1
|
O'Dowd A, Hirst RJ, Seveso MA, McKenna EM, Newell FN. Generalisation to novel exemplars of learned shape categories based on visual and auditory spatial cues does not benefit from multisensory information. Psychon Bull Rev 2025; 32:417-429. [PMID: 39103708 PMCID: PMC11836203 DOI: 10.3758/s13423-024-02548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/07/2024]
Abstract
Although the integration of information across multiple senses can enhance object representations in memory, how multisensory information affects the formation of categories is uncertain. In particular, it is unclear to what extent categories formed from multisensory information benefit object recognition over unisensory inputs. Two experiments investigated the categorisation of novel auditory and visual objects, with categories defined by spatial similarity, and tested generalisation to novel exemplars. Participants learned to categorise exemplars based on visual-only (geometric shape), auditory-only (spatially defined soundscape) or audio-visual spatial cues. Categorisation to learned as well as novel exemplars was then tested under the same sensory learning conditions. For all learning modalities, categorisation generalised to novel exemplars. However, there was no evidence of enhanced categorisation performance for learned multisensory exemplars. At best, bimodal performance approximated that of the most accurate unimodal condition, although this was observed only for a subset of exemplars within a category. These findings provide insight into the perceptual processes involved in the formation of categories and have relevance for understanding the sensory nature of object representations underpinning these categories.
Collapse
Affiliation(s)
- A O'Dowd
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - R J Hirst
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - M A Seveso
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - E M McKenna
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - F N Newell
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Department of Psychology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Li Y, Wang J, Liang J, Zhu C, Zhang Z, Luo W. The impact of degraded vision on emotional perception of audiovisual stimuli: An event-related potential study. Neuropsychologia 2024; 194:108785. [PMID: 38159799 DOI: 10.1016/j.neuropsychologia.2023.108785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Emotion recognition will be challenged for individuals when visual signals are degraded in real-life scenarios. Recently, researchers have conducted many studies on the distinct neural activity between clear and degraded audiovisual stimuli. These findings addressed the "how" question, but the precise stage of the distinct activity that occurred remains unknown. Therefore, it is crucial to use event-related potential (ERP) to explore the "when" question, just the time course of the neural activity of degraded audiovisual stimuli. In the present research, we established two conditions: clear auditory + degraded visual (AcVd) and clear auditory + clear visual (AcVc) multisensory conditions. We enlisted 31 participants to evaluate the emotional valence of audiovisual stimuli. The resulting data were analyzed using ERP in time domains and Microstate analysis. Current results suggest that degraded vision impairs the early-stage processing of audiovisual stimuli, with the superior parietal lobule (SPL) regulating audiovisual processing in a top-down fashion. Additionally, our findings indicate that negative and positive stimuli elicit greater EPN compared to neutral stimuli, pointing towards a subjective motivation-related attentional regulation. To sum up, in the early stage of emotional audiovisual processing, the degraded visual signal affected the perception of the physical attributes of audiovisual stimuli and had a further influence on emotion extraction processing, leading to the different regulation of top-down attention resources in the later stage.
Collapse
Affiliation(s)
- Yuchen Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China; Institute of Psychology, Shandong Second Medical University, Weifang, 216053, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian, 116029, China
| | - Jing Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian, 116029, China
| | - Junyu Liang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China; School of Psychology, South China Normal University, Guangzhou, 510631, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian, 116029, China
| | - Chuanlin Zhu
- School of Educational Science, Yangzhou University, Yangzhou, 225002, China.
| | - Zhao Zhang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China; Institute of Psychology, Shandong Second Medical University, Weifang, 216053, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian, 116029, China.
