1
|
Zhen Y, Yang Y, Zheng Y, Wang X, Liu L, Zheng Z, Zheng H, Tang S. The heritability and structural correlates of resting-state fMRI complexity. Neuroimage 2024; 296:120657. [PMID: 38810892 DOI: 10.1016/j.neuroimage.2024.120657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024] Open
Abstract
The complexity of fMRI signals quantifies temporal dynamics of spontaneous neural activity, which has been increasingly recognized as providing important insights into cognitive functions and psychiatric disorders. However, its heritability and structural underpinnings are not well understood. Here, we utilize multi-scale sample entropy to extract resting-state fMRI complexity in a large healthy adult sample from the Human Connectome Project. We show that fMRI complexity at multiple time scales is heritable in broad brain regions. Heritability estimates are modest and regionally variable. We relate fMRI complexity to brain structure including surface area, cortical myelination, cortical thickness, subcortical volumes, and total brain volume. We find that surface area is negatively correlated with fine-scale complexity and positively correlated with coarse-scale complexity in most cortical regions, especially the association cortex. Most of these correlations are related to common genetic and environmental effects. We also find positive correlations between cortical myelination and fMRI complexity at fine scales and negative correlations at coarse scales in the prefrontal cortex, lateral temporal lobe, precuneus, lateral parietal cortex, and cingulate cortex, with these correlations mainly attributed to common environmental effects. We detect few significant associations between fMRI complexity and cortical thickness. Despite the non-significant association with total brain volume, fMRI complexity exhibits significant correlations with subcortical volumes in the hippocampus, cerebellum, putamen, and pallidum at certain scales. Collectively, our work establishes the genetic basis and structural correlates of resting-state fMRI complexity across multiple scales, supporting its potential application as an endophenotype for psychiatric disorders.
Collapse
Affiliation(s)
- Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Xin Wang
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China; Zhongguancun Laboratory, Beijing 100094, China; Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China; PengCheng Laboratory, Shenzhen 518055, China
| | - Longzhao Liu
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China; Zhongguancun Laboratory, Beijing 100094, China; Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China; PengCheng Laboratory, Shenzhen 518055, China
| | - Zhiming Zheng
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China; Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China; Zhongguancun Laboratory, Beijing 100094, China; Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China; PengCheng Laboratory, Shenzhen 518055, China; State Key Lab of Software Development Environment, Beihang University, Beijing 100191, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing 100085, China.
| | - Shaoting Tang
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China; Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China; Zhongguancun Laboratory, Beijing 100094, China; Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China; PengCheng Laboratory, Shenzhen 518055, China; State Key Lab of Software Development Environment, Beihang University, Beijing 100191, China.
| |
Collapse
|
2
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
3
|
Fjell AM. Aging Brain from a Lifespan Perspective. Curr Top Behav Neurosci 2024; 68:349-370. [PMID: 38797799 DOI: 10.1007/7854_2024_476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Research during the last two decades has shown that the brain undergoes continuous changes throughout life, with substantial heterogeneity in age trajectories between regions. Especially, temporal and prefrontal cortices show large changes, and these correlate modestly with changes in the corresponding cognitive abilities such as episodic memory and executive function. Changes seen in normal aging overlap with changes seen in neurodegenerative conditions such as Alzheimer's disease; differences between what reflects normal aging vs. a disease-related change are often blurry. This calls for a dimensional view on cognitive decline in aging, where clear-cut distinctions between normality and pathology cannot be always drawn. Although much progress has been made in describing typical patterns of age-related changes in the brain, identifying risk and protective factors, and mapping cognitive correlates, there are still limits to our knowledge that should be addressed by future research. We need more longitudinal studies following the same participants over longer time intervals with cognitive testing and brain imaging, and an increased focus on the representativeness vs. selection bias in neuroimaging research of aging.
