1
|
Upton S, Froeliger B. Regulation of craving and underlying resting-state neural circuitry predict hazard of smoking lapse. Transl Psychiatry 2025; 15:101. [PMID: 40148270 PMCID: PMC11950297 DOI: 10.1038/s41398-025-03319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/22/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Among individuals with substance use disorders, clinical outcomes may be improved by identifying brain-behavior models that predict drug re/lapse vulnerabilities such as the ability to regulate drug cravings and inhibit drug use. In a sample of nicotine-dependent adult cigarette smokers (N = 213), this laboratory study examined associations between regulation of craving (ROC) efficacy and smoking lapse, utilized functional connectivity multivariate pattern analysis (FC-MVPA) and seed-based connectivity (SBC) analyses to identify resting-state neural circuitry underlying ROC efficacy, and then examined if the identified ROC-mediated circuitry predicted hazard of smoking lapse. Regarding behavior, worse ROC efficacy predicted a greater hazard of smoking lapse. Regarding brain and behavior, FC-MVPA identified 29 brain-wide functional clusters associated with ROC efficacy. Follow-up SBC analyses using 9 of the FC-MVPA-derived clusters identified a total of 64 resting-state edges (i.e., cluster-to-cluster connections) underlying ROC efficacy, 10 of which were also associated with the hazard of smoking lapse. ROC efficacy edges also associated with smoking lapse were largely composed of connections between frontal-striatal-limbic clusters and sensory-motor clusters and better behavioral outcomes were associated with stronger resting-state FC. Findings suggest that both ROC efficacy and underlying resting-state neural circuitry may inform prediction models of re/lapse vulnerabilities and serve as treatment targets for cessation interventions.
Collapse
Affiliation(s)
- Spencer Upton
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA.
| | - Brett Froeliger
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
- Department of Psychiatry, University of Missouri, Columbia, MO, USA
| |
Collapse
|
2
|
Jüchtern M, Shaikh UJ, Caspers S, Binkofski F. A gradient of hemisphere-specific dorsal to ventral processing routes in parieto-premotor networks. Netw Neurosci 2024; 8:1563-1589. [PMID: 39735515 PMCID: PMC11675101 DOI: 10.1162/netn_a_00407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/06/2024] [Indexed: 12/31/2024] Open
Abstract
Networks in the parietal and premotor cortices enable essential human abilities regarding motor processing, including attention and tool use. Even though our knowledge on its topography has steadily increased, a detailed picture of hemisphere-specific integrating pathways is still lacking. With the help of multishell diffusion magnetic resonance imaging, probabilistic tractography, and the Graph Theory Analysis, we investigated connectivity patterns between frontal premotor and posterior parietal brain areas in healthy individuals. With a two-stage node characterization approach, we defined the network role of precisely mapped cortical regions from the Julich-Brain atlas. We found evidence for a third, left-sided, medio-dorsal subpathway in a successively graded dorsal stream, referencing more specialized motor processing on the left. Supplementary motor areas had a strongly lateralized connectivity to either left dorsal or right ventral parietal domains, representing an action-attention dichotomy between hemispheres. The left sulcal parietal regions primarily coupled with areas 44 and 45, mirrored by the inferior frontal junction (IFJ) on the right, a structural lateralization we termed as "Broca's-IFJ switch." We were able to deepen knowledge on gyral and sulcal pathways as well as domain-specific contributions in parieto-premotor networks. Our study sheds new light on the complex lateralization of cortical routes for motor activity in the human brain.
Collapse
Affiliation(s)
- Marvin Jüchtern
- Department of Clinical Cognition Science, Clinic of Neurology at the RWTH Aachen University Faculty of Medicine, ZBMT, Aachen, Germany
| | - Usman Jawed Shaikh
- Department of Clinical Cognition Science, Clinic of Neurology at the RWTH Aachen University Faculty of Medicine, ZBMT, Aachen, Germany
| | - Svenja Caspers
- Institute for Neuroscience and Medicine (INM-1), Research Centre Jülich GmbH, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Institute for Neuroscience and Medicine (INM-4), Research Center Jülich GmbH, Jülich, Germany
| | - Ferdinand Binkofski
- Department of Clinical Cognition Science, Clinic of Neurology at the RWTH Aachen University Faculty of Medicine, ZBMT, Aachen, Germany
- JARA-BRAIN, Juelich-Aachen Research Alliance, Juelich, Germany
- Institute for Neuroscience and Medicine (INM-4), Research Center Jülich GmbH, Jülich, Germany
| |
Collapse
|
3
|
Seusing N, Strauss S, Fleischmann R, Nafz C, Groppa S, Muthuraman M, Ding H, Byblow WD, Lotze M, Grothe M. The excitability of ipsilateral motor evoked potentials is not task-specific and spatially distinct from the contralateral motor hotspot. Exp Brain Res 2024; 242:1851-1859. [PMID: 38842754 PMCID: PMC11252234 DOI: 10.1007/s00221-024-06851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE The role of ipsilateral descending motor pathways in voluntary movement of humans is still a matter of debate, with partly contradictory results. The aim of our study therefore was to examine the excitability of ipsilateral motor evoked potentials (iMEPs) regarding site and the specificity for unilateral and bilateral elbow flexion extension tasks. METHODS MR-navigated transcranial magnetic stimulation mapping of the dominant hemisphere was performed in twenty healthy participants during tonic unilateral (iBB), bilateral homologous (bBB) or bilateral antagonistic elbow flexion-extension (iBB-cAE), the map center of gravity (CoG) and iMEP area from BB were obtained. RESULTS The map CoG of the ipsilateral BB was located more anterior-laterally than the hotspot of the contralateral BB within the primary motor cortex, with a significant difference in CoG in iBB and iBB-cAE, but not bBB compared to the hotspot for the contralateral BB (each p < 0.05). However, different tasks had no effect on the size of the iMEPs. CONCLUSION Our data demonstrated that excitability of ipsilateral and contralateral MEP differ spatially in a task-specific manner suggesting the involvement of different motor networks within the motor cortex.
Collapse
Affiliation(s)
- Nelly Seusing
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany
| | - Sebastian Strauss
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany
| | - Robert Fleischmann
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany
| | - Christina Nafz
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany
| | - Sergiu Groppa
- Imaging and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Imaging and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Neural Engineering with Signal Analytics and Artificial Intelligence (NESA-AI), Department of Neurology, University Medicine of Würzburg, Würzburg, Germany
| | - Hao Ding
- Imaging and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Neural Engineering with Signal Analytics and Artificial Intelligence (NESA-AI), Department of Neurology, University Medicine of Würzburg, Würzburg, Germany
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Martin Lotze
- Functional Imaging Unit, Center for Diagnostic Radiology, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Grothe
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany.
| |
Collapse
|
4
|
Tagliaferri M, Amorosino G, Voltolini L, Giampiccolo D, Avesani P, Cattaneo L. A revision of the dorsal origin of the frontal aslant tract (FAT) in the superior frontal gyrus: a DWI-tractographic study. Brain Struct Funct 2024; 229:987-999. [PMID: 38502328 DOI: 10.1007/s00429-024-02778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
The frontal aslant tract (FAT) is a white matter tract connecting the superior frontal gyrus (SFG) to the inferior frontal gyrus (IFG). Its dorsal origin is identified in humans in the medial wall of the SFG, in the supplementary motor complex (SM-complex). However, empirical observation shows that many FAT fibres appear to originate from the dorsal, rather than medial, portion of the SFG. We quantitatively investigated the actual origin of FAT fibres in the SFG, specifically discriminating between terminations in the medial wall and in the convexity of the SFG. We analysed data from 105 subjects obtained from the Human Connectome Project (HCP) database. We parcelled the cortex of the IFG, dorsal SFG and medial SFG in several regions of interest (ROIs) ordered in a caudal-rostral direction, which served as seed locations for the generation of streamlines. Diffusion imaging data (DWI) was processed using a multi-shell multi-tissue CSD-based algorithm. Results showed that the number of streamlines originating from the dorsal wall of the SFG significantly exceeds those from the medial wall of the SFG. Connectivity patterns between ROIs indicated that FAT sub-bundles are segregated in parallel circuits ordered in a caudal-rostral direction. Such high degree of coherence in the streamline trajectory allows to establish pairs of homologous cortical parcels in the SFG and IFG. We conclude that the frontal origin of the FAT is found in both dorsal and medial surfaces of the superior frontal gyrus.
Collapse
Affiliation(s)
- Marco Tagliaferri
- Centro Interdipartimentale Mente e Cervello (CIMeC), University of Trento, Trento, Italy
| | - Gabriele Amorosino
- Centro Interdipartimentale Mente e Cervello (CIMeC), University of Trento, Trento, Italy
- Neuroinformatics Laboratory, Center for Digital Health & Well Being, Fondazione Bruno Kessler, Trento, Italy
| | - Linda Voltolini
- Centro Interdipartimentale Mente e Cervello (CIMeC), University of Trento, Trento, Italy
| | - Davide Giampiccolo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Institute of Neuroscience, Cleveland Clinic London, Grosvenor Place, London, UK
| | - Paolo Avesani
- Centro Interdipartimentale Mente e Cervello (CIMeC), University of Trento, Trento, Italy
- Neuroinformatics Laboratory, Center for Digital Health & Well Being, Fondazione Bruno Kessler, Trento, Italy
| | - Luigi Cattaneo
- Centro Interdipartimentale Mente e Cervello (CIMeC), University of Trento, Trento, Italy.
- Centro Interdipartimentale di Scienze Mediche (CISMed) - University of Trento, Trento, Italy.
- Center for Mind/Brain Sciences (CIMeC) - Center for Medical Sciences (CISMed), University of Trento Center for Medical Sciences (CISMed), Via delle Regole 101, Trento, 38123, Italy.
| |
Collapse
|
5
|
Boeken OJ, Cieslik EC, Langner R, Markett S. Characterizing functional modules in the human thalamus: coactivation-based parcellation and systems-level functional decoding. Brain Struct Funct 2023; 228:1811-1834. [PMID: 36547707 PMCID: PMC10516793 DOI: 10.1007/s00429-022-02603-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
The human thalamus relays sensory signals to the cortex and facilitates brain-wide communication. The thalamus is also more directly involved in sensorimotor and various cognitive functions but a full characterization of its functional repertoire, particularly in regard to its internal anatomical structure, is still outstanding. As a putative hub in the human connectome, the thalamus might reveal its functional profile only in conjunction with interconnected brain areas. We therefore developed a novel systems-level Bayesian reverse inference decoding that complements the traditional neuroinformatics approach towards a network account of thalamic function. The systems-level decoding considers the functional repertoire (i.e., the terms associated with a brain region) of all regions showing co-activations with a predefined seed region in a brain-wide fashion. Here, we used task-constrained meta-analytic connectivity-based parcellation (MACM-CBP) to identify thalamic subregions as seed regions and applied the systems-level decoding to these subregions in conjunction with functionally connected cortical regions. Our results confirm thalamic structure-function relationships known from animal and clinical studies and revealed further associations with language, memory, and locomotion that have not been detailed in the cognitive neuroscience literature before. The systems-level decoding further uncovered large systems engaged in autobiographical memory and nociception. We propose this novel decoding approach as a useful tool to detect previously unknown structure-function relationships at the brain network level, and to build viable starting points for future studies.
