1
|
Michel LC, McCormick EM, Kievit RA. Gray and White Matter Metrics Demonstrate Distinct and Complementary Prediction of Differences in Cognitive Performance in Children: Findings from ABCD ( N = 11,876). J Neurosci 2024; 44:e0465232023. [PMID: 38388427 PMCID: PMC10957209 DOI: 10.1523/jneurosci.0465-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 02/24/2024] Open
Abstract
Individual differences in cognitive performance in childhood are a key predictor of significant life outcomes such as educational attainment and mental health. Differences in cognitive ability are governed in part by variations in brain structure. However, studies commonly focus on either gray or white matter metrics in humans, leaving open the key question as to whether gray or white matter microstructure plays distinct or complementary roles supporting cognitive performance. To compare the role of gray and white matter in supporting cognitive performance, we used regularized structural equation models to predict cognitive performance with gray and white matter measures. Specifically, we compared how gray matter (volume, cortical thickness, and surface area) and white matter measures (volume, fractional anisotropy, and mean diffusivity) predicted individual differences in cognitive performance. The models were tested in 11,876 children (ABCD Study; 5,680 female, 6,196 male) at 10 years old. We found that gray and white matter metrics bring partly nonoverlapping information to predict cognitive performance. The models with only gray or white matter explained respectively 15.4 and 12.4% of the variance in cognitive performance, while the combined model explained 19.0%. Zooming in, we additionally found that different metrics within gray and white matter had different predictive power and that the tracts/regions that were most predictive of cognitive performance differed across metrics. These results show that studies focusing on a single metric in either gray or white matter to study the link between brain structure and cognitive performance are missing a key part of the equation.
Collapse
Affiliation(s)
- Lea C Michel
- Cognitive Neuroscience Department, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Ethan M McCormick
- Cognitive Neuroscience Department, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
- Methodology and Statistics, Institute of Psychology, Leiden University, Leiden 2333 AK, The Netherlands
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina 27599-3270
| | - Rogier A Kievit
- Cognitive Neuroscience Department, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
2
|
Rodriguez-Martínez EI, Muñoz-Pradas R, Arjona A, Angulo-Ruiz BY, Muñoz V, Gómez CM. Neuropsychological Assessment of the Relationship of Working Memory with K-BIT Matrices and Vocabulary in Normal Development and ADHD Children and Adolescents. Brain Sci 2023; 13:1538. [PMID: 38002498 PMCID: PMC10669537 DOI: 10.3390/brainsci13111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The present report tries to understand the possible relationship between working memory (WM) and intelligence measurements, using the direct scores of the Working Memory Test Battery for Children (WMTBC) and Kaufman's Brief Intelligence Test (K-BIT), in normal development (ND) and diagnosed attention deficit hyperactivity disorder (ADHD) children and adolescents. RESULTS Partial correlations, discounting the effect of age, showed a significant correlation in ND subjects between the central executive (CE) component of WM and the WM visuospatial sketchpad (VSS) component and the WM phonological loop (PL); also, significant correlations were obtained for the WM VSS with the K-BIT Matrices scores, the WM PL with the K-BIT Vocabulary, and the K-BIT Matrices scores with the K-BIT Vocabulary. For ADHD subjects, there were significant correlations between WM VSS and WM CE, and WM VSS and K-BIT Matrices. We tested the robustness of these correlations by selecting a small number of subjects through permutations; a robust correlation between WM CE and WM PL in ND, and between WM VSS and WM CE and WM VSS and K-BIT Matrices scores was obtained. These results were also supported by mediation analysis. CONCLUSIONS There is a relationship during development between WM as measured with WMTBC and general intelligence as measured with K-BIT in ND and ADHD subjects. The dysexecutive character of ADHD has been shown, given that by controlling for intelligence, the differences in WM performance between ND and ADHD disappear, except for WM CE. The results suggest that in ADHD subjects, the WM VSS component presents a more pivotal role during cognitive processing compared to ND subjects.
