1
|
Costa CE, Romaní A, Domingues L. Overview of resveratrol properties, applications, and advances in microbial precision fermentation. Crit Rev Biotechnol 2024:1-17. [PMID: 39582165 DOI: 10.1080/07388551.2024.2424362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 07/13/2024] [Indexed: 11/26/2024]
Abstract
Resveratrol is an antioxidant abundant in plants like grapes and peanuts and has garnered significant attention for its potential therapeutic applications. This review explores its chemical attributes, stability, and solubility, influencing its diverse applications and bioavailability. Resveratrol's multifaceted therapeutic roles encompass: antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anti-aging, and anticancer properties. While traditionally studied in preclinical settings, a surge in clinical trials underscores resveratrol's promise for human health. Over 250 recent clinical trials investigate its effects alone and in combination with other compounds. Commercially utilized in food, cosmetics, supplements, and pharmaceuticals, the resveratrol market is expanding, driven by microbial fermentation. Microbes offer advantages over plant extraction and chemical synthesis, providing cost-effective, pure, and sustainable production. Microbial biosynthesis can be attained from carbon sources, such as glucose or xylose, among others, which can be obtained from renewable resources or agro-industrial wastes. While Saccharomyces cerevisiae has been the most used host, non-conventional yeasts like Yarrowia lipolytica and bacteria like Escherichia coli have also demonstrated potential. Genetic modifications such as increasing acetyl-CoA/malonyl-CoA pools, boosting the shikimate pathway, or multi-copy expression of pathway genes, allied to the optimization of fermentation strategies have been promising in increasing titers. Microbial biosynthesis of resveratrol aligns with the shift toward sustainable and renewable bio-based compounds, exemplifying a circular bioeconomy. Concluding, microbial fermentation presents a promising avenue for efficient resveratrol production, driven by genetic engineering, pathway optimization, and fermentation strategies. These advances hold the key to unlocking the potential of resveratrol for diverse therapeutic applications, contributing to a greener and sustainable future.
Collapse
Affiliation(s)
- Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Aloia Romaní
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), Ourense, Spain
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Mueller NN, Kim Y, Ocoko MYM, Dernelle P, Kale I, Patwa S, Hermoso AC, Chirra D, Capadona JR, Hess-Dunning A. Effects of Micromachining on Anti-oxidant Elution from a Mechanically-Adaptive Polymer. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2024; 34:10.1088/1361-6439/ad27f7. [PMID: 38586082 PMCID: PMC10996452 DOI: 10.1088/1361-6439/ad27f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Intracortical microelectrodes (IMEs) can be used to restore motor and sensory function as a part of brain-computer interfaces in individuals with neuromusculoskeletal disorders. However, the neuroinflammatory response to IMEs can result in their premature failure, leading to reduced therapeutic efficacy. Mechanically-adaptive, resveratrol-eluting (MARE) neural probes target two mechanisms believed to contribute to the neuroinflammatory response by reducing the mechanical mismatch between the brain tissue and device, as well as locally delivering an antioxidant therapeutic. To create the mechanically-adaptive substrate, a dispersion, casting, and evaporation method is used, followed by a microfabrication process to integrate functional recording electrodes on the material. Resveratrol release experiments were completed to generate a resveratrol release profile and demonstrated that the MARE probes are capable of long-term controlled release. Additionally, our results showed that resveratrol can be degraded by laser-micromachining, an important consideration for future device fabrication. Finally, the electrodes were shown to have a suitable impedance for single-unit neural recording and could record single units in vivo.