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian, 116029, China.
| |
Collapse
|
3
|
Choi I, Demir I, Oh S, Lee SH. Multisensory integration in the mammalian brain: diversity and flexibility in health and disease. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220338. [PMID: 37545309 PMCID: PMC10404930 DOI: 10.1098/rstb.2022.0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/30/2023] [Indexed: 08/08/2023] Open
Abstract
Multisensory integration (MSI) occurs in a variety of brain areas, spanning cortical and subcortical regions. In traditional studies on sensory processing, the sensory cortices have been considered for processing sensory information in a modality-specific manner. The sensory cortices, however, send the information to other cortical and subcortical areas, including the higher association cortices and the other sensory cortices, where the multiple modality inputs converge and integrate to generate a meaningful percept. This integration process is neither simple nor fixed because these brain areas interact with each other via complicated circuits, which can be modulated by numerous internal and external conditions. As a result, dynamic MSI makes multisensory decisions flexible and adaptive in behaving animals. Impairments in MSI occur in many psychiatric disorders, which may result in an altered perception of the multisensory stimuli and an abnormal reaction to them. This review discusses the diversity and flexibility of MSI in mammals, including humans, primates and rodents, as well as the brain areas involved. It further explains how such flexibility influences perceptual experiences in behaving animals in both health and disease. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Ilsong Choi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Ilayda Demir
- Department of biological sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Seungmi Oh
- Department of biological sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Seung-Hee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of biological sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Shvadron S, Snir A, Maimon A, Yizhar O, Harel S, Poradosu K, Amedi A. Shape detection beyond the visual field using a visual-to-auditory sensory augmentation device. Front Hum Neurosci 2023; 17:1058617. [PMID: 36936618 PMCID: PMC10017858 DOI: 10.3389/fnhum.2023.1058617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Current advancements in both technology and science allow us to manipulate our sensory modalities in new and unexpected ways. In the present study, we explore the potential of expanding what we perceive through our natural senses by utilizing a visual-to-auditory sensory substitution device (SSD), the EyeMusic, an algorithm that converts images to sound. The EyeMusic was initially developed to allow blind individuals to create a spatial representation of information arriving from a video feed at a slow sampling rate. In this study, we aimed to use the EyeMusic for the blind areas of sighted individuals. We use it in this initial proof-of-concept study to test the ability of sighted subjects to combine visual information with surrounding auditory sonification representing visual information. Participants in this study were tasked with recognizing and adequately placing the stimuli, using sound to represent the areas outside the standard human visual field. As such, the participants were asked to report shapes' identities as well as their spatial orientation (front/right/back/left), requiring combined visual (90° frontal) and auditory input (the remaining 270°) for the successful performance of the task (content in both vision and audition was presented in a sweeping clockwise motion around the participant). We found that participants were successful at a highly above chance level after a brief 1-h-long session of online training and one on-site training session of an average of 20 min. They could even draw a 2D representation of this image in some cases. Participants could also generalize, recognizing new shapes they were not explicitly trained on. Our findings provide an initial proof of concept indicating that sensory augmentation devices and techniques can potentially be used in combination with natural sensory information in order to expand the natural fields of sensory perception.
Collapse
Affiliation(s)
- Shira Shvadron
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
- *Correspondence: Shira Shvadron,
| | - Adi Snir
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Amber Maimon
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Or Yizhar
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck Dahlem Campus of Cognition (MPDCC), Max Planck Institute for Human Development, Berlin, Germany
| | - Sapir Harel
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Keinan Poradosu
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
- Weizmann Institute of Science, Rehovot, Israel
| | - Amir Amedi
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
| |
Collapse
|
5
|
Pesnot Lerousseau J, Arnold G, Auvray M. Training-induced plasticity enables visualizing sounds with a visual-to-auditory conversion device. Sci Rep 2021; 11:14762. [PMID: 34285265 PMCID: PMC8292401 DOI: 10.1038/s41598-021-94133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/28/2021] [Indexed: 12/04/2022] Open
Abstract
Sensory substitution devices aim at restoring visual functions by converting visual information into auditory or tactile stimuli. Although these devices show promise in the range of behavioral abilities they allow, the processes underlying their use remain underspecified. In particular, while an initial debate focused on the visual versus auditory or tactile nature of sensory substitution, since over a decade, the idea that it reflects a mixture of both has emerged. In order to investigate behaviorally the extent to which visual and auditory processes are involved, participants completed a Stroop-like crossmodal interference paradigm before and after being trained with a conversion device which translates visual images into sounds. In addition, participants' auditory abilities and their phenomenologies were measured. Our study revealed that, after training, when asked to identify sounds, processes shared with vision were involved, as participants’ performance in sound identification was influenced by the simultaneously presented visual distractors. In addition, participants’ performance during training and their associated phenomenology depended on their auditory abilities, revealing that processing finds its roots in the input sensory modality. Our results pave the way for improving the design and learning of these devices by taking into account inter-individual differences in auditory and visual perceptual strategies.