Collapse
Affiliation(s)
| | - Raquel Muñoz-Pradas
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, 41018 Sevilla, Spain; (R.M.-P.); (A.A.); (B.Y.A.-R.); (V.M.)
| | - Antonio Arjona
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, 41018 Sevilla, Spain; (R.M.-P.); (A.A.); (B.Y.A.-R.); (V.M.)
| | - Brenda Y. Angulo-Ruiz
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, 41018 Sevilla, Spain; (R.M.-P.); (A.A.); (B.Y.A.-R.); (V.M.)
| | - Vanesa Muñoz
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, 41018 Sevilla, Spain; (R.M.-P.); (A.A.); (B.Y.A.-R.); (V.M.)
| | - Carlos M. Gómez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, 41018 Sevilla, Spain; (R.M.-P.); (A.A.); (B.Y.A.-R.); (V.M.)
| |
Collapse
|
3
|
Genc S, Raven EP, Drakesmith M, Blakemore SJ, Jones DK. Novel insights into axon diameter and myelin content in late childhood and adolescence. Cereb Cortex 2023; 33:6435-6448. [PMID: 36610731 PMCID: PMC10183755 DOI: 10.1093/cercor/bhac515] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023] Open
Abstract
White matter microstructural development in late childhood and adolescence is driven predominantly by increasing axon density and myelin thickness. Ex vivo studies suggest that the increase in axon diameter drives developmental increases in axon density observed with pubertal onset. In this cross-sectional study, 50 typically developing participants aged 8-18 years were scanned using an ultra-strong gradient magnetic resonance imaging scanner. Microstructural properties, including apparent axon diameter $({d}_a)$, myelin content, and g-ratio, were estimated in regions of the corpus callosum. We observed age-related differences in ${d}_a$, myelin content, and g-ratio. In early puberty, males had larger ${d}_a$ in the splenium and lower myelin content in the genu and body of the corpus callosum, compared with females. Overall, this work provides novel insights into developmental, pubertal, and cognitive correlates of individual differences in apparent axon diameter and myelin content in the developing human brain.
Collapse
Affiliation(s)
- Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, United Kingdom
| | - Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, United Kingdom
- Department of Radiology, New York University School of Medicine, 550 1st Ave., New York, NY 10016, United States
| | - Mark Drakesmith
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, United Kingdom
| | - Sarah-Jayne Blakemore
- Department of Psychology, University of Cambridge, Downing Pl, Cambridge CB2 3EB, United Kingdom
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
4
|
Schubert AL, Löffler C, Hagemann D, Sadus K. How robust is the relationship between neural processing speed and cognitive abilities? Psychophysiology 2023; 60:e14165. [PMID: 35995756 DOI: 10.1111/psyp.14165] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/08/2022] [Accepted: 07/31/2022] [Indexed: 01/04/2023]
Abstract
Individual differences in processing speed are consistently related to individual differences in cognitive abilities, but the mechanisms through which a higher processing speed facilitates reasoning remain largely unknown. To identify these mechanisms, researchers have been using latencies of the event-related potential (ERP) to study how the speed of cognitive processes associated with specific ERP components is related to cognitive abilities. Although there is some evidence that latencies of ERP components associated with higher-order cognitive processes are related to intelligence, results are overall quite inconsistent. These inconsistencies likely result from variations in analytic procedures and little consideration of the psychometric properties of ERP latencies in relatively small sample studies. Here we used a multiverse approach to evaluate how different analytical choices regarding references, low-pass filter cutoffs, and latency measures affect the psychometric properties of P2, N2, and P3 latencies and their relations with cognitive abilities in a sample of 148 participants. Latent correlations between neural processing speed and cognitive abilities ranged from -.49 to -.78. ERP latency measures contained about equal parts of measurement error variance and systematic variance, and only about half of the systematic variance was related to cognitive abilities, whereas the other half reflected nuisance factors. We recommend addressing these problematic psychometric properties by recording EEG data from multiple tasks and modeling relations between ERP latencies and covariates in latent variable models. All in all, our results indicate that there is a substantial and robust relationship between neural processing speed and cognitive abilities when those issues are addressed.