Collapse
Affiliation(s)
- Anders Martin Fjell
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Kozol RA, Conith AJ, Yuiska A, Cree-Newman A, Tolentino B, Benesh K, Paz A, Lloyd E, Kowalko JE, Keene AC, Albertson C, Duboue ER. A brain-wide analysis maps structural evolution to distinct anatomical module. eLife 2023; 12:e80777. [PMID: 37498318 PMCID: PMC10435234 DOI: 10.7554/elife.80777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/26/2023] [Indexed: 07/28/2023] Open
Abstract
The vertebrate brain is highly conserved topologically, but less is known about neuroanatomical variation between individual brain regions. Neuroanatomical variation at the regional level is hypothesized to provide functional expansion, building upon ancestral anatomy needed for basic functions. Classically, animal models used to study evolution have lacked tools for detailed anatomical analysis that are widely used in zebrafish and mice, presenting a barrier to studying brain evolution at fine scales. In this study, we sought to investigate the evolution of brain anatomy using a single species of fish consisting of divergent surface and cave morphs, that permits functional genetic testing of regional volume and shape across the entire brain. We generated a high-resolution brain atlas for the blind Mexican cavefish Astyanax mexicanus and coupled the atlas with automated computational tools to directly assess variability in brain region shape and volume across all populations. We measured the volume and shape of every grossly defined neuroanatomical region of the brain and assessed correlations between anatomical regions in surface fish, cavefish, and surface × cave F2 hybrids, whose phenotypes span the range of surface to cave. We find that dorsal regions of the brain are contracted, while ventral regions have expanded, with F2 hybrid data providing support for developmental constraint along the dorsal-ventral axis. Furthermore, these dorsal-ventral relationships in anatomical variation show similar patterns for both volume and shape, suggesting that the anatomical evolution captured by these two parameters could be driven by similar developmental mechanisms. Together, these data demonstrate that A. mexicanus is a powerful system for functionally determining basic principles of brain evolution and will permit testing how genes influence early patterning events to drive brain-wide anatomical evolution.
Collapse
Affiliation(s)
- Robert A Kozol
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Andrew J Conith
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| | - Anders Yuiska
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Alexia Cree-Newman
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Bernadeth Tolentino
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Kasey Benesh
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Alexandra Paz
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Evan Lloyd
- Department of Biology, Texas A&M UniversityCollege StationUnited States
| | - Johanna E Kowalko
- Department of Biological Sciences, Lehigh UniversityBethlehemUnited States
| | - Alex C Keene
- Department of Biology, Texas A&M UniversityCollege StationUnited States
| | - Craig Albertson
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| | - Erik R Duboue
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| |
Collapse
|
5
|
Carhart-Harris RL, Chandaria S, Erritzoe DE, Gazzaley A, Girn M, Kettner H, Mediano PAM, Nutt DJ, Rosas FE, Roseman L, Timmermann C, Weiss B, Zeifman RJ, Friston KJ. Canalization and plasticity in psychopathology. Neuropharmacology 2023; 226:109398. [PMID: 36584883 DOI: 10.1016/j.neuropharm.2022.109398] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
This theoretical article revives a classical bridging construct, canalization, to describe a new model of a general factor of psychopathology. To achieve this, we have distinguished between two types of plasticity, an early one that we call 'TEMP' for 'Temperature or Entropy Mediated Plasticity', and another, we call 'canalization', which is close to Hebbian plasticity. These two forms of plasticity can be most easily distinguished by their relationship to 'precision' or inverse variance; TEMP relates to increased model variance or decreased precision, whereas the opposite is true for canalization. TEMP also subsumes increased learning rate, (Ising) temperature and entropy. Dictionary definitions of 'plasticity' describe it as the property of being easily shaped or molded; TEMP is the better match for this. Importantly, we propose that 'pathological' phenotypes develop via mechanisms of canalization or increased model precision, as a defensive response to adversity and associated distress or dysphoria. Our model states that canalization entrenches in psychopathology, narrowing the phenotypic state-space as the agent develops expertise in their pathology. We suggest that TEMP - combined with gently guiding psychological support - can counter canalization. We address questions of whether and when canalization is adaptive versus maladaptive, furnish our model with references to basic and human neuroscience, and offer concrete experiments and measures to test its main hypotheses and implications. This article is part of the Special Issue on "National Institutes of Health Psilocybin Research Speaker Series".
