1
|
El Rassi Y, Handjaras G, Perciballi C, Leo A, Papale P, Corbetta M, Ricciardi E, Betti V. A visual representation of the hand in the resting somatomotor regions of the human brain. Sci Rep 2024; 14:18298. [PMID: 39112629 PMCID: PMC11306329 DOI: 10.1038/s41598-024-69248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Hand visibility affects motor control, perception, and attention, as visual information is integrated into an internal model of somatomotor control. Spontaneous brain activity, i.e., at rest, in the absence of an active task, is correlated among somatomotor regions that are jointly activated during motor tasks. Recent studies suggest that spontaneous activity patterns not only replay task activation patterns but also maintain a model of the body's and environment's statistical regularities (priors), which may be used to predict upcoming behavior. Here, we test whether spontaneous activity in the human somatomotor cortex as measured using fMRI is modulated by visual stimuli that display hands vs. non-hand stimuli and by the use/action they represent. A multivariate pattern analysis was performed to examine the similarity between spontaneous activity patterns and task-evoked patterns to the presentation of natural hands, robot hands, gloves, or control stimuli (food). In the left somatomotor cortex, we observed a stronger (multivoxel) spatial correlation between resting state activity and natural hand picture patterns compared to other stimuli. No task-rest similarity was found in the visual cortex. Spontaneous activity patterns in somatomotor brain regions code for the visual representation of human hands and their use.
Collapse
Affiliation(s)
- Yara El Rassi
- IMT School for Advanced Studies Lucca, 55100, Lucca, Italy
| | | | | | - Andrea Leo
- IMT School for Advanced Studies Lucca, 55100, Lucca, Italy
- Department of Translational Research and Advanced Technologies, In Medicine and Surgery - University of Pisa, 56126, Pisa, Italy
| | - Paolo Papale
- IMT School for Advanced Studies Lucca, 55100, Lucca, Italy
- Department of Vision & Cognition, Netherlands Institute for Neuroscience (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padua, 35131, Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), 35129, Padua, Italy
| | | | - Viviana Betti
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy.
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy.
| |
Collapse
|
2
|
Zhang L, Pini L, Kim D, Shulman GL, Corbetta M. Spontaneous Activity Patterns in Human Attention Networks Code for Hand Movements. J Neurosci 2023; 43:1976-1986. [PMID: 36788030 PMCID: PMC10027113 DOI: 10.1523/jneurosci.1601-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Recent evidence suggests that, in the absence of any task, spontaneous brain activity patterns and connectivity in the visual and motor cortex code for natural stimuli and actions, respectively. These "resting-state" activity patterns may underlie the maintenance and consolidation (replay) of information states coding for ecological stimuli and behaviors. In this study, we examine whether replay patterns occur in resting-state activity in association cortex grouped into high-order cognitive networks not directly processing sensory inputs or motor outputs. Fifteen participants (7 females) performed four hand movements during an fMRI study. Three movements were ecological. The fourth movement as control was less ecological. Before and after the task scans, we acquired resting-state fMRI scans. The analysis examined whether multivertex task activation patterns for the four movements computed at the cortical surface in different brain networks resembled spontaneous activity patterns measured at rest. For each movement, we computed a vector of r values indicating the strength of the similarity between the mean task activation pattern and frame-by-frame resting-state patterns. We computed a cumulative distribution function of r 2 values and used the 90th percentile cutoff value for comparison. In the dorsal attention network, resting-state patterns were more likely to match task patterns for the ecological movements than the control movement. In contrast, rest-task pattern correlation was more likely for less ecological movement in the ventral attention network. These findings show that spontaneous activity patterns in human attention networks code for hand movements.SIGNIFICANCE STATEMENT fMRI indirectly measures neural activity noninvasively. Resting-state (spontaneous) fMRI signals measured in the absence of any task resemble signals evoked by task performance both in topography and inter-regional (functional) connectivity. However, the function of spontaneous brain activity is unknown. We recently showed that spatial activity patterns evoked by visual and motor tasks in visual and motor cortex, respectively, occur at rest in the absence of any stimulus or response. Here we show that activity patterns related to hand movements replay at rest in frontoparietal regions of the human attention system. These findings show that spontaneous activity in the human cortex may mediate the maintenance and consolidation of information states coding for ecological stimuli and behaviors.