Collapse
Affiliation(s)
| | - Christoph Löffler
- Department of Psychology, University of Mainz, Mainz, Germany.,Institute of Psychology, Heidelberg University, Heidelberg, Germany
| | - Dirk Hagemann
- Institute of Psychology, Heidelberg University, Heidelberg, Germany
| | - Kathrin Sadus
- Institute of Psychology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Stammen C, Fraenz C, Grazioplene RG, Schlüter C, Merhof V, Johnson W, Güntürkün O, DeYoung CG, Genç E. Robust associations between white matter microstructure and general intelligence. Cereb Cortex 2023:6994402. [PMID: 36682883 DOI: 10.1093/cercor/bhac538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/24/2023] Open
Abstract
Few tract-based spatial statistics (TBSS) studies have investigated the relations between intelligence and white matter microstructure in healthy (young) adults, and those have yielded mixed observations, yet white matter is fundamental for efficient and accurate information transfer throughout the human brain. We used a multicenter approach to identify white matter regions that show replicable structure-function associations, employing data from 4 independent samples comprising over 2000 healthy participants. TBSS indicated 188 voxels exhibited significant positive associations between g factor scores and fractional anisotropy (FA) in all 4 data sets. Replicable voxels formed 3 clusters, located around the left-hemispheric forceps minor, superior longitudinal fasciculus, and cingulum-cingulate gyrus with extensions into their surrounding areas (anterior thalamic radiation, inferior fronto-occipital fasciculus). Our results suggested that individual differences in general intelligence are robustly associated with white matter FA in specific fiber bundles distributed across the brain, consistent with the Parieto-Frontal Integration Theory of intelligence. Three possible reasons higher FA values might create links with higher g are faster information processing due to greater myelination, more direct information processing due to parallel, homogenous fiber orientation distributions, or more parallel information processing due to greater axon density.
Collapse
Affiliation(s)
- Christina Stammen
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139 Dortmund, Germany
| | - Christoph Fraenz
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139 Dortmund, Germany
| | | | - Caroline Schlüter
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Viola Merhof
- Chair of Research Methods and Psychological Assessment, University of Mannheim, 68161 Mannheim, Germany
| | - Wendy Johnson
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Colin G DeYoung
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Erhan Genç
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139 Dortmund, Germany
| |
Collapse
|
6
|
Inconsistencies between Subjective Reports of Cognitive Difficulties and Performance on Cognitive Tests are Associated with Elevated Internalising and Externalising Symptoms in Children with Learning-related Problems. Res Child Adolesc Psychopathol 2022; 50:1557-1572. [PMID: 35838930 PMCID: PMC9653343 DOI: 10.1007/s10802-022-00930-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
Children with learning difficulties are commonly assumed to have underlying cognitive deficits by health and educational professionals. However, not all children referred for psycho-educational assessment will be found to have deficits when their abilities are measured by performance on cognitive tasks. The primary aim of this study was to estimate the prevalence of this inconsistent cognitive profile (ICP) in a transdiagnostic sample of children referred by health and education service providers for problems related to attention, learning and memory (N = 715). A second aim was to explore whether elevated mental health problems were associated with ICPs. Findings suggest that approximately half of this sample could be characterised as having an ICP. Cognitive difficulties, whether identified by parent ratings or task performance, were associated with elevated internalising and externalising difficulties. Crucially, a larger discrepancy between a parent's actual ratings of a child's cognitive difficulties and the ratings that would be predicted based on the child's performance on cognitive tasks was associated greater internalising and externalising difficulties for measures of working memory, and greater externalising difficulties for measures of attention. These findings suggest that subjective cognitive difficulties occurring in the absence of any task-based performance deficits may be a functional problem arising from mental health problems.
