, Wong YT, Hagan MA. Mixed Spatial and Movement Representations in the Primate Posterior Parietal Cortex. Front Neural Circuits 2019; 13:15. [PMID: 30914925 PMCID: PMC6421332 DOI: 10.3389/fncir.2019.00015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/21/2019] [Indexed: 11/13/2022] Open
Abstract
The posterior parietal cortex (PPC) of humans and non-human primates plays a key role in the sensory and motor transformations required to guide motor actions to objects of interest in the environment. Despite decades of research, the anatomical and functional organization of this region is still a matter of contention. It is generally accepted that specialized parietal subregions and their functional counterparts in the frontal cortex participate in distinct segregated networks related to eye, arm and hand movements. However, experimental evidence obtained primarily from single neuron recording studies in non-human primates has demonstrated a rich mixing of signals processed by parietal neurons, calling into question ideas for a strict functional specialization. Here, we present a brief account of this line of research together with the basic trends in the anatomical connectivity patterns of the parietal subregions. We review, the evidence related to the functional communication between subregions of the PPC and describe progress towards using parietal neuron activity in neuroprosthetic applications. Recent literature suggests a role for the PPC not as a constellation of specialized functional subdomains, but as a dynamic network of sensorimotor loci that combine multiple signals and work in concert to guide motor behavior.
Collapse
Affiliation(s)
- Kostas Hadjidimitrakis
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Sophia Bakola
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Yan T Wong
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Department of Electrical and Computer Science Engineering, Monash University, Clayton, VIC, Australia
| | - Maureen A Hagan
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| |
Collapse
|
29
|
Santandrea E, Breveglieri R, Bosco A, Galletti C, Fattori P. Preparatory activity for purposeful arm movements in the dorsomedial parietal area V6A: Beyond the online guidance of movement. Sci Rep 2018; 8:6926. [PMID: 29720690 PMCID: PMC5931970 DOI: 10.1038/s41598-018-25117-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/11/2018] [Indexed: 11/09/2022] Open
Abstract
Over the years, electrophysiological recordings in macaque monkeys performing visuomotor tasks brought about accumulating evidence for the expression of neuronal properties (e.g., selectivity in the visuospatial and somatosensory domains, encoding of visual affordances and motor cues) in the posterior parietal area V6A that characterize it as an ideal neural substrate for online control of prehension. Interestingly, neuroimaging studies suggested a role of putative human V6A also in action preparation; moreover, pre-movement population activity in monkey V6A has been recently shown to convey grip-related information for upcoming grasping. Here we directly test whether macaque V6A neurons encode preparatory signals that effectively differentiate between dissimilar actions before movement. We recorded the activity of single V6A neurons during execution of two visuomotor tasks requiring either reach-to-press or reach-to-grasp movements in different background conditions, and described the nature and temporal dynamics of V6A activity preceding movement execution. We found striking consistency in neural discharges measured during pre-movement and movement epochs, suggesting that the former is a preparatory activity exquisitely linked to the subsequent execution of particular motor actions. These findings strongly support a role of V6A beyond the online guidance of movement, with preparatory activity implementing suitable motor programs that subsequently support action execution.