Collapse
Affiliation(s)
| | | | - Malika Auvray
- Sorbonne Université, CNRS UMR 7222, Institut des Systèmes Intelligents et de Robotique (ISIR), 75005, Paris, France.
| |
Collapse
|
6
|
Fu D, Weber C, Yang G, Kerzel M, Nan W, Barros P, Wu H, Liu X, Wermter S. What Can Computational Models Learn From Human Selective Attention? A Review From an Audiovisual Unimodal and Crossmodal Perspective. Front Integr Neurosci 2020; 14:10. [PMID: 32174816 PMCID: PMC7056875 DOI: 10.3389/fnint.2020.00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
Selective attention plays an essential role in information acquisition and utilization from the environment. In the past 50 years, research on selective attention has been a central topic in cognitive science. Compared with unimodal studies, crossmodal studies are more complex but necessary to solve real-world challenges in both human experiments and computational modeling. Although an increasing number of findings on crossmodal selective attention have shed light on humans' behavioral patterns and neural underpinnings, a much better understanding is still necessary to yield the same benefit for intelligent computational agents. This article reviews studies of selective attention in unimodal visual and auditory and crossmodal audiovisual setups from the multidisciplinary perspectives of psychology and cognitive neuroscience, and evaluates different ways to simulate analogous mechanisms in computational models and robotics. We discuss the gaps between these fields in this interdisciplinary review and provide insights about how to use psychological findings and theories in artificial intelligence from different perspectives.
Collapse
Affiliation(s)
- Di Fu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Department of Informatics, University of Hamburg, Hamburg, Germany
| | - Cornelius Weber
- Department of Informatics, University of Hamburg, Hamburg, Germany
| | - Guochun Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Matthias Kerzel
- Department of Informatics, University of Hamburg, Hamburg, Germany
| | - Weizhi Nan
- Department of Psychology, Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou, China
| | - Pablo Barros
- Department of Informatics, University of Hamburg, Hamburg, Germany
| | - Haiyan Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Stefan Wermter
- Department of Informatics, University of Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Chen L. Education and visual neuroscience: A mini-review. Psych J 2019; 9:524-532. [PMID: 31884725 DOI: 10.1002/pchj.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/04/2019] [Accepted: 11/26/2019] [Indexed: 11/06/2022]
Abstract
Neuroscience, especially visual neuroscience, is a burgeoning field that has greatly shaped the format and efficacy of education. Moreover, findings from visual neuroscience are an ongoing source of great progress in pedagogy. In this mini-review, I review existing evidence and areas of active research to describe the fundamental questions and general applications for visual neuroscience as it applies to education. First, I categorize the research questions and future directions for the role of visual neuroscience in education. Second, I juxtapose opposing views on the roles of neuroscience in education and reveal the "neuromyths" propagated under the guise of educational neuroscience. Third, I summarize the policies and practices applied in different countries and for different age ranges. Fourth, I address and discuss the merits of visual neuroscience in art education and of visual perception theories (e.g., those concerned with perceptual organization with respect to space and time) in reading education. I consider how vision-deprived students could benefit from current knowledge of brain plasticity and visual rehabilitation methods involving compensation from other sensory systems. I also consider the potential educational value of instructional methods based on statistical learning in the visual domain. Finally, I outline the accepted translational framework for applying findings from educational neuroscience to pedagogical theory.