Collapse
Affiliation(s)
- Natalie N Mueller
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Youjoung Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Mali Ya Mungu Ocoko
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Peter Dernelle
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Ishani Kale
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Simran Patwa
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anna Clarissa Hermoso
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Deeksha Chirra
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Allison Hess-Dunning
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
3
|
Hua L, Stephen Inbaraj B, Chen B. An improved analytical method for determination of trans‐resveratrol and related stilbenes in grape skin by QuEChERS coupled with HPLC‐PDA‐MS. Int J Food Sci Technol 2021; 56:6376-6387. [DOI: 10.1111/ijfs.15370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/21/2021] [Indexed: 05/14/2025]
Abstract
SummaryGrape is a popular fruit crop that generates about one‐fourth of total weight as pomace during winemaking and commercial juice production. However, a significant amount of resveratrol and related stilbenes is present in grape skin, and their effective isolation enables the production of functional foods. Herein, an improved analytical method for the determination of trans‐resveratrol and related stilbenes in grape skin waste by QuEChERS method coupled with a high‐performance liquid chromatograph‐photodiode array detector‐mass spectrometer was developed. By employing a Gemini C18 column and a mobile phase of acetic acid in water (pH 3.6) and acetonitrile, a total of five resveratrol and related stilbenes could be separated within 15 min with a flow rate of 0.8 mL min−1 and detection wavelength at 306 nm. The optimised QuEChERS conditions were 10 mL of acetonitrile, 1 mL of grape skin extract and 900 mg of magnesium sulphate plus 25 mg of primary secondary amine. Principal component analysis by two principal components (74.18%, 25.82%) could well describe the trans‐resveratrol recovery at different QuEChERS conditions. A mean recovery, as well as coefficient of variation (CV, %) of repeatability and intermediate precision, ranged from 96.6% to 104.4%, 1.96% to 3.10% and 1.68% to 4.27%, respectively, conforming to the regulation set by Taiwan Food and Drug Administration. Quantitation revealed cis‐piceid to be present in largest amount (2.616 μg mL−1), followed by trans‐piceid (1.027 μg mL−1), trans‐resveratrol (0.967 μg mL−1), ε‐viniferin (0.660 μg mL−1) and cis‐resveratrol (0.183 μg mL−1) in grape skin extract, with their corresponding contents in dried grape skin being 4.185, 1.643, 1.539, 1.056 and 0.293 μg g−1, respectively.
Collapse
Affiliation(s)
- Leng‐Huei Hua
- Department of Food Science Fu Jen Catholic University New Taipei City 24205 Taiwan
| | | | - Bing‐Huei Chen
- Department of Food Science Fu Jen Catholic University New Taipei City 24205 Taiwan
- Department of Nutrition China Medical University Taichung 404 Taiwan
| |
Collapse
|
4
|
Chedea VS, Tomoiagǎ LL, Macovei ŞO, Mǎgureanu DC, Iliescu ML, Bocsan IC, Buzoianu AD, Voşloban CM, Pop RM. Antioxidant/Pro-Oxidant Actions of Polyphenols From Grapevine and Wine By-Products-Base for Complementary Therapy in Ischemic Heart Diseases. Front Cardiovasc Med 2021; 8:750508. [PMID: 34805304 PMCID: PMC8595212 DOI: 10.3389/fcvm.2021.750508] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Grape pomace and grape seeds, by-products of the wine industry, and grapevine cane resulting from grapevine pruning are cheap matrices containing important amounts of polyphenols. While there is a continuous need of introducing new ways of these by-products valorization, we propose their use as a source of bioactive polyphenols for complementary therapy in ischemic heart diseases. As oxidative stress plays an important role in these diseases, by their antioxidant/pro-oxidant properties, these compounds, mainly flavan-3-ols, procyanidins, and resveratrol may counteract the damage of the oxidative stress. For instance, to some extent, the grape seed extract, considered as an antioxidant nutritive supplement, may have pro-oxidant activity as well, depending on dose, duration of administration, and other dietary components. In vitro studies confirm that the antioxidant activity of this extract might be mediated by pro-oxidant o-quinones and oxidation products of the polyphenols from grape and winery byproducts, indicating that quinones, as oxidation products, are involved in the modulation of the antioxidant/pro-oxidant balance at the cellular level in the case of catechin-type compounds, in the absence or presence of oxidative stress inducers. In vivo, studies indicate that a grape pomace-rich diet results in a significant increase of the total antioxidant status in the plasma, liver, spleen, and kidneys. Also, the administration of grape pomace shows antioxidant activity with positive effects on health. In this context, the present review aims to present the most recent research focused on the antioxidant/pro-oxidant actions of the bioactive polyphenols from grapevine and wine byproducts, in conditions of ischemic heart diseases as assessed in vitro or in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Maria Lucia Iliescu
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), Blaj, Romania
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Machado ND, Gutiérrez G, Matos M, Fernández MA. Preservation of the Antioxidant Capacity of Resveratrol via Encapsulation in Niosomes. Foods 2021; 10:988. [PMID: 33946473 PMCID: PMC8147147 DOI: 10.3390/foods10050988] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Resveratrol (RSV) is a natural polyphenol which produces several benefits to human health, being the trans-isomer the most bioactive. However, its systemic absorption is limited due to its low water solubility, that reduces the oral bioavailability, and its chemical instability (owing to the trans-cis RSV isomer conversion upon light irradiation). Thus, encapsulation of this bioactive compound is required to protect it from destructive environmental conditions. Here, trans-RSV was encapsulated in food grade nanovesicles formed by Tween 80 and Span 80, with or without the addition of dodecanol (Dod) as membrane stabilizer. The size and shape of niosomes were evaluated by microscopy (TEM) and light scattering. RSV was successfully encapsulated in the vesicular systems (49-57%). The effect of Dod in the membrane bilayer was evaluated on the RSV in vitro release experiments under simulated gastrointestinal conditions. The total antioxidant capacity of the encapsulated polyphenol was measured using radicals' assays (DPPH and ABTS). The niosomes were able to maintain almost the total antioxidant capacity of encapsulated RSV, also preserved the ~85% of trans-RSV, thus offering considerable protection against high energy irradiation. These results make these systems suitable for different applications, particularly for photosensitive compounds.