Collapse
Affiliation(s)
- Elisa Santandrea
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
30
|
Filippini M, Breveglieri R, Hadjidimitrakis K, Bosco A, Fattori P. Prediction of Reach Goals in Depth and Direction from the Parietal Cortex. Cell Rep 2018; 23:725-732. [DOI: 10.1016/j.celrep.2018.03.090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/03/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022] Open
|
31
|
Alizadeh AM, Van Dromme I, Verhoef BE, Janssen P. Caudal Intraparietal Sulcus and three-dimensional vision: A combined functional magnetic resonance imaging and single-cell study. Neuroimage 2018; 166:46-59. [DOI: 10.1016/j.neuroimage.2017.10.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/28/2017] [Accepted: 10/21/2017] [Indexed: 11/30/2022] Open
|
32
|
Gamberini M, Dal Bò G, Breveglieri R, Briganti S, Passarelli L, Fattori P, Galletti C. Sensory properties of the caudal aspect of the macaque's superior parietal lobule. Brain Struct Funct 2017; 223:1863-1879. [PMID: 29260370 DOI: 10.1007/s00429-017-1593-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/12/2017] [Indexed: 11/26/2022]
Abstract
In the superior parietal lobule (SPL), the anterior part (area PE) is known to process somatosensory information, while the caudalmost part (areas V6Av and V6) processes visual information. Here we studied the visual and somatosensory properties of the areas PEc and V6Ad located in between the somatosensory and visual domains of SPL. About 1500 neurons were extracellularly recorded in 19 hemispheres of 12 monkeys (Macaca fascicularis). Visual and somatosensory properties of single neurons were generally studied separately, while in a subpopulation of neurons, both the sensory properties were tested. Visual neurons were more represented in V6Ad and somatosensory neurons in PEc. The visual neurons of these two areas showed similar properties and represented a large part of the contralateral visual field, mostly the lower part. In contrast, somatosensory neurons showed remarkable differences. The arms were overrepresented in both the areas, but V6Ad represented only the upper limbs, whereas PEc both the upper and lower limbs. Interestingly, we found that in both the areas, bimodal visual-somatosensory cells represented the proximal part of the arms. We suggest that PEc is involved in locomotion and in the control of hand/foot interaction with the objects of the environment, while V6Ad is in the control of the object prehension specifically performed with the upper limbs. Neuroimaging and lesion studies from literature support a strict homology with humans.
Collapse
Affiliation(s)
- Michela Gamberini
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
- Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Giulia Dal Bò
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Rossella Breveglieri
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
- Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Sofia Briganti
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Lauretta Passarelli
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
- Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy.
- Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy.
| |
Collapse
|
33
|
Cortical Afferents and Myeloarchitecture Distinguish the Medial Intraparietal Area (MIP) from Neighboring Subdivisions of the Macaque Cortex. eNeuro 2017; 4:eN-NWR-0344-17. [PMID: 29379868 PMCID: PMC5779118 DOI: 10.1523/eneuro.0344-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023] Open
Abstract
The parietal reach region (PRR) in the medial bank of the macaque intraparietal sulcus has been a subject of considerable interest in research aimed at the development of brain-controlled prosthetic arms, but its anatomical organization remains poorly characterized. We examined the anatomical organization of the putative PRR territory based on myeloarchitecture and retrograde tracer injections. We found that the medial bank includes three areas: an extension of the dorsal subdivision of V6A (V6Ad), the medial intraparietal area (MIP), and a subdivision of area PE (PEip). Analysis of corticocortical connections revealed that both V6Ad and MIP receive inputs from visual area V6; the ventral subdivision of V6A (V6Av); medial (PGm, 31), superior (PEc), and inferior (PFG/PF) parietal association areas; and intraparietal areas AIP and VIP. They also receive long-range projections from the superior temporal sulcus (MST, TPO), cingulate area 23, and the dorsocaudal (area F2) and ventral (areas F4/F5) premotor areas. In comparison with V6Ad, MIP receives denser input from somatosensory areas, the primary motor cortex, and the medial motor fields, as well as from visual cortex in the ventral precuneate cortex and frontal regions associated with oculomotor guidance. Unlike MIP, V6Ad receives stronger visual input, from the caudal inferior parietal cortex (PG/Opt) and V6Av, whereas PEip shows marked emphasis on anterior parietal, primary motor, and ventral premotor connections. These anatomical results suggest that MIP and V6A have complementary roles in sensorimotor behavior, with MIP more directly involved in movement planning and execution in comparison with V6A.