Collapse
Affiliation(s)
- Lihan Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
8
|
Visually-Driven Maps in Area 3b. J Neurosci 2018; 38:1295-1310. [PMID: 29301873 DOI: 10.1523/jneurosci.0491-17.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 01/22/2023] Open
Abstract
Sensory perception relies on the precise neuronal encoding of modality-specific environmental features in primary sensory cortices. Some studies have reported the penetration of signals from other modalities even into early sensory areas. So far, no comprehensive account of maps induced by "foreign sources" exists. We addressed this question using surface-based topographic mapping techniques applied to ultra-high resolution fMRI neuroimaging data, measured in female participants. We show that fine-grained finger maps in human primary somatosensory cortex, area 3b, are somatotopically activated not only during tactile mechanical stimulation, but also when viewing the same fingers being touched. Visually-induced maps were weak in amplitude, but overlapped with the stronger tactile maps tangential to the cortical sheet when finger touches were observed in both first- and third-person perspectives. However, visually-induced maps did not overlap tactile maps when the observed fingers were only approached by an object but not actually touched. Our data provide evidence that "foreign source maps" in early sensory cortices are present in the healthy human brain, that their arrangement is precise, and that their induction is feature-selective. The computations required to generate such specific responses suggest that counterflow (feedback) processing may be much more spatially specific than has been often assumed.SIGNIFICANCE STATEMENT Using ultra-high field fMRI, we provide empirical evidence that viewing touches activates topographically aligned single finger maps in human primary somatosensory cortical area 3b. This shows that "foreign source maps" in early sensory cortices are topographic, precise, and feature-selective in healthy human participants with intact sensory pathways.
Collapse
|
9
|
Graulty C, Papaioannou O, Bauer P, Pitts MA, Canseco-Gonzalez E. Hearing Shapes: Event-related Potentials Reveal the Time Course of Auditory-Visual Sensory Substitution. J Cogn Neurosci 2017; 30:498-513. [PMID: 29211649 DOI: 10.1162/jocn_a_01210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In auditory-visual sensory substitution, visual information (e.g., shape) can be extracted through strictly auditory input (e.g., soundscapes). Previous studies have shown that image-to-sound conversions that follow simple rules [such as the Meijer algorithm; Meijer, P. B. L. An experimental system for auditory image representation. Transactions on Biomedical Engineering, 39, 111-121, 1992] are highly intuitive and rapidly learned by both blind and sighted individuals. A number of recent fMRI studies have begun to explore the neuroplastic changes that result from sensory substitution training. However, the time course of cross-sensory information transfer in sensory substitution is largely unexplored and may offer insights into the underlying neural mechanisms. In this study, we recorded ERPs to soundscapes before and after sighted participants were trained with the Meijer algorithm. We compared these posttraining versus pretraining ERP differences with those of a control group who received the same set of 80 auditory/visual stimuli but with arbitrary pairings during training. Our behavioral results confirmed the rapid acquisition of cross-sensory mappings, and the group trained with the Meijer algorithm was able to generalize their learning to novel soundscapes at impressive levels of accuracy. The ERP results revealed an early cross-sensory learning effect (150-210 msec) that was significantly enhanced in the algorithm-trained group compared with the control group as well as a later difference (420-480 msec) that was unique to the algorithm-trained group. These ERP modulations are consistent with previous fMRI results and provide additional insight into the time course of cross-sensory information transfer in sensory substitution.
Collapse
|
10
|
Murray MM, Lewkowicz DJ, Amedi A, Wallace MT. Multisensory Processes: A Balancing Act across the Lifespan. Trends Neurosci 2016; 39:567-579. [PMID: 27282408 PMCID: PMC4967384 DOI: 10.1016/j.tins.2016.05.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/13/2016] [Accepted: 05/12/2016] [Indexed: 11/20/2022]
Abstract
Multisensory processes are fundamental in scaffolding perception, cognition, learning, and behavior. How and when stimuli from different sensory modalities are integrated rather than treated as separate entities is poorly understood. We review how the relative reliance on stimulus characteristics versus learned associations dynamically shapes multisensory processes. We illustrate the dynamism in multisensory function across two timescales: one long term that operates across the lifespan and one short term that operates during the learning of new multisensory relations. In addition, we highlight the importance of task contingencies. We conclude that these highly dynamic multisensory processes, based on the relative weighting of stimulus characteristics and learned associations, provide both stability and flexibility to brain functions over a wide range of temporal scales.