Collapse
Affiliation(s)
- Noelia D. Machado
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina;
- Instituto de Investigaciones en Físico-Química de Córdoba, INFIQC-CONICET, Córdoba X5000HUA, Argentina
| | - Gemma Gutiérrez
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (G.G.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - María Matos
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (G.G.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Mariana A. Fernández
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina;
- Instituto de Investigaciones en Físico-Química de Córdoba, INFIQC-CONICET, Córdoba X5000HUA, Argentina
| |
Collapse
|
6
|
Padmanabhan P, Singh S. Resveratrol isomeric switching during bioreduction of gold nanoparticles: a gateway for cis-resveratrolArchita. NANOTECHNOLOGY 2020; 31:465603. [PMID: 32746439 DOI: 10.1088/1361-6528/ababcb] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Resveratrol, a polyphenolic and biocompatible molecule, exhibits significant pharmacological effects but has poor bioavailability and metabolic stability. It appears in two isomeric forms trans-(E)-resveratrol (tRes) and cis-(Z)-resveratrol (cRes). Many pharmacological activities studied so far are of tRes and is the most stable, predominant, and natural form. cRes is not commercially available due to difficulty in its purification and hence not explored much for its biological activities. Therefore, our study focuses on investigating the stability and therapeutic potential of cRes through its bio-conjugation to nanomaterial. In this study, tRes reduces gold ions to gold nanoparticles (GNPs) and itself gets oxidized to its isomeric form cRes. The isomeric switching was evidenced through cRes characteristic spectral differences and chromatographic elution pattern. The monodispersed GNPs of 25.6 ± 0.4 nm size was formed having zeta potential of -19 ± 3.82 mV confirming it to be a stable formulation. The stability studies were further extended to be tested under different physiological fluids. The cRes loaded GNPs (cRGNPs) reflecting the biological activity of cRes presented equivalent antioxidant property to that of tRes even at low concentrations. Also, cRGNPs showed the hemocompatibility by presenting no hemotoxicity and simultaneous in vitro anti-hemolytic activity. Therefore, the stability provided to cRes upon conjugating to GNPs can further be exploited to study the biological activities of cRes through its nano-conjugated delivery.
Collapse
|
7
|
Radonjić S, Maraš V, Raičević J, Košmerl T. Wine or Beer? Comparison, Changes and Improvement of Polyphenolic Compounds during Technological Phases. Molecules 2020; 25:E4960. [PMID: 33120907 PMCID: PMC7663142 DOI: 10.3390/molecules25214960] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Wine and beer are nowadays the most popular alcoholic beverages, and the benefits of their moderate consumption have been extensively supported by the scientific community. The main source of wine and beer's antioxidant behavior are the phenolic substances. Phenolic compounds in wine and beer also influence final product quality, in terms of color, flavor, fragrance, stability, and clarity. Change in the quantity and quality of phenolic compounds in wine and beer depends on many parameters, beginning with the used raw material, its place of origin, environmental growing conditions, and on all the applied technological processes and the storage of the final product. This review represents current knowledge of phenolic compounds, comparing qualitative and quantitative profiles in wine and beer, changes of these compounds through all phases of wine and beer production are discussed, as well as the possibilities for increasing their content. Analytical methods and their importance for phenolic compound determination have also been pointed out. The observed data showed wine as the beverage with a more potent biological activity, due to a higher content of phenolic compounds. However, both of them contain, partly similar and different, phenolic compounds, and recommendations have to consider the drinking pattern, consumed quantity, and individual preferences. Furthermore, novel technologies have been developing rapidly in order to improve the polyphenolic content and antioxidant activity of these two beverages, particularly in the brewing industry.