Collapse
Affiliation(s)
- R L Carhart-Harris
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK.
| | - S Chandaria
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Institute of Philosophy, School of Advanced Study, University of London, UK
| | - D E Erritzoe
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - A Gazzaley
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA
| | - M Girn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - H Kettner
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK
| | - P A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, UK
| | - D J Nutt
- Centre for Psychedelic Research, Imperial College London, UK
| | - F E Rosas
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Department of Informatics, University of Sussex, UK; Centre for Complexity Science, Imperial College London, UK
| | - L Roseman
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - C Timmermann
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - B Weiss
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - R J Zeifman
- Centre for Psychedelic Research, Imperial College London, UK; NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, USA
| | - K J Friston
- Wellcome Centre for Human Neuroimaging, University College London, UK
| |
Collapse
|
6
|
Quah SKL, McIver L, Bullmore ET, Roberts AC, Sawiak SJ. Higher-order brain regions show shifts in structural covariance in adolescent marmosets. Cereb Cortex 2022; 32:4128-4140. [PMID: 35029670 PMCID: PMC9476623 DOI: 10.1093/cercor/bhab470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Substantial progress has been made studying morphological changes in brain regions during adolescence, but less is known of network-level changes in their relationship. Here, we compare covariance networks constructed from the correlation of morphometric volumes across 135 brain regions of marmoset monkeys in early adolescence and adulthood. Substantial shifts are identified in the topology of structural covariance networks in the prefrontal cortex (PFC) and temporal lobe. PFC regions become more structurally differentiated and segregated within their own local network, hypothesized to reflect increased specialization after maturation. In contrast, temporal regions show increased inter-hemispheric covariances that may underlie the establishment of distributed networks. Regionally selective coupling of structural and maturational covariance is revealed, with relatively weak coupling in transmodal association areas. The latter may be a consequence of continued maturation within adulthood, but also environmental factors, for example, family size, affecting brain morphology. Advancing our understanding of how morphological relationships within higher-order brain areas mature in adolescence deepens our knowledge of the developing brain's organizing principles.
Collapse
Affiliation(s)
- Shaun K L Quah
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EB, UK
| | - Lauren McIver
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EB, UK
| | - Edward T Bullmore
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK
| | - Angela C Roberts
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EB, UK
| | - Stephen J Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EB, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Translational Neuroimaging Laboratory, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
7
|
Leopold DA, Averbeck BB. Self-tuition as an essential design feature of the brain. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200530. [PMID: 34957855 PMCID: PMC8710880 DOI: 10.1098/rstb.2020.0530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We are curious by nature, particularly when young. Evolution has endowed our brain with an inbuilt obligation to educate itself. In this perspectives article, we posit that self-tuition is an evolved principle of vertebrate brain design that is reflected in its basic architecture and critical for its normal development. Self-tuition involves coordination between functionally distinct components of the brain, with one set of areas motivating exploration that leads to the experiences that train another set. We review key hypothalamic and telencephalic structures involved in this interplay, including their anatomical connections and placement within the segmental architecture of conserved forebrain circuits. We discuss the nature of educative behaviours motivated by the hypothalamus, innate stimulus biases, the relationship to survival in early life, and mechanisms by which telencephalic areas gradually accumulate knowledge. We argue that this aspect of brain function is of paramount importance for systems neuroscience, as it confers neural specialization and allows animals to attain far more sophisticated behaviours than would be possible through genetic mechanisms alone. Self-tuition is of particular importance in humans and other primates, whose large brains and complex social cognition rely critically on experience-based learning during a protracted childhood period. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.
