1
|
Karpitskiy DA, Bessonova EA, Shishov AY, Kartsova LA. Handshake of deep eutectic solvent and ionic liquid: Two liquid-liquid microextraction procedures for plant analysis. Talanta 2025; 282:126947. [PMID: 39342670 DOI: 10.1016/j.talanta.2024.126947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Plants are subjects of interest due to the secondary metabolites in their extracts which are promising as new pharmaceuticals. Phytochemistry do not have united system of sample preparation or analysis still due to different structure of plant cells, wide broad range of chemical properties and concentrations of bioactive compounds. Such challenges can be addressed in a green chemistry manner using new approaches through smart materials in routine monitoring and researches. Liquid smart materials, such as ionic liquids (ILs) and deep eutectic solvents (DESs) are attractive due to flexible properties, lots of extraction approaches, recycle potential, and direct compatibility with powerful analytical methods. In this study DES-based microextraction procedure with pH-switching was developed. Four choline chloride DESs were suggested as selective extraction phases for polar compounds from acetonitrile extracts. Method was successfully tested on four plants (Iris sibirica L., Hypericum perforatum L., Scutellaria baicalensis G, Citrus reticulata B.). Developed procedure was optimized and validated for the choline chloride - urea (1:2 mol/mol) DES that demonstrated better results in extraction. LOD for rutin was found as 0.05 mg ml-1. For low-polar compound, imidazolium ionic liquid-based dispersive liquid-liquid microextraction procedure was developed. 1-hexyl-3-methylimidazolium salts have demonstrated desired selectivity. The main factors influencing the extraction efficiency have been identified and optimized by design of experiment on two model plants (Iris sibirica L. and Scutellaria baicalensis G.). Validation procedures were done for thymol. LOD for thymol was found as 0.021 mg ml-1. The methods were compared with each other and traditional methanol extraction. The selectivity of the smart materials supports each other, usage of such extraction phases provides same or better results as obtained with methanol.
Collapse
Affiliation(s)
- Dmitriy Alexeyevich Karpitskiy
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr., 26, 198504, Peterhof, Saint Petersburg, Russia.
| | - Elena Andreyevna Bessonova
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr., 26, 198504, Peterhof, Saint Petersburg, Russia
| | - Andrey Yuryevich Shishov
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr., 26, 198504, Peterhof, Saint Petersburg, Russia
| | - Lyudmila Alexeyevna Kartsova
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr., 26, 198504, Peterhof, Saint Petersburg, Russia
| |
Collapse
|
2
|
Dispersive liquid–liquid microextraction-assisted by deep eutectic solvent for the extraction of different chlorophenols from water samples followed by analysis using gas chromatography-electron capture detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
3
|
Eco-friendly magnetic Solid-Phase extraction and deep eutectic solvent for the separation and detection of parabens from the environmental water and urine samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Fattahi N, Hashemi B, Shiri F, Shamsipur M, Babajani N. Extraction of parabens from personal care products using a pH-responsive hydrophobic deep eutectic solvent: experimental design and COSMO-RS evaluations. NEW J CHEM 2022. [DOI: 10.1039/d2nj02519a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A pH-responsive hydrophobic deep eutectic solvent is used for the extraction of parabens from different personal care products.
Collapse
Affiliation(s)
- Nazir Fattahi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Beshare Hashemi
- School of Arts and Sciences, American International University, Jahra, Kuwait
| | - Fereshteh Shiri
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Mojtaba Shamsipur
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Nasrin Babajani
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
5
|
Azizi Nezami R, Saber Tehrani M, Faraji H, Waqif Husain S, Aberoomand Azar P. Strategies to improve the challenges of classic dispersive liquid-liquid microextraction for determination of the parabens in personal care products-One step closer to green analytical chemistry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1183:122973. [PMID: 34666891 DOI: 10.1016/j.jchromb.2021.122973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/20/2023]
Abstract
Gas flow-assisted dispersive liquid-phase microextraction based on deep eutectic solvent was used to determine parabens in personal care products such as mouthwash, lidocaine gel, aloe vera gel, and skin tonic. A homemade extraction device was innovated, in which by passing the stream of gas bubbles through the deep eutectic solvent a thin layer of the extraction phase is coated on the surface of the bubbles. The extraction is finally achieved when the bubbles are going up through the sample. The single-factor experiments and response surface methodology were applied to optimize the independent variables. The linear range of the method was 0.5 to 1000 µg L-1, the coefficient of determination for the goal analytes was higher than 0.9989, the instrumental limit of detections were in the range 0.2-0.3 μg L-1, and the instrumental limit of quantifications were in the range 0.5-1.1 μg L-1, the relative standard deviations were <5.2% for repeatability and <11.2% for intermediate precision, and the enrichment factors were 66 to 87 obtained under the optimized conditions. A spiking approach by means of standard material was used to estimate accuracy. The relative recoveries were in the range 95.8-105.2%. By using mentioned strategies, the organic waste and energy consumption reduced, toxic reagents replaced with safer ones, and operator safety enhanced. Accordingly, these benefits have been simultaneously attained and, the proposed method was one step closer to automation and sustainable analytical chemistry.