Collapse
Affiliation(s)
- Sanja Radonjić
- “13. Jul Plantaže” a.d., Research and Development Sector, Put Radomira Ivanovića 2, 81000 Podgorica, Montenegro; (V.M.); (J.R.)
| | - Vesna Maraš
- “13. Jul Plantaže” a.d., Research and Development Sector, Put Radomira Ivanovića 2, 81000 Podgorica, Montenegro; (V.M.); (J.R.)
| | - Jovana Raičević
- “13. Jul Plantaže” a.d., Research and Development Sector, Put Radomira Ivanovića 2, 81000 Podgorica, Montenegro; (V.M.); (J.R.)
| | - Tatjana Košmerl
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| |
Collapse
|
8
|
Wen S, Zhang J, Yang B, Elias PM, Man MQ. Role of Resveratrol in Regulating Cutaneous Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2416837. [PMID: 32382280 PMCID: PMC7180429 DOI: 10.1155/2020/2416837] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/24/2020] [Indexed: 01/09/2023]
Abstract
Protective role of the skin is against external insults and maintenance of electrolyte homeostasis of the body. Cutaneous dysfunction can account for the development of both cutaneous and systemic disorders. Thus, improvements in cutaneous functions can benefit a number of extracutaneous and cutaneous functions. Resveratrol, a natural ingredient, displays multiple benefits for various systems/organs, including the skin. The benefits of resveratrol for cutaneous functions include stimulation of keratinocyte differentiation and antimicrobial peptide expression, inhibition of keratinocyte proliferation and cutaneous inflammation, UV protection, anticancer, antiaging, and inhibition of melanogenesis. The mechanisms of action of resveratrol include activation of sirtuin 1 and nuclear factor erythroid 2-related factor 2, and inhibition of mitogen-activated protein kinase signaling. Evidence suggests that topical resveratrol could be a valuable alternative not only for daily skin care, but also for the prevention and treatment of various cutaneous disorders. This review summarizes the benefits of resveratrol for cutaneous functions.
Collapse
Affiliation(s)
- Si Wen
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jiechen Zhang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Peter M. Elias
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| |
Collapse
|
9
|
The Plant-Derived Compound Resveratrol in Brain Cancer: A Review. Biomolecules 2020; 10:biom10010161. [PMID: 31963897 PMCID: PMC7023272 DOI: 10.3390/biom10010161] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Despite intensive research, malignant brain tumors are among the most difficult to treat due to high resistance to conventional therapeutic approaches. High-grade malignant gliomas, including glioblastoma and anaplastic astrocytoma, are among the most devastating and rapidly growing cancers. Despite the ability of standard treatment agents to achieve therapeutic concentrations in the brain, malignant gliomas are often resistant to alkylating agents. Resveratrol is a plant polyphenol occurring in nuts, berries, grapes, and red wine. Resveratrol crosses the blood‒brain barrier and may influence the central nervous system. Moreover, it influences the enzyme isocitrate dehydrogenase and, more importantly, the resistance to standard treatment via various mechanisms, such as O6-methylguanine methyltransferase. This review summarizes the anticancer effects of resveratrol in various types of brain cancer. Several in vitro and in vivo studies have presented promising results; however, further clinical research is necessary to prove the therapeutic efficacy of resveratrol in brain cancer treatment.
Collapse
|
10
|
Francioso A, Laštovičková L, Mosca L, Boffi A, Bonamore A, Macone A. Gas Chromatographic-Mass Spectrometric Method for the Simultaneous Determination of Resveratrol Isomers and 2,4,6-Trihydroxyphenanthrene in Red Wines Exposed to UV-Light. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11752-11757. [PMID: 31554403 DOI: 10.1021/acs.jafc.9b05992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Resveratrol (3,5,4'-trihydroxystilbene) is one of the most abundant polyphenols in red grapes, and red wine represents one of the most important dietary sources of this compound. Although its beneficial properties on human health have been widely investigated over the last 30 years, very little is known about its derivatives. Resveratrol can indeed undergo glycosylation, oligomerization and, upon UV-light exposure, it can isomerize from the trans-to the cis-isomer, which can further cyclize to 2,4,6-trihydroxyphenanthrene (THP). Although the effects of THP on human health are not yet known, being a polycyclic aromatic hydrocarbon, it can be potentially harmful. Because no data about THP occurrence in plant food and beverages are available, a simple procedure based on liquid-liquid extraction and gas chromatography-mass spectrometry has been developed and validated for the simultaneous qualitative and quantitative analysis of trans-resveratrol, cis-resveratrol, and THP in red wine, before and after UV-light exposure.
