1
|
Sarlo GL, Hooker CA, Macdonald KT, Sepeta LN, Gaillard WD, Xie H, Berl MM. FMRI activation during paragraph reading in pediatric epilepsy. Epilepsy Behav 2025; 166:110341. [PMID: 40081145 PMCID: PMC11978435 DOI: 10.1016/j.yebeh.2025.110341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/15/2025]
Abstract
OBJECTIVE This study examined brain activation differences during paragraph reading between children with and without epilepsy and if findings were related to neuropsychological performance. Exploratory analyses assessed activation in a subset of struggling readers. METHODS The study included 41 children with focal epilepsy (M = 10.5 years, 2.2) and 41 healthy controls with a similar mean age (M = 10 years, 1.7) who completed a neuropsychological battery and a functional magnetic resonance imaging (fMRI) paragraph reading task. Analyses included group comparisons of activation, including exploratory analyses with a subset of struggling readers with epilepsy. Correlational analyses examined relationships between activation and neuropsychological performance. RESULTS Despite significant differences in neuropsychological performance, there were no group differences in activation on reading fMRI between children with and without epilepsy. Across the combined sample, better sight word reading, reading fluency, and reading comprehension were positively correlated with activation of the left superior temporal gyrus. A subset analysis comparing healthy controls and non-struggling epilepsy readers to struggling epilepsy readers (SS < 85) showed more activation in the control groups compared to the struggling readers in focused areas including bilateral temporal gyrus, left cerebellum, and right inferior frontal gyrus. The subset of struggling readers was more likely than the non-struggling patient group to have frequent seizures and their seizure focus ipsilateral to their language dominance. SIGNIFICANCE Despite worse neuropsychological performance, the reading network was similarly activated in children with and without epilepsy. Relative to the broader functional network for reading, small, focused areas-particularly in the superior temporal lobe-were associated with less activation for those who had worse reading performance. Use of an fMRI paragraph reading task matched to a child's level show no to small differences related to epilepsy or reading performance which suggests its robustness as a task when the goal is to identify the language network such as for presurgical mapping.
Collapse
Affiliation(s)
- Gabrielle L Sarlo
- Center for Neuroscience, Children's National Research Institute, Children's National Hospital, Washington, DC, United States.
| | - Chloe A Hooker
- Center for Neuroscience, Children's National Research Institute, Children's National Hospital, Washington, DC, United States.
| | - Kelly T Macdonald
- Center for Neuroscience, Children's National Research Institute, Children's National Hospital, Washington, DC, United States.
| | - Leigh N Sepeta
- Center for Neuroscience, Children's National Research Institute, Children's National Hospital, Washington, DC, United States; Center for Neuroscience and Behavioral Health, Children's National Hospital, Washington, DC, United States; George Washington University, Washington, DC, United States.
| | - William D Gaillard
- Center for Neuroscience, Children's National Research Institute, Children's National Hospital, Washington, DC, United States; Center for Neuroscience and Behavioral Health, Children's National Hospital, Washington, DC, United States; George Washington University, Washington, DC, United States.
| | - Hua Xie
- Center for Neuroscience, Children's National Research Institute, Children's National Hospital, Washington, DC, United States.
| | - Madison M Berl
- Center for Neuroscience, Children's National Research Institute, Children's National Hospital, Washington, DC, United States; Center for Neuroscience and Behavioral Health, Children's National Hospital, Washington, DC, United States; George Washington University, Washington, DC, United States.
| |
Collapse
|
2
|
Wu R, Lopes de Queiroz IF, Rodriguez TM, Tavenner BP, Church JA. Interrupted Learning across the Lifespan. Hum Dev 2025; 69:65-78. [PMID: 40190841 PMCID: PMC11965854 DOI: 10.1159/000542216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/21/2024] [Indexed: 04/09/2025]
Abstract
Continued learning opportunities are important for adaptation across the lifespan. Interrupted learning (e.g., "summer slide") is a known, critical issue for childhood education. This perspective piece proposes that adulthood could be a period of prolonged interrupted learning with reduced learning opportunities, despite the known importance of lifelong learning. This idea goes beyond calls for healthy older adults to lead an active life to maintain cognitive abilities and to maintain basic functional skills by highlighting important lifespan circumstances that may hinder or facilitate adaptation in new and changing environments. We explore how research on interrupted learning in childhood could be applied to later adulthood and how changes in learning are viewed differently for children and adults. In addition, research on increasing abilities during childhood generally focuses on specific skills (e.g., reading, math), whereas cognitive aging research focuses on more general cognitive abilities related to attention and memory. Finally, given that interrupted learning occurs unevenly across different ages, abilities, and resources, more can be investigated in terms of who interrupted learning affects across the lifespan, and the neural underpinnings of interrupted learning. Acknowledging and addressing interrupted learning across the lifespan may promote long-term thriving and avoid preventable deficits and decline.