Collapse
Affiliation(s)
- Ole J Boeken
- Faculty of Life Sciences, Department of Molecular Psychology, Humboldt-Universität Zu Berlin, Rudower Chaussee 18, 12489, Berlin, Germany.
| | - Edna C Cieslik
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Sebastian Markett
- Faculty of Life Sciences, Department of Molecular Psychology, Humboldt-Universität Zu Berlin, Rudower Chaussee 18, 12489, Berlin, Germany
| |
Collapse
|
6
|
Paas Oliveros LK, Cieslik EC, Pieczykolan A, Pläschke RN, Eickhoff SB, Langner R. Brain functional characterization of response-code conflict in dual-tasking and its modulation by age. Cereb Cortex 2023; 33:10155-10180. [PMID: 37540164 PMCID: PMC10502578 DOI: 10.1093/cercor/bhad273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Crosstalk between conflicting response codes contributes to interference in dual-tasking, an effect exacerbated in advanced age. Here, we investigated (i) brain activity correlates of such response-code conflicts, (ii) activity modulations by individual dual-task performance and related cognitive abilities, (iii) task-modulated connectivity within the task network, and (iv) age-related differences in all these aspects. Young and older adults underwent fMRI while responding to the pitch of tones through spatially mapped speeded button presses with one or two hands concurrently. Using opposing stimulus-response mappings between hands, we induced conflict between simultaneously activated response codes. These response-code conflicts elicited activation in key regions of the multiple-demand network. While thalamic and parietal areas of the conflict-related network were modulated by attentional, working-memory and task-switching abilities, efficient conflict resolution in dual-tasking mainly relied on increasing supplementary motor activity. Older adults showed non-compensatory hyperactivity in left superior frontal gyrus, and higher right premotor activity was modulated by working-memory capacity. Finally, connectivity between premotor or parietal seed regions and the conflict-sensitive network was neither conflict-specific nor age-sensitive. Overall, resolving dual-task response-code conflict recruited substantial parts of the multiple-demand network, whose activity and coupling, however, were only little affected by individual differences in task performance or age.
Collapse
Affiliation(s)
- Lya K Paas Oliveros
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Edna C Cieslik
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Aleks Pieczykolan
- Rheinische Fachhochschule – University of Applied Sciences, Cologne 50923, Germany
| | - Rachel N Pläschke
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
7
|
Bedini M, Olivetti E, Avesani P, Baldauf D. Accurate localization and coactivation profiles of the frontal eye field and inferior frontal junction: an ALE and MACM fMRI meta-analysis. Brain Struct Funct 2023; 228:997-1017. [PMID: 37093304 PMCID: PMC10147761 DOI: 10.1007/s00429-023-02641-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
The frontal eye field (FEF) and the inferior frontal junction (IFJ) are prefrontal structures involved in mediating multiple aspects of goal-driven behavior. Despite being recognized as prominent nodes of the networks underlying spatial attention and oculomotor control, and working memory and cognitive control, respectively, the limited quantitative evidence on their precise localization has considerably impeded the detailed understanding of their structure and connectivity. In this study, we performed an activation likelihood estimation (ALE) fMRI meta-analysis by selecting studies that employed standard paradigms to accurately infer the localization of these regions in stereotaxic space. For the FEF, we found the highest spatial convergence of activations for prosaccade and antisaccade paradigms at the junction of the precentral sulcus and superior frontal sulcus. For the IFJ, we found consistent activations across oddball/attention, working memory, task-switching and Stroop paradigms at the junction of the inferior precentral sulcus and inferior frontal sulcus. We related these clusters to previous meta-analyses, sulcal/gyral neuroanatomy, and a comprehensive brain parcellation, highlighting important differences compared to their results and taxonomy. Finally, we leveraged the ALE peak coordinates as seeds to perform a meta-analytic connectivity modeling (MACM) analysis, which revealed systematic coactivation patterns spanning the frontal, parietal, and temporal cortices. We decoded the behavioral domains associated with these coactivations, suggesting that these may allow FEF and IFJ to support their specialized roles in flexible behavior. Our study provides the meta-analytic groundwork for investigating the relationship between functional specialization and connectivity of two crucial control structures of the prefrontal cortex.
Collapse
Affiliation(s)
- Marco Bedini
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy.
- Department of Psychology, University of California, San Diego, McGill Hall 9500 Gilman Dr, La Jolla, CA, 92093-0109, USA.
| | - Emanuele Olivetti
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy
- NILab, Bruno Kessler Foundation (FBK), Via delle Regole 101, 38123, Trento, Italy
| | - Paolo Avesani
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy
- NILab, Bruno Kessler Foundation (FBK), Via delle Regole 101, 38123, Trento, Italy
| | - Daniel Baldauf
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy
| |
Collapse
|
8
|
Shimizu Y, Tanikawa M, Horiba M, Sahashi K, Kawashima S, Kandori A, Yamanaka T, Nishikawa Y, Matsukawa N, Ueki Y, Mase M. Clinical utility of paced finger tapping assessment in idiopathic normal pressure hydrocephalus. Front Hum Neurosci 2023; 17:1109670. [PMID: 36908708 PMCID: PMC9996087 DOI: 10.3389/fnhum.2023.1109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Background The Finger Tapping (F-T) test is useful for assessing motor function of the upper limbs in patients with idiopathic normal pressure hydrocephalus (iNPH). However, quantitative evaluation of F-T for iNPH has not yet been established. The purpose of this study was to investigate the usefulness of the quantitative F-T test and optimal measurement conditions as a motor evaluation and screening test for iNPH. Methods Sixteen age-matched healthy controls (mean age 73 ± 5 years; 7/16 male) and fifteen participants with a diagnosis of definitive iNPH (mean age 76 ± 5 years; 8/15 male) completed the study (mean ± standard deviation). F-T performance of the index finger and thumb was quantified using a magnetic sensing device. The performance of repetitive F-T by participants was recorded in both not timing-regulated and timing-regulated conditions. The mean value of the maximum amplitude of F-T was defined as M-Amplitude, and the mean value of the maximum velocity of closure of F-T was defined as cl-Velocity. Results Finger Tapping in the iNPH group, with or without timing control, showed a decrease in M-Amplitude and cl-Velocity compared to the control group. We found the only paced F-T with 2.0 Hz auditory stimuli was found to improve both M-Amplitude and cl-Velocity after shunt surgery. Conclusion The quantitative assessment of F-T with auditory stimuli at the rate of 2.0 Hz may be a useful and potentially supplemental screening method for motor assessment in patients with iNPH.
Collapse
Affiliation(s)
- Yoko Shimizu
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Motoki Tanikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuya Horiba
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kento Sahashi
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shoji Kawashima
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akihiko Kandori
- Hitachi, Ltd., Research and Development Group, Center for Exploratory Research, Tokyo, Japan
| | - Tomoyasu Yamanaka
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yusuke Nishikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Noriyuki Matsukawa
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshino Ueki
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
9
|
Congruence-based contextual plausibility modulates cortical activity during vibrotactile perception in virtual multisensory environments. Commun Biol 2022; 5:1360. [PMID: 36509971 PMCID: PMC9744907 DOI: 10.1038/s42003-022-04318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
How congruence cues and congruence-based expectations may together shape perception in virtual reality (VR) still need to be unravelled. We linked the concept of plausibility used in VR research with congruence-based modulation by assessing brain responses while participants experienced vehicle riding experiences in VR scenarios. Perceptual plausibility was manipulated by sensory congruence, with multisensory stimulations confirming with common expectations of road scenes being plausible. We hypothesized that plausible scenarios would elicit greater cortical responses. The results showed that: (i) vibrotactile stimulations at expected intensities, given embedded audio-visual information, engaged greater cortical activities in frontal and sensorimotor regions; (ii) weaker plausible stimulations resulted in greater responses in the sensorimotor cortex than stronger but implausible stimulations; (iii) frontal activities under plausible scenarios negatively correlated with plausibility violation costs in the sensorimotor cortex. These results potentially indicate frontal regulation of sensory processing and extend previous evidence of contextual modulation to the tactile sense.
Collapse
|
10
|
Silva AB, Liu JR, Zhao L, Levy DF, Scott TL, Chang EF. A Neurosurgical Functional Dissection of the Middle Precentral Gyrus during Speech Production. J Neurosci 2022; 42:8416-8426. [PMID: 36351829 PMCID: PMC9665919 DOI: 10.1523/jneurosci.1614-22.2022] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Classical models have traditionally focused on the left posterior inferior frontal gyrus (Broca's area) as a key region for motor planning of speech production. However, converging evidence suggests that it is not critical for either speech motor planning or execution. Alternative cortical areas supporting high-level speech motor planning have yet to be defined. In this review, we focus on the precentral gyrus, whose role in speech production is often thought to be limited to lower-level articulatory muscle control. In particular, we highlight neurosurgical investigations that have shed light on a cortical region anatomically located near the midpoint of the precentral gyrus, hence called the middle precentral gyrus (midPrCG). The midPrCG is functionally located between dorsal hand and ventral orofacial cortical representations and exhibits unique sensorimotor and multisensory functions relevant for speech processing. This includes motor control of the larynx, auditory processing, as well as a role in reading and writing. Furthermore, direct electrical stimulation of midPrCG can evoke complex movements, such as vocalization, and selective injury can cause deficits in verbal fluency, such as pure apraxia of speech. Based on these findings, we propose that midPrCG is essential to phonological-motoric aspects of speech production, especially syllabic-level speech sequencing, a role traditionally ascribed to Broca's area. The midPrCG is a cortical brain area that should be included in contemporary models of speech production with a unique role in speech motor planning and execution.
Collapse
Affiliation(s)
- Alexander B Silva
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
- Medical Scientist Training Program, University of California, San Francisco, California, 94158
- Graduate Program in Bioengineering, University of California, Berkeley, California 94720, & University of California, San Francisco, California, 94158
| | - Jessie R Liu
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
- Graduate Program in Bioengineering, University of California, Berkeley, California 94720, & University of California, San Francisco, California, 94158
| | - Lingyun Zhao
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
| | - Deborah F Levy
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
| | - Terri L Scott
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
- Graduate Program in Bioengineering, University of California, Berkeley, California 94720, & University of California, San Francisco, California, 94158
| |
Collapse
|
11
|
The rediscovered motor-related area 55b emerges as a core hub of music perception. Commun Biol 2022; 5:1104. [PMID: 36257973 PMCID: PMC9579133 DOI: 10.1038/s42003-022-04009-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Passive listening to music, without sound production or evident movement, is long known to activate motor control regions. Nevertheless, the exact neuroanatomical correlates of the auditory-motor association and its underlying neural mechanisms have not been fully determined. Here, based on a NeuroSynth meta-analysis and three original fMRI paradigms of music perception, we show that the long-ignored pre-motor region, area 55b, an anatomically unique and functionally intriguing region, is a core hub of music perception. Moreover, results of a brain-behavior correlation analysis implicate neural entrainment as the underlying mechanism of area 55b’s contribution to music perception. In view of the current results and prior literature, area 55b is proposed as a keystone of sensorimotor integration, a fundamental brain machinery underlying simple to hierarchically complex behaviors. Refining the neuroanatomical and physiological understanding of sensorimotor integration is expected to have a major impact on various fields, from brain disorders to artificial general intelligence. Functional magnetic resonance imaging data acquired during passive listening to music suggest that pre-motor area 55b acts as a core hub of music processing in humans.
Collapse
|
12
|
Pandarinath C, Bensmaia SJ. The science and engineering behind sensitized brain-controlled bionic hands. Physiol Rev 2022; 102:551-604. [PMID: 34541898 PMCID: PMC8742729 DOI: 10.1152/physrev.00034.2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Advances in our understanding of brain function, along with the development of neural interfaces that allow for the monitoring and activation of neurons, have paved the way for brain-machine interfaces (BMIs), which harness neural signals to reanimate the limbs via electrical activation of the muscles or to control extracorporeal devices, thereby bypassing the muscles and senses altogether. BMIs consist of reading out motor intent from the neuronal responses monitored in motor regions of the brain and executing intended movements with bionic limbs, reanimated limbs, or exoskeletons. BMIs also allow for the restoration of the sense of touch by electrically activating neurons in somatosensory regions of the brain, thereby evoking vivid tactile sensations and conveying feedback about object interactions. In this review, we discuss the neural mechanisms of motor control and somatosensation in able-bodied individuals and describe approaches to use neuronal responses as control signals for movement restoration and to activate residual sensory pathways to restore touch. Although the focus of the review is on intracortical approaches, we also describe alternative signal sources for control and noninvasive strategies for sensory restoration.