Collapse
Affiliation(s)
- Lu Zhang
- Padova Neuroscience Center, University of Padova, Padova, 35131, Italy
| | - Lorenzo Pini
- Padova Neuroscience Center, University of Padova, Padova, 35131, Italy
| | - DoHyun Kim
- Departments of Neurology and Radiology, Washington University-St Louis, St Louis, Missouri 63110
| | - Gordon L Shulman
- Departments of Neurology and Radiology, Washington University-St Louis, St Louis, Missouri 63110
| | - Maurizio Corbetta
- Padova Neuroscience Center, University of Padova, Padova, 35131, Italy
- Departments of Neurology and Radiology, Washington University-St Louis, St Louis, Missouri 63110
- Department of Neuroscience, University of Padova, Padova, 35131, Italy
- Venetian Institute of Molecular Medicine, Padova, 35129, Italy
| |
Collapse
|
3
|
Esposito A, Chiarella SG, Raffone A, Nikolaev AR, van Leeuwen C. Perceptual bias contextualized in visually ambiguous stimuli. Cognition 2023; 230:105284. [PMID: 36174260 DOI: 10.1016/j.cognition.2022.105284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
The visual appearance of an object is a function of stimulus properties as well as perceptual biases imposed by the observer. The context-specific trade-off between both can be measured accurately in a perceptual judgment task, involving grouping by proximity in ambiguous dot lattices. Such grouping depends lawfully on a stimulus parameter of the dot lattices known as their aspect ratio (AR), whose effect is modulated by a perceptual bias representing the preference for a cardinal orientation. In two experiments, we investigated how preceding context can lead to bias modulation, either in a top-down fashion via visual working memory (VWM) or bottom-up via sensory priming. In Experiment 1, we embedded the perceptual judgment task in a change detection paradigm and studied how the factors of VWM load (complexity of the memory array) and content (congruency in orientation to the ensuing dot lattice) affect the prominence of perceptual bias. A robust vertical orientation bias was observed, which was increased by VWM load and modulated by congruent VWM content. In Experiment 2, dot lattices were preceded by oriented primes. Here, primes regardless of orientation elicited a vertical orientation bias in dot lattices compared to a neutral baseline. Taken together, the two experiments demonstrate that top-down context (VWM load and content) effectively controls orientation bias modulation, while bottom-up context (i.e., priming) merely acts as an undifferentiated trigger to perceptual bias. These findings characterize the temporal context sensitivity of Gestalt perception, shed light on the processes responsible for different perceptual outcomes of ambiguous stimuli, and identify some of the mechanisms controlling perceptual bias.
Collapse
Affiliation(s)
- Antonino Esposito
- Department of Psychology, Sapienza University of Rome, Italy; Brain and Cognition Research Unit, KU Leuven, Belgium.
| | - Salvatore Gaetano Chiarella
- Department of Psychology, Sapienza University of Rome, Italy; Brain and Cognition Research Unit, KU Leuven, Belgium
| | | | - Andrey R Nikolaev
- Brain and Cognition Research Unit, KU Leuven, Belgium; Department of Psychology, Lund University, Sweden
| | - Cees van Leeuwen
- Brain and Cognition Research Unit, KU Leuven, Belgium; Center for Cognitive Science, TU Kaiserslautern, Germany
| |
Collapse
|
4
|
Wilf M, Dupuis C, Nardo D, Huber D, Sander S, Al-Kaar J, Haroud M, Perrin H, Fornari E, Crottaz-Herbette S, Serino A. Virtual reality-based sensorimotor adaptation shapes subsequent spontaneous and naturalistic stimulus-driven brain activity. Cereb Cortex 2022; 33:5163-5180. [PMID: 36288926 PMCID: PMC10152055 DOI: 10.1093/cercor/bhac407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022] Open
Abstract
Our everyday life summons numerous novel sensorimotor experiences, to which our brain needs to adapt in order to function properly. However, tracking plasticity of naturalistic behavior and associated brain modulations is challenging. Here, we tackled this question implementing a prism adaptation-like training in virtual reality (VRPA) in combination with functional neuroimaging. Three groups of healthy participants (N = 45) underwent VRPA (with a shift either to the left/right side, or with no shift), and performed functional magnetic resonance imaging (fMRI) sessions before and after training. To capture modulations in free-flowing, task-free brain activity, the fMRI sessions included resting-state and free-viewing of naturalistic videos. We found significant decreases in spontaneous functional connectivity between attentional and default mode (DMN)/fronto-parietal networks, only for the adaptation groups, more pronouncedly in the hemisphere contralateral to the induced shift. In addition, VRPA was found to bias visual responses to naturalistic videos: Following rightward adaptation, we found upregulation of visual response in an area in the parieto-occipital sulcus (POS) only in the right hemisphere. Notably, the extent of POS upregulation correlated with the size of the VRPA-induced after-effect measured in behavioral tests. This study demonstrates that a brief VRPA exposure can change large-scale cortical connectivity and correspondingly bias visual responses to naturalistic sensory inputs.