Collapse
Affiliation(s)
- Rachel Wu
- University of California, Riverside, CA, USA
| | | | | | | | | |
Collapse
|
3
|
Sinha N, Nikki Arrington C, Malins JG, Pugh KR, Frijters JC, Morris R. The reading-attention relationship: Variations in working memory network activity during single word decoding in children with and without dyslexia. Neuropsychologia 2024; 195:108821. [PMID: 38340962 PMCID: PMC11284775 DOI: 10.1016/j.neuropsychologia.2024.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
This study utilized a neuroimaging task to assess working memory (WM) network recruitment during single word reading. Associations between WM and reading comprehension skills are well documented. Several converging models suggest WM may also contribute to foundational reading skills, but few studies have assessed this contribution directly. Two groups of children (77 developmental dyslexia (DD), 22 controls) completed a functional magnetic resonance imaging (fMRI) task to identify activation of a priori defined regions of the WM network. fMRI trials consisted of familiar word, pseudoword, and false font stimuli within a 1-back oddball task to assess how activation in the WM network differs in response to stimuli that can respectively be processed using word recognition, phonological decoding, or non-word strategies. Results showed children with DD recruited WM regions bilaterally in response to all stimulus types, whereas control children recruited left-lateralized WM regions during the pseudoword condition only. Group-level comparisons revealed activation differences in the defined WM network regions for false font and familiar word, but not pseudoword conditions. This effect was driven by increased activity in participants with DD in right hemisphere frontal, parietal, and motor regions despite poorer task performance. Findings suggest the WM network may contribute to inefficient decoding and word recognition strategies in children with DD.
Collapse
Affiliation(s)
- Niki Sinha
- Department of Child and Youth Studies, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| | - C Nikki Arrington
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, United States; GSU/GT Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, 30318, United States; Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, 30303, United States
| | - Jeffrey G Malins
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, United States; Haskins Laboratories, New Haven, CT, 06511, United States
| | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, 06511, United States; Department of Linguistics, Yale University, New Haven, CT, 06520, United States; Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269, United States
| | - Jan C Frijters
- Department of Child and Youth Studies, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Robin Morris
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, United States
| |
Collapse
|
4
|
Nugiel T, Demeter DV, Mitchell ME, Garza A, Hernandez AE, Juranek J, Church JA. Brain connectivity and academic skills in English learners. Cereb Cortex 2024; 34:bhad414. [PMID: 38044467 PMCID: PMC10793574 DOI: 10.1093/cercor/bhad414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
English learners (ELs) are a rapidly growing population in schools in the United States with limited experience and proficiency in English. To better understand the path for EL's academic success in school, it is important to understand how EL's brain systems are used for academic learning in English. We studied, in a cohort of Hispanic middle-schoolers (n = 45, 22F) with limited English proficiency and a wide range of reading and math abilities, brain network properties related to academic abilities. We applied a method for localizing brain regions of interest (ROIs) that are group-constrained, yet individually specific, to test how resting state functional connectivity between regions that are important for academic learning (reading, math, and cognitive control regions) are related to academic abilities. ROIs were selected from task localizers probing reading and math skills in the same participants. We found that connectivity across all ROIs, as well as connectivity of just the cognitive control ROIs, were positively related to measures of reading skills but not math skills. This work suggests that cognitive control brain systems have a central role for reading in ELs. Our results also indicate that an individualized approach for localizing brain function may clarify brain-behavior relationships.