Collapse
Affiliation(s)
- Chethan Pandarinath
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
- Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Blouin J, Pialasse JP, Mouchnino L, Simoneau M. On the Dynamics of Spatial Updating. Front Neurosci 2022; 16:780027. [PMID: 35250442 PMCID: PMC8893203 DOI: 10.3389/fnins.2022.780027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Most of our knowledge on the human neural bases of spatial updating comes from functional magnetic resonance imaging (fMRI) studies in which recumbent participants moved in virtual environments. As a result, little is known about the dynamic of spatial updating during real body motion. Here, we exploited the high temporal resolution of electroencephalography (EEG) to investigate the dynamics of cortical activation in a spatial updating task where participants had to remember their initial orientation while they were passively rotated about their vertical axis in the dark. After the rotations, the participants pointed toward their initial orientation. We contrasted the EEG signals with those recorded in a control condition in which participants had no cognitive task to perform during body rotations. We found that the amplitude of the P1N1 complex of the rotation-evoked potential (RotEPs) (recorded over the vertex) was significantly greater in the Updating task. The analyses of the cortical current in the source space revealed that the main significant task-related cortical activities started during the N1P2 interval (136–303 ms after rotation onset). They were essentially localized in the temporal and frontal (supplementary motor complex, dorsolateral prefrontal cortex, anterior prefrontal cortex) regions. During this time-window, the right superior posterior parietal cortex (PPC) also showed significant task-related activities. The increased activation of the PPC became bilateral over the P2N2 component (303–470 ms after rotation onset). In this late interval, the cuneus and precuneus started to show significant task-related activities. Together, the present results are consistent with the general scheme that the first task-related cortical activities during spatial updating are related to the encoding of spatial goals and to the storing of spatial information in working memory. These activities would precede those involved in higher order processes also relevant for updating body orientation during rotations linked to the egocentric and visual representations of the environment.
Collapse
Affiliation(s)
- Jean Blouin
- Laboratoire de Neurosciences Cognitives, CNRS, Aix-Marseille Université, Marseille, France
- *Correspondence: Jean Blouin,
| | | | - Laurence Mouchnino
- Laboratoire de Neurosciences Cognitives, CNRS, Aix-Marseille Université, Marseille, France
- Institut Universitaire de France, Paris, France
| | - Martin Simoneau
- Département de Kinésiologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale du CIUSSS de la Capitale-Nationale, Québec, QC, Canada
| |
Collapse
|
14
|
Interhemispheric co-alteration of brain homotopic regions. Brain Struct Funct 2021; 226:2181-2204. [PMID: 34170391 PMCID: PMC8354999 DOI: 10.1007/s00429-021-02318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/07/2021] [Indexed: 11/11/2022]
Abstract
Asymmetries in gray matter alterations raise important issues regarding the pathological co-alteration between hemispheres. Since homotopic areas are the most functionally connected sites between hemispheres and gray matter co-alterations depend on connectivity patterns, it is likely that this relationship might be mirrored in homologous interhemispheric co-altered areas. To explore this issue, we analyzed data of patients with Alzheimer’s disease, schizophrenia, bipolar disorder and depressive disorder from the BrainMap voxel-based morphometry database. We calculated a map showing the pathological homotopic anatomical co-alteration between homologous brain areas. This map was compared with the meta-analytic homotopic connectivity map obtained from the BrainMap functional database, so as to have a meta-analytic connectivity modeling map between homologous areas. We applied an empirical Bayesian technique so as to determine a directional pathological co-alteration on the basis of the possible tendencies in the conditional probability of being co-altered of homologous brain areas. Our analysis provides evidence that: the hemispheric homologous areas appear to be anatomically co-altered; this pathological co-alteration is similar to the pattern of connectivity exhibited by the couples of homologues; the probability to find alterations in the areas of the left hemisphere seems to be greater when their right homologues are also altered than vice versa, an intriguing asymmetry that deserves to be further investigated and explained.
Collapse
|
15
|
Heckner MK, Cieslik EC, Küppers V, Fox PT, Eickhoff SB, Langner R. Delineating visual, auditory and motor regions in the human brain with functional neuroimaging: a BrainMap-based meta-analytic synthesis. Sci Rep 2021; 11:9942. [PMID: 33976234 PMCID: PMC8113600 DOI: 10.1038/s41598-021-88773-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/13/2021] [Indexed: 02/03/2023] Open
Abstract
Most everyday behaviors and laboratory tasks rely on visual, auditory and/or motor-related processes. Yet, to date, there has been no large-scale quantitative synthesis of functional neuroimaging studies mapping the brain regions consistently recruited during such perceptuo-motor processing. We therefore performed three coordinate-based meta-analyses, sampling the results of neuroimaging experiments on visual (n = 114), auditory (n = 122), or motor-related (n = 251) processing, respectively, from the BrainMap database. Our analyses yielded both regions known to be recruited for basic perceptual or motor processes and additional regions in posterior frontal cortex. Comparing our results with data-driven network definitions based on resting-state functional connectivity revealed good overlap in expected regions but also showed that perceptual and motor task-related activations consistently involve additional frontal, cerebellar, and subcortical areas associated with "higher-order" cognitive functions, extending beyond what is captured when the brain is at "rest." Our resulting sets of domain-typical brain regions can be used by the neuroimaging community as robust functional definitions or masks of regions of interest when investigating brain correlates of perceptual or motor processes and their interplay with other mental functions such as cognitive control or affective processing. The maps are made publicly available via the ANIMA database.
Collapse
Affiliation(s)
- Marisa K Heckner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Edna C Cieslik
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vincent Küppers
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter T Fox
- Research Imaging Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
16
|
Chen J, Wensing T, Hoffstaedter F, Cieslik EC, Müller VI, Patil KR, Aleman A, Derntl B, Gruber O, Jardri R, Kogler L, Sommer IE, Eickhoff SB, Nickl-Jockschat T. Neurobiological substrates of the positive formal thought disorder in schizophrenia revealed by seed connectome-based predictive modeling. NEUROIMAGE-CLINICAL 2021; 30:102666. [PMID: 34215141 PMCID: PMC8105296 DOI: 10.1016/j.nicl.2021.102666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
Formal thought disorder (FTD) is a core symptom of schizophrenia, but its neurobiological substrates remain elusive. Resting-state functional connectivity (rsFC) of three meta-analytically defined seeds were correlated to positive and negative symptom dimensions of FTD. RsFC patterns allowed individual prediction of positive FTD symptom severity. These findings generalized to an independent data set. Our study has identified robust neurobiological correlates of positive FTD in schizophrenia.
Formal thought disorder (FTD) is a core symptom cluster of schizophrenia, but its neurobiological substrates remain poorly understood. Here we collected resting-state fMRI data from 276 subjects at seven sites and employed machine-learning to investigate the neurobiological correlates of FTD along positive and negative symptom dimensions in schizophrenia. Three a priori, meta-analytically defined FTD-related brain regions were used as seeds to generate whole-brain resting-state functional connectivity (rsFC) maps, which were then compared between schizophrenia patients and controls. A repeated cross-validation procedure was realized within the patient group to identify clusters whose rsFC patterns to the seeds were repeatedly observed as significantly associated with specific FTD dimensions. These repeatedly identified clusters (i.e., robust clusters) were functionally characterized and the rsFC patterns were used for predictive modeling to investigate predictive capacities for individual FTD dimensional-scores. Compared with controls, differential rsFC was found in patients in fronto-temporo-thalamic regions. Our cross-validation procedure revealed significant clusters only when assessing the seed-to-whole-brain rsFC patterns associated with positive-FTD. RsFC patterns of three fronto-temporal clusters, associated with higher-order cognitive processes (e.g., executive functions), specifically predicted individual positive-FTD scores (p = 0.005), but not other positive symptoms, and the PANSS general psychopathology subscale (p > 0.05). The prediction of positive-FTD was moreover generalized to an independent dataset (p = 0.013). Our study has identified neurobiological correlates of positive FTD in schizophrenia in a network associated with higher-order cognitive functions, suggesting a dysexecutive contribution to FTD in schizophrenia. We regard our findings as robust, as they allow a prediction of individual-level symptom severity.
Collapse
Affiliation(s)
- Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Wensing
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany; JARA Translational Brain Medicine, Aachen, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Edna C Cieslik
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Veronika I Müller
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - André Aleman
- Department of Neuroscience, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Medical School, University of Tübingen, Germany
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Germany
| | - Renaud Jardri
- Univ Lille, INSERM U1172, Lille Neuroscience & Cognition Centre, Plasticity &SubjectivitY Team & CHU Lille, Fontan Hospital, CURE Platform, Lille, France
| | - Lydia Kogler
- Department of Psychiatry and Psychotherapy, Medical School, University of Tübingen, Germany
| | - Iris E Sommer
- Department of Biomedical Science of Cells and Systems, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Nickl-Jockschat
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
17
|
Schmidt TT, Schröder P, Reinhardt P, Blankenburg F. Rehearsal of tactile working memory: Premotor cortex recruits two dissociable neuronal content representations. Hum Brain Mapp 2021; 42:245-258. [PMID: 33009881 PMCID: PMC7721226 DOI: 10.1002/hbm.25220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/04/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022] Open
Abstract
Recent working memory (WM) research has focused on identifying brain regions that retain different types of mental content. Only few neuroimaging studies have explored the mechanism of attention-based refreshing, which is a type of rehearsal and is thought to implement the dynamic components of WM allowing for update of WM contents. Here, we took advantage of the distinct coding properties of the superior parietal lobe (SPL), which retains spatial layout information, and the right inferior frontal gyrus (IFG), which retains frequency information of vibrotactile stimuli during tactile WM. In an fMRI delayed match-to-sample task, participants had to internally rehearse sequences of spatial layouts or vibratory frequencies. Our results replicate the dissociation of SPL and IFG for the retention of layout and frequency information in terms of activation differences between conditions. Additionally, we found strong premotor cortex (PMC) activation during rehearsal of either stimulus type. To explore interactions between these regions we used dynamic causal modeling and found that activation within the network was best explained by a model that allows the PMC to drive activity in the SPL and IFG during rehearsal. This effect was content-specific, meaning that the PMC showed stronger influence on the SPL during pattern rehearsal and stronger influence on the IFG during frequency rehearsal. In line with previously established PMC contributions to sequence processing, our results suggest that it acts as a content-independent area that flexibly recruits content-specific regions to bring a WM item into the focus of attention during the rehearsal of tactile stimulus sequences.
Collapse
Affiliation(s)
- Timo Torsten Schmidt
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and PsychologyFreie Universität BerlinBerlinGermany
| | - Pia Schröder
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and PsychologyFreie Universität BerlinBerlinGermany
| | - Pablo Reinhardt
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and PsychologyFreie Universität BerlinBerlinGermany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and PsychologyFreie Universität BerlinBerlinGermany
| |
Collapse
|
18
|
Liu X, Eickhoff SB, Hoffstaedter F, Genon S, Caspers S, Reetz K, Dogan I, Eickhoff CR, Chen J, Caspers J, Reuter N, Mathys C, Aleman A, Jardri R, Riedl V, Sommer IE, Patil KR. Joint Multi-modal Parcellation of the Human Striatum: Functions and Clinical Relevance. Neurosci Bull 2020; 36:1123-1136. [PMID: 32700142 DOI: 10.1007/s12264-020-00543-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
The human striatum is essential for both low- and high-level functions and has been implicated in the pathophysiology of various prevalent disorders, including Parkinson's disease (PD) and schizophrenia (SCZ). It is known to consist of structurally and functionally divergent subdivisions. However, previous parcellations are based on a single neuroimaging modality, leaving the extent of the multi-modal organization of the striatum unknown. Here, we investigated the organization of the striatum across three modalities-resting-state functional connectivity, probabilistic diffusion tractography, and structural covariance-to provide a holistic convergent view of its structure and function. We found convergent clusters in the dorsal, dorsolateral, rostral, ventral, and caudal striatum. Functional characterization revealed the anterior striatum to be mainly associated with cognitive and emotional functions, while the caudal striatum was related to action execution. Interestingly, significant structural atrophy in the rostral and ventral striatum was common to both PD and SCZ, but atrophy in the dorsolateral striatum was specifically attributable to PD. Our study revealed a cross-modal convergent organization of the striatum, representing a fundamental topographical model that can be useful for investigating structural and functional variability in aging and in clinical conditions.