Collapse
Affiliation(s)
- Antonio Francioso
- Department of Biochemical Sciences , "Sapienza" University of Rome , p.le A.Moro 5 , 00185 Rome , Italy
| | - Lenka Laštovičková
- Department of Biological and Biochemical Sciences , University of Pardubice , Studentská 573 , 530 10 Pardubice 2 , Czech Republic
| | - Luciana Mosca
- Department of Biochemical Sciences , "Sapienza" University of Rome , p.le A.Moro 5 , 00185 Rome , Italy
| | - Alberto Boffi
- Department of Biochemical Sciences , "Sapienza" University of Rome , p.le A.Moro 5 , 00185 Rome , Italy
| | - Alessandra Bonamore
- Department of Biochemical Sciences , "Sapienza" University of Rome , p.le A.Moro 5 , 00185 Rome , Italy
| | - Alberto Macone
- Department of Biochemical Sciences , "Sapienza" University of Rome , p.le A.Moro 5 , 00185 Rome , Italy
| |
Collapse
|
11
|
Castaldo L, Narváez A, Izzo L, Graziani G, Gaspari A, Di Minno G, Ritieni A. Red Wine Consumption and Cardiovascular Health. Molecules 2019; 24:E3626. [PMID: 31597344 PMCID: PMC6804046 DOI: 10.3390/molecules24193626] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023] Open
Abstract
Wine is a popular alcoholic beverage that has been consumed for hundreds of years. Benefits from moderate alcohol consumption have been widely supported by the scientific literature and, in this line, red wine intake has been related to a lesser risk for coronary heart disease (CHD). Experimental studies and meta-analyses have mainly attributed this outcome to the presence in red wine of a great variety of polyphenolic compounds such as resveratrol, catechin, epicatechin, quercetin, and anthocyanin. Resveratrol is considered the most effective wine compound with respect to the prevention of CHD because of its antioxidant properties. The mechanisms responsible for its putative cardioprotective effects would include changes in lipid profiles, reduction of insulin resistance, and decrease in oxidative stress of low-density lipoprotein cholesterol (LDL-C). The aim of this review is to summarize the accumulated evidence correlating moderate red wine consumption with prevention of CHD by focusing on the different mechanisms underlying this relationship. Furthermore, the chemistry of wine as well as chemical factors that influence the composition of the bioactive components of red wine are also discussed.
Collapse
Affiliation(s)
- Luigi Castaldo
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (L.I.); (G.G.); (A.G.)
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy;
| | - Alfonso Narváez
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (L.I.); (G.G.); (A.G.)
| | - Luana Izzo
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (L.I.); (G.G.); (A.G.)
| | - Giulia Graziani
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (L.I.); (G.G.); (A.G.)
| | - Anna Gaspari
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (L.I.); (G.G.); (A.G.)
| | - Giovanni Di Minno
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy;
| | - Alberto Ritieni
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (L.I.); (G.G.); (A.G.)
| |
Collapse
|
12
|
Ramos NSM, Freitas DV, de Souza GCS, Belmiro TMC, Lavorante AF, Teixeira-Neto E, Navarro M, Montenegro MCBSM, Paim APS. Cysteamine-CdTe Quantum Dots Electrochemically Synthesized as Fluorescence Probe for Resveratrol. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1305-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Chedea VS, Vicaş SI, Sticozzi C, Pessina F, Frosini M, Maioli E, Valacchi G. Resveratrol: from diet to topical usage. Food Funct 2018; 8:3879-3892. [PMID: 29034918 DOI: 10.1039/c7fo01086a] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The stilbene derivative resveratrol (3,5,4'-trihydroxy-stilbene; RESV) has become the subject of interest of many researchers and the pharmaceutical industries due to its well-acclaimed beneficial biological activities. Although earlier research tended to focus on the effects of RESV on cardiovascular disorders, many other studies have described the beneficial effects of RESV in the areas of cancer chemoprevention and inflammation and interest of researchers on this compound is still increasing. It is now well accepted that the effect of RESV is not just due to its so called "antioxidant" activity but mainly (if not only) because of the ability of this compound to trigger cell signaling pathways and gene expression involved in cellular defense systems. Many "in vitro" studies on RESV did not take into account that although its oral absorption is about 75% it undergoes rapid metabolism and the concentration in the blood stream is almost undetectable. For this reason interest in the topical usage of RESV by cosmeceutical skin care brands has exponentially increased in the last decade reporting in general very promising results on its beneficial effect in protecting the skin from outdoor insults, but there is still some controversy on its topical usage mainly surrounding the concentration used. Therefore, more basic research on the topical application of RESV should be performed to better understand the way it prevents cutaneous damage and whether it could be recommended as a preventive skin aging agent for all skin insults.