Collapse
Affiliation(s)
- Tehila Nugiel
- Department of Psychology, Florida State University, Tallahassee, FL 32304, United States
| | - Damion V Demeter
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92037, United States
| | - Mackenzie E Mitchell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - AnnaCarolina Garza
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Arturo E Hernandez
- Department of Psychology, University of Houston, Houston, TX 77204, United States
| | - Jenifer Juranek
- Department of Pediatrics, University of Texas Health Science Center, Houston, TX 77225, United States
| | - Jessica A Church
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, United States
- Biomedical Imaging Center, The University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
5
|
Burgess AN, Cutting LE. The behavioral and neurobiological relationships between executive function and reading: A review and preliminary findings. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2023; 17:267-278. [PMID: 38737569 PMCID: PMC11087004 DOI: 10.1111/mbe.12378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 08/04/2023] [Indexed: 05/14/2024]
Abstract
Despite decades of prior research, the mechanisms for how skilled reading develops remain elusive. Numerous studies have identified word recognition and oral language ability as key components to explain later reading comprehension performance. However, these components alone do not fully explain differences in reading achievement. There is ongoing work exploring other candidate processes important for reading, such as the domain-general cognitive ability of executive function (EF). Here, we summarize our work on the behavioral and neurobiological connections between EF and reading and present preliminary neuroimaging findings from ongoing work. Together, these studies suggest 1) that EF plays a supportive and perhaps indirect role in reading achievement and 2) that EF-related brain regions interface with the reading and language networks. While further work is needed to dissect the specifics of how EF interacts with reading, these studies begin to reveal the complex role that EF plays in reading development.
Collapse
Affiliation(s)
- Andrea N. Burgess
- Vanderbilt Brain Institute, Nashville, TN, USA. 465 21 Avenue South, Nashville, TN, 37212
- Department of Special Education, Peabody College of Education and Human Development, Vanderbilt University, Nashville, TN, USA. 110 Magnolia Circle, Nashville, TN, 37203
| | - Laurie E. Cutting
- Vanderbilt Brain Institute, Nashville, TN, USA. 465 21 Avenue South, Nashville, TN, 37212
- Department of Special Education, Peabody College of Education and Human Development, Vanderbilt University, Nashville, TN, USA. 110 Magnolia Circle, Nashville, TN, 37203
- Vanderbilt Kennedy Center, Nashville, TN, USA. 110 Magnolia Circle, Nashville, TN, 37203
| |
Collapse
|
6
|
Church JA. The Brain's Control Networks in Reading: Insights From Cross-Task Studies of Youth. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2023; 17:257-266. [PMID: 38745918 PMCID: PMC11091959 DOI: 10.1111/mbe.12372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/04/2023] [Indexed: 05/16/2024]
Abstract
Humans engage multiple brain systems to read successfully, including using regions important for vision, language, and control. Control refers to the set of executive processes in the brain that guide moment-to-moment behavior in service of our goals. There is a growing appreciation for the role of the brain's control system in reading comprehension, in reading skill change over time, and in those who have difficulty with the reading process. One way to understand the brain's control engagement in reading may be to study control engagement across multiple tasks in order to study consistencies, or cross-task similarities, relative to reading-specific variations. In this commentary, I briefly summarize some of our recent work studying the brain's control networks across different tasks (e.g., when reading, or doing different executive function tasks). I then review our findings of when control activation does or does not relate to measures of reading ability, and reading growth over time. The utility of cross-task comparisons in neuroimaging is noted, as well as the need to better understand multiple sources of heterogeneity in our developmental samples. I end by discussing a few of the many future directions for further study of the brain with regard to the brain's control processing and academic achievement.
Collapse
|
7
|
Yeatman JD. Understanding the interplay between executive functions and reading development: A challenge for researchers and practitioners alike. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2023; 17:334-337. [PMID: 38585024 PMCID: PMC10997348 DOI: 10.1111/mbe.12384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 04/09/2024]
Abstract
In June of 2022, The Dyslexia Foundation (TDF) organized a convening of dyslexia researchers and practitioners around the topic of executive functions. There was consensus on the importance of executive functions for reading development. However, the difficulty of defining, measuring, and training executive functions emerged as a challenge for researchers and practitioners alike. This special issue presents a collection of articles that survey different perspectives, define the current knowledge base, highlight challenges and inconsistencies in research, and chart a path towards a more nuanced understanding of the role of executive functions in reading and dyslexia.