Collapse
|
34
|
Borra E, Ferroni CG, Gerbella M, Giorgetti V, Mangiaracina C, Rozzi S, Luppino G. Rostro-caudal Connectional Heterogeneity of the Dorsal Part of the Macaque Prefrontal Area 46. Cereb Cortex 2017; 29:485-504. [DOI: 10.1093/cercor/bhx332] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elena Borra
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| | - Carolina Giulia Ferroni
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| | - Marzio Gerbella
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, via Eugenio Barsanti, Arnesano, Lecce, Italy
| | - Valentina Giorgetti
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| | - Chiara Mangiaracina
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| | - Stefano Rozzi
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| | - Giuseppe Luppino
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| |
Collapse
|
35
|
Yang L, Gu Y. Distinct spatial coordinate of visual and vestibular heading signals in macaque FEFsem and MSTd. eLife 2017; 6. [PMID: 29134944 PMCID: PMC5685470 DOI: 10.7554/elife.29809] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/03/2017] [Indexed: 11/17/2022] Open
Abstract
Precise heading estimate requires integration of visual optic flow and vestibular inertial motion originating from distinct spatial coordinates (eye- and head-centered, respectively). To explore whether the two heading signals may share a common reference frame along the hierarchy of cortical stages, we explored two multisensory areas in macaques: the smooth pursuit area of the frontal eye field (FEFsem) closer to the motor side, and the dorsal portion of medial superior temporal area (MSTd) closer to the sensory side. In both areas, vestibular signals are head-centered, whereas visual signals are mainly eye-centered. However, visual signals in FEFsem are more shifted towards the head coordinate compared to MSTd. These results are robust being largely independent on: (1) smooth pursuit eye movement, (2) motion parallax cue, and (3) behavioral context for active heading estimation, indicating that the visual and vestibular heading signals may be represented in distinct spatial coordinate in sensory cortices.
Collapse
Affiliation(s)
- Lihua Yang
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Gu
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
36
|
Characterization of neurons in the primate medial intraparietal area reveals a joint representation of intended reach direction and amplitude. PLoS One 2017; 12:e0182519. [PMID: 28793351 PMCID: PMC5549983 DOI: 10.1371/journal.pone.0182519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022] Open
Abstract
To support accurate memory-guided reaching, the brain must represent both the direction and amplitude of reaches in a movement plan. Several cortical areas have been shown to represent the direction of a planned reaching movement, but the neuronal representation of reach amplitude is still unclear, especially in sensory-motor integration areas. To investigate this, we recorded from neurons in the medial intraparietal area (MIP) of monkeys performing a variable amplitude memory reach task. In one monkey, we additionally recorded from the dorsal premotor cortex (PMd) for direct cross-area comparisons. In both areas, we found modest but significant proportions of neurons with movement-planning activity sensitive to reach amplitude. However, reach amplitude was under-represented relative to direction in the neuronal population, with approximately one third as many selective neurons. We observed an interaction between neuronal selectivity for amplitude and direction; neurons in both areas exhibited significant modulation of neuronal activity by reach amplitude in some but not all directions. Consistent with an encoding of reach goals as a position in visual space, the response patterns of MIP/PMd neurons were best predicted by 2D Gaussian position encoding model, in contrast to a number of alternative direction and amplitude tuning models. Taken together, these results suggest that amplitude and direction jointly modulate activity in MIP, as in PMd, to form representations of intended reach position.