Collapse
|
7
|
Lippolis M, Müllensiefen D, Frieler K, Matarrelli B, Vuust P, Cassibba R, Brattico E. Learning to play a musical instrument in the middle school is associated with superior audiovisual working memory and fluid intelligence: A cross-sectional behavioral study. Front Psychol 2022; 13:982704. [PMID: 36312139 PMCID: PMC9610841 DOI: 10.3389/fpsyg.2022.982704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Music training, in all its forms, is known to have an impact on behavior both in childhood and even in aging. In the delicate life period of transition from childhood to adulthood, music training might have a special role for behavioral and cognitive maturation. Among the several kinds of music training programs implemented in the educational communities, we focused on instrumental training incorporated in the public middle school curriculum in Italy that includes both individual, group and collective (orchestral) lessons several times a week. At three middle schools, we tested 285 preadolescent children (aged 10–14 years) with a test and questionnaire battery including adaptive tests for visuo-spatial working memory skills (with the Jack and Jill test), fluid intelligence (with a matrix reasoning test) and music-related perceptual and memory abilities (with listening tests). Of these children, 163 belonged to a music curriculum within the school and 122 to a standard curriculum. Significant differences between students of the music and standard curricula were found in both perceptual and cognitive domains, even when controlling for pre-existing individual differences in musical sophistication. The music children attending the third and last grade of middle school had better performance and showed the largest advantage compared to the control group on both audiovisual working memory and fluid intelligence. Furthermore, some gender differences were found for several tests and across groups in favor of females. The present results indicate that learning to play a musical instrument as part of the middle school curriculum represents a resource for preadolescent education. Even though the current evidence is not sufficient to establish the causality of the found effects, it can still guide future research evaluation with longitudinal data.
Collapse
Affiliation(s)
- Mariangela Lippolis
- Department of Teaching of Musical, Visual and Corporal Expression, University of Valencia, Valencia, Spain
- Mariangela Lippolis,
| | - Daniel Müllensiefen
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - Klaus Frieler
- Department of Methodology, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Benedetta Matarrelli
- Department of Clinical Medicine, Center for Music in the Brain (MIB), The Royal Academy of Music Aarhus and Aalborg, Aarhus University, Aarhus, Denmark
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Peter Vuust
- Department of Clinical Medicine, Center for Music in the Brain (MIB), The Royal Academy of Music Aarhus and Aalborg, Aarhus University, Aarhus, Denmark
| | - Rosalinda Cassibba
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Elvira Brattico
- Department of Clinical Medicine, Center for Music in the Brain (MIB), The Royal Academy of Music Aarhus and Aalborg, Aarhus University, Aarhus, Denmark
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Elvira Brattico,
| |
Collapse
|
8
|
Individual differences in white matter microstructure of the face processing brain network are more differentiated from global fibers with increasing ability. Sci Rep 2022; 12:14075. [PMID: 35982145 PMCID: PMC9388653 DOI: 10.1038/s41598-022-17850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Face processing—a crucial social ability—is known to be carried out in multiple dedicated brain regions which form a distinguishable network. Previous studies on face processing mainly targeted the functionality of face-selective grey matter regions. Thus, it is still partly unknown how white matter structures within the face network underpins abilities in this domain. Furthermore, how relevant abilities modulate the relationship between face-selective and global fibers remains to be discovered. Here, we aimed to fill these gaps by exploring linear and non-linear associations between microstructural properties of brain fibers (namely fractional anisotropy, mean diffusivity, axial and radial diffusivity) and face processing ability. Using structural equation modeling, we found significant linear associations between specific properties of fibers in the face network and face processing ability in a young adult sample (N = 1025) of the Human Connectome Project. Furthermore, individual differences in the microstructural properties of the face processing brain system tended toward stronger differentiation from global brain fibers with increasing ability. This is especially the case in the low or high ability range. Overall, our study provides novel evidence for ability-dependent specialization of brain structure in the face network, which promotes a comprehensive understanding of face selectivity.
Collapse
|
9
|
Fuhrmann D, Madsen KS, Johansen LB, Baaré WFC, Kievit RA. The midpoint of cortical thinning between late childhood and early adulthood differs between individuals and brain regions: Evidence from longitudinal modelling in a 12-wave neuroimaging sample. Neuroimage 2022; 261:119507. [PMID: 35882270 DOI: 10.1016/j.neuroimage.2022.119507] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Charting human brain maturation between childhood and adulthood is a fundamental prerequisite for understanding the rapid biological and psychological changes during human development. Two barriers have precluded the quantification of maturational trajectories: demands on data and demands on estimation. Using high-temporal resolution neuroimaging data of up to 12-waves in the HUBU cohort (N = 90, aged 7-21 years) we investigate changes in apparent cortical thickness across childhood and adolescence. Fitting a four-parameter logistic nonlinear random effects mixed model, we quantified the characteristic, s-shaped, trajectory of cortical thinning in adolescence. This approach yields biologically meaningful parameters, including the midpoint of cortical thinning (MCT), which corresponds to the age at which the cortex shows most rapid thinning - in our sample occurring, on average, at 14 years of age. These results show that, given suitable data and models, cortical maturation can be quantified with precision for each individual and brain region.