Collapse
Affiliation(s)
- Meytal Wilf
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland.,Center of Advanced Technologies in Rehabilitation (CATR), Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Celine Dupuis
- MindMaze SA, Chemin de Roseneck 5, 1006 Lausanne, Switzerland
| | - Davide Nardo
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Rd, Cambridge CB2 7EF, United Kingdom.,Department of Education, University of Roma Tre, Rome, Italy
| | - Diana Huber
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Sibilla Sander
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Joud Al-Kaar
- Neuropsychology and Neurorehabilitation Service, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Meriem Haroud
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland.,Neuropsychology and Neurorehabilitation Service, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Henri Perrin
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Eleonora Fornari
- Biomedical Imaging Center (CIBM), Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Sonia Crottaz-Herbette
- MindMaze SA, Chemin de Roseneck 5, 1006 Lausanne, Switzerland.,Neuropsychology and Neurorehabilitation Service, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Andrea Serino
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland.,MindMaze SA, Chemin de Roseneck 5, 1006 Lausanne, Switzerland
| |
Collapse
|
5
|
Spontaneous activity patterns in human motor cortex replay evoked activity patterns for hand movements. Sci Rep 2022; 12:16867. [PMID: 36207360 PMCID: PMC9546868 DOI: 10.1038/s41598-022-20866-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
Spontaneous brain activity, measured with resting state fMRI (R-fMRI), is correlated among regions that are co-activated by behavioral tasks. It is unclear, however, whether spatial patterns of spontaneous activity within a cortical region correspond to spatial patterns of activity evoked by specific stimuli, actions, or mental states. The current study investigated the hypothesis that spontaneous activity in motor cortex represents motor patterns commonly occurring in daily life. To test this hypothesis 15 healthy participants were scanned while performing four different hand movements. Three movements (Grip, Extend, Pinch) were ecological involving grip and grasp hand movements; one control movement involving the rotation of the wrist was not ecological and infrequent (Shake). They were also scanned at rest before and after the execution of the motor tasks (resting-state scans). Using the task data, we identified movement-specific patterns in the primary motor cortex. These task-defined patterns were compared to resting-state patterns in the same motor region. We also performed a control analysis within the primary visual cortex. We found that spontaneous activity patterns in the primary motor cortex were more like task patterns for ecological than control movements. In contrast, there was no difference between ecological and control hand movements in the primary visual area. These findings provide evidence that spontaneous activity in human motor cortex forms fine-scale, patterned representations associated with behaviors that frequently occur in daily life.
Collapse
|
6
|
Brain networks are decoupled from external stimuli during internal cognition. Neuroimage 2022; 256:119230. [PMID: 35460919 DOI: 10.1016/j.neuroimage.2022.119230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Our cognition can be directed to external stimuli or to internal information. While there are many different forms of internal cognition (mind-wandering, recall, imagery etc.), their essential feature is independence from the immediate sensory input, conceptually referred to as perceptual decoupling. Perceptual decoupling is thought to be reflected in brain activity transitioning from a stimulus-processing to internally-processing mode, but a direct investigation of this remains outstanding. Here we present a conceptual and analysis framework that quantifies the extent to which brain networks reflect stimulus processing. We tested this framework by presenting subjects with an audiovisual stimulus and instructing them to either attend to the stimulus (external task) or engage in mental imagery, recall or arithmetic (internal tasks) while measuring the evoked brain activity using functional MRI. We found that stimulus responses were generally attenuated for the internal tasks, though they increased in a subset of tasks and brain networks. However, using our new framework, we showed that brain networks became less reflective of stimulus processing, even in the subset of tasks and brain networks in which stimulus responses increased. These results quantitatively demonstrate that during internal cognition brain networks become decoupled from the external stimuli, opening the door for a fundamental and quantitative understanding of internal cognition.