Collapse
Affiliation(s)
- Micah M Murray
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Clinical Neurosciences and Department of Radiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland; Electroencephalography Brain Mapping Core, Centre for Biomedical Imaging (CIBM), Lausanne, Switzerland; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Lausanne, Switzerland; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Lewkowicz
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, USA
| | - Amir Amedi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel; Interdisciplinary and Cognitive Science Program, The Edmond & Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
11
|
Maidenbaum S, Buchs G, Abboud S, Lavi-Rotbain O, Amedi A. Perception of Graphical Virtual Environments by Blind Users via Sensory Substitution. PLoS One 2016; 11:e0147501. [PMID: 26882473 PMCID: PMC4755598 DOI: 10.1371/journal.pone.0147501] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022] Open
Abstract
Graphical virtual environments are currently far from accessible to blind users as their content is mostly visual. This is especially unfortunate as these environments hold great potential for this population for purposes such as safe orientation, education, and entertainment. Previous tools have increased accessibility but there is still a long way to go. Visual-to-audio Sensory-Substitution-Devices (SSDs) can increase accessibility generically by sonifying on-screen content regardless of the specific environment and offer increased accessibility without the use of expensive dedicated peripherals like electrode/vibrator arrays. Using SSDs virtually utilizes similar skills as when using them in the real world, enabling both training on the device and training on environments virtually before real-world visits. This could enable more complex, standardized and autonomous SSD training and new insights into multisensory interaction and the visually-deprived brain. However, whether congenitally blind users, who have never experienced virtual environments, will be able to use this information for successful perception and interaction within them is currently unclear.We tested this using the EyeMusic SSD, which conveys whole-scene visual information, to perform virtual tasks otherwise impossible without vision. Congenitally blind users had to navigate virtual environments and find doors, differentiate between them based on their features (Experiment1:task1) and surroundings (Experiment1:task2) and walk through them; these tasks were accomplished with a 95% and 97% success rate, respectively. We further explored the reactions of congenitally blind users during their first interaction with a more complex virtual environment than in the previous tasks-walking down a virtual street, recognizing different features of houses and trees, navigating to cross-walks, etc. Users reacted enthusiastically and reported feeling immersed within the environment. They highlighted the potential usefulness of such environments for understanding what visual scenes are supposed to look like and their potential for complex training and suggested many future environments they wished to experience.