Collapse
Affiliation(s)
- Veronica Sanda Chedea
- Laboratory of Animal Biology, National Research and Development Institute for Biology and Animal Nutrition, Baloteşti (INCDBNA-IBNA), Calea Bucureşti nr. 1, Balotesti, Ilfov 077015, Romania.
| | | | | | | | | | | | | |
Collapse
|
14
|
Oliva E, Mathiron D, Bertaut E, Landy D, Cailleu D, Pilard S, Clément C, Courot E, Bonnet V, Djedaïni-Pilard F. Physico-chemical studies of resveratrol, methyl-jasmonate and cyclodextrin interactions: an approach to resveratrol bioproduction optimization. RSC Adv 2018; 8:1528-1538. [PMID: 35685942 PMCID: PMC9128506 DOI: 10.1039/c7ra11619e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022] Open
Abstract
trans-Resveratrol (RSV) is a natural phenolic molecule of the stilbene family known for its anti-oxidant properties in the field of nutraceuticals and cosmetics. Its production by grapevine cell suspensions is induced by the addition to the culture medium of elicitor compounds, methyl jasmonate (MeJA) and cyclodextrins (CDs). Physico-chemical studies were performed to understand the mechanism of action of CDs on this bioproduction of RSV. Inclusion complexes of RSV in CDs were first observed and then interactions with MeJA were identified using various analytical techniques such as UV and nuclear magnetic resonance (NMR) spectroscopies, mass spectrometry (MS) and isothermal titration calorimetry (ITC).
Collapse
Affiliation(s)
- E Oliva
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378 CNRS, Université de Picardie Jules Verne 33 rue Saint-Leu 80039 Amiens France
- Plateforme-analytique, Université de Picardie Jules Verne 33 rue Saint-Leu 80039 Amiens France
- SFR Condorcet "Agrosciences Environnement et Développement Durable" FR CNRS 3417, UFR Sciences Exactes et Naturelles BP 1039 Moulin de la Housse - Bâtiment 18 51687 Reims Cedex 02 France
| | - D Mathiron
- Plateforme-analytique, Université de Picardie Jules Verne 33 rue Saint-Leu 80039 Amiens France
- SFR Condorcet "Agrosciences Environnement et Développement Durable" FR CNRS 3417, UFR Sciences Exactes et Naturelles BP 1039 Moulin de la Housse - Bâtiment 18 51687 Reims Cedex 02 France
| | - E Bertaut
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), ULCO F-59140 Dunkerque France
- SFR Condorcet "Agrosciences Environnement et Développement Durable" FR CNRS 3417, UFR Sciences Exactes et Naturelles BP 1039 Moulin de la Housse - Bâtiment 18 51687 Reims Cedex 02 France
| | - D Landy
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), ULCO F-59140 Dunkerque France
- SFR Condorcet "Agrosciences Environnement et Développement Durable" FR CNRS 3417, UFR Sciences Exactes et Naturelles BP 1039 Moulin de la Housse - Bâtiment 18 51687 Reims Cedex 02 France
| | - D Cailleu
- Plateforme-analytique, Université de Picardie Jules Verne 33 rue Saint-Leu 80039 Amiens France
- SFR Condorcet "Agrosciences Environnement et Développement Durable" FR CNRS 3417, UFR Sciences Exactes et Naturelles BP 1039 Moulin de la Housse - Bâtiment 18 51687 Reims Cedex 02 France
| | - S Pilard
- Plateforme-analytique, Université de Picardie Jules Verne 33 rue Saint-Leu 80039 Amiens France
- SFR Condorcet "Agrosciences Environnement et Développement Durable" FR CNRS 3417, UFR Sciences Exactes et Naturelles BP 1039 Moulin de la Housse - Bâtiment 18 51687 Reims Cedex 02 France
| | - C Clément
- Unité de Recherche Vignes et Vins de Champagne, (URVVC, EA 4707), Université de Reims Champagne-Ardenne, UFR Sciences BP 1039, Moulin de la Housse 51687 Reims France
- SFR Condorcet "Agrosciences Environnement et Développement Durable" FR CNRS 3417, UFR Sciences Exactes et Naturelles BP 1039 Moulin de la Housse - Bâtiment 18 51687 Reims Cedex 02 France
| | - E Courot
- Unité de Recherche Vignes et Vins de Champagne, (URVVC, EA 4707), Université de Reims Champagne-Ardenne, UFR Sciences BP 1039, Moulin de la Housse 51687 Reims France
- SFR Condorcet "Agrosciences Environnement et Développement Durable" FR CNRS 3417, UFR Sciences Exactes et Naturelles BP 1039 Moulin de la Housse - Bâtiment 18 51687 Reims Cedex 02 France
| | - V Bonnet
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378 CNRS, Université de Picardie Jules Verne 33 rue Saint-Leu 80039 Amiens France
- SFR Condorcet "Agrosciences Environnement et Développement Durable" FR CNRS 3417, UFR Sciences Exactes et Naturelles BP 1039 Moulin de la Housse - Bâtiment 18 51687 Reims Cedex 02 France