Collapse
Affiliation(s)
- D Fuhrmann
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
| | - K S Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Kettegaard Allé 30, DK-2650, Hvidovre, Denmark; Radiography, Department of Technology, University College Copenhagen, Sigurdsgade 26, DK-2200, Copenhagen N., Denmark
| | - L B Johansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Kettegaard Allé 30, DK-2650, Hvidovre, Denmark
| | - W F C Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Kettegaard Allé 30, DK-2650, Hvidovre, Denmark
| | - R A Kievit
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Frischkorn GT, Hilger K, Kretzschmar A, Schubert AL. Intelligenzdiagnostik der Zukunft. PSYCHOLOGISCHE RUNDSCHAU 2022. [DOI: 10.1026/0033-3042/a000598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Zusammenfassung. Die menschliche Intelligenz ist eines der am besten erforschten und validierten Konstrukte innerhalb der Psychologie. Dennoch wird die Validität von Intelligenztests im gruppen- und insbesondere kulturvergleichenden Kontext regelmäßig und berechtigterweise kritisch hinterfragt. Obwohl verschiedene Alternativen und Weiterentwicklungen der Intelligenzdiagnostik vorgeschlagen wurden (z. B. kulturfaire Tests), sind fundamentale Probleme in der vergleichenden Intelligenzdiagnostik noch immer ungelöst und die Validitäten entsprechender Verfahren unklar. In dem vorliegenden Positionspapier wird diese Thematik aus der Perspektive der Kognitionspsychologie und der kognitiven Neurowissenschaften beleuchtet und eine prozessorientierte und biologisch inspirierte Form der Intelligenzdiagnostik als potentieller Lösungsansatz vorgeschlagen. Wir zeigen die Bedeutung elementarer kognitiver Prozesse auf (insbesondere Arbeitsgedächtniskapazität, Aufmerksamkeit, Verarbeitungsgeschwindigkeit), die individuellen Leistungsunterschieden zu Grunde liegen, und betonen, dass der Unterscheidung zwischen Inhalten und Prozessen eine zentrale, jedoch oft vernachlässigte Rolle in der Diagnostik allgemeiner kognitiver Leistungsunterschiede zukommt. Während aus kognitions- und neuropsychologischer Sicht davon ausgegangen werden kann, dass sich insbesondere Prozesse für interkulturelle Vergleiche eignen, sollten Inhalte als stärker kulturspezifisch verstanden werden. Darauf aufbauend diskutieren wir drei verschiedene Ansätze zur Verbesserung interkultureller Vergleichbarkeit der Intelligenzdiagnostik sowie deren Grenzen. Wir postulieren, dass sich die Intelligenzforschung im Austausch mit verschiedenen Disziplinen stärker auf die Identifikation von generellen kognitiven Prozessen fokussieren sollte und diskutieren das Potenzial zukünftiger Forschung hin zu einer prozessorientierten und biologisch inspirierten Intelligenzdiagnostik. Schließlich zeigen wir derzeitige Möglichkeiten auf, gehen aber auch auf etwaige Herausforderungen ein und beleuchten Implikationen für die zukünftige Intelligenzdiagnostik und -forschung.