Collapse
|
37
|
Bosco A, Piserchia V, Fattori P. Multiple Coordinate Systems and Motor Strategies for Reaching Movements When Eye and Hand Are Dissociated in Depth and Direction. Front Hum Neurosci 2017; 11:323. [PMID: 28690504 PMCID: PMC5481402 DOI: 10.3389/fnhum.2017.00323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
Reaching behavior represents one of the basic aspects of human cognitive abilities important for the interaction with the environment. Reaching movements towards visual objects are controlled by mechanisms based on coordinate systems that transform the spatial information of target location into appropriate motor response. Although recent works have extensively studied the encoding of target position for reaching in three-dimensional space at behavioral level, the combined analysis of reach errors and movement variability has so far been investigated by few studies. Here we did so by testing 12 healthy participants in an experiment where reaching targets were presented at different depths and directions in foveal and peripheral viewing conditions. Each participant executed a memory-guided task in which he/she had to reach the memorized position of the target. A combination of vector and gradient analysis, novel for behavioral data, was applied to analyze patterns of reach errors for different combinations of eye/target positions. The results showed reach error patterns based on both eye- and space-centered coordinate systems: in depth more biased towards a space-centered representation and in direction mixed between space- and eye-centered representation. We calculated movement variability to describe different trajectory strategies adopted by participants while reaching to the different eye/target configurations tested. In direction, the distribution of variability between configurations that shared the same eye/target relative configuration was different, whereas in configurations that shared the same spatial position of targets, it was similar. In depth, the variability showed more similar distributions in both pairs of eye/target configurations tested. These results suggest that reaching movements executed in geometries that require hand and eye dissociations in direction and depth showed multiple coordinate systems and different trajectory strategies according to eye/target configurations and the two dimensions of space.
Collapse
Affiliation(s)
- Annalisa Bosco
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Valentina Piserchia
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| |
Collapse
|
38
|
Breveglieri R, De Vitis M, Bosco A, Galletti C, Fattori P. Interplay Between Grip and Vision in the Monkey Medial Parietal Lobe. Cereb Cortex 2017; 28:2028-2042. [DOI: 10.1093/cercor/bhx109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rossella Breveglieri
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna, Italy
| | - Marina De Vitis
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna, Italy
| | - Annalisa Bosco
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna, Italy
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna, Italy
| |
Collapse
|
39
|
Borra E, Gerbella M, Rozzi S, Luppino G. The macaque lateral grasping network: A neural substrate for generating purposeful hand actions. Neurosci Biobehav Rev 2017; 75:65-90. [DOI: 10.1016/j.neubiorev.2017.01.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
40
|
Computational Architecture of the Parieto-Frontal Network Underlying Cognitive-Motor Control in Monkeys. eNeuro 2017; 4:eN-NWR-0306-16. [PMID: 28275714 PMCID: PMC5329620 DOI: 10.1523/eneuro.0306-16.2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 11/21/2022] Open
Abstract
The statistical structure of intrinsic parietal and parieto-frontal connectivity in monkeys was studied through hierarchical cluster analysis. Based on their inputs, parietal and frontal areas were grouped into different clusters, including a variable number of areas that in most instances occupied contiguous architectonic fields. Connectivity tended to be stronger locally: that is, within areas of the same cluster. Distant frontal and parietal areas were targeted through connections that in most instances were reciprocal and often of different strength. These connections linked parietal and frontal clusters formed by areas sharing basic functional properties. This led to five different medio-laterally oriented pillar domains spanning the entire extent of the parieto-frontal system, in the posterior parietal, anterior parietal, cingulate, frontal, and prefrontal cortex. Different information processing streams could be identified thanks to inter-domain connectivity. These streams encode fast hand reaching and its control, complex visuomotor action spaces, hand grasping, action/intention recognition, oculomotor intention and visual attention, behavioral goals and strategies, and reward and decision value outcome. Most of these streams converge on the cingulate domain, the main hub of the system. All of them are embedded within a larger eye–hand coordination network, from which they can be selectively set in motion by task demands.