Collapse
Affiliation(s)
- Jason D Yeatman
- Graduate School of Education and Department of Psychology, Stanford University, Division of Developmental and Behavioral Pediatrics, Stanford University School of Medicine
| |
Collapse
|
8
|
Martinez-Lincoln A, Fotidzis TS, Cutting LE, Price GR, Barquero LA. Examination of common and unique brain regions for atypical reading and math: a meta-analysis. Cereb Cortex 2023; 33:6959-6989. [PMID: 36758954 PMCID: PMC10233309 DOI: 10.1093/cercor/bhad013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
The purpose of this study is to identify consistencies across functional neuroimaging studies regarding common and unique brain regions/networks for individuals with reading difficulties (RD) and math difficulties (MD) compared to typically developing (TD) individuals. A systematic search of the literature, utilizing multiple databases, yielded 116 functional magnetic resonance imaging and positron emission tomography studies that met the criteria. Coordinates that directly compared TD with either RD or MD were entered into GingerALE (Brainmap.org). An activation likelihood estimate (ALE) meta-analysis was conducted to examine common and unique brain regions for RD and MD. Overall, more studies examined RD (n = 96) than MD (n = 20). Across studies, overactivation for reading and math occurred in the right insula and inferior frontal gyrus for atypically developing (AD) > TD comparisons, albeit in slightly different areas of these regions; however, inherent threshold variability across imaging studies could diminish overlying regions. For TD > AD comparisons, there were no similar or overlapping brain regions. Results indicate there were domain-specific differences for RD and MD; however, there were some similarities in the ancillary recruitment of executive functioning skills. Theoretical and practical implications for researchers and educators are discussed.
Collapse
Affiliation(s)
- Amanda Martinez-Lincoln
- Department of Special Education, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203, United States
| | - Tess S Fotidzis
- Department of Special Education, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203, United States
| | - Laurie E Cutting
- Department of Special Education, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203, United States
- Vanderbilt University Medical Center, Vanderbilt Kennedy Center, 110 Magnolia Circle, Nashville, TN 37203, United States
| | - Gavin R Price
- Department of Psychology, University of Exeter, Washington Singer Building Perry Road Exeter EX44QG, United Kingdom
| | - Laura A Barquero
- Department of Special Education, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203, United States
| |
Collapse
|
9
|
Nugiel T, Mitchell ME, Demeter DV, Garza A, Cirino PT, Hernandez AE, Juranek J, Church JA. Brain Engagement During a Cognitive Flexibility Task Relates to Academic Performance in English Learners. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2023; 17:149-160. [PMID: 38770227 PMCID: PMC11103627 DOI: 10.1111/mbe.12362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/13/2023] [Indexed: 05/22/2024]
Abstract
English Learners (ELs), students from non-English-speaking backgrounds, are a fast-growing, understudied, group of students in the U.S. with unique learning challenges. Cognitive flexibility-the ability to switch between task demands with ease-may be an important factor in learning for ELs as they have to manage learning in their non-dominant language and access knowledge in multiple languages. We used functional MRI to measure cognitive flexibility brain activity in a group of Hispanic middle school ELs (N = 63) and related it to their academic skills. We found that brain engagement during the cognitive flexibility task was related to both out-of-scanner reading and math measures. These relationships were observed across the brain, including in cognitive control, attention, and default mode networks. This work suggests the real-world importance of cognitive flexibility for adolescent ELs, where individual differences in brain engagement were associated with educational outcomes.