Collapse
Affiliation(s)
- Xiaojin Liu
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Genon
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52428, Jülich, Germany.,Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Kathrin Reetz
- Department of Neurology, Rheinisch Westfällische Technische Hochschule (RWTH) Aachen University, 52074, Aachen, Germany
| | - Imis Dogan
- Jülich Aachen Research Alliance-BRAIN (JARA) Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Rheinisch Westfällische Technische Hochschule (RWTH) Aachen University, 52074, Aachen, Germany.,Department of Neurology, Rheinisch Westfällische Technische Hochschule (RWTH) Aachen University, 52074, Aachen, Germany
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52428, Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Ji Chen
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52428, Jülich, Germany.,Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Niels Reuter
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Mathys
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Düsseldorf, 40225, Düsseldorf, Germany.,Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, University of Oldenburg, 26129, Oldenburg, Germany
| | - André Aleman
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Renaud Jardri
- SCALab (CNRS UMR9193) & CHU de Lille, Hôpital Fontan, Pôle de Psychiatrie (CURE), Université de Lille, 59037, Lille, France
| | - Valentin Riedl
- Departments of Neuroradiology, Nuclear Medicine and Neuroimaging Center, Technische Universität München, 80333, Munich, Germany
| | - Iris E Sommer
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, University of Oldenburg, 26129, Oldenburg, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany. .,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
19
|
Rech F, Wassermann D, Duffau H. New insights into the neural foundations mediating movement/language interactions gained from intrasurgical direct electrostimulations. Brain Cogn 2020; 142:105583. [DOI: 10.1016/j.bandc.2020.105583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 10/24/2022]
|
20
|
Hand Knob Area of Premotor Cortex Represents the Whole Body in a Compositional Way. Cell 2020; 181:396-409.e26. [PMID: 32220308 DOI: 10.1016/j.cell.2020.02.043] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/12/2019] [Accepted: 02/18/2020] [Indexed: 02/08/2023]
Abstract
Decades after the motor homunculus was first proposed, it is still unknown how different body parts are intermixed and interrelated in human motor cortical areas at single-neuron resolution. Using multi-unit recordings, we studied how face, head, arm, and leg movements are represented in the hand knob area of premotor cortex (precentral gyrus) in people with tetraplegia. Contrary to traditional expectations, we found strong representation of all movements and a partially "compositional" neural code that linked together all four limbs. The code consisted of (1) a limb-coding component representing the limb to be moved and (2) a movement-coding component where analogous movements from each limb (e.g., hand grasp and toe curl) were represented similarly. Compositional coding might facilitate skill transfer across limbs, and it provides a useful framework for thinking about how the motor system constructs movement. Finally, we leveraged these results to create a whole-body intracortical brain-computer interface that spreads targets across all limbs.
Collapse
|
21
|
Reuter N, Genon S, Kharabian Masouleh S, Hoffstaedter F, Liu X, Kalenscher T, Eickhoff SB, Patil KR. CBPtools: a Python package for regional connectivity-based parcellation. Brain Struct Funct 2020; 225:1261-1275. [PMID: 32144496 PMCID: PMC7271019 DOI: 10.1007/s00429-020-02046-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/08/2020] [Indexed: 02/02/2023]
Abstract
Regional connectivity-based parcellation (rCBP) is a widely used procedure for investigating the structural and functional differentiation within a region of interest (ROI) based on its long-range connectivity. No standardized software or guidelines currently exist for applying rCBP, making the method only accessible to those who develop their own tools. As such, there exists a discrepancy between the laboratories applying the procedure each with their own software solutions, making it difficult to compare and interpret the results. Here, we outline an rCBP procedure accompanied by an open source software package called CBPtools. CBPtools is a Python (version 3.5+) package that allows users to run an extensively evaluated rCBP analysis workflow on a given ROI. It currently supports two modalities: resting-state functional connectivity and structural connectivity based on diffusion-weighted imaging, along with support for custom connectivity matrices. Analysis parameters are customizable and the workflow can be scaled to a large number of subjects using a parallel processing environment. Parcellation results with corresponding validity metrics are provided as textual and graphical output. Thus, CBPtools provides a simple plug-and-play, yet customizable way to conduct rCBP analyses. By providing an open-source software we hope to promote reproducible and comparable rCBP analyses and, importantly, make the rCBP procedure readily available. Here, we demonstrate the utility of CBPtools using a voluminous data set on an average compute-cluster infrastructure by performing rCBP on three ROIs prominently featured in parcellation literature.
Collapse
Affiliation(s)
- Niels Reuter
- Institute of Systems Neuroscience, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Sarah Genon
- Institute of Systems Neuroscience, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Shahrzad Kharabian Masouleh
- Institute of Systems Neuroscience, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Xiaojin Liu
- Institute of Systems Neuroscience, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Tobias Kalenscher
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Kaustubh R Patil
- Institute of Systems Neuroscience, Heinrich-Heine University, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
22
|
Hensel L, Hoffstaedter F, Caspers J, Michely J, Mathys C, Heller J, Eickhoff CR, Reetz K, Südmeyer M, Fink GR, Schnitzler A, Grefkes C, Eickhoff SB. Functional Connectivity Changes of Key Regions for Motor Initiation in Parkinson's Disease. Cereb Cortex 2020; 29:383-396. [PMID: 30418548 PMCID: PMC6294405 DOI: 10.1093/cercor/bhy259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Indexed: 11/13/2022] Open
Abstract
Akinesia, a cardinal symptom of Parkinson's disease, has been linked to abnormal activation in putamen and posterior medial frontal cortex (pMFC). However, little is known whether clinical severity of akinesia is linked to dysfunctional connectivity of these regions. Using a seed-based approach, we here investigated resting-state functional connectivity (RSFC) of putamen, pMFC and primary motor cortex (M1) in 60 patients with Parkinson's disease on regular medication and 72 healthy controls. We found that in patients putamen featured decreases of connectivity for a number of cortical and subcortical areas engaged in sensorimotor and cognitive processing. In contrast, the pMFC showed reduced connectivity with a more focal cortical network involved in higher-level motor-cognition. Finally, M1 featured a selective disruption of connectivity in a network specifically connected with M1. Correlating clinical impairment with connectivity changes revealed a relationship between akinesia and reduced RSFC between pMFC and left intraparietal lobule (IPL). Together, the present study demonstrated RSFC decreases in networks for motor initiation and execution in Parkinson's disease. Moreover, results suggest a relationship between pMFC-IPL decoupling and the manifestation of akinetic symptoms.
Collapse
Affiliation(s)
- Lukas Hensel
- Department of Neurology, Cologne University Hospital, Cologne, Germany.,Institute of Neuroscience and Medicine, (INM-3: Cognitive Neuroscience), Research Centre Jülich, Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine, (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Julian Caspers
- Institute of Neuroscience and Medicine, (INM1: Structural and Functional Organization of the Brain), Research Centre Jülich, Jülich, Germany.,Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Jochen Michely
- Department of Neurology, Cologne University Hospital, Cologne, Germany.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Christian Mathys
- Department of Diagnostic and Interventional Radiology, University Du¨sseldorf, Medical Faculty, Düsseldorf, Germany
| | - Julia Heller
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Jülich, Jülich, Germany
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine, (INM1: Structural and Functional Organization of the Brain), Research Centre Jülich, Jülich, Germany.,Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Jülich, Jülich, Germany
| | - Martin Südmeyer
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany.,Medical Faculty, Department of Neurology, Center for Movement Disorders and Neuromodulation, Heinrich Heine University, Düsseldorf, Germany
| | - Gereon R Fink
- Department of Neurology, Cologne University Hospital, Cologne, Germany.,Institute of Neuroscience and Medicine, (INM-3: Cognitive Neuroscience), Research Centre Jülich, Jülich, Germany
| | - Alfons Schnitzler
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany.,Medical Faculty, Department of Neurology, Center for Movement Disorders and Neuromodulation, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany.,Institute of Neuroscience and Medicine, (INM-3: Cognitive Neuroscience), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine, (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
23
|
Tscherpel C, Hensel L, Lemberg K, Vollmer M, Volz LJ, Fink GR, Grefkes C. The differential roles of contralesional frontoparietal areas in cortical reorganization after stroke. Brain Stimul 2020; 13:614-624. [PMID: 32289686 DOI: 10.1016/j.brs.2020.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 01/10/2020] [Accepted: 01/28/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Studies examining the contribution of contralesional brain regions to motor recovery after stroke have revealed conflicting results comprising both supporting and disturbing influences. Especially the relevance of contralesional brain regions beyond primary motor cortex (M1) has rarely been studied, particularly concerning the temporal dynamics post-stroke. METHODS We, therefore, used online transcranial magnetic stimulation (TMS) interference to longitudinally assess the role of contralesional (right) frontoparietal areas for recovery of hand motor function after left hemispheric stroke: contralesional M1, contralesional dorsal premotor cortex (dPMC), and contralesional anterior intraparietal sulcus (IPS). Fourteen stroke patients and sixteen age-matched healthy subjects performed motor tasks of varying complexity with their (paretic) right hand. Motor performance was quantified using three-dimensional kinematic data. All patients were assessed twice, (i) in the first week, and (ii) after more than three months post-stroke. RESULTS While we did not observe a significant effect of TMS interference on movement kinematics following the stimulation of contralesional M1 and dPMC in the first week post-stroke, we found improvements of motor performance upon interference with contralesional IPS across motor tasks early after stroke, an effect that persisted into the later phase. By contrast, for dPMC, TMS-induced deterioration of motor performance was only evident three months post-stroke, suggesting that a supportive role of contralesional premotor cortex might evolve with reorganization. CONCLUSION We here highlight time-sensitive and region-specific effects of contralesional frontoparietal areas after left hemisphere stroke, which may influence on neuromodulation regimes aiming at supporting recovery of motor function post-stroke.
Collapse
Affiliation(s)
- Caroline Tscherpel
- Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Lukas Hensel
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Katharina Lemberg
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Mattias Vollmer
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Lukas J Volz
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Christian Grefkes
- Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
24
|
Peters JC, Reithler J, Graaf TAD, Schuhmann T, Goebel R, Sack AT. Concurrent human TMS-EEG-fMRI enables monitoring of oscillatory brain state-dependent gating of cortico-subcortical network activity. Commun Biol 2020; 3:40. [PMID: 31969657 PMCID: PMC6976670 DOI: 10.1038/s42003-020-0764-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/07/2020] [Indexed: 11/08/2022] Open
Abstract
Despite growing interest, the causal mechanisms underlying human neural network dynamics remain elusive. Transcranial Magnetic Stimulation (TMS) allows to noninvasively probe neural excitability, while concurrent fMRI can log the induced activity propagation through connected network nodes. However, this approach ignores ongoing oscillatory fluctuations which strongly affect network excitability and concomitant behavior. Here, we show that concurrent TMS-EEG-fMRI enables precise and direct monitoring of causal dependencies between oscillatory states and signal propagation throughout cortico-subcortical networks. To demonstrate the utility of this multimodal triad, we assessed how pre-TMS EEG power fluctuations influenced motor network activations induced by subthreshold TMS to right dorsal premotor cortex. In participants with adequate motor network reactivity, strong pre-TMS alpha power reduced TMS-evoked hemodynamic activations throughout the bilateral cortico-subcortical motor system (including striatum and thalamus), suggesting shunted network connectivity. Concurrent TMS-EEG-fMRI opens an exciting noninvasive avenue of subject-tailored network research into dynamic cognitive circuits and their dysfunction.