Collapse
|
41
|
Galletti C, Fattori P. The dorsal visual stream revisited: Stable circuits or dynamic pathways? Cortex 2017; 98:203-217. [PMID: 28196647 DOI: 10.1016/j.cortex.2017.01.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 11/29/2022]
Abstract
In both macaque and human brain, information regarding visual motion flows from the extrastriate area V6 along two different paths: a dorsolateral one towards areas MT/V5, MST, V3A, and a dorsomedial one towards the visuomotor areas of the superior parietal lobule (V6A, MIP, VIP). The dorsolateral visual stream is involved in many aspects of visual motion analysis, including the recognition of object motion and self motion. The dorsomedial stream uses visual motion information to continuously monitor the spatial location of objects while we are looking and/or moving around, to allow skilled reaching for and grasping of the objects in structured, dynamically changing environments. Grasping activity is present in two areas of the dorsal stream, AIP and V6A. Area AIP is more involved than V6A in object recognition, V6A in encoding vision for action. We suggest that V6A is involved in the fast control of prehension and plays a critical role in biomechanically selecting appropriate postures during reach to grasp behaviors. In everyday life, numerous functional networks, often involving the same cortical areas, are continuously in action in the dorsal visual stream, with each network dynamically activated or inhibited according to the context. The dorsolateral and dorsomedial streams represent only two examples of these networks. Many others streams have been described in the literature, but it is worthwhile noting that the same cortical area, and even the same neurons within an area, are not specific for just one functional property, being part of networks that encode multiple functional aspects. Our proposal is to conceive the cortical streams not as fixed series of interconnected cortical areas in which each area belongs univocally to one stream and is strictly involved in only one function, but as interconnected neuronal networks, often involving the same neurons, that are involved in a number of functional processes and whose activation changes dynamically according to the context.
Collapse
Affiliation(s)
- Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
42
|
Hadjidimitrakis K, Bertozzi F, Breveglieri R, Galletti C, Fattori P. Temporal stability of reference frames in monkey area V6A during a reaching task in 3D space. Brain Struct Funct 2016; 222:1959-1970. [DOI: 10.1007/s00429-016-1319-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
|
43
|
Vindras P, Blangero A, Ota H, Reilly KT, Rossetti Y, Pisella L. The Pointing Errors in Optic Ataxia Reveal the Role of "Peripheral Magnification" of the PPC. Front Integr Neurosci 2016; 10:27. [PMID: 27507938 PMCID: PMC4960242 DOI: 10.3389/fnint.2016.00027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/11/2016] [Indexed: 12/16/2022] Open
Abstract
Interaction with visual objects in the environment requires an accurate correspondence between visual space and its internal representation within the brain. Many clinical conditions involve some impairment in visuo-motor control and the errors created by the lesion of a specific brain region are neither random nor uninformative. Modern approaches to studying the neuropsychology of action require powerful data-driven analyses and error modeling in order to understand the function of the lesioned areas. In the present paper we carried out mixed-effect analyses of the pointing errors of seven optic ataxia patients and seven control subjects. We found that a small parameter set is sufficient to explain the pointing errors produced by unilateral optic ataxia patients. In particular, the extremely stereotypical errors made when pointing toward the contralesional visual field can be fitted by mathematical models similar to those used to model central magnification in cortical or sub-cortical structure(s). Our interpretation is that visual areas that contain this footprint of central magnification guide pointing movements when the posterior parietal cortex (PPC) is damaged and that the functional role of the PPC is to actively compensate for the under-representation of peripheral vision that accompanies central magnification. Optic ataxia misreaching reveals what would be hand movement accuracy and precision if the human motor system did not include elaborated corrective processes for reaching and grasping to non-foveated targets.