| | - F Djedaïni-Pilard
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources, LG2A UMR 7378 CNRS, Université de Picardie Jules Verne 33 rue Saint-Leu 80039 Amiens France
- SFR Condorcet "Agrosciences Environnement et Développement Durable" FR CNRS 3417, UFR Sciences Exactes et Naturelles BP 1039 Moulin de la Housse - Bâtiment 18 51687 Reims Cedex 02 France
| |
Collapse
|
15
|
Mamadou G, Charrueau C, Dairou J, Limas Nzouzi N, Eto B, Ponchel G. Increased intestinal permeation and modulation of presystemic metabolism of resveratrol formulated into self-emulsifying drug delivery systems. Int J Pharm 2017; 521:150-155. [PMID: 28216465 DOI: 10.1016/j.ijpharm.2017.02.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 01/25/2023]
Abstract
Despite various beneficial biological properties, resveratrol lacks therapeutic applications because of poor bioavailability due to variable absorption and extensive metabolism. The present study aims at evaluating the capability of self-emulsifying drug delivery systems (SEDDS) to enhance resveratrol permeation across rat intestine and to modulate its presystemic metabolism. For that purpose, semi-solid (SS) and liquid (L) SEDDS were prepared and dispersed in an aqueous buffer to produce nanoemulsions (NE). The jejunal absorptive transepithelial fluxes (Jms) of resveratrol elicited by these formulations (SS-NE and L-NE) and presystemic metabolization were determined on Ussing chambers. The absorptive fluxes through the intestinal epithelium from the nanoemulsions (Jms=20.5±3.1μgh-1cm-2 SS-NE; 28.9±2.9μgh-1cm-2 L-NE) were significantly increased compared to an ethanolic control solution (Jms=3.4±0.3μgh-1cm-2, p<0.05). No significant variations of conductance were observed after two hours of contact between the formulations and the mucosa. Simultaneously, the presystemic metabolization pattern was modified in the case of the nanoemulsions compared to the control solution. In conclusion, our data suggests that oil-in-water nanoemulsions prepared from SEDDS dispersions of medium-chain lipids could be promising formulations for enhancing oral delivery of resveratrol.
Collapse
Affiliation(s)
- G Mamadou
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France; TransCell-Lab Laboratory, Faculty of Medicine Xavier Bichat, University of Paris Diderot - Paris7, Paris, France.
| | - C Charrueau
- Unité de Technologies Chimiques et Biologiques pour la Santé UTCBS UMR 8258 CNRS/U1022 INSERM, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - J Dairou
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - N Limas Nzouzi
- TransCell-Lab Laboratory, Faculty of Medicine Xavier Bichat, University of Paris Diderot - Paris7, Paris, France
| | - B Eto
- TransCell-Lab Laboratory, Faculty of Medicine Xavier Bichat, University of Paris Diderot - Paris7, Paris, France
| | - G Ponchel
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
16
|
Neves AR, Reis S, Segundo MA. Development and validation of a HPLC method using a monolithic column for quantification of trans-resveratrol in lipid nanoparticles for intestinal permeability studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3114-3120. [PMID: 25764378 DOI: 10.1021/acs.jafc.5b00390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The development of nanodelivery systems that protect trans-resveratrol is extremely important to preserve its bioactive properties in the development of further applications as nutraceuticals to supplement foods and beverages. In this work, a validated HPLC method was developed for the quantification of trans-resveratrol in lipid nanoparticles for application in studies of in vitro intestinal permeability. The chromatographic separation was achieved in a C18 monolithic column connected to a fluorometric detector (330/374 nm), by isocratic elution consisting of 2% acetic acid/acetonitrile (80:20). Two calibration ranges were established (0.020-0.200 and 0.200-2.00 μmol L(-1)), and low quantification limits (2-6 nmol L(-1), 23-69 pg) were achieved. Stability studies showed that trans-resveratrol is stable for 24 h at 4 °C, and storage at room temperature and freeze-thaw cycles are not recommended. The proposed method was applied to in vitro intestinal permeability studies, in which values between 0.05 ± 0.01 and 1.8 ± 0.3 μmol L(-1) were found.