Collapse
|
7
|
Hahamy A, Wilf M, Rosin B, Behrmann M, Malach R. How do the blind 'see'? The role of spontaneous brain activity in self-generated perception. Brain 2021; 144:340-353. [PMID: 33367630 PMCID: PMC7880672 DOI: 10.1093/brain/awaa384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/12/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022] Open
Abstract
Spontaneous activity of the human brain has been well documented, but little is known about the functional role of this ubiquitous neural phenomenon. It has previously been hypothesized that spontaneous brain activity underlies unprompted (internally generated) behaviour. We tested whether spontaneous brain activity might underlie internally-generated vision by studying the cortical visual system of five blind/visually-impaired individuals who experience vivid visual hallucinations (Charles Bonnet syndrome). Neural populations in the visual system of these individuals are deprived of external input, which may lead to their hyper-sensitization to spontaneous activity fluctuations. To test whether these spontaneous fluctuations can subserve visual hallucinations, the functional MRI brain activity of participants with Charles Bonnet syndrome obtained while they reported their hallucinations (spontaneous internally-generated vision) was compared to the: (i) brain activity evoked by veridical vision (externally-triggered vision) in sighted controls who were presented with a visual simulation of the hallucinatory streams; and (ii) brain activity of non-hallucinating blind controls during visual imagery (cued internally-generated vision). All conditions showed activity spanning large portions of the visual system. However, only the hallucination condition in the Charles Bonnet syndrome participants demonstrated unique temporal dynamics, characterized by a slow build-up of neural activity prior to the reported onset of hallucinations. This build-up was most pronounced in early visual cortex and then decayed along the visual hierarchy. These results suggest that, in the absence of external visual input, a build-up of spontaneous fluctuations in early visual cortex may activate the visual hierarchy, thereby triggering the experience of vision.
Collapse
Affiliation(s)
- Avital Hahamy
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Meytal Wilf
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV), Switzerland
| | - Boris Rosin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel.,Department of Ophthalmology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA
| | - Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rafael Malach
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
8
|
Kim D, Livne T, Metcalf NV, Corbetta M, Shulman GL. Spontaneously emerging patterns in human visual cortex and their functional connectivity are linked to the patterns evoked by visual stimuli. J Neurophysiol 2020; 124:1343-1363. [PMID: 32965156 PMCID: PMC8356777 DOI: 10.1152/jn.00630.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/26/2022] Open
Abstract
The function of spontaneous brain activity is an important issue in neuroscience. Here we test the hypothesis that patterns of spontaneous activity code representational patterns evoked by stimuli. We compared in human visual cortex multivertex patterns of spontaneous activity to patterns evoked by ecological visual stimuli (faces, bodies, scenes) and low-level visual features (e.g., phase-scrambled faces). Specifically, we identified regions that preferred particular stimulus categories during localizer scans (e.g., extrastriate body area for bodies), measured multivertex patterns for each category during event-related task scans, and then correlated over vertices these stimulus-evoked patterns to the pattern measured on each frame of resting-state scans. The mean correlation coefficient was essentially zero for all regions/stimulus categories, indicating that resting multivertex patterns were not biased toward particular stimulus-evoked patterns. However, the spread of correlation coefficients between stimulus-evoked and resting patterns, positive and negative, was significantly greater for the preferred stimulus category of an ROI. The relationship between spontaneous and stimulus-evoked multivertex patterns also governed the temporal correlation or functional connectivity of patterns of spontaneous activity between individual regions (pattern-based functional connectivity). Resting multivertex patterns related to an object category fluctuated preferentially between ROIs preferring the same category, and fluctuations of the pattern for a category (e.g., body) within its preferred ROIs were largely uncorrelated with fluctuations of the pattern for a disparate category (e.g., scene) within its preferred ROIs. These results support the proposal that spontaneous multivertex activity patterns are linked to stimulus-evoked patterns, consistent with a representational function for spontaneous activity.NEW & NOTEWORTHY Spontaneous brain activity was once thought to reflect only noise, but evidence of strong spatiotemporal regularities has motivated a search for functional explanations. Here we show that the spatial pattern of spontaneous activity in human high-level and early visual cortex is related to the spatial patterns evoked by stimuli. Moreover, these patterns partly govern spontaneous spatiotemporal interactions between regions, so-called functional connectivity. These results support the hypothesis that spontaneous activity serves a representational function.
Collapse
Affiliation(s)
- DoHyun Kim
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri
| | - Tomer Livne
- Department of Neurobiology, Weizmann Institution of Science, Rehovot, Israel
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Nicholas V Metcalf
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Maurizio Corbetta
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
- Department of Radiology Washington University School of Medicine, St. Louis, Missouri
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gordon L Shulman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
- Department of Radiology Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
9
|
Grossman S, Yeagle EM, Harel M, Espinal E, Harpaz R, Noy N, Mégevand P, Groppe DM, Mehta AD, Malach R. The Noisy Brain: Power of Resting-State Fluctuations Predicts Individual Recognition Performance. Cell Rep 2019; 29:3775-3784.e4. [DOI: 10.1016/j.celrep.2019.11.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/08/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022] Open
|