Collapse
Affiliation(s)
- Philippe Vindras
- ImpAct Team, Lyon Neuroscience Research Center CRNL, INSERM U1028, CNRS UMR5292 and University Claude Bernard Lyon I Villeurbanne, France
| | | | - Hisaaki Ota
- Department of Occupational Therapy, School of Health Sciences, Sapporo Medical University Sapporo, Japan
| | - Karen T Reilly
- ImpAct Team, Lyon Neuroscience Research Center CRNL, INSERM U1028, CNRS UMR5292 and University Claude Bernard Lyon I Villeurbanne, France
| | - Yves Rossetti
- ImpAct Team, Lyon Neuroscience Research Center CRNL, INSERM U1028, CNRS UMR5292 and University Claude Bernard Lyon I Villeurbanne, France
| | - Laure Pisella
- ImpAct Team, Lyon Neuroscience Research Center CRNL, INSERM U1028, CNRS UMR5292 and University Claude Bernard Lyon I Villeurbanne, France
| |
Collapse
|
44
|
Abstract
In macaque, it has long been known since the late nineties that the medial parieto-occipital sulcus (POS) contains two regions, V6 and V6A, important for visual motion and action. While V6 is a retinotopically organized extrastriate area, V6A is a broadly retinotopically organized visuomotor area constituted by a ventral and dorsal subdivision (V6Av and V6Ad), both containing arm movement-related cells active during spatially directed reaching movements. In humans, these areas have been mapped only in recent years thanks to neuroimaging methods. In a series of brain mapping studies, by using a combination of functional magnetic resonance imaging methods such as wide-field retinotopy and task-evoked activity, we mapped human areas V6 (Pitzalis et al., 2006) and V6Av (Pitzalis et al., 2013 d) retinotopically and defined human V6Ad functionally as a pointing-selective region situated anteriorly in the close proximity of V6Av (Tosoni et al., 2014). Like in macaque, human V6 is a motion area (e.g., Pitzalis et al., 2010, 2012, 2013 a, b , c ), while V6Av and V6Ad respond to pointing movements (Tosoni et al., 2014). The retinotopic organization (when present), anatomical position, neighbor relations, and functional properties of these three areas closely resemble those reported for macaque V6 (Galletti et al., 1996, 1999 a), V6Av, and V6Ad (Galletti et al., 1999 b; Gamberini et al., 2011). We suggest that information on objects in depth which are translating in space, because of the self-motion, is processed in V6 and conveyed to V6A for evaluating object distance in a dynamic condition such as that created by self-motion, so to orchestrate the eye and arm movements necessary to reach or avoid static and moving objects in the environment.
Collapse
|
45
|
Reference frames for reaching when decoupling eye and target position in depth and direction. Sci Rep 2016; 6:21646. [PMID: 26876496 PMCID: PMC4753502 DOI: 10.1038/srep21646] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/28/2016] [Indexed: 11/23/2022] Open
Abstract
Spatial representations in cortical areas involved in reaching movements were traditionally studied in a frontoparallel plane where the two-dimensional target location and the movement direction were the only variables to consider in neural computations. No studies so far have characterized the reference frames for reaching considering both depth and directional signals. Here we recorded from single neurons of the medial posterior parietal area V6A during a reaching task where fixation point and reaching targets were decoupled in direction and depth. We found a prevalent mixed encoding of target position, with eye-centered and spatiotopic representations differently balanced in the same neuron. Depth was stronger in defining the reference frame of eye-centered cells, while direction was stronger in defining that of spatiotopic cells. The predominant presence of various typologies of mixed encoding suggests that depth and direction signals are processed on the basis of flexible coordinate systems to ensure optimal motor response.
Collapse
|
46
|
Hadjidimitrakis K, Dal Bo' G, Breveglieri R, Galletti C, Fattori P. Overlapping representations for reach depth and direction in caudal superior parietal lobule of macaques. J Neurophysiol 2015; 114:2340-52. [PMID: 26269557 DOI: 10.1152/jn.00486.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/07/2015] [Indexed: 11/22/2022] Open
Abstract
Reaching movements in the real world have typically a direction and a depth component. Despite numerous behavioral studies, there is no consensus on whether reach coordinates are processed in separate or common visuomotor channels. Furthermore, the neural substrates of reach depth in parietal cortex have been ignored in most neurophysiological studies. In the medial posterior parietal area V6A, we recently demonstrated the strong presence of depth signals and the extensive convergence of depth and direction information on single neurons during all phases of a fixate-to-reach task in 3-dimensional (3D) space. Using the same task, in the present work we examined the processing of direction and depth information in area PEc of the caudal superior parietal lobule (SPL) in three Macaca fascicularis monkeys. Across the task, depth and direction had a similar, high incidence of modulatory effect. The effect of direction was stronger than depth during the initial fixation period. As the task progressed toward arm movement execution, depth tuning became more prominent than directional tuning and the number of cells modulated by both depth and direction increased significantly. Neurons tuned by depth showed a small bias for far peripersonal space. Cells with directional modulations were more frequently tuned toward contralateral spatial locations, but ipsilateral space was also represented. These findings, combined with results from neighboring areas V6A and PE, support a rostral-to-caudal gradient of overlapping representations for reach depth and direction in SPL. These findings also support a progressive change from visuospatial (vergence angle) to somatomotor representations of 3D space in SPL.