Collapse
Affiliation(s)
- Shachar Maidenbaum
- The Edmond and Lily Safra Center for Brain Research, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Buchs
- The Edmond and Lily Safra Center for Brain Research, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cognitive Science, Faculty of Humanities, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sami Abboud
- The Edmond and Lily Safra Center for Brain Research, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Lavi-Rotbain
- The Edmond and Lily Safra Center for Brain Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amir Amedi
- The Edmond and Lily Safra Center for Brain Research, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cognitive Science, Faculty of Humanities, Hebrew University of Jerusalem, Jerusalem, Israel
- Sorbonne Universités UPMC Univ Paris 06, Institut de la Vision Paris, Paris, France
- * E-mail:
| |
Collapse
|
12
|
Murphy MC, Nau AC, Fisher C, Kim SG, Schuman JS, Chan KC. Top-down influence on the visual cortex of the blind during sensory substitution. Neuroimage 2015; 125:932-940. [PMID: 26584776 DOI: 10.1016/j.neuroimage.2015.11.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/07/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022] Open
Abstract
Visual sensory substitution devices provide a non-surgical and flexible approach to vision rehabilitation in the blind. These devices convert images taken by a camera into cross-modal sensory signals that are presented as a surrogate for direct visual input. While previous work has demonstrated that the visual cortex of blind subjects is recruited during sensory substitution, the cognitive basis of this activation remains incompletely understood. To test the hypothesis that top-down input provides a significant contribution to this activation, we performed functional MRI scanning in 11 blind (7 acquired and 4 congenital) and 11 sighted subjects under two conditions: passive listening of image-encoded soundscapes before sensory substitution training and active interpretation of the same auditory sensory substitution signals after a 10-minute training session. We found that the modulation of visual cortex activity due to active interpretation was significantly stronger in the blind over sighted subjects. In addition, congenitally blind subjects showed stronger task-induced modulation in the visual cortex than acquired blind subjects. In a parallel experiment, we scanned 18 blind (11 acquired and 7 congenital) and 18 sighted subjects at rest to investigate alterations in functional connectivity due to visual deprivation. The results demonstrated that visual cortex connectivity of the blind shifted away from sensory networks and toward known areas of top-down input. Taken together, our data support the model of the brain, including the visual system, as a highly flexible task-based and not sensory-based machine.
Collapse
Affiliation(s)
- Matthew C Murphy
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA; Sensory Substitution Laboratory, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Louis J. Fox Center for Vision Restoration, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Amy C Nau
- Sensory Substitution Laboratory, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and UPMC, Pittsburgh, PA, USA; Louis J. Fox Center for Vision Restoration, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Christopher Fisher
- Sensory Substitution Laboratory, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seong-Gi Kim
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and UPMC, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Joel S Schuman
- Sensory Substitution Laboratory, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and UPMC, Pittsburgh, PA, USA; Louis J. Fox Center for Vision Restoration, University of Pittsburgh and UPMC, Pittsburgh, PA, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kevin C Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and UPMC, Pittsburgh, PA, USA; Louis J. Fox Center for Vision Restoration, University of Pittsburgh and UPMC, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Reading in the dark: neural correlates and cross-modal plasticity for learning to read entire words without visual experience. Neuropsychologia 2015; 83:149-160. [PMID: 26577136 DOI: 10.1016/j.neuropsychologia.2015.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 12/17/2022]
Abstract
Cognitive neuroscience has long attempted to determine the ways in which cortical selectivity develops, and the impact of nature vs. nurture on it. Congenital blindness (CB) offers a unique opportunity to test this question as the brains of blind individuals develop without visual experience. Here we approach this question through the reading network. Several areas in the visual cortex have been implicated as part of the reading network, and one of the main ones among them is the VWFA, which is selective to the form of letters and words. But what happens in the CB brain? On the one hand, it has been shown that cross-modal plasticity leads to the recruitment of occipital areas, including the VWFA, for linguistic tasks. On the other hand, we have recently demonstrated VWFA activity for letters in contrast to other visual categories when the information is provided via other senses such as touch or audition. Which of these tasks is more dominant? By which mechanism does the CB brain process reading? Using fMRI and visual-to-auditory sensory substitution which transfers the topographical features of the letters we compare reading with semantic and scrambled conditions in a group of CB. We found activation in early auditory and visual cortices during the early processing phase (letter), while the later phase (word) showed VWFA and bilateral dorsal-intraparietal activations for words. This further supports the notion that many visual regions in general, even early visual areas, also maintain a predilection for task processing even when the modality is variable and in spite of putative lifelong linguistic cross-modal plasticity. Furthermore, we find that the VWFA is recruited preferentially for letter and word form, while it was not recruited, and even exhibited deactivation, for an immediately subsequent semantic task suggesting that despite only short sensory substitution experience orthographic task processing can dominate semantic processing in the VWFA. On a wider scope, this implies that at least in some cases cross-modal plasticity which enables the recruitment of areas for new tasks may be dominated by sensory independent task specific activation.