Collapse
Affiliation(s)
- David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.,Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bruno B Averbeck
- Section on Learning and Decision Making, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Species and individual differences and connectional asymmetry of Broca's area in humans and macaques. Neuroimage 2021; 244:118583. [PMID: 34562577 DOI: 10.1016/j.neuroimage.2021.118583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023] Open
Abstract
To reveal the connectional specialization of the Broca's area (or its homologue), voxel-wise inter-species and individual differences, and inter-hemispheric asymmetry were respectively inspected in humans and macaques at both whole-brain connectivity and single tract levels. It was discovered that the developed connectivity blueprint approach is able to localize connectionally comparable voxels between the two species in Broca's area, whereas the quantitative differences between blueprints of locationally or connectionally corresponding voxels enable us to generate inter-hemispheric, inter-subject, and inter-species connectional variabilities, respectively. More importantly, the inter-species and inter-subject variabilities exhibited positive correlation in both two primates, and relatively higher variabilities were detected in the anatomically defined pars triangularis. By contrast, negative relationship was identified between the inter-species variability and hemispheric asymmetry in human brain. In particular, relatively higher asymmetry was revealed in the anatomically defined pars opercularis. Therefore, our novel findings demonstrated that pars triangularis, as compared to pars opercularis, might be a more active area during primate evolution, in which the brain connectivity and possible functions of pars triangularis show relatively higher degree in species specialization, yet lower in hemispheric specialization. Meanwhile, brain connectivity and possible functions of pars opercularis manifested an opposite pattern. At the tract level, functional roles related to the ventral stream in speech comprehension were relatively conservative and bilaterally organized, while those related to the dorsal stream in speech production show relatively higher species and hemispheric specializations.
Collapse
|
9
|
Abstract
Although rodent research provides important insights into neural correlates of human psychology, new cortical areas, connections, and cognitive abilities emerged during primate evolution, including human evolution. Comparison of human brains with those of nonhuman primates reveals two aspects of human brain evolution particularly relevant to emotional disorders: expansion of homotypical association areas and expansion of the hippocampus. Two uniquely human cognitive capacities link these phylogenetic developments with emotion: a subjective sense of participating in and reexperiencing remembered events and a limitless capacity to imagine details of future events. These abilities provided evolving humans with selective advantages, but they also created proclivities for emotional problems. The first capacity evokes the "reliving" of past events in the "here-and-now," accompanied by emotional responses that occurred during memory encoding. It contributes to risk for stress-related syndromes, such as posttraumatic stress disorder. The second capacity, an ability to imagine future events without temporal limitations, facilitates flexible, goal-related behavior by drawing on and creating a uniquely rich array of mental representations. It promotes goal achievement and reduces errors, but the mental construction of future events also contributes to developmental aspects of anxiety and mood disorders. With maturation of homotypical association areas, the concrete concerns of childhood expand to encompass the abstract apprehensions of adolescence and adulthood. These cognitive capacities and their dysfunction are amenable to a research agenda that melds experimental therapeutic interventions, cognitive neuropsychology, and developmental psychology in both humans and nonhuman primates.
Collapse
Affiliation(s)
- Daniel S. Pine
- Section on Development and Affective Neuroscience, Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD 20892
| | - Steven P. Wise
- Olschefskie Institute for the Neurobiology of Knowledge, Bethesda, MD 20814
| | - Elisabeth A. Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD 20892
| |
Collapse
|
10
|
Fakhraei L, Francoeur M, Balasubramani PP, Tang T, Hulyalkar S, Buscher N, Mishra J, Ramanathan DS. Electrophysiological Correlates of Rodent Default-Mode Network Suppression Revealed by Large-Scale Local Field Potential Recordings. Cereb Cortex Commun 2021; 2:tgab034. [PMID: 34296178 PMCID: PMC8166125 DOI: 10.1093/texcom/tgab034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
The default-mode network (DMN) in humans consists of a set of brain regions that, as measured with functional magnetic resonance imaging (fMRI), show both intrinsic correlations with each other and suppression during externally oriented tasks. Resting-state fMRI studies have previously identified similar patterns of intrinsic correlations in overlapping brain regions in rodents (A29C/posterior cingulate cortex, parietal cortex, and medial temporal lobe structures). However, due to challenges with performing rodent behavior in an MRI machine, it is still unclear whether activity in rodent DMN regions are suppressed during externally oriented visual tasks. Using distributed local field potential measurements in rats, we have discovered that activity in DMN brain regions noted above show task-related suppression during an externally oriented visual task at alpha and low beta-frequencies. Interestingly, this suppression (particularly in posterior cingulate cortex) was linked with improved performance on the task. Using electroencephalography recordings from a similar task in humans, we identified a similar suppression of activity in posterior cingulate cortex at alpha/low beta-frequencies. Thus, we have identified a common electrophysiological marker of DMN suppression in both rodents and humans. This observation paves the way for future studies using rodents to probe circuit-level functioning of DMN function. SIGNIFICANCE Here we show that alpha/beta frequency oscillations in rats show key features of DMN activity, including intrinsic correlations between DMN brain regions, task-related suppression, and interference with attention/decision-making. We found similar task-related suppression at alpha/low beta-frequencies of DMN activity in humans.