Collapse
Affiliation(s)
- Kostas Hadjidimitrakis
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Giulia Dal Bo'
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; and
| | - Rossella Breveglieri
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; and
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; and
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; and
| |
Collapse
|
47
|
Abstract
Single neurons in the frontal eye fields (FEFs) and lateral intraparietal area (LIP) of macaques are preferentially activated by saccade- versus reach-related processes. fMRI studies focusing on saccade- and reach-specific activity in human cortex, however, provided conflicting evidence for effector specificity. To gain further insights into effector preferences throughout monkey cortex using the same technique as in humans, we performed a mixed block/event-related fMRI experiment in macaques. Within single fMRI runs, monkeys alternated between a visually guided saccade task, a visually guided arm movement task, and a fixation-only task requiring no saccades or arm movements. The detection of a peripheral pop-out go cue initiating the required operant behavior and the identification of a target among distractors was identical in the arm and saccade tasks. We found saccade-related activity in parietal areas V6, V6A, LIP, and caudal intraparietal area and frontal areas FEF, 45a, 45b, and 46. Areas 45 and FEF even showed markedly decreased fMRI activity during arm movements relative to fixation only. Conversely, medial and anterior intraparietal areas (MIP and AIP), and parietal area PEip; somatosensory areas S1 and S2; and (pre)motor areas F1, F3, F5, and F6 showed increased arm movement-related activity. F1, F5, PEip, and somatosensory cortex also showed deactivations during saccades relative to fixation only. Control experiments showed that such deactivations in both operant-specific functional networks did not depend on training history or rapid task switching requiring active suppression of the unpreferred operant behavior. Therefore, although both tasks required divided attention to detect a pop-out go cue and target, two largely segregated and mainly effector-driven cortical networks were activated.
Collapse
|
48
|
Caminiti R, Innocenti GM, Battaglia-Mayer A. Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans. Neurosci Biobehav Rev 2015; 56:73-96. [PMID: 26112130 DOI: 10.1016/j.neubiorev.2015.06.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/08/2015] [Accepted: 06/09/2015] [Indexed: 01/01/2023]
Abstract
The functional organization of the parieto-frontal system is crucial for understanding cognitive-motor behavior and provides the basis for interpreting the consequences of parietal lesions in humans from a neurobiological perspective. The parieto-frontal connectivity defines some main information streams that, rather than being devoted to restricted functions, underlie a rich behavioral repertoire. Surprisingly, from macaque to humans, evolution has added only a few, new functional streams, increasing however their complexity and encoding power. In fact, the characterization of the conduction times of parietal and frontal areas to different target structures has recently opened a new window on cortical dynamics, suggesting that evolution has amplified the probability of dynamic interactions between the nodes of the network, thanks to communication patterns based on temporally-dispersed conduction delays. This might allow the representation of sensory-motor signals within multiple neural assemblies and reference frames, as to optimize sensory-motor remapping within an action space characterized by different and more complex demands across evolution.