Collapse
Affiliation(s)
- Tehila Nugiel
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| | - Mackenzie E Mitchell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| | - Damion V Demeter
- Department of Cognitive Science, University of California San Diego
| | | | | | | | - Jenifer Juranek
- Department of Pediatrics, University of Texas Health Science Center
| | - Jessica A Church
- Department of Psychology, The University of Texas at Austin
- Biomedical Imaging Center, The University of Texas at Austin
| |
Collapse
|
10
|
Church JA, Grigorenko EL, Fletcher JM. The Role of Neural and Genetic Processes in Learning to Read and Specific Reading Disabilities: Implications for Instruction. READING RESEARCH QUARTERLY 2023; 58:203-219. [PMID: 37456924 PMCID: PMC10348696 DOI: 10.1002/rrq.439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/29/2021] [Indexed: 07/18/2023]
Abstract
To learn to read, the brain must repurpose neural systems for oral language and visual processing to mediate written language. We begin with a description of computational models for how alphabetic written language is processed. Next, we explain the roles of a dorsal sublexical system in the brain that relates print and speech, a ventral lexical system that develops the visual expertise for rapid orthographic processing at the word level, and the role of cognitive control networks that regulate attentional processes as children read. We then use studies of children, adult illiterates learning to read, and studies of poor readers involved in intervention, to demonstrate the plasticity of these neural networks in development and in relation to instruction. We provide a brief overview of the rapid increase in the field's understanding and technology for assessing genetic influence on reading. Family studies of twins have shown that reading skills are heritable, and molecular genetic studies have identified numerous regions of the genome that may harbor candidate genes for the heritability of reading. In selected families, reading impairment has been associated with major genetic effects, despite individual gene contributions across the broader population that appear to be small. Neural and genetic studies do not prescribe how children should be taught to read, but these studies have underscored the critical role of early intervention and ongoing support. These studies also have highlighted how structured instruction that facilitates access to the sublexical components of words is a critical part of training the brain to read.
Collapse
Affiliation(s)
| | - Elena L Grigorenko
- University of Houston, Texas, USA; Baylor College of Medicine, Houston, Texas, USA; and St. Petersburg State University, Russia
| | | |
Collapse
|
11
|
Ozernov‐Palchik O, Sury D, Turesky TK, Yu X, Gaab N. Longitudinal changes in brain activation underlying reading fluency. Hum Brain Mapp 2023; 44:18-34. [PMID: 35984111 PMCID: PMC9783447 DOI: 10.1002/hbm.26048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 05/23/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023] Open
Abstract
Reading fluency-the speed and accuracy of reading connected text-is foundational to educational success. The current longitudinal study investigates the neural correlates of fluency development using a connected-text paradigm with an individualized presentation rate. Twenty-six children completed a functional MRI task in 1st/2nd grade (time 1) and again 1-2 years later (time 2). There was a longitudinal increase in activation in the ventral occipito-temporal (vOT) cortex from time 1 to time 2. This increase was also associated with improvements in reading fluency skills and modulated by individual speed demands. These findings highlight the reciprocal relationship of the vOT region with reading proficiency and its importance for supporting the developmental transition to fluent reading. These results have implications for developing effective interventions to target increased automaticity in reading.
Collapse
Affiliation(s)
- Ola Ozernov‐Palchik
- McGovern Institute for Brain ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Harvard Graduate School of EducationHarvard UniversityCambridgeMassachusettsUSA
| | - Dana Sury
- Department of Learning Disabilities, Faculty of EducationBeit Berl CollegeHasharonIsrael
| | - Ted K. Turesky
- Harvard Graduate School of EducationHarvard UniversityCambridgeMassachusettsUSA
| | - Xi Yu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| | - Nadine Gaab
- Harvard Graduate School of EducationHarvard UniversityCambridgeMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
12
|
Abstract
While learning from mistakes is a lifelong process, the rate at which an individual makes errors on any given task decreases through late adolescence. Previous fMRI adult work indicates that several control brain networks are reliably active when participants make errors across multiple tasks. Less is known about the consistency and localization of error processing in the child brain because previous research has used single tasks. The current analysis pooled data across three studies to examine error-related task activation (two tasks per study, three tasks in total) for a group of 232 children aged 8-17 years. We found that, consistent with the adult literature, the majority of applied cingulo-opercular brain regions, including medial superior frontal cortex, dorsal anterior cingulate, and bilateral anterior insula, showed consistent error processing engagement in children across multiple tasks. Error-related activity in many of these cingulo-opercular regions correlated with task performance. However, unlike in the adult literature, we found a lack of error-related activation across tasks in dorsolateral frontal areas, and we also did not find any task-consistent relations with age in these regions. Our findings suggest that the task-general error processing signal in the developing brain is fairly robust and similar to adults, with the exception of lateral frontal cortex.