Collapse
Affiliation(s)
- Judith C Peters
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- Department of Vision, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | - Joel Reithler
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Vision, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Tom A de Graaf
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Teresa Schuhmann
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Rainer Goebel
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Vision, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Alexander T Sack
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain+Nerve Centre, Maastricht University Medical Centre+(MUMC+), Maastricht, The Netherlands
| |
Collapse
|
25
|
Plachti A, Eickhoff SB, Hoffstaedter F, Patil KR, Laird AR, Fox PT, Amunts K, Genon S. Multimodal Parcellations and Extensive Behavioral Profiling Tackling the Hippocampus Gradient. Cereb Cortex 2019; 29:4595-4612. [PMID: 30721944 PMCID: PMC6917521 DOI: 10.1093/cercor/bhy336] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/12/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
The hippocampus displays a complex organization and function that is perturbed in many neuropathologies. Histological work revealed a complex arrangement of subfields along the medial-lateral and the ventral-dorsal dimension, which contrasts with the anterior-posterior functional differentiation. The variety of maps has raised the need for an integrative multimodal view. We applied connectivity-based parcellation to 1) intrinsic connectivity 2) task-based connectivity, and 3) structural covariance, as complementary windows into structural and functional differentiation of the hippocampus. Strikingly, while functional properties (i.e., intrinsic and task-based) revealed similar partitions dominated by an anterior-posterior organization, structural covariance exhibited a hybrid pattern reflecting both functional and cytoarchitectonic subdivision. Capitalizing on the consistency of functional parcellations, we defined robust functional maps at different levels of partitions, which are openly available for the scientific community. Our functional maps demonstrated a head-body and tail partition, subdivided along the anterior-posterior and medial-lateral axis. Behavioral profiling of these fine partitions based on activation data indicated an emotion-cognition gradient along the anterior-posterior axis and additionally suggested a self-world-centric gradient supporting the role of the hippocampus in the construction of abstract representations for spatial navigation and episodic memory.
Collapse
Affiliation(s)
- Anna Plachti
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
| | - Kaustubh R Patil
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, TX, USA
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
- C. & O. Vogt Institute for Brain Research, Heinrich Heine University, Düsseldorf. Germany
| | - Sarah Genon
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
- GIGA-CRC In vivo Imaging, University of Liege, Liege, Belgium
| |
Collapse
|
26
|
Määttä S, Säisänen L, Kallioniemi E, Lakka TA, Lintu N, Haapala EA, Koskenkorva P, Niskanen E, Ferreri F, Könönen M. Maturation changes the excitability and effective connectivity of the frontal lobe: A developmental TMS-EEG study. Hum Brain Mapp 2019; 40:2320-2335. [PMID: 30648321 DOI: 10.1002/hbm.24525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022] Open
Abstract
The combination of transcranial magnetic stimulation with simultaneous electroencephalography (TMS-EEG) offers direct neurophysiological insight into excitability and connectivity within neural circuits. However, there have been few developmental TMS-EEG studies to date, and they all have focused on primary motor cortex stimulation. In the present study, we used navigated high-density TMS-EEG to investigate the maturation of the superior frontal cortex (dorsal premotor cortex [PMd]), which is involved in a broad range of motor and cognitive functions known to develop with age. We demonstrated that reactivity to frontal cortex TMS decreases with development. We also showed that although frontal cortex TMS elicits an equally complex TEP waveform in all age groups, the statistically significant between-group differences in the topography of the TMS-evoked peaks and differences in current density maps suggest changes in effective connectivity of the right PMd with maturation. More generally, our results indicate that direct study of the brain's excitability and effective connectivity via TMS-EEG co-registration can also be applied to pediatric populations outside the primary motor cortex, and may provide useful information for developmental studies and studies on developmental neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sara Määttä
- Faculty of Health Sciences, Department of Clinical Neurophysiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio Campus, Finland.,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Laura Säisänen
- Faculty of Health Sciences, Department of Clinical Neurophysiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio Campus, Finland.,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Timo A Lakka
- Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland.,Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland.,Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Niina Lintu
- Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Eero A Haapala
- Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Päivi Koskenkorva
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Eini Niskanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Florinda Ferreri
- Department of Neuroscience, Unit of Neurology and Neurophysiology, University of Padua, Padua, Italy
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland.,Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
27
|
Worringer B, Langner R, Koch I, Eickhoff SB, Eickhoff CR, Binkofski FC. Common and distinct neural correlates of dual-tasking and task-switching: a meta-analytic review and a neuro-cognitive processing model of human multitasking. Brain Struct Funct 2019; 224:1845-1869. [PMID: 31037397 PMCID: PMC7254756 DOI: 10.1007/s00429-019-01870-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 03/27/2019] [Indexed: 01/27/2023]
Abstract
Although there are well-known limitations of the human cognitive system in performing two tasks simultaneously (dual-tasking) or alternatingly (task-switching), the question for a common vs. distinct neural basis of these multitasking limitations is still open. We performed two Activation Likelihood Estimation meta-analyses of neuroimaging studies on dual-tasking or task-switching and tested for commonalities and differences in the brain regions associated with either domain. We found a common core network related to multitasking comprising bilateral intraparietal sulcus (IPS), left dorsal premotor cortex (dPMC), and right anterior insula. Meta-analytic contrasts revealed eight fronto-parietal clusters more consistently activated in dual-tasking (bilateral frontal operculum, dPMC, and anterior IPS, left inferior frontal sulcus and left inferior frontal gyrus) and, conversely, four clusters (left inferior frontal junction, posterior IPS, and precuneus as well as frontomedial cortex) more consistently activated in task-switching. Together with sub-analyses of preparation effects in task-switching, our results argue against purely passive structural processing limitations in multitasking. Based on these findings and drawing on current theorizing, we present a neuro-cognitive processing model of multitasking.
Collapse
Affiliation(s)
- Britta Worringer
- Clinical and Cognitive Neurosciences, Department of Neurology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany.
- Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany.
| | - Iring Koch
- Institute of Psychology, RWTH Aachen University, Jägerstr. 17-19, 52066, Aachen, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ferdinand C Binkofski
- Clinical and Cognitive Neurosciences, Department of Neurology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
- Institute for Neuroscience and Medicine (INM-4), Research Center Jülich, Pauwelsstr. 30, Jülich, Germany
- Jülich Aachen Research Alliance JARA-BRAIN, Pauwelsstr. 30, Aachen, Germany
| |
Collapse
|
28
|
Gu R, Huang W, Camilleri J, Xu P, Wei P, Eickhoff SB, Feng C. Love is analogous to money in human brain: Coordinate-based and functional connectivity meta-analyses of social and monetary reward anticipation. Neurosci Biobehav Rev 2019; 100:108-128. [PMID: 30807783 PMCID: PMC7250476 DOI: 10.1016/j.neubiorev.2019.02.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/18/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022]
Abstract
Both social and material rewards play a crucial role in daily life and function as strong incentives for various goal-directed behaviors. However, it remains unclear whether the incentive effects of social and material reward are supported by common or distinct neural circuits. Here, we have addressed this issue by quantitatively synthesizing and comparing neural signatures underlying social (21 contrasts, 207 foci, 696 subjects) and monetary (94 contrasts, 1083 foci, 2060 subjects) reward anticipation. We demonstrated that social and monetary reward anticipation engaged a common neural circuit consisting of the ventral tegmental area, ventral striatum, anterior insula, and supplementary motor area, which are intensively connected during both task and resting states. Functional decoding findings indicate that this generic neural pathway mediates positive value, motivational relevance, and action preparation during reward anticipation, which together motivate individuals to prepare well for the response to the upcoming target. Our findings support the common neural currency hypothesis by providing the first meta-analytic evidence to quantitatively show the common involvement of brain regions in both social and material reward anticipation.
Collapse
Affiliation(s)
- Ruolei Gu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenhao Huang
- Beijing Key Laboratory of Learning and Cognition, and School of Psychology, Capital Normal University, Beijing, China
| | - Julia Camilleri
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Pengfei Xu
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Shenzhen University, Shenzhen, China; Center for Emotion and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China; Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ping Wei
- Beijing Key Laboratory of Learning and Cognition, and School of Psychology, Capital Normal University, Beijing, China.
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Chunliang Feng
- Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China.
| |
Collapse
|
29
|
Abstract
Changes in brain function in chronic pain have been studied using paradigms that deliver acute pain-eliciting stimuli or assess the brain at rest. Although motor disability accompanies many chronic pain conditions, few studies have directly assessed brain activity during motor function in individuals with chronic pain. Using chronic jaw pain as a model, we assessed brain activity during a precisely controlled grip force task and during a precisely controlled pain-eliciting stimulus on the forearm. We used multivariate analyses to identify regions across the brain whose activity together best separated the groups. We report 2 novel findings. First, although the parameters of grip force production were similar between the groups, the functional activity in regions including the prefrontal cortex, insula, and thalamus best separated the groups. Second, although stimulus intensity and pain perception were similar between the groups, functional activity in brain regions including the dorsal lateral prefrontal cortex, rostral ventral premotor cortex, and inferior parietal lobule best separated the groups. Our observations suggest that chronic jaw pain is associated with changes in how the brain processes motor and pain-related information even when the effector producing the force or experiencing the pain-eliciting stimulus is distant from the jaw. We also demonstrate that motor tasks and multivariate analyses offer alternative approaches for studying brain function in chronic jaw pain.
Collapse
|
30
|
Combining lifestyle risks to disentangle brain structure and functional connectivity differences in older adults. Nat Commun 2019; 10:621. [PMID: 30728360 PMCID: PMC6365564 DOI: 10.1038/s41467-019-08500-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 01/02/2019] [Accepted: 01/12/2019] [Indexed: 01/02/2023] Open
Abstract
Lifestyle contributes to inter-individual variability in brain aging, but previous studies focused on the effects of single lifestyle variables. Here, we studied the combined and individual contributions of four lifestyle variables - alcohol consumption, smoking, physical activity, and social integration - to brain structure and functional connectivity in a population-based cohort of 549 older adults. A combined lifestyle risk score was associated with decreased gyrification in left premotor and right prefrontal cortex, and higher functional connectivity to sensorimotor and prefrontal cortex. While structural differences were driven by alcohol consumption, physical activity, and social integration, higher functional connectivity was driven by smoking. Results suggest that combining differentially contributing lifestyle variables may be more than the sum of its parts. Associations generally were neither altered by adjustment for genetic risk, nor by depressive symptomatology or education, underlining the relevance of daily habits for brain health. Lifestyle factors such as smoking and exercise contribute to the health of the brain during aging, but previous studies have focused on the effects of single lifestyle variables. Here, the authors examine the combined and individual effects of four lifestyle variables on brain structure and function.
Collapse
|
31
|
Welniarz Q, Gallea C, Lamy JC, Méneret A, Popa T, Valabregue R, Béranger B, Brochard V, Flamand-Roze C, Trouillard O, Bonnet C, Brüggemann N, Bitoun P, Degos B, Hubsch C, Hainque E, Golmard JL, Vidailhet M, Lehéricy S, Dusart I, Meunier S, Roze E. The supplementary motor area modulates interhemispheric interactions during movement preparation. Hum Brain Mapp 2019; 40:2125-2142. [PMID: 30653778 DOI: 10.1002/hbm.24512] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 01/01/2019] [Indexed: 01/25/2023] Open
Abstract
The execution of coordinated hand movements requires complex interactions between premotor and primary motor areas in the two hemispheres. The supplementary motor area (SMA) is involved in movement preparation and bimanual coordination. How the SMA controls bimanual coordination remains unclear, although there is evidence suggesting that the SMA could modulate interhemispheric interactions. With a delayed-response task, we investigated interhemispheric interactions underlying normal movement preparation and the role of the SMA in these interactions during the delay period of unimanual or bimanual hand movements. We used functional MRI and transcranial magnetic stimulation in 22 healthy volunteers (HVs), and then in two models of SMA dysfunction: (a) in the same group of HVs after transient disruption of the right SMA proper by continuous transcranial magnetic theta-burst stimulation; (b) in a group of 22 patients with congenital mirror movements (CMM), whose inability to produce asymmetric hand movements is associated with SMA dysfunction. In HVs, interhemispheric connectivity during the delay period was modulated according to whether or not hand coordination was required for the forthcoming movement. In HVs following SMA disruption and in CMM patients, interhemispheric connectivity was modified during the delay period and the interhemispheric inhibition was decreased. Using two models of SMA dysfunction, we showed that the SMA modulates interhemispheric interactions during movement preparation. This unveils a new role for the SMA and highlights its importance in coordinated movement preparation.