Collapse
Affiliation(s)
- Razieh Azizi Nezami
- Department of Chemistry, Science and Research Branche, Islamic Azad University, Iran
| | | | - Hakim Faraji
- Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Varamin 338177489, Iran.
| | - Syed Waqif Husain
- Department of Chemistry, Science and Research Branche, Islamic Azad University, Iran
| | | |
Collapse
|
6
|
Yazdi MN, Yamini Y, Asiabi H. Fabrication of polypyrrole-silver nanocomposite for hollow fiber solid phase microextraction followed by HPLC/UV analysis for determination of parabens in water and beverages samples. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Mashile GP, Mpupa A, Nomngongo PN. In-Syringe Micro Solid-Phase Extraction Method for the Separation and Preconcentration of Parabens in Environmental Water Samples. Molecules 2018; 23:molecules23061450. [PMID: 29904011 PMCID: PMC6100510 DOI: 10.3390/molecules23061450] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, a simple, rapid and effective in-syringe micro-solid phase extraction (MSPE) method was developed for the separation and preconcetration of parabens (methyl, ethyl, propyl and butyl paraben) in environmental water samples. The parabens were determined and quantified using high performance liquid chromatography and a photo diode array detector (HPLC-PDA). Chitosan-coated activated carbon (CAC) was used as the sorbent in the in-syringe MSPE device. A response surface methodology based on central composite design was used for the optimization of factors (eluent solvent type, eluent volume, number of elution cycles, sample volume, sample pH) affecting the extraction efficiency of the preconcentration procedure. The adsorbent used displayed excellent absorption performance and the adsorption capacity ranged from 227–256 mg g−1. Under the optimal conditions the dynamic linear ranges for the parabens were between 0.04 and 380 µg L−1. The limits of detection and quantification ranged from 6–15 ng L−1 and 20–50 ng L−1, respectively. The intraday (repeatability) and interday (reproducibility) precisions expressed as relative standard deviations (%RSD) were below 5%. Furthermore, the in-syringe MSPE/HPLC procedure was validated using spiked wastewater and tap water samples and the recoveries ranged between from 96.7 to 107%. In conclusion, CAC based in-syringe MSPE method demonstrated great potential for preconcentration of parabens in complex environmental water.
Collapse
Affiliation(s)
- Geaneth Pertunia Mashile
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa.
| | - Anele Mpupa
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa.
| | - Philiswa Nosizo Nomngongo
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa.
| |
Collapse
|
8
|
Sajid M, Płotka-Wasylka J. Combined extraction and microextraction techniques: Recent trends and future perspectives. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
One-pot preparation of magnetic carbon adsorbent derived from pomelo peel for magnetic solid-phase extraction of pollutants in environmental waters. J Chromatogr A 2018; 1546:28-35. [DOI: 10.1016/j.chroma.2018.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/25/2018] [Accepted: 03/01/2018] [Indexed: 01/12/2023]
|
10
|
SBA-15/Metformin as a novel sorbent combined with surfactant-assisted dispersive liquid–liquid microextraction (SA-DLLME) for highly sensitive determination of Pb, Cd and Ni in food and environmental samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-017-1272-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Recent advances in liquid-phase microextraction techniques for the analysis of environmental pollutants. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Hashemi B, Zohrabi P, Raza N, Kim KH. Metal-organic frameworks as advanced sorbents for the extraction and determination of pollutants from environmental, biological, and food media. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Liu C, Liao Y, Huang X. Fabrication of polymeric ionic liquid-modified magnetic adsorbent for extraction of apolar and polar pollutants in complicated samples. Talanta 2017; 172:23-30. [DOI: 10.1016/j.talanta.2017.05.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022]
|
14
|
Solidification of floating organic droplet in dispersive liquid-liquid microextraction as a green analytical tool. Talanta 2017; 170:22-35. [DOI: 10.1016/j.talanta.2017.03.084] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/25/2017] [Accepted: 03/26/2017] [Indexed: 01/09/2023]
|
15
|
Shamsipur M, Yazdanfar N, Ghambarian M. Combination of solid-phase extraction with dispersive liquid–liquid microextraction followed by GC–MS for determination of pesticide residues from water, milk, honey and fruit juice. Food Chem 2016; 204:289-297. [DOI: 10.1016/j.foodchem.2016.02.090] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/15/2016] [Accepted: 02/13/2016] [Indexed: 11/30/2022]
|
16
|
Xue X, Zhao Z, Li Q, Wang D, Xu X, Zhu L, Yang D. Determination of Flavonoids by Solidification of Floating Organic Drop Liquid-Phase Microextraction and High-Performance Liquid Chromatography. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1149859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|