Collapse
Affiliation(s)
| | - Kirsten Hilger
- Institut für Psychologie, Universität Würzburg, Deutschland
| | | | - Anna-Lena Schubert
- Psychologisches Institut, Universität Heidelberg, Deutschland
- Psychologisches Institut, Universität Mainz, Deutschland
| |
Collapse
|
11
|
Neubeck M, Johann VE, Karbach J, Könen T. Age-differences in network models of self-regulation and executive control functions. Dev Sci 2022; 25:e13276. [PMID: 35535463 DOI: 10.1111/desc.13276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/08/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022]
Abstract
Self-regulation (SR) and executive control functions (EF) are broad theoretical concepts that subsume various cognitive abilities supporting the regulation of behavior, thoughts, and emotions (c.f. Inzlicht et al., 2021; Wiebe & Karbach, 2017). However, many of these concepts stem from different psychological disciplines relying on distinct methodologies, such as self-reports (common in SR research) and performance-based tasks (common in EF research). Despite the striking overlap between SR and EF on the theoretical level, recent evidence suggests that correlations between self-report measures and behavioral tasks can be difficult to observe (e.g., Eisenberg et al., 2019). In our study, participants from a life-span sample (14-82 years) completed self-report measures and behavioral tasks, which were selected to include a variety of different facets of SR (e.g., sensation seeking, mindfulness, grit, or eating behavior) and EF (working memory, inhibition, shifting). Using this broad approach, we systematically investigated connections and overlap of different aspects of SR and EF to improve their conceptual understanding. By comparing network models of a youth, middle-aged, and older-aged group, we identified key variables that are well connected in the SR and EF construct space. In general, we found connections to be stronger within the clusters of SR and EF than between them. However, older adults demonstrated more connections between SR and EF than younger individuals, likely because of declining cognitive resources. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | | | - Tanja Könen
- University of Koblenz-Landau, Landau, Germany
| |
Collapse
|
12
|
Using large, publicly available data sets to study adolescent development: opportunities and challenges. Curr Opin Psychol 2022; 44:303-308. [PMID: 34837769 DOI: 10.1016/j.copsyc.2021.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022]
Abstract
Adolescence is a period of rapid change, with cognitive, mental wellbeing, environmental biological factors interacting to shape lifelong outcomes. Large, longitudinal phenotypically rich data sets available for reuse (secondary data) have revolutionized the way we study adolescence, allowing the field to examine these unfolding processes across hundreds or even thousands of individuals. Here, we outline the opportunities and challenges associated with such secondary data sets, provide an overview of particularly valuable resources available to the field, and recommend best practices to improve the rigor and transparency of analyses conducted on large, secondary data sets.
Collapse
|
13
|
Astle DE, Holmes J, Kievit R, Gathercole SE. Annual Research Review: The transdiagnostic revolution in neurodevelopmental disorders. J Child Psychol Psychiatry 2022; 63:397-417. [PMID: 34296774 DOI: 10.1111/jcpp.13481] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Practitioners frequently use diagnostic criteria to identify children with neurodevelopmental disorders and to guide intervention decisions. These criteria also provide the organising framework for much of the research focussing on these disorders. Study design, recruitment, analysis and theory are largely built on the assumption that diagnostic criteria reflect an underlying reality. However, there is growing concern that this assumption may not be a valid and that an alternative transdiagnostic approach may better serve our understanding of this large heterogeneous population of young people. This review draws on important developments over the past decade that have set the stage for much-needed breakthroughs in understanding neurodevelopmental disorders. We evaluate contemporary approaches to study design and recruitment, review the use of data-driven methods to characterise cognition, behaviour and neurobiology, and consider what alternative transdiagnostic models could mean for children and families. This review concludes that an overreliance on ill-fitting diagnostic criteria is impeding progress towards identifying the barriers that children encounter, understanding underpinning mechanisms and finding the best route to supporting them.