Collapse
Affiliation(s)
- Quentin Welniarz
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Faculté des sciences, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Université, Paris, France
| | - Cécile Gallea
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Jean-Charles Lamy
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Aurélie Méneret
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Traian Popa
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Romain Valabregue
- Centre de NeuroImagerie de Recherche CENIR, Institut du Cerveau et de la Moelle - ICM, Paris, France
| | - Benoît Béranger
- Centre de NeuroImagerie de Recherche CENIR, Institut du Cerveau et de la Moelle - ICM, Paris, France
| | - Vanessa Brochard
- Centre d'Investigation Clinique 14-22, INSERM/AP-HP, Paris, France
| | - Constance Flamand-Roze
- IFPPC, Centre CAMKeys, 7 rue des Cordelières, Paris, France.,Service de Neurologie, Unité Cardiovasculaire, Centre Hospitalier Sud-Francilien, Université Paris-Sud, Corbeille-Essonne, France
| | - Oriane Trouillard
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Cécilia Bonnet
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Bertrand Degos
- Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cécile Hubsch
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Elodie Hainque
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Louis Golmard
- Département de biostatistiques, AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris, France
| | - Marie Vidailhet
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Lehéricy
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Centre de NeuroImagerie de Recherche CENIR, Institut du Cerveau et de la Moelle - ICM, Paris, France
| | - Isabelle Dusart
- Faculté des sciences, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Université, Paris, France
| | - Sabine Meunier
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Emmanuel Roze
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
32
|
Vijayakumar S, Sallet J, Verhagen L, Folloni D, Medendorp WP, Mars RB. Mapping multiple principles of parietal-frontal cortical organization using functional connectivity. Brain Struct Funct 2018; 224:681-697. [PMID: 30470895 PMCID: PMC6420483 DOI: 10.1007/s00429-018-1791-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/08/2018] [Indexed: 12/02/2022]
Abstract
Resting state functional connectivity has been promoted as a promising tool for creating cortical maps that show remarkable similarity to those established by invasive histological methods. While this tool has been largely used to identify and map cortical areas, its true potential in the context of studying connectional architecture and in conducting comparative neuroscience has remained unexplored. Here, we employ widely used resting state connectivity and data-driven clustering methods to extend this approach for the study of the organizational principles of the macaque parietal–frontal system. We show multiple, overlapping principles of organization, including a dissociation between dorsomedial and dorsolateral pathways and separate parietal–premotor and parietal–frontal pathways. These results demonstrate the suitability of this approach for understanding the complex organizational principles of the brain and for large-scale comparative neuroscience.
Collapse
Affiliation(s)
- Suhas Vijayakumar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525HR, Nijmegen, The Netherlands.
| | - Jerome Sallet
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, 9 South Parks Road, Oxford, OX1 3UD, United Kingdom
| | - Lennart Verhagen
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, 9 South Parks Road, Oxford, OX1 3UD, United Kingdom
| | - Davide Folloni
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, 9 South Parks Road, Oxford, OX1 3UD, United Kingdom
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525HR, Nijmegen, The Netherlands
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525HR, Nijmegen, The Netherlands.,Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
33
|
Langner R, Eickhoff SB, Bilalić M. A network view on brain regions involved in experts' object and pattern recognition: Implications for the neural mechanisms of skilled visual perception. Brain Cogn 2018; 131:74-86. [PMID: 30290974 DOI: 10.1016/j.bandc.2018.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 01/12/2023]
Abstract
Skilled visual object and pattern recognition form the basis of many everyday behaviours. The game of chess has often been used as a model case for studying how long-term experience aides in perceiving objects and their spatio-functional interrelations. Earlier research revealed two brain regions, posterior middle temporal gyrus (pMTG) and collateral sulcus (CoS), to be linked to chess experts' superior object and pattern recognition, respectively. Here we elucidated the brain networks these two expertise-related regions are embedded in, employing resting-state functional connectivity analysis and meta-analytic connectivity modelling with the BrainMap database. pMTG was preferentially connected with dorsal visual stream areas and a parieto-prefrontal network for action planning, while CoS was preferentially connected with posterior medial cortex and hippocampus, linked to scene perception, perspective-taking and navigation. Functional profiling using BrainMap meta-data revealed that pMTG was linked to semantic processing as well as inhibition and attention, while CoS was linked to face and shape perception as well as passive viewing. Our findings suggest that pMTG subserves skilled object recognition by mediating the link between object identity and object affordances, while CoS subserves skilled pattern recognition by linking the position of individual objects with typical spatio-functional layouts of their environment stored in memory.
Collapse
Affiliation(s)
- Robert Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Merim Bilalić
- Department of Psychology, University of Northumbria at Newcastle, Newcastle, England, United Kingdom; Department of Neuroradiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Tsai CG, Chou TL, Li CW. Roles of posterior parietal and dorsal premotor cortices in relative pitch processing: Comparing musical intervals to lexical tones. Neuropsychologia 2018; 119:118-127. [PMID: 30056054 DOI: 10.1016/j.neuropsychologia.2018.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Humans use time-varying pitch patterns to convey information in music and speech. Recognition of musical melodies and lexical tones relies on relative pitch (RP), the ability to identify intervals between two pitches. RP processing in music is usually more fine-grained than that in tonal languages. In Western music, there are twelve pitch categories within an octave, whereas there are only three level (non-glide) lexical tones in Taiwanese (or Taiwanese Hokkien, a tonal language). The present study aimed at comparing the neural substrates underlying RP processing of musical melodic intervals with that of level lexical tones in Taiwanese. Functional magnetic resonance imaging data from fourteen participants with good RP were analyzed. The results showed that imagining the sounds of visually presented musical intervals was associated with enhanced activity in the central subregion of the right dorsal premotor cortex (dPMC), right posterior parietal cortex (PPC), and right dorsal precuneus compared to auditory imagery of visually presented Taiwanese bi-character words with level lexical tones. During the sound-congruence-judgement task (auditory imagery of musical intervals or bi-character words, and subsequently judging if the imagined sounds were melodically congruent with heard sounds), the contrast of the musical minus linguistic conditions yielded activity in the bilateral dPMC-PPC network and dorsal precuneus, with the dPMC activated in the rostral subregion. The central dPMC and PPC may mediate the attention-based maintenance of pitch intervals, whereas the dorsal precuneus may support attention control and the spatial/sensorimotor processing of the fine-grained pitch structures of music. When judging the congruence between the imagined and heard musical intervals, the bilateral rostral dPMC may play a role in attention control, working memory, evaluation of motor activities, and monitoring mechanisms. Based on the findings of this study and recent studies of amusia, we suggest that higher order cognitive operations are critical to the more fine-grained pitch processing of musical melodies compared to lexical tones.
Collapse
Affiliation(s)
- Chen-Gia Tsai
- Graduate Institute of Musicology, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Tai-Li Chou
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan; Department of Psychology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan; Graduate Institute of Linguistics, National Taiwan University, Taipei, Taiwan
| | - Chia-Wei Li
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
35
|
Ogawa A, Osada T, Tanaka M, Hori M, Aoki S, Nikolaidis A, Milham MP, Konishi S. Striatal subdivisions that coherently interact with multiple cerebrocortical networks. Hum Brain Mapp 2018; 39:4349-4359. [PMID: 29975005 PMCID: PMC6220841 DOI: 10.1002/hbm.24275] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022] Open
Abstract
The striatum constitutes the cortical‐basal ganglia loop and receives input from the cerebral cortex. Previous MRI studies have parcellated the human striatum using clustering analyses of structural/functional connectivity with the cerebral cortex. However, it is currently unclear how the striatal regions functionally interact with the cerebral cortex to organize cortical functions in the temporal domain. In the present human functional MRI study, the striatum was parcellated using boundary mapping analyses to reveal the fine architecture of the striatum by focusing on local gradient of functional connectivity. Boundary mapping analyses revealed approximately 100 subdivisions of the striatum. Many of the striatal subdivisions were functionally connected with specific combinations of cerebrocortical functional networks, such as somato‐motor (SM) and ventral attention (VA) networks. Time‐resolved functional connectivity analyses further revealed coherent interactions of multiple connectivities between each striatal subdivision and the cerebrocortical networks (i.e., a striatal subdivision‐SM connectivity and the same striatal subdivision‐VA connectivity). These results suggest that the striatum contains a large number of subdivisions that mediate functional coupling between specific combinations of cerebrocortical networks.
Collapse
Affiliation(s)
- Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masaki Tanaka
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Aki Nikolaidis
- Center for the Developing Brain, Child Mind Institute, New York, New York, USA
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, New York, USA
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Yan C, Zhou H, Wei W, Wang YJ, Cui L, Chan RC, Deng CP. Developmental Trajectories of Attention in Typically Developing Chinese Children: A Four-Wave Longitudinal Study. Dev Neuropsychol 2018; 43:479-496. [DOI: 10.1080/87565641.2018.1487442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Chao Yan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (MOE & STCSM), East China Normal University, Shanghai, China
| | - Hui Zhou
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (MOE & STCSM), East China Normal University, Shanghai, China
| | - Wei Wei
- College of Education, Shanghai Normal University, Shanghai, China
| | - Yi-ji Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (MOE & STCSM), East China Normal University, Shanghai, China
| | - Lixian Cui
- NYU-ECNU Institute for Social Development at NYU Shanghai, New York University Shanghai, Shanghai, China
| | - Raymond C.K. Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ci-ping Deng
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (MOE & STCSM), East China Normal University, Shanghai, China
| |
Collapse
|
37
|
Varikuti DP, Genon S, Sotiras A, Schwender H, Hoffstaedter F, Patil KR, Jockwitz C, Caspers S, Moebus S, Amunts K, Davatzikos C, Eickhoff SB. Evaluation of non-negative matrix factorization of grey matter in age prediction. Neuroimage 2018; 173:394-410. [PMID: 29518572 PMCID: PMC5911196 DOI: 10.1016/j.neuroimage.2018.03.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/28/2018] [Accepted: 03/03/2018] [Indexed: 11/24/2022] Open
Abstract
The relationship between grey matter volume (GMV) patterns and age can be captured by multivariate pattern analysis, allowing prediction of individuals' age based on structural imaging. Raw data, voxel-wise GMV and non-sparse factorization (with Principal Component Analysis, PCA) show good performance but do not promote relatively localized brain components for post-hoc examinations. Here we evaluated a non-negative matrix factorization (NNMF) approach to provide a reduced, but also interpretable representation of GMV data in age prediction frameworks in healthy and clinical populations. This examination was performed using three datasets: a multi-site cohort of life-span healthy adults, a single site cohort of older adults and clinical samples from the ADNI dataset with healthy subjects, participants with Mild Cognitive Impairment and patients with Alzheimer's disease (AD) subsamples. T1-weighted images were preprocessed with VBM8 standard settings to compute GMV values after normalization, segmentation and modulation for non-linear transformations only. Non-negative matrix factorization was computed on the GM voxel-wise values for a range of granularities (50-690 components) and LASSO (Least Absolute Shrinkage and Selection Operator) regression were used for age prediction. First, we compared the performance of our data compression procedure (i.e., NNMF) to various other approaches (i.e., uncompressed VBM data, PCA-based factorization and parcellation-based compression). We then investigated the impact of the granularity on the accuracy of age prediction, as well as the transferability of the factorization and model generalization across datasets. We finally validated our framework by examining age prediction in ADNI samples. Our results showed that our framework favorably compares with other approaches. They also demonstrated that the NNMF based factorization derived from one dataset could be efficiently applied to compress VBM data of another dataset and that granularities between 300 and 500 components give an optimal representation for age prediction. In addition to the good performance in healthy subjects our framework provided relatively localized brain regions as the features contributing to the prediction, thereby offering further insights into structural changes due to brain aging. Finally, our validation in clinical populations showed that our framework is sensitive to deviance from normal structural variations in pathological aging.