Collapse
Affiliation(s)
- Leila Fakhraei
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Miranda Francoeur
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | | | - Tianzhi Tang
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Sidharth Hulyalkar
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Nathalie Buscher
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Jyoti Mishra
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Dhakshin S Ramanathan
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Vidal-Piñeiro D, Sneve MH, Amlien IK, Grydeland H, Mowinckel AM, Roe JM, Sørensen Ø, Nyberg LH, Walhovd KB, Fjell AM. The Functional Foundations of Episodic Memory Remain Stable Throughout the Lifespan. Cereb Cortex 2021; 31:2098-2110. [PMID: 33251549 PMCID: PMC7945016 DOI: 10.1093/cercor/bhaa348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
It has been suggested that specific forms of cognition in older age rely largely on late-life specific mechanisms. Here instead, we tested using task-fMRI (n = 540, age 6–82 years) whether the functional foundations of successful episodic memory encoding adhere to a principle of lifespan continuity, shaped by developmental, structural, and evolutionary influences. We clustered regions of the cerebral cortex according to the shape of the lifespan trajectory of memory activity in each region so that regions showing the same pattern were clustered together. The results revealed that lifespan trajectories of memory encoding function showed a continuity through life but no evidence of age-specific mechanisms such as compensatory patterns. Encoding activity was related to general cognitive abilities and variations of grey matter as captured by a multi-modal independent component analysis, variables reflecting core aspects of cognitive and structural change throughout the lifespan. Furthermore, memory encoding activity aligned to fundamental aspects of brain organization, such as large-scale connectivity and evolutionary cortical expansion gradients. Altogether, we provide novel support for a perspective on memory aging in which maintenance and decay of episodic memory in older age needs to be understood from a comprehensive life-long perspective rather than as a late-life phenomenon only.
Collapse
Affiliation(s)
- Didac Vidal-Piñeiro
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Markus H Sneve
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Inge K Amlien
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Håkon Grydeland
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Athanasia M Mowinckel
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - James M Roe
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Øystein Sørensen
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Lars H Nyberg
- Umeå Centre for Functional Brain Imaging, S-90187 Umeå, Sweden.,Physiology Section, Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden.,Department of Radiation Sciences, Diagnostic Radiology, Umeå University, S-90187 Umeå, Sweden
| | - Kristine B Walhovd
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 04024 Oslo, Norway
| | - Anders M Fjell
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 04024 Oslo, Norway
| |
Collapse
|
12
|
Amiez C, Sallet J, Novek J, Hadj-Bouziane F, Giacometti C, Andersson J, Hopkins WD, Petrides M. Chimpanzee histology and functional brain imaging show that the paracingulate sulcus is not human-specific. Commun Biol 2021; 4:54. [PMID: 33420330 PMCID: PMC7794552 DOI: 10.1038/s42003-020-01571-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 01/06/2023] Open
Abstract
The paracingulate sulcus -PCGS- has been considered for a long time to be specific to the human brain. Its presence/absence has been discussed in relation to interindividual variability of personality traits and cognitive abilities. Recently, a putative PCGS has been observed in chimpanzee brains. To demonstrate that this newly discovered sulcus is the homologue of the PCGS in the human brain, we analyzed cytoarchitectonic and resting-state functional magnetic resonance imaging data in chimpanzee brains which did or did not display a PCGS. The results show that the organization of the mid-cingulate cortex of the chimpanzee brain is comparable to that of the human brain, both cytoarchitectonically and in terms of functional connectivity with the lateral frontal cortex. These results demonstrate that the PCGS is not human-specific but is a shared feature of the primate brain since at least the last common ancestor to humans and great apes ~6 mya. The paracingulate sulcus (PCGS) is a brain structure long thought to be specific to humans, and variation in this structure has been linked to personality traits and cognitive abilities. In this study, Céline Amiez and Jérôme Sallet et al. analyze brain imaging data from humans and chimpanzees to demonstrate that the PCGS is in fact present in our closest relative and its functional connectivity in chimpanzees is comparable to that in humans.