Collapse
|
13
|
Distinct neural substrates of individual differences in components of reading comprehension in adults with or without dyslexia. Neuroimage 2020; 226:117570. [PMID: 33221445 DOI: 10.1016/j.neuroimage.2020.117570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 12/26/2022] Open
Abstract
Reading comprehension is a complex task that depends on multiple cognitive and linguistic processes. According to the updated Simple View of Reading framework, in adults, individual variation in reading comprehension can be largely explained by combined variance in three component abilities: (1) decoding accuracy, (2) fluency, and (3) language comprehension. Here we asked whether the neural correlates of the three components are different in adults with dyslexia as compared to typically-reading adults and whether the relative contribution of these correlates to reading comprehension is similar in the two groups. We employed a novel naturalistic fMRI reading task to identify the neural correlates of individual differences in the three components using whole-brain and literature-driven regions-of-interest approaches. Across all participants, as predicted by the Simple View framework, we found distinct patterns of associations with linguistic and domain-general regions for the three components, and that the left-hemispheric neural correlates of language comprehension in the angular and posterior temporal gyri made the largest contributions to explaining out-of-scanner reading comprehension performance. These patterns differed between the two groups. In typical adult readers, better fluency was associated with greater activation of left occipitotemporal regions, better comprehension with lesser activation in prefrontal and posterior parietal regions, and there were no significant associations with decoding. In adults with dyslexia, better fluency was associated with greater activation of bilateral inferior parietal regions, better comprehension was associated with greater activation in some prefrontal clusters and lower in others, and better decoding skills were associated with lesser activation of bilateral prefrontal and posterior parietal regions. Extending the behavioral findings of skill-level differences in the relative contribution of the three components to reading comprehension, the relative contributions of the neural correlates to reading comprehension differed based on dyslexia status. These findings reveal some of the neural correlates of individual differences in the three components and the underlying mechanisms of reading comprehension deficits in adults with dyslexia.
Collapse
|
14
|
Farah R, Coalson RS, Petersen SE, Schlaggar BL, Horowitz-Kraus T. Children Use Regions in the Visual Processing and Executive Function Networks during a Subsequent Memory Reading Task. Cereb Cortex 2020; 29:5180-5189. [PMID: 30927366 DOI: 10.1093/cercor/bhz057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/01/2019] [Accepted: 02/27/2019] [Indexed: 01/17/2023] Open
Abstract
Memory encoding is a critical process for memory function, which is foundational for cognitive functioning including reading, and has been extensively studied using subsequent memory tasks. Research in adults using such tasks indicates the participation of visual and cognitive-control systems in remembered versus forgotten words. However, given the known developmental trajectories of these systems, the functional neuroanatomy of memory encoding in children may be different than in adults. We examined brain activation for silent word reading and checkerboard viewing during an event-related reading task in 8-12 year-old children. Results indicate greater activation for checkerboard viewing than lexical processing in early visual regions, as well as for lexical processing versus checkerboard viewing in regions in left sensorimotor mouth, cingulo-opercular and dorsal-attention networks. Greater activation for remembered than forgotten words was observed in bilateral visual system and left lateralized regions within the ventral- and dorsal-attention, cingulo-opercular and fronto-parietal networks. These findings suggest a relatively mature reliance on the cognitive-control system, but greater reliance on the visual system in children when viewing words subsequently remembered. The location of regions with greater activity for remembered words reinforces the involvement of the attention and cognitive-control systems in subsequent memory in reading.
Collapse
Affiliation(s)
- Rola Farah
- Educational Neuroimaging Center, Faculty of Biomedical Engineering.,Faculty of Education in Science and Technology, Technion, Haifa, Israel
| | | | - Steven E Petersen
- Division of Neuropsychology, Department of Psychology, Washington University Medical School, St. Louis, MO, USA
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, MD, USA.,Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Center, Faculty of Biomedical Engineering.,Faculty of Education in Science and Technology, Technion, Haifa, Israel.,Reading and Literacy Discovery Center, Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
15
|
Cartwright KB, Bock AM, Clause JH, Coppage August EA, Saunders HG, Schmidt KJ. Near- and far-transfer effects of an executive function intervention for 2nd to 5th-grade struggling readers. COGNITIVE DEVELOPMENT 2020. [DOI: 10.1016/j.cogdev.2020.100932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Nugiel T, Roe MA, Engelhardt LE, Mitchell ME, Zheng A, Church JA. Pediatric ADHD symptom burden relates to distinct neural activity across executive function domains. Neuroimage Clin 2020; 28:102394. [PMID: 32971467 PMCID: PMC7511724 DOI: 10.1016/j.nicl.2020.102394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/19/2020] [Indexed: 11/27/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent childhood disorder marked by inattention and/or hyperactivity symptoms. ADHD may also relate to impaired executive function (EF), but is often studied in a single EF task per sample. The current study addresses the question of unique vs. overlapping relations in brain activity across multiple EF tasks and ADHD symptom burden. Three in-scanner tasks drawn from distinct EF domains (cognitive flexibility, working memory, and inhibition) were collected from children with and without an ADHD diagnosis (N = 63). Whole-brain activity and 11 regions of interest were correlated with parent reports of inattention and hyperactivity symptoms. Across the three EF domains, brain activity related to ADHD symptom burden, but the direction and location of these associations differed across tasks. Overall, activity in sensory and default mode network regions related to ADHD, and these relations did not consistently overlap across EF domains. We observed both distinct and overlapping patterns for inattention and hyperactivity symptoms. By studying multiple EF tasks in the same sample, we identified a heterogenous neural profile related to attention symptom burden in children. Our results inform ADHD characterization and treatment and explain some of the variable brain results related to EF and ADHD reported in the literature.