Collapse
Affiliation(s)
- Deepthi P Varikuti
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Juelich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Sarah Genon
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Juelich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Aristeidis Sotiras
- Section for Biomedical Image Analysis, Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Juelich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Juelich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Juelich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; JARA-BRAIN, Juelich-Aachen Research Alliance, Juelich, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Juelich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; JARA-BRAIN, Juelich-Aachen Research Alliance, Juelich, Germany
| | - Susanne Moebus
- Institute of Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Juelich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christos Davatzikos
- Section for Biomedical Image Analysis, Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Juelich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
38
|
Begliomini C, Sartori L, Di Bono MG, Budisavljević S, Castiello U. The Neural Correlates of Grasping in Left-Handers: When Handedness Does Not Matter. Front Neurosci 2018; 12:192. [PMID: 29666567 PMCID: PMC5891894 DOI: 10.3389/fnins.2018.00192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Neurophysiological studies showed that in macaques, grasp-related visuomotor transformations are supported by a circuit involving the anterior part of the intraparietal sulcus, the ventral and the dorsal region of the premotor area. In humans, a similar grasp-related circuit has been revealed by means of neuroimaging techniques. However, the majority of "human" studies considered movements performed by right-handers only, leaving open the question of whether the dynamics underlying motor control during grasping is simply reversed in left-handers with respect to right-handers or not. To address this question, a group of left-handed participants has been scanned with functional magnetic resonance imaging while performing a precision grasping task with the left or the right hand. Dynamic causal modeling was used to assess how brain regions of the two hemispheres contribute to grasping execution and whether the intra- and inter-hemispheric connectivity is modulated by the choice of the performing hand. Results showed enhanced inter-hemispheric connectivity between anterior intraparietal and dorsal premotor cortices during grasping execution with the left dominant hand (LDH) (e.g., right hemisphere) compared to the right (e.g., left hemisphere). These findings suggest that that the left hand, although dominant and theoretically more skilled in left handers, might need additional resources in terms of the visuomotor control and on-line monitoring to accomplish a precision grasping movement. The results are discussed in light of theories on the modulation of parieto-frontal networks during the execution of prehensile movements, providing novel evidence supporting the hypothesis of a handedness-independent specialization of the left hemisphere in visuomotor control.
Collapse
Affiliation(s)
- Chiara Begliomini
- Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy.,Padua Neuroscience Center, Padua, Italy
| | - Luisa Sartori
- Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy.,Padua Neuroscience Center, Padua, Italy
| | - Maria G Di Bono
- Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy
| | | | - Umberto Castiello
- Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy
| |
Collapse
|
39
|
da Silva RL, Labrecque D, Caromano FA, Higgins J, Frak V. Manual action verbs modulate the grip force of each hand in unimanual or symmetrical bimanual tasks. PLoS One 2018; 13:e0192320. [PMID: 29401468 PMCID: PMC5798821 DOI: 10.1371/journal.pone.0192320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/22/2018] [Indexed: 11/18/2022] Open
Abstract
Manual action verbs modulate the right-hand grip force in right-handed subjects. However, to our knowledge, no studies demonstrate the ability to accomplish this modulation during bimanual tasks nor describe their effect on left-hand behavior in unimanual and bimanual tasks. Using load cells and word playlists, we evaluated the occurrence of grip force modulation by manual action verbs in unimanual and symmetrical bimanual tasks across the three auditory processing phases. We found a significant grip force increase for all conditions compared to baseline, indicating the occurrence of modulation. When compared to each other, the grip force variation from baseline for the three phases of both hands in the symmetrical bimanual task was not different from the right-hand in the unimanual task. The left-hand grip force showed a lower amplitude for auditory phases 1 and 2 when compared to the other conditions. The right-hand grip force modulation became significant from baseline at 220 ms after the word onset in the unimanual task. This moment occurred earlier for both hands in bimanual task (160 ms for the right-hand and 180 for the left-hand). It occurred later for the left-hand in unimanual task (320 ms). We discuss the hypothesis that Broca's area and Broca's homologue area likely control the left-hand modulation in a unilateral or a bilateral fashion. These results provide new evidence for understanding the linguistic function processing in both hemispheres.
Collapse
Affiliation(s)
- Ronaldo Luis da Silva
- Faculté des Sciences, Université du Québec à Montréal, Quebec, Canada
- Centre de recherche interdisciplinaire en réadaptation (CRIR), site de l’Institut de Réadaptation Gingras-Lindsay-de-Montréal (IRGLM) du CIUSSS Centre-Sud-de-l'Île-de-Montréal, Quebec, Canada
- * E-mail:
| | - David Labrecque
- Faculté des Sciences, Université du Québec à Montréal, Quebec, Canada
| | - Fátima Aparecida Caromano
- Laboratory of Physical Therapy and Behaviour, Department of Physical Therapy, Speech and Occupational Therapy, University of São Paulo Medical School, São Paulo, Brazil
| | - Johanne Higgins
- Centre de recherche interdisciplinaire en réadaptation (CRIR), site de l’Institut de Réadaptation Gingras-Lindsay-de-Montréal (IRGLM) du CIUSSS Centre-Sud-de-l'Île-de-Montréal, Quebec, Canada
- École de Réadaptation, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Victor Frak
- Faculté des Sciences, Université du Québec à Montréal, Quebec, Canada
- Centre de recherche interdisciplinaire en réadaptation (CRIR), site de l’Institut de Réadaptation Gingras-Lindsay-de-Montréal (IRGLM) du CIUSSS Centre-Sud-de-l'Île-de-Montréal, Quebec, Canada
| |
Collapse
|
40
|
Camilleri JA, Müller VI, Fox P, Laird AR, Hoffstaedter F, Kalenscher T, Eickhoff SB. Definition and characterization of an extended multiple-demand network. Neuroimage 2018; 165:138-147. [PMID: 29030105 PMCID: PMC5732056 DOI: 10.1016/j.neuroimage.2017.10.020] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022] Open
Abstract
Neuroimaging evidence suggests that executive functions (EF) depend on brain regions that are not closely tied to specific cognitive demands but rather to a wide range of behaviors. A multiple-demand (MD) system has been proposed, consisting of regions showing conjoint activation across multiple demands. Additionally, a number of studies defining networks specific to certain cognitive tasks suggest that the MD system may be composed of a number of sub-networks each subserving specific roles within the system. We here provide a robust definition of an extended MDN (eMDN) based on task-dependent and task-independent functional connectivity analyses seeded from regions previously shown to be convergently recruited across neuroimaging studies probing working memory, attention and inhibition, i.e., the proposed key components of EF. Additionally, we investigated potential sub-networks within the eMDN based on their connectional and functional similarities. We propose an eMDN network consisting of a core whose integrity should be crucial to performance of most operations that are considered higher cognitive or EF. This then recruits additional areas depending on specific demands.
Collapse
Affiliation(s)
- J A Camilleri
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1,7), 52425 Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University, Universitätstraße 1, 40225 Düsseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Universitätstraße 1, 40225 Düsseldorf, Germany.
| | - V I Müller
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1,7), 52425 Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University, Universitätstraße 1, 40225 Düsseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Universitätstraße 1, 40225 Düsseldorf, Germany
| | - P Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, Texas, United States
| | - A R Laird
- Department of Physics, Florida International University, Miami, United States
| | - F Hoffstaedter
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1,7), 52425 Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University, Universitätstraße 1, 40225 Düsseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Universitätstraße 1, 40225 Düsseldorf, Germany
| | - T Kalenscher
- Institute of Comparative Psychology, Heinrich Heine University, Universitätstraße 1, 40225 Düsseldorf Germany
| | - S B Eickhoff
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1,7), 52425 Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University, Universitätstraße 1, 40225 Düsseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Universitätstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
41
|
Minkova L, Habich A, Peter J, Kaller CP, Eickhoff SB, Klöppel S. Gray matter asymmetries in aging and neurodegeneration: A review and meta-analysis. Hum Brain Mapp 2017; 38:5890-5904. [PMID: 28856766 DOI: 10.1002/hbm.23772] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 08/03/2017] [Accepted: 08/20/2017] [Indexed: 01/15/2023] Open
Abstract
Inter-hemispheric asymmetries are a common phenomenon of the human brain. Some evidence suggests that neurodegeneration related to aging and disease may preferentially affect the left-usually language- and motor-dominant-hemisphere. Here, we used activation likelihood estimation meta-analysis to assess gray matter (GM) loss and its lateralization in healthy aging and in neurodegeneration, namely, mild cognitive impairment (MCI), Alzheimer's dementia (AD), Parkinson's disease (PD), and Huntington's disease (HD). This meta-analysis, comprising 159 voxel-based morphometry publications (enrolling 4,469 patients and 4,307 controls), revealed that GM decline appeared to be asymmetric at trend levels but provided no evidence for increased left-hemisphere vulnerability. Regions with asymmetric GM decline were located in areas primarily affected by neurodegeneration. In HD, the left putamen showed converging evidence for more pronounced atrophy, while no consistent pattern was found in PD. In MCI, the right hippocampus was more atrophic than its left counterpart, a pattern that reversed in AD. The stability of these findings was confirmed using permutation tests. However, due to the lenient threshold used in the asymmetry analysis, further work is needed to confirm our results and to provide a better understanding of the functional role of GM asymmetries, for instance in the context of cognitive reserve and compensation. Hum Brain Mapp 38:5890-5904, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lora Minkova
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Laboratory for Biological and Personality Psychology, Department of Psychology, University of Freiburg, Freiburg, Germany
| | - Annegret Habich
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Jessica Peter
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Christoph P Kaller
- Freiburg Brain Imaging Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Neurology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-7) Research Centre Jülich, Jülich, Germany
| | - Stefan Klöppel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Center for Geriatric Medicine and Gerontology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
42
|
Li H, Fan L, Zhuo J, Wang J, Zhang Y, Yang Z, Jiang T. ATPP: A Pipeline for Automatic Tractography-Based Brain Parcellation. Front Neuroinform 2017; 11:35. [PMID: 28611620 PMCID: PMC5447055 DOI: 10.3389/fninf.2017.00035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/15/2017] [Indexed: 12/18/2022] Open
Abstract
There is a longstanding effort to parcellate brain into areas based on micro-structural, macro-structural, or connectional features, forming various brain atlases. Among them, connectivity-based parcellation gains much emphasis, especially with the considerable progress of multimodal magnetic resonance imaging in the past two decades. The Brainnetome Atlas published recently is such an atlas that follows the framework of connectivity-based parcellation. However, in the construction of the atlas, the deluge of high resolution multimodal MRI data and time-consuming computation poses challenges and there is still short of publically available tools dedicated to parcellation. In this paper, we present an integrated open source pipeline (https://www.nitrc.org/projects/atpp), named Automatic Tractography-based Parcellation Pipeline (ATPP) to realize the framework of parcellation with automatic processing and massive parallel computing. ATPP is developed to have a powerful and flexible command line version, taking multiple regions of interest as input, as well as a user-friendly graphical user interface version for parcellating single region of interest. We demonstrate the two versions by parcellating two brain regions, left precentral gyrus and middle frontal gyrus, on two independent datasets. In addition, ATPP has been successfully utilized and fully validated in a variety of brain regions and the human Brainnetome Atlas, showing the capacity to greatly facilitate brain parcellation.