Collapse
Affiliation(s)
- Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome SAPIENZA, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Giorgio M Innocenti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Brain and Mind Institute, Federal Institute of Technology, EPFL, Lausanne, Switzerland
| | - Alexandra Battaglia-Mayer
- Department of Physiology and Pharmacology, University of Rome SAPIENZA, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
49
|
Davare M, Zénon A, Desmurget M, Olivier E. Dissociable contribution of the parietal and frontal cortex to coding movement direction and amplitude. Front Hum Neurosci 2015; 9:241. [PMID: 25999837 PMCID: PMC4422032 DOI: 10.3389/fnhum.2015.00241] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/14/2015] [Indexed: 11/13/2022] Open
Abstract
To reach for an object, we must convert its spatial location into an appropriate motor command, merging movement direction and amplitude. In humans, it has been suggested that this visuo-motor transformation occurs in a dorsomedial parieto-frontal pathway, although the causal contribution of the areas constituting the “reaching circuit” remains unknown. Here we used transcranial magnetic stimulation (TMS) in healthy volunteers to disrupt the function of either the medial intraparietal area (mIPS) or dorsal premotor cortex (PMd), in each hemisphere. The task consisted in performing step-tracking movements with the right wrist towards targets located in different directions and eccentricities; targets were either visible for the whole trial (Target-ON) or flashed for 200 ms (Target-OFF). Left and right mIPS disruption led to errors in the initial direction of movements performed towards contralateral targets. These errors were corrected online in the Target-ON condition but when the target was flashed for 200 ms, mIPS TMS manifested as a larger endpoint spreading. In contrast, left PMd virtual lesions led to higher acceleration and velocity peaks—two parameters typically used to probe the planned movement amplitude—irrespective of the target position, hemifield and presentation condition; in the Target-OFF condition, left PMd TMS induced overshooting and increased the endpoint dispersion along the axis of the target direction. These results indicate that left PMd intervenes in coding amplitude during movement preparation. The critical TMS timings leading to errors in direction and amplitude were different, namely 160–100 ms before movement onset for mIPS and 100–40 ms for left PMd. TMS applied over right PMd had no significant effect. These results demonstrate that, during motor preparation, direction and amplitude of goal-directed movements are processed by different cortical areas, at distinct timings, and according to a specific hemispheric organization.
Collapse
Affiliation(s)
- Marco Davare
- Institute of Neuroscience (IoNS), School of Medicine, University of Louvain Brussels, Belgium ; Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London London, UK ; Department of Kinesiology, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, KU Leuven Leuven, Belgium
| | - Alexandre Zénon
- Institute of Neuroscience (IoNS), School of Medicine, University of Louvain Brussels, Belgium
| | | | - Etienne Olivier
- Institute of Neuroscience (IoNS), School of Medicine, University of Louvain Brussels, Belgium
| |
Collapse
|
50
|
Bosco A, Breveglieri R, Reser D, Galletti C, Fattori P. Multiple representation of reaching space in the medial posterior parietal area V6A. ACTA ACUST UNITED AC 2014; 25:1654-67. [PMID: 24421176 DOI: 10.1093/cercor/bht420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
During foveal reaching, the activity of neurons in the macaque medial posterior parietal area V6A is modulated by both gaze and arm direction. In the present work, we dissociated the position of gaze and reaching targets, and studied the neural activity of single V6A cells while the eyes and reaching targets were arranged in different spatial configurations (peripheral and foveal combinations). Target position influenced neural activity in all stages of the task, from visual presentation of target and movement planning, through reach execution and holding time. The majority of neurons preferred reaches directed toward peripheral targets, rather than foveal. Most neurons discharged in both premovement and action epochs. In most cases, reaching activity was tuned coherently across action planning and execution. When reaches were planned and executed in different eye/target configurations, multiple analyses revealed that few neurons coded reaching actions according to the absolute position of target, or to the position of target relative to the eye. The majority of cells responded to a combination of both these factors. These data suggest that V6A contains multiple representations of spatial information for reaching, consistent with a role of this area in forming cross-reference frame representations to be used by premotor cortex.
Collapse
Affiliation(s)
- A Bosco
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - R Breveglieri
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - D Reser
- Department of Physiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - C Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - P Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|