Collapse
Affiliation(s)
- Céline Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France.
| | - Jérôme Sallet
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France.,Wellcome Integrative Neuroimaging Centre, Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK
| | - Jennifer Novek
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France, University of Lyon 1, Lyon, France
| | - Camille Giacometti
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Jesper Andersson
- Wellcome Integrative Neuroimaging Centre, fMRIB, University of Oxford, Headington, UK
| | - William D Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX, 78602, USA
| | - Michael Petrides
- Montreal Neurological Institute, Department of Neurology and Neurosurgery and Department of Psychology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Xu T, Nenning KH, Schwartz E, Hong SJ, Vogelstein JT, Goulas A, Fair DA, Schroeder CE, Margulies DS, Smallwood J, Milham MP, Langs G. Cross-species functional alignment reveals evolutionary hierarchy within the connectome. Neuroimage 2020; 223:117346. [PMID: 32916286 PMCID: PMC7871099 DOI: 10.1016/j.neuroimage.2020.117346] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022] Open
Abstract
Evolution provides an important window into how cortical organization shapes function and vice versa. The complex mosaic of changes in brain morphology and functional organization that have shaped the mammalian cortex during evolution, complicates attempts to chart cortical differences across species. It limits our ability to fully appreciate how evolution has shaped our brain, especially in systems associated with unique human cognitive capabilities that lack anatomical homologues in other species. Here, we develop a function-based method for cross-species alignment that enables the quantification of homologous regions between humans and rhesus macaques, even when their location is decoupled from anatomical landmarks. Critically, we find cross-species similarity in functional organization reflects a gradient of evolutionary change that decreases from unimodal systems and culminates with the most pronounced changes in posterior regions of the default mode network (angular gyrus, posterior cingulate and middle temporal cortices). Our findings suggest that the establishment of the default mode network, as the apex of a cognitive hierarchy, has changed in a complex manner during human evolution - even within subnetworks.
Collapse
Affiliation(s)
- Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA.
| | - Karl-Heinz Nenning
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Ernst Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Seok-Jun Hong
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Joshua T Vogelstein
- Department of Biomedical Engineering, Institute for Computational Medicine, Kavli Neuroscience Discovery Institute, Johns Hopkins University, MD, USA
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Damien A Fair
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Charles E Schroeder
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA; Departments of neurosurgery and Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Daniel S Margulies
- Centre National de la Recherche Scientifique (CNRS) UMR 7225, Frontlab, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Jonny Smallwood
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Psychology Department, University of York, York, UK
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
14
|
Abstract
In humans and macaque monkeys, socially relevant face processing is accomplished via a distributed functional network that includes specialized patches in frontal cortex. It is unclear whether a similar network exists in New World primates, who diverged ~35 million years from Old World primates. The common marmoset is a New World primate species ideally placed to address this question given their complex social repertoire. Here, we demonstrate the existence of a putative high-level face processing network in marmosets. Like Old World primates, marmosets show differential activation in anterior cingulate and lateral prefrontal cortices while they view socially relevant videos of marmoset faces. We corroborate the locations of these frontal regions by demonstrating functional and structural connectivity between these regions and temporal lobe face patches. Given the evolutionary separation between macaques and marmosets, our results suggest this frontal network specialized for social face processing predates the separation between Platyrrhini and Catarrhini. In Old World primates, socially relevant face processing is accomplished via a distributed functional network including specialized patches in the frontal cortex. Here, the authors demonstrate a similar network in frontal cortex of New World marmoset monkeys, suggesting inheritance from a common ancestor.