Collapse
Affiliation(s)
- Tehila Nugiel
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States.
| | - Mary Abbe Roe
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Laura E Engelhardt
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Mackenzie E Mitchell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Annie Zheng
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jessica A Church
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States; Biomedical Imaging Center, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
17
|
Meri R, Farah R, Horowitz-Kraus T. Children with dyslexia utilize both top-down and bottom-up networks equally in contextual and isolated word reading. Neuropsychologia 2020; 147:107574. [PMID: 32780996 DOI: 10.1016/j.neuropsychologia.2020.107574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Executive functions (EF) include cognitive processes that support learning and reading. Children with dyslexia experience challenges with both reading and reading comprehension. The neurobiological support for EF deficits during reading comprehension, however, has yet to be defined. Here we aimed to identify the neural networks related to EF during a reading comprehension task focusing on top-down and bottom-up networks in children with dyslexia and typical readers (TR). METHOD Twenty children with dyslexia and 19 TR aged 8-12 were scanned during a sentence comprehension (SC) task that included isolated words and sentences that make sense, in addition to undergoing reading and EF behavioral assessment. Functional connectivity within and between four EF networks related to top-down and bottom-up processing were calculated. RESULTS Children with dyslexia scored significantly lower in reading and EF testing in several subdomains compared to TR. Children with dyslexia displayed decreased accuracy in both task conditions compared to TR during the SC task. Neuroimaging data analysis revealed that TR had greater functional connectivity within and between top-down and bottom-up processes, in the sentence vs. isolated word condition, compared to children with dyslexia. DISCUSSION TR demonstrate a reliance on top-down and bottom-up networks only during sentence comprehension. In children with dyslexia, however, this reliance was not found in either of the task conditions, suggesting that both conditions were equally challenging for them. These findings emphasize the involvement of EF networks in the reading comprehension process and highlight their impaired functionality among children with reading difficulties.
Collapse
Affiliation(s)
- Raya Meri
- Educational Neuroimaging Center, Faculty of Education in Science and Technology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rola Farah
- Educational Neuroimaging Center, Faculty of Education in Science and Technology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Center, Faculty of Education in Science and Technology, Technion - Israel Institute of Technology, Haifa, Israel; Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel; Reading and Literacy Discovery Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
18
|
Church JA, Cirino PT, Miciak J, Juranek J, Vaughn S, Fletcher JM. Cognitive, Intervention, and Neuroimaging Perspectives on Executive Function in Children With Reading Disabilities. New Dir Child Adolesc Dev 2019; 2019:25-54. [PMID: 31046202 PMCID: PMC6522302 DOI: 10.1002/cad.20292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of executive function (EF) in the reading process, and in those with reading difficulties, remains unclear. As members of the Texas Center for Learning Disabilities, we review multiple perspectives regarding EF in reading and then summarize some of our recent studies of struggling and typical readers in grades 3-5. Study 1a found that a bi-factor structure best represented a comprehensive assessment of EF. Study 1b found that cognitive and behavioral measures of EF related independently to math and reading. Study 1c found that EF related to reading, above and beyond other variables, but Study 1d found no evidence that adding an EF training component improved intervention response. Study 1e found that pretest EF abilities did not relate to intervention response. Neuroimaging studies examined EF-related brain activity during both reading and nonlexical EF tasks. In Study 2a, the EF task evoked control activity, but generated no differences between struggling and typical readers. The reading task, however, had group differences in both EF and reading regions. In Study 2b, EF activity during reading at pretest was related to intervention response. Across studies, EF appears involved in the reading process. There is less evidence for general EF predicting or improving intervention outcomes.