Collapse
|
14
|
Bermejo F, Di Paolo EA, Hüg MX, Arias C. Sensorimotor strategies for recognizing geometrical shapes: a comparative study with different sensory substitution devices. Front Psychol 2015; 6:679. [PMID: 26106340 PMCID: PMC4460306 DOI: 10.3389/fpsyg.2015.00679] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/09/2015] [Indexed: 11/13/2022] Open
Abstract
The sensorimotor approach proposes that perception is constituted by the mastery of lawful sensorimotor regularities or sensorimotor contingencies (SMCs), which depend on specific bodily characteristics and on actions possibilities that the environment enables and constrains. Sensory substitution devices (SSDs) provide the user information about the world typically corresponding to one sensory modality through the stimulation of another modality. We investigate how perception emerges in novice adult participants equipped with vision-to-auditory SSDs while solving a simple geometrical shape recognition task. In particular, we examine the distinction between apparatus-related SMCs (those originating mostly in properties of the perceptual system) and object-related SMCs (those mostly connected with the perceptual task). We study the sensorimotor strategies employed by participants in three experiments with three different SSDs: a minimalist head-mounted SSD, a traditional, also head-mounted SSD (the vOICe) and an enhanced, hand-held echolocation device. Motor activity and fist-person data are registered and analyzed. Results show that participants are able to quickly learn the necessary skills to distinguish geometric shapes. Comparing the sensorimotor strategies utilized with each SSD we identify differential features of the sensorimotor patterns attributable mostly to the device, which account for the emergence of apparatus-based SMCs. These relate to differences in sweeping strategies between SSDs. We identify, also, components related to the emergence of object-related SMCs. These relate mostly to exploratory movements around the border of a shape. The study provides empirical support for SMC theory and discusses considerations about the nature of perception in sensory substitution.
Collapse
Affiliation(s)
- Fernando Bermejo
- Centro de Investigación y Transferencia en Acústica (CINTRA), Universidad Tecnológica Nacional - Facultad Regional Córdoba, Unidad Asociada de CONICETCórdoba, Argentina
- Facultad de Psicología, Universidad Nacional de CórdobaCórdoba, Argentina
| | - Ezequiel A. Di Paolo
- Ikerbasque, Basque Foundation for ScienceBilbao, Spain
- Department of Logic and Philosophy of Science, IAS-Research Center for Life, Mind, and Society, University of the Basque CountrySan Sebastián, Spain
- Department of Informatics, Centre for Computational Neuroscience and Robotics, University of SussexBrighton, UK
| | - Mercedes X. Hüg
- Centro de Investigación y Transferencia en Acústica (CINTRA), Universidad Tecnológica Nacional - Facultad Regional Córdoba, Unidad Asociada de CONICETCórdoba, Argentina
- Facultad de Psicología, Universidad Nacional de CórdobaCórdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Argentina
| | - Claudia Arias
- Centro de Investigación y Transferencia en Acústica (CINTRA), Universidad Tecnológica Nacional - Facultad Regional Córdoba, Unidad Asociada de CONICETCórdoba, Argentina
- Facultad de Psicología, Universidad Nacional de CórdobaCórdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Argentina
| |
Collapse
|
15
|
Bernstein LE, Liebenthal E. Neural pathways for visual speech perception. Front Neurosci 2014; 8:386. [PMID: 25520611 PMCID: PMC4248808 DOI: 10.3389/fnins.2014.00386] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/10/2014] [Indexed: 12/03/2022] Open
Abstract
This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody) can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns of activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1) The visual perception of speech relies on visual pathway representations of speech qua speech. (2) A proposed site of these representations, the temporal visual speech area (TVSA) has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS). (3) Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA.
Collapse
Affiliation(s)
- Lynne E Bernstein
- Department of Speech and Hearing Sciences, George Washington University Washington, DC, USA
| | - Einat Liebenthal
- Department of Neurology, Medical College of Wisconsin Milwaukee, WI, USA ; Department of Psychiatry, Brigham and Women's Hospital Boston, MA, USA
| |
Collapse
|