Collapse
Affiliation(s)
- Hai Li
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijing, China.,University of Chinese Academy of SciencesBeijing, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijing, China.,University of Chinese Academy of SciencesBeijing, China
| | - Junjie Zhuo
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijing, China
| | - Jiaojian Wang
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengdu, China
| | - Yu Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijing, China
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijing, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijing, China.,University of Chinese Academy of SciencesBeijing, China.,Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengdu, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of SciencesBeijing, China.,Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
43
|
Xia X, Fan L, Cheng C, Eickhoff SB, Chen J, Li H, Jiang T. Multimodal connectivity-based parcellation reveals a shell-core dichotomy of the human nucleus accumbens. Hum Brain Mapp 2017; 38:3878-3898. [PMID: 28548226 DOI: 10.1002/hbm.23636] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/14/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
The subdifferentiation of the nucleus accumbens (NAc) has been extensively studied using neuroanatomy and histochemistry, yielding a well-accepted dichotomic shell/core architecture that reflects dissociable roles, such as in reward and aversion, respectively. However, in vivo parcellation of these structures in humans has been rare, potentially impairing future research into the structural and functional characteristics and alterations of putative NAc subregions. Here, we used three complementary parcellation schemes based on tractography, task-independent functional connectivity, and task-dependent co-activation to investigate the regional differentiation within the NAc. We found that a 2-cluster solution with shell-like and core-like subdivisions provided the best description of the data and was consistent with the earlier anatomical shell/core architecture. The consensus clusters from this optimal solution, which was based on the three schemes, were used as the final parcels for the subsequent connection analyses. The resulting connectivity patterns presented inter-hemispheric symmetry, convergence and divergence across the modalities, and, most importantly, clearly distinct patterns between the two subregions. This convergent connectivity patterns also confirmed the connections in animal models, supporting views that the two subregions could have antagonistic roles in some circumstances. Finally, the identified parcels should be helpful in further neuroimaging studies of the NAc. Hum Brain Mapp 38:3878-3898, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoluan Xia
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen Cheng
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, 52425 Juelich, Germany.,Institute for Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Junjie Chen
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Haifang Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,The Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
44
|
Genon S, Wensing T, Reid A, Hoffstaedter F, Caspers S, Grefkes C, Nickl-Jockschat T, Eickhoff SB. Searching for behavior relating to grey matter volume in a-priori defined right dorsal premotor regions: Lessons learned. Neuroimage 2017; 157:144-156. [PMID: 28552730 DOI: 10.1016/j.neuroimage.2017.05.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/17/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023] Open
Abstract
Recently, we showed that the functional heterogeneity of the right dorsal premotor (PMd) cortex could be better understood by dividing it into five subregions that showed different behavioral associations according to task-based activations studies. The present study investigated whether the revealed behavioral profile could be corroborated and complemented by a structural brain behavior correlation approach in two healthy adults cohorts. Grey matter volume within the five volumes of interest (VOI-GM) was computed using voxel-based morphometry. Associations between the inter-individual differences in VOI-GM and performance across a range of neuropsychological tests were assessed in the two cohorts with and without correction for demographical variables. Additional analyses were performed in random smaller subsamples drawn from each of the two cohorts. In both cohorts, correlation coefficients were low; only few were significant and a considerable number of correlations were counterintuitive in their directions (i.e., higher performance related to lower grey matter volume). Furthermore, correlation patterns were inconsistent between the two cohorts. Subsampling revealed that correlation patterns could vary widely across small samples and that negative correlations were as likely as positive correlations. Thus, the structural brain-behavior approach did not corroborate the functional profiles of the PMd subregions inferred from activation studies, suggesting that local recruitment by fMRI studies does not necessarily imply covariance of local structure with behavioral performance in healthy adults. We discuss the limitations of such studies and related recommendations for future studies.
Collapse
Affiliation(s)
- Sarah Genon
- Institute of Neuroscience and Medicine, INM-1/INM-7, Research Centre Jülich, Germany; GIGA-CRC In Vivo Imaging, University of Liege, Belgium; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany.
| | - Tobias Wensing
- Institute of Neuroscience and Medicine, INM-1/INM-7, Research Centre Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany; JARA - Translational Brain Medicine, Aachen
| | - Andrew Reid
- Department of Artificial Intelligence, Donders Centre for Cognition, Radboud University Nijmegen, The Netherlands
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, INM-1/INM-7, Research Centre Jülich, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine, INM-1/INM-7, Research Centre Jülich, Germany; C. u. O. Vogt-Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Germany
| | - Christian Grefkes
- Department of Neurology, University of Cologne, Germany; Institute of Neuroscience and Medicine, INM-3, Research Centre Jülich, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany; JARA - Translational Brain Medicine, Aachen
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, INM-1/INM-7, Research Centre Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| |
Collapse
|
45
|
Alcalá-López D, Smallwood J, Jefferies E, Van Overwalle F, Vogeley K, Mars RB, Turetsky BI, Laird AR, Fox PT, Eickhoff SB, Bzdok D. Computing the Social Brain Connectome Across Systems and States. Cereb Cortex 2017; 28:2207-2232. [DOI: 10.1093/cercor/bhx121] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/27/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniel Alcalá-López
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Jonathan Smallwood
- Department of Psychology, York Neuroimaging Centre, University of York, Hesslington, York, UK
| | - Elizabeth Jefferies
- Department of Psychology, York Neuroimaging Centre, University of York, Hesslington, York, UK
| | | | - Kai Vogeley
- Department of Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany
| | - Rogier B Mars
- Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - Bruce I Turetsky
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Simon B Eickhoff
- Medical Faculty, Institute for Systems Neuroscience, Heinrich-Heine University, Düsseldorf, Germany
- Institute for Neuroscience and Medicine (INM-7, Brain & Behavior), Research Center Jülich, Jülich, Germany
| | - Danilo Bzdok
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Parietal Team, INRIA, Neurospin, bat 145, CEA Saclay, Gif-sur-Yvette, France
- JARA, Translational Brain Medicine, Aachen, Germany
| |
Collapse
|
46
|
Eickhoff SB, Constable RT, Yeo BTT. Topographic organization of the cerebral cortex and brain cartography. Neuroimage 2017; 170:332-347. [PMID: 28219775 DOI: 10.1016/j.neuroimage.2017.02.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 01/17/2023] Open
Abstract
One of the most specific but also challenging properties of the brain is its topographic organization into distinct modules or cortical areas. In this paper, we first review the concept of topographic organization and its historical development. Next, we provide a critical discussion of the current definition of what constitutes a cortical area, why the concept has been so central to the field of neuroimaging and the challenges that arise from this view. A key aspect in this discussion is the issue of spatial scale and hierarchy in the brain. Focusing on in-vivo brain parcellation as a rapidly expanding field of research, we highlight potential limitations of the classical concept of cortical areas in the context of multi-modal parcellation and propose a revised interpretation of cortical areas building on the concept of neurobiological atoms that may be aggregated into larger units within and across modalities. We conclude by presenting an outlook on the implication of this revised concept for future mapping studies and raise some open questions in the context of brain parcellation.
Collapse
Affiliation(s)
- Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Germany.
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale University, USA; Department of Radiology and Biomedical Imaging, Yale University, USA; Department of Neurosurgery, Yale University, USA
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, ASTAR-NUS Clinical Imaging Research Centre, Singapore Institute for Neurotechnology and Memory Networks Program, National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA; Centre for Cognitive Neuroscience, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
47
|
The heterogeneity of the left dorsal premotor cortex evidenced by multimodal connectivity-based parcellation and functional characterization. Neuroimage 2017; 170:400-411. [PMID: 28213119 DOI: 10.1016/j.neuroimage.2017.02.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 11/23/2022] Open
Abstract
Despite the common conception of the dorsal premotor cortex (PMd) as a single brain region, its diverse connectivity profiles and behavioral heterogeneity argue for a differentiated organization of the PMd. A previous study revealed that the right PMd is characterized by a rostro-caudal and a ventro-dorsal distinction dividing it into five subregions: rostral, central, caudal, ventral and dorsal. The present study assessed whether a similar organization is present in the left hemisphere, by capitalizing on a multimodal data-driven approach combining connectivity-based parcellation (CBP) based on meta-analytic modeling, resting-state functional connectivity, and probabilistic diffusion tractography. The resulting PMd modules were then characterized based on multimodal functional connectivity and a quantitative analysis of associated behavioral functions. Analyzing the clusters consistent across all modalities revealed an organization of the left PMd that mirrored its right counterpart to a large degree. Again, caudal, central and rostral modules reflected a cognitive-motor gradient and a premotor eye-field was found in the ventral part of the left PMd. In addition, a distinct module linked to abstract cognitive functions was observed in the rostro-ventral left PMd across all CBP modalities, implying greater differentiation of higher cognitive functions for the left than the right PMd.
Collapse
|
48
|
Gollo LL, Roberts JA, Cocchi L. Mapping how local perturbations influence systems-level brain dynamics. Neuroimage 2017; 160:97-112. [PMID: 28126550 DOI: 10.1016/j.neuroimage.2017.01.057] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/12/2016] [Accepted: 01/23/2017] [Indexed: 11/15/2022] Open
Abstract
The human brain exhibits a distinct spatiotemporal organization that supports brain function and can be manipulated via local brain stimulation. Such perturbations to local cortical dynamics are globally integrated by distinct neural systems. However, it remains unclear how local changes in neural activity affect large-scale system dynamics. Here, we briefly review empirical and computational studies addressing how localized perturbations affect brain activity. We then systematically analyze a model of large-scale brain dynamics, assessing how localized changes in brain activity at the different sites affect whole-brain dynamics. We find that local stimulation induces changes in brain activity that can be summarized by relatively smooth tuning curves, which relate a region's effectiveness as a stimulation site to its position within the cortical hierarchy. Our results also support the notion that brain hubs, operating in a slower regime, are more resilient to focal perturbations and critically contribute to maintain stability in global brain dynamics. In contrast, perturbations of peripheral regions, characterized by faster activity, have greater impact on functional connectivity. As a parallel with this region-level result, we also find that peripheral systems such as the visual and sensorimotor networks were more affected by local perturbations than high-level systems such as the cingulo-opercular network. Our findings highlight the importance of a periphery-to-core hierarchy to determine the effect of local stimulation on the brain network. This study also provides novel resources to orient empirical work aiming at manipulating functional connectivity using non-invasive brain stimulation.
Collapse
Affiliation(s)
| | - James A Roberts
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; Centre of Excellence for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Luca Cocchi
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
49
|
Cortese S, Castellanos FX, Eickhoff CR, D’Acunto G, Masi G, Fox PT, Laird AR, Eickhoff SB. Functional Decoding and Meta-analytic Connectivity Modeling in Adult Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry 2016; 80:896-904. [PMID: 27569542 PMCID: PMC5108674 DOI: 10.1016/j.biopsych.2016.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 05/22/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Task-based functional magnetic resonance imaging (fMRI) studies of adult attention-deficit/hyperactivity disorder (ADHD) have revealed various ADHD-related dysfunctional brain regions, with heterogeneous findings across studies. Here, we used novel meta-analytic data-driven approaches to characterize the function and connectivity profile of ADHD-related dysfunctional regions consistently detected across studies. METHODS We first conducted an activation likelihood estimation meta-analysis of 24 task-based fMRI studies in adults with ADHD. Each ADHD-related dysfunctional region resulting from the activation likelihood estimation meta-analysis was then analyzed using functional decoding based on ~7500 fMRI experiments in the BrainMap database. This approach allows mapping brain regions to functions not necessarily tested in individual studies, thus suggesting possible novel functions for those regions. Additionally, ADHD-related dysfunctional regions were clustered based on their functional coactivation profiles across all the experiments stored in BrainMap (meta-analytic connectivity modeling). RESULTS ADHD-related hypoactivation was found in the left putamen, left inferior frontal gyrus (pars opercularis), left temporal pole, and right caudate. Functional decoding mapped the left putamen to cognitive aspects of music perception/reproduction and the left temporal lobe to language semantics; both these regions clustered together on the basis of their meta-analytic functional connectivity. Left inferior gyrus mapped to executive function tasks; right caudate mapped to both executive function tasks and music-related processes. CONCLUSIONS Our study provides meta-analytic support to the hypothesis that, in addition to well-known deficits in typical executive functions, impairment in processes related to music perception/reproduction and language semantics may be involved in the pathophysiology of adult ADHD.
Collapse
Affiliation(s)
- Samuele Cortese
- Academic Unit of Psychology, Developmental Brain-Behaviour Laboratory, Southampton, United Kingdom; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, United Kingdom; The Child Study Center, Hassenfeld Children's Hospital of New York, NYU Langone Medical Center, New York; IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Italy.
| | - F. Xavier Castellanos
- The Child Study Center at NYU Langone Medical Center, New York, NY, USA,Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Claudia R. Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich GmbH, Jülich, Germany,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Giulia D’Acunto
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Italy
| | - Gabriele Masi
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Italy
| | - Peter T. Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA,Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA,South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich GmbH, Jülich, Germany,Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|