Collapse
Affiliation(s)
- Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Joni Holmes
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Rogier Kievit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Susan E Gathercole
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Recent developments, current challenges, and future directions in electrophysiological approaches to studying intelligence. INTELLIGENCE 2021. [DOI: 10.1016/j.intell.2021.101569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Li J, Zhang M, Li Y, Huang F, Shao W. Predicting Students' Attitudes Toward Collaboration: Evidence From Structural Equation Model Trees and Forests. Front Psychol 2021; 12:604291. [PMID: 33841240 PMCID: PMC8033009 DOI: 10.3389/fpsyg.2021.604291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have shed some light on the importance of associated factors of collaborative attitudes. However, most previous studies aimed to explore the influence of these factors in isolation. With the strategy of data-driven decision making, the current study applied two data mining methods to elucidate the most significant factors of students' attitudes toward collaboration and group students to draw a concise model, which is beneficial for educators to focus on key factors and make effective interventions at a lower cost. Structural equation model trees (SEM trees) and structural equation model forests (SEM forests) were applied to the Program for International Student Assessment 2015 dataset (a total of 9,769 15-year-old students from China). By establishing the most important predictors and the splitting rules, these methods constructed multigroup common factor models of collaborative attitudes. The SEM trees showed that home educational resources (split by "above-average or not"), home possessions (split by "disadvantaged or not"), mother's education (split by "below high school or not"), and gender (split by "male or female") were the most important predictors among the demographic variables, drawing a 5-group model. Among all the predictors, achievement motivation (split by "above-average or not") and sense of belonging at school (split by "above-average or not" and "disadvantaged or not") were the most important, drawing a 6-group model. The SEM forest findings proved the relative importance of these variables. This paper discusses various interpretations of these results and their implications for educators to formulate corresponding interventions. Methodologically, this research provides a data mining approach to discover important information from large-scale educational data, which might be a complementary approach to enhance data-driven decision making in education.
Collapse
Affiliation(s)
- Jialing Li
- School of Psychology, South China Normal University, Guangzhou, China
| | - Minqiang Zhang
- School of Psychology, South China Normal University, Guangzhou, China.,Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Yixing Li
- School of Psychology, South China Normal University, Guangzhou, China
| | - Feifei Huang
- School of Psychology, South China Normal University, Guangzhou, China
| | - Wei Shao
- School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
16
|
Gosar D, Tretnjak V, Bregant T, Neubauer D, Derganc M. Reduced white-matter integrity and lower speed of information processing in adolescents with mild and moderate neonatal hypoxic-ischaemic encephalopathy. Eur J Paediatr Neurol 2020; 28:205-213. [PMID: 32665198 DOI: 10.1016/j.ejpn.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Studies have shown that adolescents with moderate hypoxic-ischaemic encephalopathy (HIE) may have specific cognitive deficits, especially reduced speed of information processing. The aim of our study was to confirm these earlier findings find out whether the degree of impairment in speed of information processing correlates with the degree of white-matter impairment as measured by diffusion tensor imaging (DTI). METHODS Thirty-three participants (mean age 18y 5mo, SD 12mo; 19 male) with mild or moderate HIE and 32 neurotypical adolescents (mean age 17y 10mo, SD 12mo, 18 male) completed a comprehensive neuropsychological battery measuring short-term memory, inhibition, speed of information processing, long-term visual and verbal memory. Fourteen participants also underwent structural MRI and DTI scans. RESULTS After controlling for age, gender and maternal education we found a significant effect of HIE on speed of information processing (F(2, 64) = 3.51, p < .037, η2 = 0.115), but not on other neuropsychological domains. Using tract-based spatial statistics we were also able to confirm a correlation between the degree of impairment in this cognitive domain and fractional anisotropy in several white-matter tracts. CONCLUSIONS The long-term cognitive outcome of moderate HIE includes reduced speed of information processing and is in part mediated by reduced integrity of major white-matter tracts.
Collapse
Affiliation(s)
- David Gosar
- University Children's Hospital, University Medical Centre Ljubljana, Department of Child, Adolescent and Developmental Neurology, Ljubljana, Slovenia.