Collapse
|
19
|
Farah R, Horowitz-Kraus T. Increased Functional Connectivity Within and Between Cognitive-Control Networks from Early Infancy to Nine Years During Story Listening. Brain Connect 2019; 9:285-295. [PMID: 30777454 PMCID: PMC6479241 DOI: 10.1089/brain.2018.0625] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cingulo-opercular (CO) and frontoparietal (FP) networks are part of the cognitive-control system of the brain. Evidence suggests that over the course of development, brain regions supporting cognitive-control functions become more integrated within their networks (i.e., have increased within-network connectivity), more separated from other networks, and, due to increased maturation along development, are more functionally connected between the networks. The focus of this study was to characterize the developmental trajectory of the CO and FP networks from early infancy (17 months) to 9 years of age in typically developing children while listening to stories, using functional connectivity analyses. Seventy-four children underwent a functional magnetic resonance imaging session while listening to stories inside the scanner. Within- and between-network functional connectivity and graph theory measures were compared during development. Developmental increase in functional connectivity within the CO network and between the CO and FP networks, as well as global efficiency of the CO network from 17 months to 9 years of age, was observed. These findings highlight the involvement of the CO and FP networks in story listening from early infancy, which increases along development. Future studies examining failures in language acquisition to further explore the role of these networks in story listening are warranted.
Collapse
Affiliation(s)
- Rola Farah
- Faculty of Biomedical Engineering, Educational Neuroimaging Center, Technion, Haifa, Israel
- Faculty of Education in Science and Technology, Educational Neuroimaging Center, Technion, Haifa, Israel
| | - Tzipi Horowitz-Kraus
- Faculty of Biomedical Engineering, Educational Neuroimaging Center, Technion, Haifa, Israel
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
20
|
Nugiel T, Roe MA, Taylor WP, Cirino PT, Vaughn SR, Fletcher JM, Juranek J, Church JA. Brain activity in struggling readers before intervention relates to future reading gains. Cortex 2019; 111:286-302. [PMID: 30557815 PMCID: PMC6420828 DOI: 10.1016/j.cortex.2018.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/25/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Neural markers for reading-related changes in response to intervention could inform intervention plans by serving as a potential index of the malleability of the reading network in struggling readers. Of particular interest is the role of brain activation outside the reading network, especially in executive control networks important for reading comprehension. However, it is unclear whether any intervention-related executive control changes in the brain are specific to reading tasks or reflect more domain general changes. Brain changes associated with reading gains over time were compared for a sentence comprehension task as well as for a non-lexical executive control task (a behavioral inhibition task) in upper-elementary struggling readers, and in grade-matched non-struggling readers. Functional MRI scans were conducted before and after 16 weeks of reading intervention. Participants were grouped as improvers and non-improvers based on the consistency and size of post-intervention gains across multiple post-test measures. Engagement of the right fusiform during the reading task, both before and after intervention, was related to gains from remediation. Additionally, pre-intervention activation in regions that are part of the default-mode network (precuneus) and the fronto-parietal network (right posterior middle temporal gyrus) separated improvers and non-improvers from non-struggling readers. None of these differences were observed during the non-lexical inhibitory control task, indicating that the brain changes seen related to intervention outcome in struggling readers were specific to the reading process.
Collapse
Affiliation(s)
- Tehila Nugiel
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
| | - Mary Abbe Roe
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - W Patrick Taylor
- Department of Psychology, The University of Houston, Houston, TX, USA
| | - Paul T Cirino
- Department of Psychology, The University of Houston, Houston, TX, USA
| | - Sharon R Vaughn
- Meadows Center for Prevention of Educational Risk, The University of Texas at Austin, Austin, TX, USA
| | - Jack M Fletcher
- Department of Psychology, The University of Houston, Houston, TX, USA
| | - Jenifer Juranek
- Department of Pediatrics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jessica A Church
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA; Biomedical Imaging Center, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|