Collapse
Affiliation(s)
- Ana Rute Neves
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Salette Reis
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marcela A Segundo
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
Takahashi R, Odera K. [An overview of current research of the effect of foods on aging and stress]. YAKUGAKU ZASSHI 2015; 135:33-40. [PMID: 25743896 DOI: 10.1248/yakushi.14-00208-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aging process is largely influenced by dietary factors. For example, caloric restriction can slow age-related functional deterioration and the onset or progression of age-related diseases, as well as prolong mean and maximum life span in laboratory animals. However, the dietary factors that affect the aging process comprise not only calories, but also various nutrients, such as proteins, carbohydrates, fats, and vitamins. Phytochemicals, which are found in plants, are non-nutritive, yet many phytochemicals are known to act as antioxidants and prevent diseases associated with free radical production. Furthermore, certain phytochemicals can help prevent or reduce the risk of cancer, inflammation, and cardiovascular disease by alteration of several signal transduction pathways in cells. Therefore, much focus is being placed on the effects of dietary phytochemicals on aging and stress response. This paper reviews recent advances in the study of two major dietary phytochemicals, resveratrol and curcumin, on aging and stress response.
Collapse
Affiliation(s)
- Ryoya Takahashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University
| | | |
Collapse
|
18
|
Zhao Y, Shi M, Ye JH, Zheng XQ, Lu JL, Liang YR. Photo-induced chemical reaction of trans-resveratrol. Food Chem 2015; 171:137-43. [DOI: 10.1016/j.foodchem.2014.08.130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/26/2014] [Accepted: 08/30/2014] [Indexed: 10/24/2022]
|
19
|
Liao Z, Liu D, Tang L, Yin D, Yin S, Lai S, Yao J, He M. Long-term oral resveratrol intake provides nutritional preconditioning against myocardial ischemia/reperfusion injury: involvement of VDAC1 downregulation. Mol Nutr Food Res 2015; 59:454-64. [PMID: 25488258 DOI: 10.1002/mnfr.201400730] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/29/2014] [Accepted: 12/01/2014] [Indexed: 11/07/2022]
Abstract
SCOPE This study elucidates the effects of long-term nutritional preconditioning by resveratrol on ischemia/reperfusion (I/R) injury and its underlying mechanisms. METHODS AND RESULTS Mice were treated with resveratrol at 2.0 mg/kg/day by gastric gavages for 6 wk. Then hearts were isolated and subjected to I/R injury in a Langendorff apparatus. Resveratrol significantly improved left ventricular pressure, ±dp/dtmax, and coronary flow; decreased the lactate dehydrogenase and creatine phosphokinase activities; and reduced the infarction size. Additionally, long-term oral resveratrol intake prevented mitochondrial permeability transition pore opening and subsequently inhibited mitochondria-mediated apoptosis, as demonstrated by decrease of cytochrome c release, inactivation of caspase-3, and reduction of terminal deoxynucleotidyl transferase mediated nick end labeling positive cells. Furthermore, resveratrol inhibited the upregulation of voltage-dependent anion channel 1 (VDAC1) expression induced by I/R injury. Local left-ventricle overexpression of VDAC1 by adenovirus diminished the protective effect of resveratrol against I/R injury, indicating that VDAC1 plays an important role in resveratrol-mediated cardioprotection. CONCLUSION Our data revealed that long-term oral intake of resveratrol sets nutritional preconditioning to cope with myocardial I/R injury. Strikingly, we found that resveratrol downregulates VDAC1, leading to prevention of mitochondrial permeability transition pore opening and cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Zhangping Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China; Department of Pharmacology & Molecular Therapeutics, Nanchang University School of Pharmaceutical Science, Nanchang, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
McCalley AE, Kaja S, Payne AJ, Koulen P. Resveratrol and calcium signaling: molecular mechanisms and clinical relevance. Molecules 2014; 19:7327-40. [PMID: 24905603 PMCID: PMC4160047 DOI: 10.3390/molecules19067327] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 11/16/2022] Open
Abstract
Resveratrol is a naturally occurring compound contributing to cellular defense mechanisms in plants. Its use as a nutritional component and/or supplement in a number of diseases, disorders, and syndromes such as chronic diseases of the central nervous system, cancer, inflammatory diseases, diabetes, and cardiovascular diseases has prompted great interest in the underlying molecular mechanisms of action. The present review focuses on resveratrol, specifically its isomer trans-resveratrol, and its effects on intracellular calcium signaling mechanisms. As resveratrol's mechanisms of action are likely pleiotropic, its effects and interactions with key signaling proteins controlling cellular calcium homeostasis are reviewed and discussed. The clinical relevance of resveratrol's actions on excitable cells, transformed or cancer cells, immune cells and retinal pigment epithelial cells are contrasted with a review of the molecular mechanisms affecting calcium signaling proteins on the plasma membrane, cytoplasm, endoplasmic reticulum, and mitochondria. The present review emphasizes the correlation between molecular mechanisms of action that have recently been identified for resveratrol and their clinical implications.
Collapse
Affiliation(s)
- Audrey E McCalley
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA.
| | - Simon Kaja
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA.
| | - Andrew J Payne
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA.
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA.
| |
Collapse
|