| | - Vali Tretnjak
- University Children's Hospital, University Medical Centre Ljubljana, Department of Child, Adolescent and Developmental Neurology, Ljubljana, Slovenia
| | - Tina Bregant
- Centre for Education and Rehabilitation of Physically Handicapped Children and Adolescents - CIRIUS Kamnik, Slovenia
| | - David Neubauer
- University Children's Hospital, University Medical Centre Ljubljana, Department of Child, Adolescent and Developmental Neurology, Ljubljana, Slovenia
| | - Metka Derganc
- University Medical Centre Ljubljana, Department of Paediatric Surgery and Intensive Care, Ljubljana, Slovenia
| |
Collapse
|
17
|
Schubert AL, Frischkorn GT. Neurocognitive Psychometrics of Intelligence: How Measurement Advancements Unveiled the Role of Mental Speed in Intelligence Differences. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2020. [DOI: 10.1177/0963721419896365] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
More intelligent individuals typically show faster reaction times. However, individual differences in reaction times do not represent individual differences in a single cognitive process but in multiple cognitive processes. Thus, it is unclear whether the association between mental speed and intelligence reflects advantages in a specific cognitive process or in general processing speed. In this article, we present a neurocognitive-psychometrics account of mental speed that decomposes the relationship between mental speed and intelligence. We summarize research employing mathematical models of cognition and chronometric analyses of neural processing to identify distinct stages of information processing strongly related to intelligence differences. Evidence from both approaches suggests that the speed of higher-order processing is greater in smarter individuals, which may reflect advantages in the structural and functional organization of brain networks. Adopting a similar neurocognitive-psychometrics approach for other cognitive processes associated with intelligence (e.g., working memory or executive control) may refine our understanding of the basic cognitive processes of intelligence.
Collapse
|
18
|
Kurashige H, Kaneko J, Yamashita Y, Osu R, Otaka Y, Hanakawa T, Honda M, Kawabata H. Revealing Relationships Among Cognitive Functions Using Functional Connectivity and a Large-Scale Meta-Analysis Database. Front Hum Neurosci 2020; 13:457. [PMID: 31998102 PMCID: PMC6965330 DOI: 10.3389/fnhum.2019.00457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/12/2019] [Indexed: 11/13/2022] Open
Abstract
To characterize each cognitive function per se and to understand the brain as an aggregate of those functions, it is vital to relate dozens of these functions to each other. Knowledge about the relationships among cognitive functions is informative not only for basic neuroscientific research but also for clinical applications and developments of brain-inspired artificial intelligence. In the present study, we propose an exhaustive data mining approach to reveal relationships among cognitive functions based on functional brain mapping and network analysis. We began our analysis with 109 pseudo-activation maps (cognitive function maps; CFM) that were reconstructed from a functional magnetic resonance imaging meta-analysis database, each of which corresponds to one of 109 cognitive functions such as ‘emotion,’ ‘attention,’ ‘episodic memory,’ etc. Based on the resting-state functional connectivity between the CFMs, we mapped the cognitive functions onto a two-dimensional space where the relevant functions were located close to each other, which provided a rough picture of the brain as an aggregate of cognitive functions. Then, we conducted so-called conceptual analysis of cognitive functions using clustering of voxels in each CFM connected to the other 108 CFMs with various strengths. As a result, a CFM for each cognitive function was subdivided into several parts, each of which is strongly associated with some CFMs for a subset of the other cognitive functions, which brought in sub-concepts (i.e., sub-functions) of the cognitive function. Moreover, we conducted network analysis for the network whose nodes were parcels derived from whole-brain parcellation based on the whole-brain voxel-to-CFM resting-state functional connectivities. Since each parcel is characterized by associations with the 109 cognitive functions, network analyses using them are expected to inform about relationships between cognitive and network characteristics. Indeed, we found that informational diversities of interaction between parcels and densities of local connectivity were dependent on the kinds of associated functions. In addition, we identified the homogeneous and inhomogeneous network communities about the associated functions. Altogether, we suggested the effectiveness of our approach in which we fused the large-scale meta-analysis of functional brain mapping with the methods of network neuroscience to investigate the relationships among cognitive functions.
Collapse
Affiliation(s)
- Hiroki Kurashige
- Institute of Innovative Science and Technology, Tokai University, Tokyo, Japan.,National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Jun Kaneko
- Institute of Innovative Science and Technology, Tokai University, Tokyo, Japan
| | - Yuichi Yamashita
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Rieko Osu
- Faculty of Human Sciences, Waseda University, Tokyo, Japan
| | - Yohei Otaka
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Aichi, Japan.,Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Takashi Hanakawa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Manabu Honda
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | |
Collapse
|