Collapse
|
15
|
Hopper LM, Jacobson SL, Howard LH. Problem solving flexibility across early development. J Exp Child Psychol 2020; 200:104966. [PMID: 32860967 PMCID: PMC7449664 DOI: 10.1016/j.jecp.2020.104966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 11/17/2022]
Abstract
We tested cognitive flexibility in 2-, 3, and 4-year-old children. Children were presented with a novel task previously used with nonhuman primates. All children spontaneously solved the task; most (83.61%) used an efficient method. Children responded flexibly when task demands changed. 4-year-olds were significantly more efficient than 2-year-olds.
Cognitive flexibility allows individuals to adapt to novel situations. However, this ability appears to develop slowly over the first few years of life, mediated by task complexity and opacity. We used a physically simple novel task, previously tested with nonhuman primates, to explore the development of flexible problem solving in 2-, 3-, and 4-year-old children from a developmental and comparative perspective. The task goal was to remove barriers (straws) from a clear tube to release a ball. The location of the ball, and therefore the number of straws necessary to retrieve it, varied across two test phases (four of five straws and two of five straws, respectively). In Test Phase 1, all children retrieved the ball in Trial 1 and 83.61% used the most efficient method (removing only straws below the ball). Across Phase 1 trials, 4-year-olds were significantly more efficient than 2-year-olds, and solve latency decreased for all age groups. Test Phase 2 altered the location of the ball, allowing us to explore whether children could flexibly adopt a more efficient solution when their original (now inefficient) solution remained available. In Phase 2, significantly more 4-year-olds than 2-year-olds were efficient; the older children showed greater competency with the task and were more flexible to changing task demands than the younger children. Interestingly, no age group was as flexible in Phase 2 as previously tested nonhuman primates, potentially related to their relatively reduced task exploration in Phase 1. Therefore, this causally clear task revealed changes in cognitive flexibility across both early childhood and species.
Collapse
Affiliation(s)
- Lydia M Hopper
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614, USA.
| | - Sarah L Jacobson
- Program in Psychology, Graduate Center, City University of New York, New York, NY 10016, USA
| | - Lauren H Howard
- Department of Psychology, Franklin & Marshall College, Lancaster, PA 17603, USA
| |
Collapse
|
16
|
Liu C, Ye FQ, Newman JD, Szczupak D, Tian X, Yen CCC, Majka P, Glen D, Rosa MGP, Leopold DA, Silva AC. A resource for the detailed 3D mapping of white matter pathways in the marmoset brain. Nat Neurosci 2020; 23:271-280. [PMID: 31932765 PMCID: PMC7007400 DOI: 10.1038/s41593-019-0575-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
While the fundamental importance of the white matter in supporting neuronal communication is well known, existing publications of primate brains do not feature a detailed description of its complex anatomy. The main barrier to achieving this is that existing primate neuroimaging data have insufficient spatial resolution to resolve white matter pathways fully. Here we present a resource that allows detailed descriptions of white matter structures and trajectories of fiber pathways in the marmoset brain. The resource includes: (1) the highest-resolution diffusion-weighted MRI data available to date, which reveal white matter features not previously described; (2) a comprehensive three-dimensional white matter atlas depicting fiber pathways that were either omitted or misidentified in previous atlases; and (3) comprehensive fiber pathway maps of cortical connections combining diffusion-weighted MRI tractography and neuronal tracing data. The resource, which can be downloaded from marmosetbrainmapping.org, will facilitate studies of brain connectivity and the development of tractography algorithms in the primate brain.
Collapse
Affiliation(s)
- Cirong Liu
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| | - Frank Q Ye
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, and National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - John D Newman
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Section on Quantitative Imaging and Tissue Sciences, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Diego Szczupak
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Xiaoguang Tian
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Cecil Chern-Chyi Yen
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- ARC Centre of Excellence for Integrative Brain Function, Clayton, Melbourne, Victoria, Australia
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD, USA
| | - Marcello G P Rosa
- ARC Centre of Excellence for Integrative Brain Function, Clayton, Melbourne, Victoria, Australia
- Neuroscience Program, Monash Biomedicine Discovery Institute, Clayton, Melbourne, Victoria, Australia
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, and National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|